Tissue removal device and method

Information

  • Patent Grant
  • 9050112
  • Patent Number
    9,050,112
  • Date Filed
    Wednesday, August 22, 2012
    12 years ago
  • Date Issued
    Tuesday, June 9, 2015
    9 years ago
Abstract
A tissue removal device for removing hard and/or soft tissue is disclosed. The device can have an elongated rigid shaft attached to an articulating broach. The device can be inserted through a transosseous delivery channel formed in a bone. The broach can articulate after passing through the transosseous delivery channel.
Description
BACKGROUND

Existing surgery to treat spinal ailments includes the removal of intervertebral discs, known as a discectomy. The removed discs can be replaced by other devices including rigid metal implants.


Discectomies performed between the L5 and S1 vertebrae are difficult because the path to access the L5-S1 intervertebral space often passes through tissue in front of the sacrum which contains a large quantity of sensitive nerves and arteries. There is a substantial risk of serious damage caused as a side effect of the discectomy and the delivery of the implant to the L5-S1 intervertebral space.


There exists a method for creating a delivery channel through the hone of the iliac and/or sacrum to deliver the implant. However, manipulating, positioning and orienting the implant on the medial side of the channel is not easy. Also, unintended soft tissue damage is still possible when a device is exiting the hone channel and traverses soft tissue before entering the intervertebral space. Furthermore, performing the discectomy is difficult if not impossible through the channel because access to the disc space is constrained through the channel.


Accordingly, a method and device for performing a discectomy through and on the far side of a transosseous or other constrained channel is desired.


SUMMARY OF THE INVENTION

Devices for removing tissue are disclosed. The device can have a rigid shaft attached to an articulating broach. The broach can have a tapered distal terminal tip. The broach can have teeth extending laterally or radially from the broach.


The broach can have a first segment longitudinally distal to a second segment. The first segment can be rotatably attached to the second segment. The broach can have a third segment longitudinally proximal to the second segment. The third segment can be rotatably attached to the second segment. The third segment can be attached to the rigid shaft.


A method for removing tissue from a biological target site is also disclosed. The method includes inserting the multi-segmented articulating broach into the target site. The method can include forming a channel through an obstructing bone, such as the iliac and/or sacral ala. The channel can have an exit port in the S1 endplate. The broach can be translated into and out of the channel. The broach can be articulated while the broach is located at the target site.


The broach can capture tissue debris at the target site and can be removed from the target site. When the broach is removed from the target site, the broach can remove tissue debris from the target site. The method can be performed, for example, in the L5-S1 intervertebral disc space.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a variation of the tissue removal device,



FIG. 2 is a side view of a variation of the broach in an unarticulated configuration.



FIG. 3 is a side view of the broach of FIG. 2 in an articulated configuration.



FIG. 4 is a perspective view of a variation of the broach in an articulated configuration.



FIG. 5 illustrates the lower spine and pelvis.



FIGS. 6 through 9 illustrate a variation of a method of using the tissue removal device.



FIGS. 10 through 12 illustrate views through the transverse plane from a superior location, the sagittal plane from a lateral location, and the coronal plane from an anterior location, respectively, of a variation of the location of the transosseous delivery channel.



FIGS. 13
a through 13d illustrate a superior view of a variation ( ) a method of using the tissue removal device anatomically showing the iliac and sacrum, but not the L5-S1 disc or remainder of the spine for illustrative purposes.



FIGS. 14
a through 14d illustrate a posterior perspective view of a variation eta method of using the tissue removal device anatomically showing the iliac and sacrum, but not the L5-S1 disc or remainder of the spine for illustrative purposes.



FIGS. 15
a through 15c are radiographic visualization of a variation of a method of using the tissue removal device at a target site in the L5-S1 intervertebral space.





DETAILED DESCRIPTION


FIG. 1 illustrates that a tissue removal tool 10 or device can have a broach 12, auger, or borer attached to the distal end of a shaft. The tool 10 can be configured to remove hard tissue and or soil tissue, such as bone, cartilage, ligaments, collagenous tissue such as intervertebral discs, infected tissue, or combinations thereof from a target site inside of a patient's body. The tool 10 can be configured to remove the tissue through a tunnel or channel formed in the patient's body.


The broach 12 can be rigid, flexible, fixed (i.e., unarticulatable), articulatable within the broach 12 and/or at the broach's connection with the shaft 14, or combinations thereof. The distal terminal end of the broach 12 can be traumatically or atraumatically sharpened and/or pointed, for example to dissect tissue when pushed through the tissue. Part or all of the broach surface can be smooth and/or textured. The shaft 14 can taper at a shaft taper 16 to the broach 12.


The shaft 14 can be rigid or flexible along the entire length, or have alternating flexible and rigid lengths. The shaft 14 can be unitary and unarticulatable or jointed and articulatable. The shaft 14 can have control rods (not shown) disposed within or outside of the shaft 14 to control articulation (e.g., lock and unlock articulation, and to control the angles of articulation for each joint) of the broach 12.


The distal terminal end of the shaft 14 can taper at a shaft taper 16 to a connection with the broach 12. The distal end of the shaft 14 can be fixably or removably attached to the broach 12.


The proximal end of the shaft 14 can taper to a shaft neck 18. The proximal end of the shaft 14 can attach to or be integral with a handle 20. The handle 20 can have one, two, three, tour or five finger (and thumb) seats 24, for example to ergonomically confirm to the user's hand along with the shaft neck 18. The handle 20 can have articulating control surfaces, such as buttons, switches or triggers in one or more of the finger seats 24. The articulating control surfaces can control the articulation, attachment, detachment, or combinations thereof of the broach 12 with respect to the distal end of the shaft 14.


The proximal terminal end of the shaft 14 can have a shaft head 22. The shaft head can be fixed to or removable from the remainder of the shaft 14. The shaft head 22 can be removed from the remainder of the shaft 14, for example, allowing removal and replacement of the handle 20 (e.g., to replace the handle 20 with a larger or smaller handle 20 to fit the user's hand). The shaft 14 can be attached, for example at the shaft head 22, to auxiliary devices not shown. The auxiliary devices can be or have an electronic, hydraulic or pneumatic supersonic, hypersonic or subsonic oscillator; a power and/or control unit configured to articulate the broach 12; visualization and lighting devices for delivering and receiving visualization and lighting power and signals to and from the distal end of the shaft 14 and/or the broach 12; aspiration and/or irrigation tools for delivering and receiving solids and fluids (e.g., saline, analgesics, anesthetic, antibiotics, debris) to and from the distal end of the shaft 14 and/or the broach 12 or combinations thereof.



FIG. 2 illustrates that the broach 12 can have a connecting segment 26a fixedly 6 or rotatably attached to the shaft 14. The connecting segment 26a can have a connecting segment longitudinal axis 28a. The connecting segment 26a can be fixed to or rotate with respect to the shaft 14 around the connecting segment longitudinal axis 28a and/or around one or more axes perpendicular to the connecting segment longitudinal axis 26a.


The broach 12 can have a second trailing segment 26b. The second trailing segment 26b can have a second trailing hinge 30a at the proximal end of the second trailing segment 26b. The second trailing, segment 26b can be rotatably attached to the connecting segment 26a at the second trailing hinge 30a.


The broach 12 can have a first trailing segment 26c. The first trailing segment 26c can have a first trailing hinge 30b at the proximal end of first trailing, segment 26c. The first trailing segment 26c can be rotatably attached to the second trailing segment 26b at the first trailing hinge 30b.


The broach 12 can have a distal segment 26d at the distal terminal end of the broach 12. The distal segment 26d can have a lead hinge 26c at the proximal end of the distal segment 26d. The distal segment 26d can be rotatably attached to the first trailing segment 26c at the lead hinge 26c.


The broach 12 can have zero, one, three, four or more trailing segments 26 rotatably connected in series, similar to the configuration shown in FIG. 2, between the distal or lead segment 26d and the connecting segment 26a or shaft 14.


The first trailing hinge 30b, second trailing hinge 30a and lead hinge 30c can be in the same (as shown) or different planes when the broach 12 is in a linear configuration, as shown in FIG. 2.


The broach 12 can have an inferior side 32a and a superior side 32b. During use, the inferior side 32a can face the inferior end of the patient and the superior side 32b can face the superior end of the patient.


Any or all segments 26 of the broach 12 can have one or more teeth 34 on the inferior and/or superior sides 32a and/or 32b of the broach 12. Any or all segments 26 of the broach 12 can have one or more teeth 34 on the lateral sides of the broach, for example on perpendicular planes to the inferior and superior sides 32a and 32b. The segments 26 can have face teeth 34a and hinge teeth 34b. The face teeth 34a can be equivalent or differently shaped than the hinge teeth 34b. The face teeth 34a can be shaped and located symmetrically compared with teeth 34 on the opposite side of the broach 12 or asymmetrically shaped or located compared with teeth 34 on the opposite side of the broach 12. The hinge teeth 34b can be on one side of the broach 12, for example on the superior side 32b of the broach 12, but no hinge tooth 34b can be positioned on the inferior side 32a of the broach 12 at the same length along the broach 12 as the corresponding hinge tooth 34b, as shown. The hinge teeth 34b can correspond in length to the position of the hinge 30. Each segment 26 can have one, two, three, four (as shown), five or more face teeth 34a on one or each (as shown) side of the segment 26.


Each face tooth 34a can have a hinge tooth leading face 36a and a face tooth trailing face 36b. Each hinge tooth can have a hinge tooth leading face and a hinge tooth trailing face that can be analogous to the face tooth leading face 36a and the face tooth trailing lace 36b, respectively. The teeth 34 can have a face or hinge tooth angle 38 formed between the tooth leading face and the tooth trailing face. The tooth angles 38 can be from about 3° to about 90°, more narrowly from about 10° to about 45°, for example about 25°.


The teeth 34 can have flat trailing faces or concave trailing faces. The teeth 34 can have flat leading faces or convex leading faces.


The trailing faces can be perpendicular to the longitudinal axis of the respective segment or pointed in a proximal direction. The teeth 34 can be unidirectional, providing less resistance when the broach 12 is pushed distally against tissue and more resistance when the broach 12 is pulled proximally against tissue.


The distal segment 26d can have lead teeth 34c. The lead teeth 34c can be configured identically to the face or hinge teeth 34a or 34b or can be smaller. For example, the lead teeth 34x can have a flatted radially distal tip. The lead teeth 34c can be on the superior and/or inferior sides of the distal segment 26d.


Any or all of the teeth 34 can be configured to produce less three resistance when the broach 12 is pushed distally through tissue and more forced resistance when the broach 12 is pulled proximally through tissue. For example, the lace tooth leading face 36a can be perpendicular to the longitudinal axis of the respective segment 26, and the face tooth trailing face 36b can extend proximally as the face tooth trailing face 36b extends away from the segment 26. The teeth 34 can be configured to separate and remove tissue when the broach 12 is pushed distally through tissue and to not or minimally separate and remove tissue when the broach 12 is pulled proximally through tissue.


The distal terminal end of the distal segment 26d can have a distal tip 40. The distal segment 26d can taper to the distal tip 40. The inferior and/or superior faces of the distal segment 26d can be flat and/or convex and/or concave. The distal tip 40 can be flat, a bullet tip, or a chisel tip (as shown).


The distal tip 40 can form a distal tip angle 42. The distal tip angle 42 can be measured as the intersecting angle between the plane of the face of the interior side of the distal segment 26d and the plane of the face of the superior side of the distal segment 26d. The distal tip angle 42 can be from about 1° to about 90°, more narrowly from about 3° to about 45°, yet more narrowly from about 5° to about 35°, yet more narrowly from about 15° to about 30°.



FIG. 3 illustrates that the broach 12 can be articulated, as shown by arrow 44. The connecting segment longitudinal axis 28a can be collinear with the shaft longitudinal axis.


The broach 12 can articulate at a broach articulation angle 46. The broach articulation angle 46 can be measured between the connecting segment longitudinal axis 28a and the distal segment longitudinal axis 28d. The broach articulation angle 46 can be about 180° as shown in FIG. 2. The broach articulation angle 46 can be controlled to be a minimum of about 155°, yet more narrowly about 135°, yet more narrowly about 90°, yet more narrowly about 60°, yet more narrowly about 45°.


The distal segment 26d can have a distal segment longitudinal axis 28d. The first trailing segment 26c can have a first trailing segment longitudinal axis 28c. The second trailing segment 26b can have a second trailing segment longitudinal axis 28b.


The second trailing segment 26b can articulate about the second trailing hinge 30a with respect to the connecting segment 26a, as shown by arrow 44a. The second trailing segment longitudinal axis 28b can form a second trailing segment articulation angle 46a with respect to the connecting segment longitudinal axis 28a. The second trailing segment articulation angle 46a can be about 180° as shown in FIG. 1. The second trailing segment articulation angle 46a can be controlled to be a minimum of about 155°, yet more narrowly about 135°, yet more narrowly about 90°, yet more narrowly about 60°, yet more narrowly about 45°.


The first nailing segment 26e can articulate about the first trailing, hinge 30b with respect to the second trailing segment 26d, as shown by arrow. The first trailing segment longitudinal axis 28c can form a first trailing segment articulation angle 46b with respect to the second trailing segment longitudinal axis 28a. The first trailing segment articulation angle 46b can be about 180° as shown in FIG. 1. The second trailing segment articulation angle 46b can be controlled to be a minimum of about 155°, yet more narrowly about 135°, yet more narrowly about 90°, yet more narrowly about 60°, yet more narrowly about 45°.


The distal segment 26d can articulate about the lead hinge 30c with respect to the first trailing segment 26c, as shown by arrow. The distal segment longitudinal axis 28d can form a distal segment articulation angle 46c with respect to the first trailing segment longitudinal axis 28c. The distal segment articulation angle 46c can be about 180° as shown in FIG. 1. The distal segment articulation angle 46c can be controlled to be a minimum of about 155°, yet more narrowly about 135°, yet more narrowly about 90°, yet more narrowly about 60°, yet more narrowly about 45°.


The hinges 30 can be perpendicular to the longitudinal axes 28 of the respective segments 26.



FIG. 4 illustrates that the connecting segment 26a can have one or more connecting segment through ports 48a. The second trailing segment 26b can have one or more second trailing segment through ports 48b. The first trailing segment 26c can have one or more first trailing, segment through ports 48c. The distal segment 26d can have one or more distal segment through ports.


Any or all of the through ports 48 can extend through the entire device or broach 12. Instead of one or more (e.g., all) of through ports 48, the broach 12 can have recesses or cavities. During use, the through ports, recesses, cavities or combinations thereof can fill with debris 82, such as hard or soft tissue debrided by the teeth 34.


Any or all of the hinges 30 can have a hinge tooth 34h extending radially away from the hinge 30 in the direction of the superior side 32b and/or inferior side 34a of the broach 12. The hinge teeth 34b can be rotatably fixed to the hinge 30 or one of the segments 26 adjacent to the respective hinge 30.



FIG. 5 illustrates that a straight or curved transosseous delivery channel 50 can be drilled, chiseled, punched, or a combination thereof, through the iliac hone 52 and/or the sacral ala 54. The transosseous delivery channel 50 can have a laterally-located channel entry port 56 outside of the sacral ala 54 and/or iliac bone 52. The transosseous delivery channel 50 can have a channel exit port 58 adjacent to the L5-S1 intervertebral disc 62 space. For example, the channel exit port 58 can be in the S1 vertebral endplate 60. The channel exit port 58 can be positioned so the circumference of the channel exit port 58 tangentially coincides with or is closely adjacent to (e.g., within about 2 cm, more narrowly within about 1 cm, more narrowly within about 5 mm, yet more narrowly within about 2 mm) with the edge of the S1 vertebral endplate 60. Also shown for clarity are the L5 vertebra 64, sacroiliac joint 66, sacrum 68, and symphysis pubis 70.



FIG. 6 illustrates that the broach 12 of the tissue removal device 10 can be inserted, as shown by arrow 72, medially through the channel entry port 56 of the transosseous delivery channel 50.



FIG. 7 illustrates that the shaft 14 can be further translated, as shown by arrow 76, into the transosseous delivery channel 50. The broach 12 can translate toward and into the L5-S1 intervertebral disc 62 space. The distal tip of the broach 12 can pierce the L5-S1 intervertebral disc 62, and/or the distal tip can wedge between the L5-S1 intervertebral disc 62 and the L5 or S1 vertebra. The broach 12 can enter the target site of the L5-S1 intervertebral disc 62 directly from the transosseous delivery channel 50 without passing through any soft tissue between the L5-S1 intervertebral disc 62 and the iliac bone 52.



FIG. 8 illustrates that the shalt 14 can be further translated, as shown by arrow 76, medially through the transosseous delivery channel 50. The broach 12 can translate, as shown by arrow 78, through the L5-S1 intervertebral disc and/or between the L5-S1 intervertebral disc 62 and the L5 and/or the S1 vertebra. The broach 12 can articulate, as shown by arrow 102. One or more of the hinges 30 can rotate. The hinges 30 can be controllably rotatably locked and unlocked, for example, by controls on the handle 20.


The broach 12 can then be translated, such as being vibrated (e.g., manually, ultrasonically), for example, medially and laterally, and/or superior and inferiorly, and/or anteriorly and posteriorly. The through ports 48 and/or cavities and/or recesses in the broach 12 can partially and/or completely fill with soft (e.g., part or all of the L5-S1 vertebral disc) and/or hard tissue (e.g., a portion of either or both of the L5 or S1 vertebra) debris 82. The broach 12 can deliver a cauterizing electrical energy. The broach 12 and shaft 14 can have one or more longitudinal lumens that can be used to irrigate (e.g., with analgesic agents, saline, anesthetic agents, bone morphogenic proteins, visualization agents, other agents described herein, or combinations thereof) and/or aspirate (e.g., to remove irrigated material and/or debris 82) the target site (e.g., the L5-S1 intervertebral disc space).



FIG. 9 illustrates that the shaft 14 can be translated laterally, for example removing the broach 12 from the L5-S1 intervertebral disc 62 space and the transosseous delivery channel 50. The debris 82 removed from the L5-S1 intervertebral disc 62 space and held by the broach 12 upon exiting the transosseous delivery channel 50 can be passively or actively removed from the through ports 48, cavities, recessesor combinations thereof, before or after the broach 12 is removed from the transosseous delivery channel 50. The removed portion of tissue can leave a partial or complete discectomy 84. The method shown in FIGS. 6 though 9 can be repeated to remove additional tissue.



FIGS. 10 through 12 illustrate that the transosseous delivery channel 50 can have a coronal delivery angle 86 measured to the coronal plane 88, a sagittal delivery angle 90 measured to the sagittal plane 92, and a transverse delivery angle 94 measured to the transverse plane 96. The coronal delivery angle 86 can be from about 0° to about 25°, for example about 12°. The sagittal delivery angle 90 can be from about 65° to about 90°, for example about 75°. The transverse delivery angle 94 can be from about 0° to about 20°, for example about 10°. The broach 12 and shaft 14 are configured so the broach 12 can exit the channel exit port 58 (e.g., directly into the L5-S1 intervertebral disc 62) and articulate sufficiently to enter and pass through all or a significant portion (e.g., more than about 40%, yet more narrowly more than about 50%, yet more narrowly more than about 75%) of the width of the L5-S1 intervertebral space. The femurs 98 are shown for illustrative purposes.



FIGS. 13
a through 13d, and separately FIGS. 14a through 14e illustrate the deployment of the broach into the L5-S1 intervertebral disc space target site 104, as described for FIGS. 5-8.



FIG. 14
d illustrates the shaft can be rotated about the longitudinal axis of the shaft 14 before during or after the broach 12 is positioned in the L5-S1 intervertebral disc 62 space target site. The broach 12 can rotate in the L5-S1 intervertebral disc 62 space. The shaft 14 can rotate, as shown by arrow 106, about the longitudinal axis of the shaft to further dig the teeth 34 into the tissue.



FIGS. 15
a through 15c illustrate the delivery of the broach 12 through the transosseous delivery channel 50 and into the L5-S1 intervertebral disc 62. The broach 12 can have one or more radiopaque markers 100, for example one marker 100 in each segment 26.


Any or all elements of the device 10 and/or other devices or apparatuses described herein can be made from, for example, a single or multiple stainless steel alloys, nickel titanium alloys (e.g., Nitinol), cobalt-chrome alloys (e.g., ELGILOY® from Elgin Specialty Metals, Elgin, Ill.; CONICHROME® from Carpenter Metals Corp., Wyomissing, Pa.), nickel-cobalt alloys (e.g., MP35N® from Magellan Industrial Trading Company, Inc., Westport, Conn.), molybdenum alloys (e.g., molybdenum TZM alloy, for example as disclosed in International Pub. No. WO 03/082363 A2, published 9 Oct. 2003, which is herein incorporated by reference in its entirety), tungsten-rhenium alloys, for example, as disclosed in International Pub. No. WO 03/082363, polymers such as polyethylene teraphathalate (PET), polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), poly ester amide (PEA), polypropylene, aromatic polyesters, such as liquid crystal polymers (e.g., Vectran, from Kuraray Co., Ltd., Tokyo, Japan), ultra high molecular weight polyethylene (i.e., extended chain, high-modulus or high-performance polyethylene) fiber and/or yarn (e.g., SPECTRA® Fiber and SPECTRA® Guard, from Honeywell International, Inc., Morris Township, N.J., or DYNEEMA® from Royal DSM N.V., Heerlen, the Netherlands), polytetrafluoroethylene (PTFE), expanded PTFE (ePTFE), polyether ketone (PEK), polyether ether ketone (PEEK), poly ether ketone ketone (PEKK) (also poly aryl ether ketone ketone), nylon, polyether-block co-polyamide polymers (e.g., PEBAX® from ATOFINA, Paris, France), aliphatic polyether polyurethanes (e.g., TECOFLEX® from Thermedics Polymer Products, Wilmington, Mass.), polyvinyl chloride (PVC), polyurethane, thermoplastic, fluorinated ethylene propylene (FEP), absorbable or resorbable polymers such as polyglycolic acid (PGA), poly-L-glycolic acid (PLGA) polylactic acid (PLA), poly-L-lactic acid (PLLA), polycaprolactone (PCL), polyethyl acrylate (PEA), polydioxanone (PDS), and pseudo-polyamino tyrosine-based acids, extruded collagen, silicone, zinc, echogenic, radioactive, radiopaque materials, a biomaterial (e.g., cadaver tissue, collagen, allograft, autograft, xenograft, bone cement, morselized bone, osteogenic powder, beads of bone) any of the other materials listed herein or combinations thereof. Examples of radiopaque materials are barium sulfate, zinc oxide, titanium, stainless steel, nickel-titanium alloys, tantalum and gold.


The device 10 can be made from substantially 100% PEEK, substantially 100% titanium or titanium alloy, or combinations thereof.


Any or all elements of the device and/or other devices or apparatuses described herein, can be, have, and/or be completely or partially coated with agents for cell ingrowth.


The device 10 and/or elements of the device and/or other devices or apparatuses described herein can be filled, coated, layered and/or otherwise made with and/or from cements, tillers, and/or glues known to one having ordinary skill in the art and/or a therapeutic and/or diagnostic agent. Any of these cements and/or fillers and/or glues can be osteogenic and osteoinductive growth factors.


Examples of such cements and/or fillers includes bone chips, demineralized hone matrix (DBM), calcium sulfate, coralline hydroxyapatite, biocoral, tricalcium phosphate, calcium phosphate, polymethyl methacrylate (PMMA), biodegradable ceramics, bioactive glasses, hyaluronic acid, lactoferrin, bone morphogenic proteins (BMPs) such as recombinant human hone morphogenetic proteins (rhBMPs), other materials described herein, or combinations thereof.


The agents within these matrices can include any agent disclosed herein or combinations thereof, including radioactive materials; radiopaque materials; cytogenic agents; cytotoxic agents; cytostatic agents; thrombogenic agents, for example polyurethane, cellulose acetate polymer mixed with bismuth trioxide, and ethylene vinyl alcohol; lubricious, hydrophilic materials; phosphor cholene; anti-inflammatory agents, for example non-steroidal anti-inflammatories (NSAIDs) such as cyclooxygenase-1 (COX-1) inhibitors (e.g., acetylsalicylic acid, for example ASPIRIN® from Bayer AG, Leverkusen, Germany; ibuprofen, for example ADVIL® from Wyeth, Collegeville, Pa.; indomethacin; mefenamic acid), COX-2 inhibitors (e.g., VIOXX® from Merck & Co., Inc., Whitehouse Station, N.J.; CELEBREX® from Pharmacia Corp., Peapack, N.J.; COX-1 inhibitors); immunosuppressive agents, for example Sirolimus (RAPAMUNE®, from Wyeth, Collegeville, Pa.), or matrix metalloproteinase (MMP) inhibitors (e.g., tetracycline and tetracycline derivatives) that act early within the pathways of an inflammatory response. Examples of other agents are provided in Walton et al, Inhibition of Prostoglandin E2 Synthesis in Abdominal Aortic Aneurysms, Circulation, Jul. 6, 1999, 48-54; Tambiah et al, Provocation of Experimental Aortic Inflammation Mediators and Chlamydia Pneumoniae, Brit. J. Surgery 88 (7), 935-940; Franklin et al, Uptake of Tetracycline by Aortic Aneurysm Wall and Its Effect on Inflammation and Proteolysis, Brit. J. Surgery 86 (6), 771-775; Xu et al, Sp1 Increases Expression of Cyclooxygenase-2 in Hypoxic Vascular Endothelium, J. Biological Chemistry 275 (32) 24583-24589; and Pyo et al, Targeted Gene Disruption of Matrix Metalloproteinase-9 (Gelatinase B) Suppresses Development of Experimental Abdominal Aortic Aneurysms, J. Clinical Investigation 105 (11), 1641-1649 which are all incorporated by reference in their entireties.


Any elements described herein as singular can be pluralized (i.e., anything described as “one” can be more than one). Any species element of a genus element can have the characteristics or elements of any other species element of that genus. The above-described configurations, elements or complete assemblies and methods and their elements for carrying out the invention, and variations of aspects of the invention can be combined and modified with each other in any combination.

Claims
  • 1. A method for removing tissue from a biological target site in a patient comprising: inserting a multi-segmented articulating broach into the target site, wherein the broach comprises a first segment longitudinally distal to a second segment, and wherein the first segment is rotatably attached to the second segment, and wherein inserting comprises rotating the first segment with respect to the second segment, and wherein the rotation has a component of rotation around an axis parallel with a sagittal axis of the patient.
  • 2. The method of claim 1, further comprising forming a channel through an obstructing bone.
  • 3. The method of claim 2, wherein inserting comprises translating the broach through the channel.
  • 4. The method of claim 3, wherein inserting further comprises articulating the broach while the broach is located at the target site.
  • 5. The method of claim 4, wherein the broach comprises teeth extending across the width of the broach.
  • 6. The method of claim 1, further comprising removing the broach from the target site.
  • 7. The method of claim 1, further comprising capturing tissue debris in the broach.
  • 8. The method of claim 1, further comprising removing the broach from the target site, wherein removing the broach from the target site comprises removing tissue debris from the target site.
  • 9. The method of claim 1, wherein the target site comprises an L5-S1 intervertebral disc space.
  • 10. The method of claim 1, wherein the broach comprises teeth extending across the width of the broach.
  • 11. A method for removing tissue from a biological target site in a patient comprising: inserting a multi-segmented articulating broach into the target site, wherein the broach comprises teeth, and wherein inserting comprises articulating between at least two segments of the broach, and wherein the articulation comprises rotating around an axis parallel with a sagittal axis of the patient; anddebriding the tissue comprising oscillating the broach at the target site, further comprising scraping the tissue with at least some of the teeth.
  • 12. The method of claim 11, further comprising forming a channel through an obstructing bone.
  • 13. The method of claim 12, wherein inserting comprises translating the broach through the channel.
  • 14. The method of claim 13, wherein inserting further comprises articulating the broach while the broach is located at the target site.
  • 15. The method of claim 14, wherein the broach comprises teeth extending across the width of the broach.
  • 16. The method of claim 11, further comprising removing the broach from the target site.
  • 17. The method of claim 11, further comprising capturing tissue debris in the broach.
  • 18. The method of claim 11, further comprising removing the broach from the target site, wherein removing the broach from the target site comprises removing tissue debris from the target site.
  • 19. The method of claim 11, wherein the target site comprises an L5-S1 intervertebral disc space.
  • 20. The method of claim 11, wherein the broach comprises teeth extending across the width of the broach.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to U.S. Provisional Application No. 61/526,630 filed 23 Aug. 2011 which is incorporated by reference herein in its entirety.

US Referenced Citations (575)
Number Name Date Kind
646119 Clamer et al. Mar 1900 A
4204531 Aginsky May 1980 A
4569338 Edwards Feb 1986 A
4636217 Ogilvie et al. Jan 1987 A
4653489 Tronzo Mar 1987 A
4716839 Catena Jan 1988 A
4716893 Fischer et al. Jan 1988 A
4725264 Glassman Feb 1988 A
4733665 Palmaz Mar 1988 A
4759769 Hedman et al. Jul 1988 A
4763644 Webb Aug 1988 A
4863476 Shepperd Sep 1989 A
4886062 Wiktor Dec 1989 A
4911718 Lee et al. Mar 1990 A
4932975 Main et al. Jun 1990 A
4941466 Romano Jul 1990 A
4969888 Scholten et al. Nov 1990 A
5007909 Rogozinski Apr 1991 A
5015247 Michelson May 1991 A
5026373 Ray et al. Jun 1991 A
5059193 Kuslich Oct 1991 A
5108404 Scholten et al. Apr 1992 A
5123926 Pisharodi Jun 1992 A
5139480 Hickle et al. Aug 1992 A
5171278 Pisharodi Dec 1992 A
5217483 Tower Jun 1993 A
5258031 Salib et al. Nov 1993 A
5306278 Dahl et al. Apr 1994 A
5324295 Shapiro III Jun 1994 A
5342348 Kaplan Aug 1994 A
5345927 Bonutti Sep 1994 A
5390683 Pisharodi Feb 1995 A
5390898 Smedley et al. Feb 1995 A
5397364 Kozak et al. Mar 1995 A
5425773 Boyd et al. Jun 1995 A
5454365 Bonutti Oct 1995 A
5458643 Oka et al. Oct 1995 A
5480442 Bertagnoli Jan 1996 A
5484384 Fearnot Jan 1996 A
5496365 Sgro Mar 1996 A
5522899 Michelson Jun 1996 A
5534002 Brumfield et al. Jul 1996 A
5540690 Miller et al. Jul 1996 A
5549679 Kuslich Aug 1996 A
5554191 Lahille et al. Sep 1996 A
5556413 Lam Sep 1996 A
5562736 Ray et al. Oct 1996 A
5562738 Boyd et al. Oct 1996 A
5571189 Kuslich Nov 1996 A
5571192 Schonhoffer Nov 1996 A
5584831 McKay Dec 1996 A
5591197 Orth et al. Jan 1997 A
5593409 Michelson Jan 1997 A
5609356 Mossi Mar 1997 A
5609635 Michelson Mar 1997 A
5643264 Sherman et al. Jul 1997 A
5643312 Fischell et al. Jul 1997 A
5645560 Crocker et al. Jul 1997 A
5649950 Bourne et al. Jul 1997 A
5653763 Errico et al. Aug 1997 A
5658335 Allen Aug 1997 A
5665122 Kambin Sep 1997 A
5669909 Zdeblick et al. Sep 1997 A
5674295 Ray et al. Oct 1997 A
5683394 Rinner Nov 1997 A
5693100 Pisharodi Dec 1997 A
5702449 McKay Dec 1997 A
5702453 Rabbe et al. Dec 1997 A
5741253 Michelson Apr 1998 A
5749916 Richelsoph May 1998 A
5772661 Michelson Jun 1998 A
5776181 Lee et al. Jul 1998 A
5776197 Rabbe et al. Jul 1998 A
5776198 Rabbe et al. Jul 1998 A
5776199 Michelson Jul 1998 A
5782832 Larsen et al. Jul 1998 A
5782903 Wiktor Jul 1998 A
5785710 Michelson Jul 1998 A
5800520 Fogarty et al. Sep 1998 A
5824054 Khosravi et al. Oct 1998 A
5824093 Ray et al. Oct 1998 A
5827289 Reiley et al. Oct 1998 A
5827321 Roubin et al. Oct 1998 A
5853419 Imran Dec 1998 A
5861025 Boudghene et al. Jan 1999 A
5863284 Klein Jan 1999 A
5865848 Baker Feb 1999 A
5972015 Scribner et al. Oct 1999 A
5980522 Koros et al. Nov 1999 A
5980550 Eder et al. Nov 1999 A
5984957 Laptewicz et al. Nov 1999 A
6001130 Bryan et al. Dec 1999 A
6019765 Thornhill et al. Feb 2000 A
6019792 Cauthen Feb 2000 A
6022376 Assell et al. Feb 2000 A
6025104 Fuller et al. Feb 2000 A
6027527 Asano et al. Feb 2000 A
6036719 Meilus Mar 2000 A
6039761 Li et al. Mar 2000 A
6045579 Hochshuler et al. Apr 2000 A
6053916 Moore Apr 2000 A
6066154 Reiley et al. May 2000 A
6077246 Kullas et al. Jun 2000 A
6080193 Hochshuler et al. Jun 2000 A
6083522 Chu et al. Jul 2000 A
6086610 Duerig et al. Jul 2000 A
6090143 Meriwether et al. Jul 2000 A
6102950 Vaccaro Aug 2000 A
6113639 Ray et al. Sep 2000 A
6126689 Brett Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6129763 Chauvin et al. Oct 2000 A
6132465 Ray et al. Oct 2000 A
6140452 Felt et al. Oct 2000 A
6146417 Ischinger Nov 2000 A
6159244 Suddaby Dec 2000 A
6159245 Meriwether et al. Dec 2000 A
6168616 Brown, III Jan 2001 B1
6171312 Beaty Jan 2001 B1
6176882 Biedermann et al. Jan 2001 B1
6179874 Cauthen Jan 2001 B1
6183506 Penn et al. Feb 2001 B1
6183517 Suddaby Feb 2001 B1
6193757 Foley et al. Feb 2001 B1
6206910 Berry et al. Mar 2001 B1
6206924 Timm Mar 2001 B1
6224595 Michelson May 2001 B1
6224603 Marino May 2001 B1
6224604 Suddaby May 2001 B1
6224607 Michelson May 2001 B1
6235043 Reiley et al. May 2001 B1
6241734 Scribner et al. Jun 2001 B1
6245101 Drasler et al. Jun 2001 B1
6245107 Ferree Jun 2001 B1
6248110 Reiley et al. Jun 2001 B1
6280456 Scribner et al. Aug 2001 B1
6287332 Bolz et al. Sep 2001 B1
6293967 Shanley Sep 2001 B1
6302914 Michelson Oct 2001 B1
6332895 Suddaby Dec 2001 B1
6371989 Chauvin et al. Apr 2002 B1
6387130 Stone et al. May 2002 B1
6395031 Foley et al. May 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402785 Zdeblick et al. Jun 2002 B1
6409765 Bianchi et al. Jun 2002 B1
6419704 Ferree Jul 2002 B1
6419705 Erickson Jul 2002 B1
6423083 Reiley et al. Jul 2002 B2
6425916 Garrison et al. Jul 2002 B1
6425919 Lambrecht Jul 2002 B1
6428569 Brown Aug 2002 B1
6432107 Ferree Aug 2002 B1
6436098 Michelson Aug 2002 B1
6436140 Liu et al. Aug 2002 B1
6440168 Cauthen Aug 2002 B1
6447544 Michelson Sep 2002 B1
6447546 Bramlet et al. Sep 2002 B1
6447547 Michelson Sep 2002 B1
6451025 Jervis Sep 2002 B1
6454804 Ferree Sep 2002 B1
6468301 Amplatz et al. Oct 2002 B1
6468302 CoC et al. Oct 2002 B2
6478823 Michelson Nov 2002 B1
6482235 Lambrecht et al. Nov 2002 B1
6488710 Besselink Dec 2002 B2
6491724 Ferree Dec 2002 B1
6494883 Ferree Dec 2002 B1
6508820 Bales Jan 2003 B2
6508839 Lambrecht et al. Jan 2003 B1
6514255 Ferree Feb 2003 B1
6520991 Huene Feb 2003 B2
6533817 Norton et al. Mar 2003 B1
6554833 Levy et al. Apr 2003 B2
6562074 Gerbec et al. May 2003 B2
6582431 Ray Jun 2003 B1
6582467 Teitelbaum et al. Jun 2003 B1
6585770 White et al. Jul 2003 B1
6592589 Hajianpour Jul 2003 B2
6592625 Cauthen Jul 2003 B2
6595998 Johnson et al. Jul 2003 B2
6602291 Ray et al. Aug 2003 B1
6607530 Carl et al. Aug 2003 B1
6607544 Boucher et al. Aug 2003 B1
6613054 Scribner et al. Sep 2003 B2
6623505 Scribner et al. Sep 2003 B2
6641587 Scribner et al. Nov 2003 B2
6641614 Wagner et al. Nov 2003 B1
6645213 Sand et al. Nov 2003 B2
6645247 Ferree Nov 2003 B2
6648917 Gerbec et al. Nov 2003 B2
6648918 Ferree Nov 2003 B2
6648920 Ferree Nov 2003 B2
6652584 Michelson Nov 2003 B2
6656178 Veldhuizen et al. Dec 2003 B1
6663647 Reiley et al. Dec 2003 B2
6666891 Boehm, Jr. et al. Dec 2003 B2
6676665 Foley et al. Jan 2004 B2
6679915 Cauthen Jan 2004 B1
6685695 Ferree Feb 2004 B2
6695760 Winkler et al. Feb 2004 B1
6706068 Ferree Mar 2004 B2
6706070 Wagner et al. Mar 2004 B1
6709458 Michelson Mar 2004 B2
6712853 Kuslich Mar 2004 B2
6716216 Boucher et al. Apr 2004 B1
6716247 Michelson Apr 2004 B2
6719773 Boucher et al. Apr 2004 B1
6723126 Berry Apr 2004 B1
6726691 Osorio et al. Apr 2004 B2
6733535 Michelson May 2004 B2
6740090 Cragg et al. May 2004 B1
6743255 Ferree Jun 2004 B2
6746451 Middleton et al. Jun 2004 B2
6758863 Estes et al. Jul 2004 B2
6793656 Mathews Sep 2004 B1
6793679 Michelson Sep 2004 B2
6808537 Michelson Oct 2004 B2
6814756 Michelson Nov 2004 B1
6830589 Erickson Dec 2004 B2
6852115 Kinnett Feb 2005 B2
6852123 Brown Feb 2005 B2
6852129 Gerbec et al. Feb 2005 B2
6863673 Gerbec et al. Mar 2005 B2
6893464 Kiester May 2005 B2
6899716 Cragg May 2005 B2
6899719 Reiley et al. May 2005 B2
6921264 Mayer et al. Jul 2005 B2
6923813 Phillips et al. Aug 2005 B2
6923830 Michelson Aug 2005 B2
6936065 Khan et al. Aug 2005 B2
6936070 Muhanna Aug 2005 B1
6948223 Shortt Sep 2005 B2
6953477 Berry Oct 2005 B2
6955691 Chae et al. Oct 2005 B2
6960215 Olson et al. Nov 2005 B2
6962606 Michelson Nov 2005 B2
6981981 Reiley et al. Jan 2006 B2
7008453 Michelson Mar 2006 B1
7018415 McKay Mar 2006 B1
7018416 Hanson et al. Mar 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7066961 Michelson Jun 2006 B2
7077864 Byrd et al. Jul 2006 B2
7087055 Lim et al. Aug 2006 B2
7094257 Mujwid et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7112206 Michelson Sep 2006 B2
7118598 Michelson Oct 2006 B2
7135043 Nakahara et al. Nov 2006 B2
7166110 Yundt Jan 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7201775 Gorensek et al. Apr 2007 B2
7204853 Gordon et al. Apr 2007 B2
7211112 Baynham et May 2007 B2
7212480 Shoji et al. May 2007 B2
7223292 Messerli et al. May 2007 B2
7226475 Lenz et al. Jun 2007 B2
7226481 Kuslich Jun 2007 B2
7226483 Gerber et al. Jun 2007 B2
7238186 Zdeblick et al. Jul 2007 B2
7241297 Shaolian et al. Jul 2007 B2
7241303 Reiss et al. Jul 2007 B2
7300440 Zdeblick et al. Nov 2007 B2
7309338 Cragg Dec 2007 B2
7311713 Johnson et al. Dec 2007 B2
7316714 Gordon et al. Jan 2008 B2
7318826 Teitelbaum et al. Jan 2008 B2
7396360 Lieberman Jul 2008 B2
7431735 Liu et al. Oct 2008 B2
7452371 Pavcnik et al. Nov 2008 B2
7503933 Michelson Mar 2009 B2
7507241 Levy et al. Mar 2009 B2
7582106 Teitelbaum et al. Sep 2009 B2
7601172 Segal et al. Oct 2009 B2
7618457 Hudgins Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7722674 Grotz May 2010 B1
7749228 Lieberman Jul 2010 B2
7763028 Lim et al. Jul 2010 B2
7828849 Lim Nov 2010 B2
7837734 Zucherman et al. Nov 2010 B2
7867233 Shaolian et al. Jan 2011 B2
7875035 Boucher et al. Jan 2011 B2
7879036 Biedermann et al. Feb 2011 B2
7879082 Brown Feb 2011 B2
7960073 Park et al. Jun 2011 B2
8007498 Mische Aug 2011 B2
8034110 Garner et al. Oct 2011 B2
8105382 Olmos et al. Jan 2012 B2
8142507 McGuckin Mar 2012 B2
8162943 Justin et al. Apr 2012 B2
8206423 Siegal Jun 2012 B2
8246622 Siegal et al. Aug 2012 B2
8465524 Siegal Jun 2013 B2
8486149 Saidha et al. Jul 2013 B2
8512408 Miller et al. Aug 2013 B2
8551171 Johnson et al. Oct 2013 B2
8591582 Anderson et al. Nov 2013 B2
8672968 Stone et al. Mar 2014 B2
8672977 Siegal et al. Mar 2014 B2
8777993 Siegal et al. Jul 2014 B2
20010007956 Letac et al. Jul 2001 A1
20010034552 Young et al. Oct 2001 A1
20020007218 Cauthen Jan 2002 A1
20020010511 Michelson Jan 2002 A1
20020022887 Huene Feb 2002 A1
20020032444 Mische Mar 2002 A1
20020052656 Michelson May 2002 A1
20020068911 Chan Jun 2002 A1
20020068939 Levy et al. Jun 2002 A1
20020068975 Teitelbaum et al. Jun 2002 A1
20020068976 Jackson Jun 2002 A1
20020068977 Jackson Jun 2002 A1
20020082598 Teitelbaum Jun 2002 A1
20020082600 Shaolian et al. Jun 2002 A1
20020091390 Michelson Jul 2002 A1
20020095155 Michelson Jul 2002 A1
20020099378 Michelson Jul 2002 A1
20020111688 Cauthen Aug 2002 A1
20020120337 Cauthen Aug 2002 A1
20020123807 Cauthen Sep 2002 A1
20020128713 Ferree Sep 2002 A1
20020138077 Ferree Sep 2002 A1
20020138133 Lenz et al. Sep 2002 A1
20020138144 Michelson Sep 2002 A1
20020143401 Michelson Oct 2002 A1
20020151896 Ferree Oct 2002 A1
20020151980 Cauthen Oct 2002 A1
20020156530 Lambrecht et al. Oct 2002 A1
20020161367 Ferree Oct 2002 A1
20020161373 Osorio et al. Oct 2002 A1
20020165542 Ferree Nov 2002 A1
20020189622 Cauthen et al. Dec 2002 A1
20020198526 Shaolian et al. Dec 2002 A1
20030004511 Ferree Jan 2003 A1
20030004574 Ferree Jan 2003 A1
20030009227 Lambrecht et al. Jan 2003 A1
20030014118 Lambrecht et al. Jan 2003 A1
20030026788 Ferree Feb 2003 A1
20030032963 Reiss et al. Feb 2003 A1
20030040796 Ferree Feb 2003 A1
20030040798 Michelson Feb 2003 A1
20030050701 Michelson Mar 2003 A1
20030065394 Michelson Apr 2003 A1
20030065396 Michelson Apr 2003 A1
20030074076 Ferree et al. Apr 2003 A1
20030078579 Ferree Apr 2003 A1
20030088249 Furderer May 2003 A1
20030120345 Cauthen Jun 2003 A1
20030125748 Li et al. Jul 2003 A1
20030125807 Lambrecht et al. Jul 2003 A1
20030135220 Cauthen Jul 2003 A1
20030135279 Michelson Jul 2003 A1
20030149482 Michelson Aug 2003 A1
20030153976 Cauthen et al. Aug 2003 A1
20030158553 Michelson Aug 2003 A1
20030158604 Cauthen et al. Aug 2003 A1
20030163200 Cauthen Aug 2003 A1
20030181979 Ferree Sep 2003 A1
20030181980 Berry et al. Sep 2003 A1
20030181983 Cauthen Sep 2003 A1
20030187507 Cauthen Oct 2003 A1
20030187508 Cauthen Oct 2003 A1
20030191536 Ferree Oct 2003 A1
20030195514 Trieu et al. Oct 2003 A1
20030195630 Ferree Oct 2003 A1
20030195631 Ferree Oct 2003 A1
20030199979 McGuckin Oct 2003 A1
20030199981 Ferree Oct 2003 A1
20030204260 Ferree Oct 2003 A1
20030208270 Michelson Nov 2003 A9
20030220643 Ferree Nov 2003 A1
20030220650 Major et al. Nov 2003 A1
20030220690 Cauthen Nov 2003 A1
20030220693 Cauthen Nov 2003 A1
20030220694 Cauthen Nov 2003 A1
20030233097 Ferree Dec 2003 A1
20030233148 Ferree Dec 2003 A1
20030233188 Jones Dec 2003 A1
20030236520 Lim et al. Dec 2003 A1
20040002759 Ferree Jan 2004 A1
20040002760 Boyd et al. Jan 2004 A1
20040002769 Ferree Jan 2004 A1
20040006341 Shaolian et al. Jan 2004 A1
20040006344 Nguyen et al. Jan 2004 A1
20040010315 Song Jan 2004 A1
20040010318 Ferree Jan 2004 A1
20040019386 Ferree Jan 2004 A1
20040024400 Michelson Feb 2004 A1
20040024459 Ferree Feb 2004 A1
20040024460 Ferree Feb 2004 A1
20040024461 Ferree Feb 2004 A1
20040024462 Ferree et al. Feb 2004 A1
20040024469 Ferree Feb 2004 A1
20040024471 Ferree Feb 2004 A1
20040028718 Ferree Feb 2004 A1
20040030387 Landry et al. Feb 2004 A1
20040030389 Ferree Feb 2004 A1
20040030390 Ferree Feb 2004 A1
20040030391 Ferree Feb 2004 A1
20040030398 Ferree Feb 2004 A1
20040034357 Beane et al. Feb 2004 A1
20040044410 Ferree et al. Mar 2004 A1
20040049289 Tordy et al. Mar 2004 A1
20040059418 McKay et al. Mar 2004 A1
20040059419 Michelson Mar 2004 A1
20040059429 Amin et al. Mar 2004 A1
20040068259 Michelson Apr 2004 A1
20040082954 Teitelbaum et al. Apr 2004 A1
20040082961 Teitelbaum Apr 2004 A1
20040087950 Teitelbaum May 2004 A1
20040092933 Shaolian et al. May 2004 A1
20040092988 Shaolian et al. May 2004 A1
20040097927 Yeung et al. May 2004 A1
20040111108 Farnan Jun 2004 A1
20040133229 Lambrecht et al. Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040138673 Lambrecht et al. Jul 2004 A1
20040153064 Foley et al. Aug 2004 A1
20040153065 Lim Aug 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20050010292 Carrasco Jan 2005 A1
20050015152 Sweeney Jan 2005 A1
20050033431 Gordon et al. Feb 2005 A1
20050038512 Michelson Feb 2005 A1
20050043796 Grant et al. Feb 2005 A1
20050070911 Carrison et al. Mar 2005 A1
20050080422 Otte et al. Apr 2005 A1
20050085910 Sweeney Apr 2005 A1
20050107863 Brown May 2005 A1
20050113919 Cragg et al. May 2005 A1
20050113928 Cragg et al. May 2005 A1
20050119561 Kienzle Jun 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050182463 Hunter et al. Aug 2005 A1
20050187558 Johnson et al. Aug 2005 A1
20050209698 Gordon et al. Sep 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050240188 Chow et al. Oct 2005 A1
20050249776 Chen et al. Nov 2005 A1
20050261683 Veldhuizen et al. Nov 2005 A1
20050261768 Trieu Nov 2005 A1
20050261781 Sennett et al. Nov 2005 A1
20050278023 Zwirkoski Dec 2005 A1
20050278026 Gordon et al. Dec 2005 A1
20050278036 Leonard et al. Dec 2005 A1
20060004455 Leonard et al. Jan 2006 A1
20060015184 Winterbottom et al. Jan 2006 A1
20060036241 Siegal Feb 2006 A1
20060036273 Siegal Feb 2006 A1
20060052788 Thelen et al. Mar 2006 A1
20060052870 Ferree Mar 2006 A1
20060058807 Landry et al. Mar 2006 A1
20060058876 McKinley Mar 2006 A1
20060058880 Wysocki et al. Mar 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060089715 Truckai et al. Apr 2006 A1
20060100706 Shadduck et al. May 2006 A1
20060106460 Messerli et al. May 2006 A1
20060122701 Kiester Jun 2006 A1
20060142858 Colleran et al. Jun 2006 A1
20060142859 McLuen Jun 2006 A1
20060149239 Winslow et al. Jul 2006 A1
20060149349 Garbe Jul 2006 A1
20060149385 McKay Jul 2006 A1
20060155379 Heneveld Jul 2006 A1
20060161261 Brown et al. Jul 2006 A1
20060178694 Greenhalgh et al. Aug 2006 A1
20060184188 Li et al. Aug 2006 A1
20060189999 Zwirkoski Aug 2006 A1
20060200166 Hanson et al. Sep 2006 A1
20060206207 Dryer et al. Sep 2006 A1
20060235423 Cantu Oct 2006 A1
20060241764 Michelson Oct 2006 A1
20060253201 McLuen Nov 2006 A1
20060264968 Frey et al. Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060287725 Miller Dec 2006 A1
20060287726 Segal et al. Dec 2006 A1
20060287727 Segal et al. Dec 2006 A1
20060287729 Segal et al. Dec 2006 A1
20060287730 Segal et al. Dec 2006 A1
20070027363 Gannoe et al. Feb 2007 A1
20070032791 Greenhalgh Feb 2007 A1
20070043440 William et al. Feb 2007 A1
20070055375 Ferree Mar 2007 A1
20070055377 Hanson et al. Mar 2007 A1
20070067034 Chirico et al. Mar 2007 A1
20070067035 Falahee Mar 2007 A1
20070093897 Gerbec et al. Apr 2007 A1
20070093899 Dutoit et al. Apr 2007 A1
20070112428 Lancial May 2007 A1
20070118222 Lang May 2007 A1
20070123986 Schaller May 2007 A1
20070162044 Marino Jul 2007 A1
20070162135 Segal et al. Jul 2007 A1
20070173824 Rosen Jul 2007 A1
20070173830 Rosen Jul 2007 A1
20070173939 Kim et al. Jul 2007 A1
20070173940 Hestad et al. Jul 2007 A1
20070208423 Messerli et al. Sep 2007 A1
20070213717 Trieu et al. Sep 2007 A1
20070225703 Schmitz et al. Sep 2007 A1
20070233260 Cragg Oct 2007 A1
20070239162 Bhatnagar et al. Oct 2007 A1
20070244485 Greenhalgh et al. Oct 2007 A1
20070255408 Castleman et al. Nov 2007 A1
20070255409 Dickson et al. Nov 2007 A1
20070260270 Assell et al. Nov 2007 A1
20070260315 Foley et al. Nov 2007 A1
20070270956 Heinz Nov 2007 A1
20070270968 Baynham et al. Nov 2007 A1
20070276377 Yundt Nov 2007 A1
20070288028 Gorensek et al. Dec 2007 A1
20080015694 Tribus Jan 2008 A1
20080021558 Thramann Jan 2008 A1
20080021559 Thramann Jan 2008 A1
20080071356 Greenhalgh et al. Mar 2008 A1
20080077150 Nguyen Mar 2008 A1
20080125865 Abdelgany May 2008 A1
20080133012 McGuckin Jun 2008 A1
20080140082 Erdem et al. Jun 2008 A1
20080140207 Olmos et al. Jun 2008 A1
20080147193 Matthis et al. Jun 2008 A1
20080147194 Grotz et al. Jun 2008 A1
20080183204 Greenhalgh et al. Jul 2008 A1
20080188941 Grotz Aug 2008 A1
20080208255 Siegal Aug 2008 A1
20080221687 Viker Sep 2008 A1
20080243254 Butler Oct 2008 A1
20080243255 Butler et al. Oct 2008 A1
20080249625 Waugh et al. Oct 2008 A1
20080249628 Altarac et al. Oct 2008 A1
20080294205 Greenhalgh et al. Nov 2008 A1
20080312743 Vila et al. Dec 2008 A1
20080312744 Vresilovic et al. Dec 2008 A1
20090005871 White et al. Jan 2009 A1
20090018524 Greenhalgh et al. Jan 2009 A1
20090024204 Greenhalgh et al. Jan 2009 A1
20090024217 Levy et al. Jan 2009 A1
20090054991 Biyani et al. Feb 2009 A1
20090076511 Osman Mar 2009 A1
20090143859 McClellan et al. Jun 2009 A1
20090149956 Greenhalgh et al. Jun 2009 A1
20090163918 Levy et al. Jun 2009 A1
20090182336 Brenzel et al. Jul 2009 A1
20090182431 Butler et al. Jul 2009 A1
20090198338 Phan Aug 2009 A1
20090234398 Chirico et al. Sep 2009 A1
20090240335 Arcenio et al. Sep 2009 A1
20090318928 Purcell et al. Dec 2009 A1
20100004750 Segal et al. Jan 2010 A1
20100004751 Segal et al. Jan 2010 A1
20100016905 Greenhalgh et al. Jan 2010 A1
20100082109 Greenhalgh et al. Apr 2010 A1
20100125274 Greenhalgh et al. May 2010 A1
20100168862 Edie et al. Jul 2010 A1
20100262147 Siegal et al. Oct 2010 A1
20100292796 Greenhalgh et al. Nov 2010 A1
20110009969 Puno Jan 2011 A1
20110029083 Hynes et al. Feb 2011 A1
20110054621 Lim Mar 2011 A1
20110087296 Reiley et al. Apr 2011 A1
20110106260 Laurence et al. May 2011 A1
20110125266 Rodgers et al. May 2011 A1
20110184519 Trieu Jul 2011 A1
20110257684 Sankaran Oct 2011 A1
20110282387 Suh et al. Nov 2011 A1
20110319898 O'Neil et al. Dec 2011 A1
20110320000 O'Neil et al. Dec 2011 A1
20120004731 Viker Jan 2012 A1
20120071980 Purcell et al. Mar 2012 A1
Foreign Referenced Citations (74)
Number Date Country
0734702 Oct 1996 EP
0758541 Feb 1997 EP
1804733 Jul 2007 EP
2874814 Nov 2007 FR
2900814 Nov 2007 FR
2000-210315 Aug 2000 JP
2002-535080 Oct 2002 JP
2003-512887 Apr 2003 JP
2004-511297 Apr 2004 JP
2004-531355 Oct 2004 JP
2004-321348 Nov 2004 JP
662082 May 1979 SU
WO 8803781 Jun 1988 WO
WO 9214423 Sep 1992 WO
WO 9531945 Nov 1995 WO
WO 9603092 Feb 1996 WO
WO 9700054 Jan 1997 WO
WO 0030523 Jun 2000 WO
WO 0044319 Aug 2000 WO
WO 0044321 Aug 2000 WO
WO 0132099 May 2001 WO
WO 0178625 Oct 2001 WO
WO 0195838 Dec 2001 WO
WO 0213700 Feb 2002 WO
WO 0232347 Apr 2002 WO
WO 03003943 Jan 2003 WO
WO 03003951 Jan 2003 WO
WO 2005062900 Jul 2005 WO
WO 2005096975 Oct 2005 WO
WO 2005120400 Dec 2005 WO
WO 2006023514 Mar 2006 WO
WO 2006023671 Mar 2006 WO
WO 2006026425 Mar 2006 WO
WO 2006028971 Mar 2006 WO
WO 2006034396 Mar 2006 WO
WO 2006034436 Mar 2006 WO
WO 2006037013 Apr 2006 WO
WO 2006042334 Apr 2006 WO
WO 2006050500 May 2006 WO
WO 2006060420 Jun 2006 WO
WO 2006072941 Jul 2006 WO
WO 2006076712 Jul 2006 WO
WO 2006086241 Aug 2006 WO
WO 2006096167 Sep 2006 WO
WO 2006116761 Nov 2006 WO
WO 2006132945 Dec 2006 WO
WO 2007009107 Jan 2007 WO
WO 2007009123 Jan 2007 WO
WO 2007016368 Feb 2007 WO
WO 2007038611 Apr 2007 WO
WO 2007041698 Apr 2007 WO
WO 2007047098 Apr 2007 WO
WO 2007050322 May 2007 WO
WO 2007056433 May 2007 WO
WO 2007062080 May 2007 WO
WO 2007075411 Jul 2007 WO
WO 2007079021 Jul 2007 WO
WO 2007084257 Jul 2007 WO
WO 2007084268 Jul 2007 WO
WO 2007084810 Jul 2007 WO
WO 2007100591 Sep 2007 WO
WO 2007123920 Nov 2007 WO
WO 2007124130 Nov 2007 WO
WO 2007126622 Nov 2007 WO
WO 2007130699 Nov 2007 WO
WO 2007131026 Nov 2007 WO
WO 2007133608 Nov 2007 WO
WO 2007140382 Dec 2007 WO
WO 2008005627 Jan 2008 WO
WO 2008016598 Feb 2008 WO
WO 2008070863 Jun 2008 WO
WO 2009114381 Sep 2009 WO
WO 2009130824 Oct 2009 WO
WO 2012027490 Mar 2012 WO
Non-Patent Literature Citations (7)
Entry
Franklin, I.J. et al., “Uptake of Tetracycline by Aortic Aneurysm Wall and Its Effect on Inflammation and Proteeolysis,” Brit. J. Surger, 86(6):771-775, 1999.
Pyo, R. et al., “Targeted Gene Disruption of Matrix Metalloproteinase-9 (Gelatinase B) Suppresses Development of Experimental Abdominal Aortic Aneurysms,” J. Clinical Investigation, 105(11):1641-1649, June 2000.
Tambiah, J. et al., “Provocation of Experimental Aortic Inflammation Mediators and Chlamydia pneumoniae,” Brit., J. Surgery, 88(7):935-940, Feb. 2001.
Walton, L.J. et al., “Inhibition of Prostoglandin E2 Synthesis in Abdonminal Aortic Aneurysms,” Circulation, 48-54, Jul. 6, 1999.
Xu, Q. et al., “Sp1 Increases Expression of Cyclooxygenase-2 in Hypoxic Vascular Endothelium,” J. Biological Chemistry, 275(32)24583-24589, Aug. 2000.
Database WPI, Week 198004, Thomson Scientific, London, GB; AN 1980-A8866C, XP002690114, -& SU 662 082 A1 (Tartus Univ) May 15, 1979, abstract, figures 1,2.
Choi, G. et al., “Percutaneous Endoscopic Lumbar Discemtomy by Transiliac Approach,” Spine 34(12)E443-446, May 20, 2009.
Related Publications (1)
Number Date Country
20130053852 A1 Feb 2013 US
Provisional Applications (1)
Number Date Country
61526630 Aug 2011 US