Tissue removal handpiece with integrated suction

Information

  • Patent Grant
  • 11571233
  • Patent Number
    11,571,233
  • Date Filed
    Thursday, November 19, 2020
    3 years ago
  • Date Issued
    Tuesday, February 7, 2023
    a year ago
Abstract
A surgical handpiece for removing tissue includes a housing defining a cavity therein, the housing having a proximal hub connector disposed at a distal end thereof. An end effector assembly is operably supported by the proximal hub connector and includes an outer shaft supporting a cutting shaft configured to remove tissue upon activation thereof via translation or rotation. A fluid pump is disposed within the cavity of the housing and is configured to evacuate fluid from the cutting shaft upon activation thereof. A motor is disposed within the cavity of the housing and includes a power coupler operably coupled to both the cutting shaft and the fluid pump for suppling power thereto.
Description
BACKGROUND
Technical Field

The present disclosure relates generally to surgical systems and, more particularly, outflow collection vessels, systems, and components thereof for hysteroscopic surgical procedures.


Background of Related Art

Surgical procedures, such as hysteroscopic surgical procedures, may be performed endoscopically within an organ, such as a uterus, by inserting an endoscope into the uterus and passing a tissue resection device through the endoscope and into the uterus. With respect to such hysteroscopic tissue resection procedures, it often is desirable to distend the uterus with a fluid, for example, saline, sorbitol, or glycine. The inflow and outflow of the fluid during the procedure maintains the uterus in a distended state and flushes tissue and other debris from within the uterus to maintain a visible working space. The outflow fluid is collected by a collection system.


SUMMARY

As used herein, the term “distal” refers to the portion that is described which is further from a user, while the term “proximal” refers to the portion that is described which is closer to a user. Further, to the extent consistent, any or all of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.


Provided in accordance with aspects of the present disclosure is a surgical handpiece for removing tissue that includes a housing defining a cavity therein. The housing includes a proximal hub connector disposed at a distal end thereof. An end effector assembly is operably supported by the proximal hub connector and includes an outer shaft supporting a cutting shaft configured to remove tissue upon activation thereof via translation or rotation therein. A fluid pump is disposed within the cavity of the housing and is configured to evacuate fluid from the cutting shaft upon activation thereof. A motor is disposed within the cavity of the housing and includes a power coupler operably coupled to both the cutting shaft and the fluid pump for suppling power thereto.


In aspects according to the present disclosure, the fluid pump includes a passageway defined therein configured to operably connect to the end effector assembly to evacuate fluid and tissue from the cutting shaft. In other aspects according to the present disclosure, the fluid pump is a peristatic pump.


In aspects according to the present disclosure, the end effector is removably engaged to the proximal hub connector. In other aspects according to the present disclosure, the fluid pump is removably engaged to the housing. In still other aspects according to the present disclosure, the end effector and the fluid pump are removably engaged to the housing. In yet other aspects according to the present disclosure, the fluid pump is integral with the housing.


In aspects according to the present disclosure, the cutting shaft is operably coupled to an input coupler which, in turn, operably couples to an output coupler electrically coupled to the motor.


In aspects according to the present disclosure, the surgical handpiece is a tissue resection instrument.


Provided in accordance with aspects of the present disclosure is a surgical handpiece for removing tissue that includes a housing defining a cavity therein. The housing includes a proximal hub connector disposed at a distal end thereof. An end effector assembly is operably supported by the proximal hub connector and includes an outer shaft supporting a cutting shaft configured to remove tissue upon activation thereof via translation or rotation therein. A fluid pump is disposed within the cavity of the housing and is configured to evacuate fluid from the cutting shaft upon activation thereof. Aa first motor is disposed within the cavity of the housing and includes an output coupler operably coupled to the cutting shaft for suppling power thereto. A second motor is disposed within the cavity of the housing and is operably coupled to the fluid pump for suppling power thereto.


In aspects according to the present disclosure, the surgical handpiece is a tissue resection instrument.


In aspects according to the present disclosure, the first and second motors are independently activatable. In other aspects according to the present disclosure, the first and second motors are configured to cooperate with a control console for regulating power during use.


In aspects according to the present disclosure, the fluid pump is a peristaltic pump.


In aspects according to the present disclosure, the end effector is removably engaged to the proximal hub connector. In other aspects according to the present disclosure, the fluid pump is removably engaged to the housing. In still other aspects according to the present disclosure, the end effector and the fluid pump are removably engaged to the housing. In yet other aspects according to the present disclosure, the fluid pump is integral with the housing.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and features of the present disclosure are described hereinbelow with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views.



FIG. 1 is a perspective view of a surgical system configured for use in a hysteroscopic surgical procedure;



FIG. 2 is side schematic view of a surgical handpiece for use with the system shown in FIG. 1; and



FIG. 3 is side schematic view of another embodiment of a surgical handpiece for use with the system shown in FIG. 1.





DETAILED DESCRIPTION

Referring to FIG. 1, a surgical system provided in accordance with aspects of the present disclosure is shown generally identified by reference numeral 100. Surgical system 100 includes a surgical instrument 110, a control console 130, and a collection vessel 150. Surgical system 100 further includes a cable 170, outflow tubing 180, and vacuum tubing 190. Surgical system 100 may further include an endoscope (not shown), e.g., a hysteroscope, defining a working channel for inserting of surgical instrument 110 therethrough, and adapted to connect to inflow tubing (not shown) to supply fluid to an internal surgical site and/or additional outflow tubing (not shown) to return fluid to collection vessel 150.


Surgical instrument 110 includes a handpiece 112 that may be configured as a reusable component and an end effector assembly 114 that may be configured as a single-use, disposable component. Handpiece 112 includes a housing 116 to facilitate grasping and manipulation of surgical instrument 110 by a user. Handpiece 112 further includes an output coupler 118 configured to operably engage end effector assembly 114, a motor 120 disposed within housing 116 and operably coupled to output coupler 118 to drive output coupler 118 and, thus, drive end effector assembly 114. Cable 170 electrically couples handpiece 112 and control console 130 with one another and, more specifically, electrically couples control console 130 with motor 120 to power and control operation of motor 120 and electrically couples control console 130 with a storage device(s), e.g., a microchip(s) (not explicitly shown), associated with handpiece 112 and/or end effector assembly 114 to enable communication of, for example, identification, setting, and control information therebetween. In embodiments, cable 170 is fixedly attached to handpiece 112 and releasably couplable with control console 130, although other configurations are also contemplated.


Continuing with reference to FIG. 1, end effector assembly 114 includes a proximal hub 124 configured to releasably engage housing 116 of handpiece 112 to releasably mechanically engage end effector assembly 114 with handpiece 112. End effector assembly 114 further includes an outer shaft 126 extending distally from proximal hub 124 and a cutting shaft 128 extending through outer shaft 126. A proximal end of cutting shaft 128 extends into proximal hub 124 wherein an input coupler 129 is engaged with cutting shaft 128. Input coupler 129 is configured to operably couple to output coupler 118 of handpiece 112 when proximal hub 124 is engaged with housing 116 such that, when motor 120 is activated to drive output coupler 118, input coupler 129 is driven in a corresponding manner to thereby move cutting shaft 128 within and relative to outer shaft 126.


Outer shaft 126, as noted above, extends distally from proximal hub 124 and, in embodiments, is stationary relative to proximal hub 124, although other configurations are also contemplated. Outer shaft 126 may define a window (not shown) through a side wall thereof towards a distal end thereof to provide access to cutting shaft 128 which is rotatably and/or translatably disposed within outer shaft 126. Cutting shaft 128 may define an opening (not shown) towards the distal end thereof providing access to the interior thereof and may include a serrated cutting edge (not shown) surrounding the opening, although other suitable cutting edge configurations are also contemplated. Alternatively, or additionally, outer shaft 126 may include a cutting edge defined about the window thereof.


Motor 120, as noted above, is activated to move cutting shaft 128 and, more specifically, to drive rotation and/or translation of cutting shaft 128 relative to outer shaft 126. Control console 130, coupled to motor 120 via cable 170, enables selective powering and controlling of motor 120 and, thus, selective rotation and/or translation of cutting shaft 128 relative to outer shaft 126 to resect tissue adjacent the distal end of end effector assembly 114. Control console 130 is detailed below.


Outflow tubing 180 includes a distal end 184 configured to releasably couple to handpiece 112 and a proximal end 186 configured to couple to collection vessel 150. More specifically, handpiece 112 defines an internal passage (not shown) that couples distal end 184 of outflow tubing 180 with the interior of cutting shaft 128 in fluid communication with the interior of cutting shaft 128 such that fluid, tissue, and debris drawn into cutting shaft 128 and/or outer shaft 126 may be suctioned, under vacuum, e.g., from vacuum pump 139 of control console 130, through end effector assembly 114, handpiece 112, and outflow tubing 180 to collection vessel 150.


Referring still to FIG. 1, collection vessel 150, as noted above, is coupled to proximal end 186 of outflow tubing 180 to receive the fluid, tissue, and debris suctioned through end effector assembly 114 and outflow tubing 180. Vacuum tubing 190 is coupled between collection vessel 150 and a vacuum source, e.g., vacuum pump 139 of control console 130, such that, upon activation of vacuum pump 139, negative pressure is established through collection vessel 150, outflow tubing 180, and the interior of cutting shaft 128 of end effector assembly 114 to draw the fluids, tissue, and debris into and through cutting shaft 128, handpiece 112, outflow tubing 180, and into collection vessel 150.


Control console 130 generally includes an outer housing 132, a touch-screen display 134 accessible from the exterior of outer housing 132, a cable port 136 configured to receive cable 170, a vacuum tubing port 138 configured to receive vacuum tubing 190, and a vacuum pump 139 disposed within outer housing 132 and operably coupled with vacuum port 138. Outer housing 132 further houses internal electronics (not shown) of control console 130. Control console 130 may be configured to connect to a mains power supply (not shown) for powering control console 130. Further, control console 130 may be configured to receive user input, e.g., use information, setting selections, etc., via touch-screen display 134 or a peripheral input device (not shown) coupled to control console 130. Operational input, e.g., ON/OFF signals, power level settings (HI power vs. LO power), etc., may likewise be input via touch-screen display 134 or a peripheral input device (not shown) such as, for example, a footswitch (not shown), a hand switch (not shown) disposed on handpiece 112, etc.


In use, upon an activation input provided to control console 130, control console 130 powers and controls motor 120 of handpiece 112 to, in turn, drive cutting shaft 128 of end effector assembly 114 to resect tissue adjacent the distal end of end effector assembly 114, while vacuum pump 139 of control console 130 suctions fluid, the resected tissue, and debris through cutting shaft 128, handpiece 112, outflow tubing 180, and into collection vessel 150.


Collection vessel 150 may define various different configurations and/or may be utilized with various different components to define a collection system. Such collection vessels and systems are provided in accordance with the present disclosure and detailed below with reference to commonly-owned U.S. patent application Ser. No. 16/593,432 the entire contents of which being incorporated by reference herein. As an alternative to use with surgical system 100, the collection vessels and systems of the present disclosure may be utilized within any other suitable surgical system.


With reference to FIG. 2, another embodiment of a surgical handpiece 212 is shown and includes similar elements as described above and, as such, only those necessary to describe the differences between handpiece 112 and handpiece 212 will be described in detail. Surgical handpiece 212 may be configured as a reusable component along with end effector assembly 214 that may be configured as a single-use or disposable component. Handpiece 212 includes a housing 216 to facilitate grasping and manipulation thereof by a user. Handpiece 212 further includes an output coupler 218 configured to operably engage end effector assembly 214, a motor 220 disposed within housing 216 and operably coupled to output coupler 218 to drive output coupler 218 and, thus, drive end effector assembly 214.


Cable 270 electrically couples handpiece 212 at coupling 274 and control console, e.g., control console 130, with one another and, more specifically, electrically couples control console 130 with motor 220 to power and control operation of motor 220 and electrically couples control console 130 with one or more storage devices as explained above with respect t to FIG. 1. This enables communication between handpiece 212 and/or end effector assembly 214, e.g., identification, setting, and control information.


Continuing with reference to FIG. 2, end effector assembly 214 includes a proximal hub 224 configured to releasably engage housing 216 of handpiece 212 to releasably mechanically engage end effector assembly 214 with handpiece 212. End effector assembly 214 further includes an outer shaft 226 extending distally from proximal hub 224 and a cutting shaft 228 extending through outer shaft 226. A proximal end of cutting shaft 228 extends into proximal hub 224 wherein an input coupler 229 is engaged with cutting shaft 228. Input coupler 229 is configured to operably couple to output coupler 218 of handpiece 212 when proximal hub 224 is engaged with housing 216 such that, when motor 220 is activated to drive output coupler 218, input coupler 229 is driven in a corresponding manner to thereby move cutting shaft 228 within and relative to outer shaft 226.


Motor 220, as noted above, is activated to move cutting shaft 228 and, more specifically, to drive rotation and/or translation of cutting shaft 228 relative to outer shaft 226. Control console 130 (FIG. 1), coupled to motor 220 via cable 270, enables selective powering and controlling of motor 220 and, thus, selective rotation and/or translation of cutting shaft 228 relative to outer shaft 226 to resect tissue adjacent the distal end of end effector assembly 214. In this embodiment, the motor 220 is also configured to power a fluid pump 300 disposed within the housing 216.


More particularly, outflow tubing 280 includes a distal end 284 configured to releasably couple to handpiece 212 and a proximal end (not shown but similar to proximal end 186) configured to couple to collection vessel 150 (FIG. 1). Handpiece 212 may define an internal passage (not shown) that couples distal end 284 of outflow tubing 280 with the interior of cutting shaft 228 in fluid communication with the interior of cutting shaft 228 such that fluid, tissue, and debris drawn into cutting shaft 228 and/or outer shaft 226 may be suctioned, under vacuum, e.g., from fluid pump 300 through end effector assembly 214, handpiece 212, and outflow tubing 280 to collection vessel 150. Outflow tube 280 may include multiple tubes (not shown) disposed therein to provide both fluid to cutting shaft 228 and suction from cutting shaft 228 depending upon particular purpose. On the other hand, the fluid may be supplied through the interior cavity 215 defined within housing 216 and suctioned out through passageway 330 defined at a proximal end of outer shaft 226 or cutting shaft 228.


A power coupler 250 is electrically coupled the input coupler 229 and the motor 220 and supplies power to both the input coupler 229 and the fluid pump 300. In this fashion, a single motor 220 may be utilized to power both the input coupler 229 (cutting shaft 228) and the fluid pump 300.


Fluid pump 300 may be integrally associated with housing 216 or may be removably coupled thereto in the form of a cartridge or the like. In embodiments, both the cutting assembly, e.g., cutting shaft 228 and outer shaft 226, may be removably engaged to the proximal hub 224 along with the fluid pump 300 enabling the entire unit to be disposable relative to the remainder of the handpiece 212. In other embodiment, the fluid pump 300, the cutting shaft 228 and the outer shaft may be individually separable from the handpiece 212 or one another depending upon a particular purpose.


Outer shaft 226 is similar to outer shaft 126 noted above and extends distally from proximal hub 224 and, in embodiments, is stationary relative to proximal hub 224, although other configurations are also contemplated. Outer shaft 226 may define a window (not shown) through a side wall thereof towards a distal end thereof to provide access to cutting shaft 228 which is rotatably and/or translatably disposed within outer shaft 226. Cutting shaft 228 may define an opening (not shown) towards the distal end thereof providing access to the interior thereof and may include a serrated cutting edge (not shown) surrounding the opening, although other suitable cutting edge configurations are also contemplated. Alternatively, or additionally, outer shaft 226 may include a cutting edge defined about the window thereof.


Motor 220, as noted above, is activated to move cutting shaft 228 and, more specifically, to drive rotation and/or translation of cutting shaft 228 relative to outer shaft 226. A control console, e.g., control console 130, coupled to motor 220 enables selective powering and controlling of motor 220 and, thus, selective rotation and/or translation of cutting shaft 228 relative to outer shaft 226 to resect tissue adjacent the distal end of end effector assembly 214. Control console 130 is detailed above.


As the pump 300 and cutting shaft 228 are driven by activation of motor 220, suction is applied to the cutting shaft 228 to aid in the resection and tissue evacuation and fluid and tissue are driven into the passageway 330 and outflow tubing 280 to be collected by the specimen container 150.


With reference to FIG. 3, another embodiment of a surgical handpiece 312 is shown and includes similar elements as described above and, as such, only those necessary to describe the differences between handpiece 112, 212 and handpiece 312 will be described in detail. Similar to the handpieces described above, surgical handpiece 312 may be configured as a reusable component along with end effector assembly 314 that may be configured as a single-use or disposable component. Handpiece 312 includes a housing 316 to facilitate grasping and manipulation thereof by a user. Handpiece 312 further includes an output coupler 318 configured to operably engage end effector assembly 314, a motor 320a disposed within housing 316 and operably coupled to output coupler 318 to drive output coupler 318 and, thus, drive end effector assembly 314 and a motor 320b operably coupled to the fluid pump 300.


Cable 370a electrically couples handpiece 312 and control console, e.g., control console 130, with one another and, more specifically, electrically couples control console 130 with motor 320a to power and control operation of motor 320a and electrically couples control console 130 with one or more storage devices as explained above with respect t to FIG. 1. This enables communication between handpiece 312 and/or end effector assembly 314, e.g., identification, setting, and control information.


Continuing with reference to FIG. 3, end effector assembly 314 includes a proximal hub 324 configured to releasably engage housing 316 of handpiece 312 to releasably mechanically engage end effector assembly 314 with handpiece 312. End effector assembly 314 further includes an outer shaft 326 extending distally from proximal hub 324 and a cutting shaft 328 extending through outer shaft 326. A proximal end of cutting shaft 328 extends into proximal hub 324 wherein an input coupler 329 is engaged with cutting shaft 328. Input coupler 329 is configured to operably couple to output coupler 318 of handpiece 312 when proximal hub 324 is engaged with housing 316 such that, when motor 320a is activated to drive output coupler 318, input coupler 329 is driven in a corresponding manner to thereby move cutting shaft 328 within and relative to outer shaft 326.


Motor 320a, as noted above, is activated to move cutting shaft 328 and, more specifically, to drive rotation and/or translation of cutting shaft 328 relative to outer shaft 326. Control console 130 (FIG. 1), coupled to motor 320a via cable 370a, enables selective powering and controlling of motor 320a and, thus, selective rotation and/or translation of cutting shaft 328 relative to outer shaft 326 to resect tissue adjacent the distal end of end effector assembly 314. Outer shaft 326 is similar to outer shaft 126, 226 noted above with respect to FIGS. 1 and 2.


Outflow tubing 380 includes a distal end 384 configured to releasably couple to handpiece 212 and a proximal end (not shown but similar to proximal end 186) configured to couple to collection vessel 150 (FIG. 1). Handpiece 312 may define an internal passage (not shown) that couples distal end 384 of outflow tubing 380 with the interior of cutting shaft 328 in fluid communication with the interior of cutting shaft 328 such that fluid, tissue, and debris drawn into cutting shaft 328 and/or outer shaft 326 may be suctioned, under vacuum, e.g., from fluid pump 300 through end effector assembly 314, handpiece 312, and outflow tubing 380 to collection vessel 150. Outflow tube 380 may include multiple tubes (not shown) disposed therein the provide both fluid to cutting shaft 328 and suction from cutting shaft 328 depending upon particular purpose. On the other hand, the fluid may be supplied through the interior of housing 316 and suctioned out through passageway 330 defined at a proximal end of outer shaft 326 or cutting shaft 328.


Fluid pump 300 may be integrally associated with housing 316 or may be removably coupled thereto in the form of a cartridge or the like. In embodiments, both the cutting assembly, e.g., cutting shaft 328 and outer shaft 326, may be removably engaged to the proximal hub 324 along with the fluid pump 300 enabling the entire unit to be disposable relative to the remainder of the handpiece 312. In other embodiment, the fluid pump 300, the cutting shaft 328 and the outer shaft 326 may be individually separable from the handpiece 312 or one another depending upon a particular purpose. The output tubing 380 may be removably engageable with the fluid pump 300.


Motor 320b is included and is configured to supply power to fluid pump 300. Motor 320b may be connected via cable 370b to the same control console, e.g., control console 130 as noted above, or may be connected to a separate control console (not shown). Motor 320b is activatable to control the fluid pump 300 and may be electrically coupled to motor 320a for simultaneous or sequential activation or may be stand alone and independently activated.


As the pump 300 is driven by activation of motor 320b and the cutting shaft 228 is driven by activation of motor 320a, suction is applied to the cutting shaft 328 to aid in the resection and tissue evacuation and fluid and tissue are driven into the passageway 330 and outflow tubing 380 to be collected by the specimen container 150. In aspects according to the present disclosure, the fluid pump 300 is a peristaltic pump


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as examples of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.


Although the foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity or understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

Claims
  • 1. A surgical handpiece for removing tissue, comprising: a housing defining a cavity therein;a proximal hub connector removably coupled to a distal end of the housing;an end effector assembly removably coupled to the proximal hub connector, the end effector assembly including an outer shaft supporting a cutting shaft configured to remove tissue upon activation thereof via at least one of translation or rotation therein;a fluid pump disposed within the cavity of the housing, the fluid pump configured to evacuate fluid from the cutting shaft upon activation thereof; anda motor disposed within the cavity of the housing, the motor including a power coupler operably coupled to both the cutting shaft and the fluid pump for suppling power thereto.
  • 2. The surgical handpiece for removing tissue according to claim 1, wherein the fluid pump includes a passageway defined therein configured to operably connect to the end effector assembly to evacuate fluid and tissue from the cutting shaft.
  • 3. The surgical handpiece for removing tissue according to claim 1, wherein the fluid pump is a peristaltic pump.
  • 4. The surgical handpiece for removing tissue according to claim 1, wherein the fluid pump is configured to be removed from within the cavity of the housing.
  • 5. The surgical handpiece for removing tissue according to claim 1, wherein the end effector assembly and the fluid pump are removably engaged to the housing.
  • 6. The surgical handpiece for removing tissue according to claim 1, wherein the fluid pump is integral with the housing.
  • 7. The surgical handpiece for removing tissue according to claim 1, wherein the surgical handpiece is a tissue resection instrument.
  • 8. A surgical handpiece for removing tissue, comprising: a housing defining a cavity therein;a proximal hub connector removably coupled to a distal end of the housing;an end effector assembly removably coupled to the proximal hub connector, the end effector assembly including an outer shaft supporting a cutting shaft configured to remove tissue upon activation thereof via at least one of translation or rotation therein;a fluid pump disposed within the cavity of the housing, the fluid pump configured to evacuate fluid from the cutting shaft upon activation thereof;a first motor disposed within the cavity of the housing, the first motor including an output coupler operably coupled to the cutting shaft for suppling power thereto; anda second motor disposed within the cavity of the housing, the second motor operably coupled to the fluid pump for suppling power thereto.
  • 9. The surgical handpiece for removing tissue according to claim 8, wherein the surgical handpiece is a tissue resection instrument.
  • 10. The surgical handpiece for removing tissue according to claim 9, wherein the first and second motors are independently activatable.
  • 11. The surgical handpiece for removing tissue according to claim 8, wherein the first and second motors are configured to cooperate with a control console for regulating power during use.
  • 12. The surgical handpiece for removing tissue according to claim 8, wherein the fluid pump is a peristaltic pump.
  • 13. The surgical handpiece for removing tissue according to claim 8, wherein the fluid pump is configured to be removed from within the cavity of the housing.
  • 14. The surgical handpiece for removing tissue according to claim 8, wherein the end effector assembly and the fluid pump are removably engaged to the housing.
  • 15. The surgical handpiece for removing tissue according to claim 8, wherein the fluid pump is integral with the housing.
  • 16. The surgical handpiece for removing tissue according to claim 1, further comprising an input coupler disposed within the proximal hub connector and removably coupled to a proximal end portion of the cutting shaft.
  • 17. The surgical handpiece for removing tissue according to claim 16, further comprising an output coupler disposed within the cavity of the housing and electrically coupled to the motor, the output coupler configured to couple to the input coupler when the proximal hub connecter is coupled to the distal end of the housing such that activation of the motor drives the output coupler to cause the input coupler to move the cutting shaft relative to the outer shaft for resecting tissue.
  • 18. The surgical handpiece for removing tissue according to claim 8, further comprising an input coupler disposed within the proximal hub connector and removably coupled to a proximal end portion of the cutting shaft.
  • 19. The surgical handpiece for removing tissue according to claim 18, further comprising an output coupler disposed within the cavity of the housing and electrically coupled to the first motor, the output coupler configured to couple to the input coupler when the proximal hub connecter is coupled to the distal end of the housing such that activation of the first motor drives the output coupler to cause the input coupler to move the cutting shaft relative to the outer shaft for resecting tissue.
US Referenced Citations (302)
Number Name Date Kind
1585934 Muir May 1926 A
1666332 Hirsch Apr 1928 A
1831786 Duncan Nov 1931 A
2708437 Hutchins May 1955 A
3297022 Wallace Jan 1967 A
3686706 Finley Aug 1972 A
3734099 Bender et al. May 1973 A
3791379 Storz Feb 1974 A
3812855 Banko May 1974 A
3835842 Iglesias Sep 1974 A
3850162 Iglesias Nov 1974 A
3945375 Banko Mar 1976 A
3980252 Tae Sep 1976 A
3995619 Glatzer Dec 1976 A
3996921 Neuwirth Dec 1976 A
4011869 Seiler, Jr. Mar 1977 A
4108182 Hartman et al. Aug 1978 A
4146405 Timmer et al. Mar 1979 A
4198958 Utsugi Apr 1980 A
4203444 Bonnell et al. May 1980 A
4210146 Banko Jul 1980 A
4246902 Martinez Jan 1981 A
4247180 Norris Jan 1981 A
4258721 Parent et al. Mar 1981 A
4261346 Wettermann Apr 1981 A
4294234 Matsuo Oct 1981 A
4316465 Dotson, Jr. Feb 1982 A
4369768 Vukovic Jan 1983 A
4392485 Hiltebrandt Jul 1983 A
4414962 Carson Nov 1983 A
4449538 Corbitt et al. May 1984 A
4493698 Wang et al. Jan 1985 A
4517977 Frost May 1985 A
4543965 Pack et al. Oct 1985 A
4567880 Goodman Feb 1986 A
4589414 Yoshida et al. May 1986 A
4601284 Arakawa et al. Jul 1986 A
4601290 Effron et al. Jul 1986 A
4606330 Bonnet Aug 1986 A
4630598 Bonnet Dec 1986 A
4644952 Patipa et al. Feb 1987 A
4649919 Thimsen et al. Mar 1987 A
4700694 Shishido Oct 1987 A
4706656 Kuboto Nov 1987 A
4718291 Wood et al. Jan 1988 A
4737142 Heckele Apr 1988 A
4749376 Kensey et al. Jun 1988 A
4756309 Sachse et al. Jul 1988 A
4819635 Shapiro Apr 1989 A
4844064 Thimsen et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4856919 Takeuchi et al. Aug 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4924851 Ognier et al. May 1990 A
4940061 Terwilliger et al. Jul 1990 A
4950278 Sachse et al. Aug 1990 A
4955882 Hakky Sep 1990 A
4986827 Akkas et al. Jan 1991 A
4998527 Meyer Mar 1991 A
4998914 Wiest et al. Mar 1991 A
5007917 Evans Apr 1991 A
5027792 Meyer Jul 1991 A
5037386 Marcus et al. Aug 1991 A
5105800 Takahashi et al. Apr 1992 A
5106364 Hayafuji et al. Apr 1992 A
5112299 Pascaloff May 1992 A
5116868 Chen et al. May 1992 A
5125910 Freitas Jun 1992 A
5133713 Huang et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5158553 Berry et al. Oct 1992 A
5163433 Kagawa et al. Nov 1992 A
5169397 Sakashita et al. Dec 1992 A
5176677 Wuchinich Jan 1993 A
5195541 Obenchain Mar 1993 A
5226910 Kajiyama et al. Jul 1993 A
5244459 Hill Sep 1993 A
5254117 Rigby et al. Oct 1993 A
5269785 Bonutti Dec 1993 A
5270622 Krause Dec 1993 A
5275609 Pingleton et al. Jan 1994 A
5288290 Brody Feb 1994 A
5304118 Trese et al. Apr 1994 A
5312399 Hakky et al. May 1994 A
5312425 Evans et al. May 1994 A
5312430 Rosenbluth et al. May 1994 A
5320091 Grossi et al. Jun 1994 A
5347992 Pearlman et al. Sep 1994 A
5350390 Sher Sep 1994 A
5364395 West, Jr. Nov 1994 A
5374253 Bums, Sr. et al. Dec 1994 A
5390585 Ryuh Feb 1995 A
5392765 Muller Feb 1995 A
5395313 Naves et al. Mar 1995 A
5403276 Schechter et al. Apr 1995 A
5409013 Clement Apr 1995 A
5409453 Lundquist et al. Apr 1995 A
5411513 Ireland et al. May 1995 A
5421819 Edwards et al. Jun 1995 A
5425376 Banys et al. Jun 1995 A
5429601 Conley et al. Jul 1995 A
5435805 Edwards et al. Jul 1995 A
5443476 Shapiro Aug 1995 A
5449356 Walbrink et al. Sep 1995 A
5456673 Ziegler et al. Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5483951 Frassica et al. Jan 1996 A
5490819 Nicholas et al. Feb 1996 A
5490860 Middle et al. Feb 1996 A
5492537 Vancaillie Feb 1996 A
5498258 Hakky et al. Mar 1996 A
5527331 Kresch et al. Jun 1996 A
5549541 Muller Aug 1996 A
5556378 Storz et al. Sep 1996 A
5563481 Krause Oct 1996 A
5569164 Lurz Oct 1996 A
5569254 Carlson et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575756 Karasawa et al. Nov 1996 A
5591187 Dekel Jan 1997 A
5601583 Donahue et al. Feb 1997 A
5601603 Illi Feb 1997 A
5602449 Krause et al. Feb 1997 A
5603332 O'Connor Feb 1997 A
5630798 Beiser et al. May 1997 A
5649547 Ritchart et al. Jul 1997 A
5669927 Boebel et al. Sep 1997 A
5672945 Krause Sep 1997 A
5674179 Bonnet et al. Oct 1997 A
5676497 Kim Oct 1997 A
5695448 Kimura et al. Dec 1997 A
5702420 Sterling et al. Dec 1997 A
5709698 Adams et al. Jan 1998 A
5730752 Alden et al. Mar 1998 A
5733298 Berman et al. Mar 1998 A
5741286 Recuset Apr 1998 A
5741287 Alden et al. Apr 1998 A
5749885 Sjostrom et al. May 1998 A
5749889 Bacich et al. May 1998 A
5759185 Grinberg Jun 1998 A
5772634 Atkinson Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5782795 Bays Jul 1998 A
5782849 Miller Jul 1998 A
5807240 Muller et al. Sep 1998 A
5807282 Fowler Sep 1998 A
5810770 Chin et al. Sep 1998 A
5810861 Gaber Sep 1998 A
5814009 Wheatman Sep 1998 A
5833643 Ross et al. Nov 1998 A
5840060 Beiser et al. Nov 1998 A
5857995 Thomas et al. Jan 1999 A
5873886 Larsen et al. Feb 1999 A
5899915 Saadat May 1999 A
5911699 Anis et al. Jun 1999 A
5911722 Adler et al. Jun 1999 A
5913867 Dion Jun 1999 A
5916229 Evans Jun 1999 A
5925055 Adrian et al. Jul 1999 A
5928163 Roberts et al. Jul 1999 A
5944668 Vancaillie et al. Aug 1999 A
5947990 Smith Sep 1999 A
5951490 Fowler Sep 1999 A
5956130 Vancaillie et al. Sep 1999 A
5957832 Taylor et al. Sep 1999 A
6001116 Heisler et al. Dec 1999 A
6004320 Casscells et al. Dec 1999 A
6007513 Anis et al. Dec 1999 A
6024751 Lovato et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6039748 Savage et al. Mar 2000 A
6042552 Cornier Mar 2000 A
6068641 Varsseveld May 2000 A
6086542 Glowa et al. Jul 2000 A
6090094 Clifford, Jr. et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6113594 Savage Sep 2000 A
6119973 Galloway Sep 2000 A
6120147 Vijfvinkel et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6132448 Perez et al. Oct 2000 A
6149633 Maaskamp Nov 2000 A
6156049 Lovato et al. Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159209 Hakky Dec 2000 A
6171316 Kovac et al. Jan 2001 B1
6203518 Anis et al. Mar 2001 B1
6217543 Anis et al. Apr 2001 B1
6224603 Marino May 2001 B1
6244228 Kuhn et al. Jun 2001 B1
6258111 Ross et al. Jul 2001 B1
6277096 Cortella et al. Aug 2001 B1
6315714 Akiba Nov 2001 B1
6358200 Grossi Mar 2002 B1
6358263 Mark et al. Mar 2002 B2
6359200 Day Mar 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6471639 Rudischhauser et al. Oct 2002 B2
6494892 Ireland et al. Dec 2002 B1
6585708 Maaskamp Jul 2003 B1
6610066 Dinger et al. Aug 2003 B2
6626827 Felix et al. Sep 2003 B1
6632182 Treat Oct 2003 B1
6656132 Ouchi Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6712773 Viola Mar 2004 B1
6824544 Boebel et al. Nov 2004 B2
6837847 Ewers et al. Jan 2005 B2
7025720 Boebel et al. Apr 2006 B2
7025732 Thompson et al. Apr 2006 B2
7150713 Shener et al. Dec 2006 B2
7226459 Cesarini et al. Jun 2007 B2
7249602 Emanuel Jul 2007 B1
7510563 Cesarini et al. Mar 2009 B2
7763033 Gruber et al. Jul 2010 B2
7922737 Cesarini et al. Apr 2011 B1
8012153 Woloszko et al. Sep 2011 B2
8062214 Shener et al. Nov 2011 B2
8419626 Shener-Lrmakoglu et al. Apr 2013 B2
8574253 Gruber et al. Nov 2013 B2
8663264 Cesarini et al. Mar 2014 B2
8678999 Isaacson Mar 2014 B2
8840626 Adams et al. Sep 2014 B2
8852085 Shener-Irmakoglu et al. Oct 2014 B2
8893722 Emanuel Nov 2014 B2
8932208 Kendale et al. Jan 2015 B2
8951274 Adams et al. Feb 2015 B2
8986334 Mark et al. Mar 2015 B2
9060760 Sullivan et al. Jun 2015 B2
9060800 Cesarini et al. Jun 2015 B1
9060801 Cesarini et al. Jun 2015 B1
9066745 Cesarini et al. Jun 2015 B2
9072431 Adams et al. Jul 2015 B2
9089358 Emanuel Jul 2015 B2
9107691 Fojtik Aug 2015 B2
9125550 Shener-Irmakoglu et al. Sep 2015 B2
9155454 Sahney et al. Oct 2015 B2
9486233 Bek et al. Nov 2016 B2
9913629 Sullivan et al. Mar 2018 B1
10022140 Germain et al. Jul 2018 B2
10631889 Brown et al. Apr 2020 B2
20010039963 Spear et al. Nov 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20020058859 Brommersma May 2002 A1
20020165427 Yachia et al. Nov 2002 A1
20030050603 Todd Mar 2003 A1
20030050638 Yachia et al. Mar 2003 A1
20030078609 Finlay et al. Apr 2003 A1
20030114875 Sjostrom Jun 2003 A1
20040204671 Stubbs et al. Oct 2004 A1
20050043690 Todd Feb 2005 A1
20050085692 Kiehn et al. Apr 2005 A1
20050085838 Thompson et al. Apr 2005 A1
20050209622 Carrison Sep 2005 A1
20050240206 Sjostrom Oct 2005 A1
20060025793 Gibson Feb 2006 A1
20060036132 Renner et al. Feb 2006 A1
20060047185 Shener Mar 2006 A1
20060241586 Wilk Oct 2006 A1
20070213755 Beckman et al. Sep 2007 A1
20080015621 Emanuel Jan 2008 A1
20080058588 Emanuel Mar 2008 A1
20080058842 Emanuel Mar 2008 A1
20080097468 Adams et al. Apr 2008 A1
20080097469 Gruber et al. Apr 2008 A1
20080097470 Gruber Apr 2008 A1
20080097471 Adams et al. Apr 2008 A1
20080135053 Gruber et al. Jun 2008 A1
20080146872 Gruber et al. Jun 2008 A1
20080146873 Adams et al. Jun 2008 A1
20080245371 Gruber Oct 2008 A1
20080249366 Gruber et al. Oct 2008 A1
20080249534 Gruber et al. Oct 2008 A1
20080249553 Gruber et al. Oct 2008 A1
20080262308 Prestezog et al. Oct 2008 A1
20090082628 Kucklick et al. Mar 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270895 Churchill et al. Oct 2009 A1
20090270896 Sullivan et al. Oct 2009 A1
20090270897 Adams et al. Oct 2009 A1
20090270898 Chin et al. Oct 2009 A1
20100087798 Adams et al. Apr 2010 A1
20100152611 Parihar et al. Jun 2010 A1
20100152647 Shener et al. Jun 2010 A1
20100312140 Smith et al. Dec 2010 A1
20110166419 Reif et al. Jul 2011 A1
20120078038 Sahney et al. Mar 2012 A1
20130131452 Kuroda et al. May 2013 A1
20130172870 Germain et al. Jul 2013 A1
20130211321 Dubois et al. Aug 2013 A1
20140031834 Germain et al. Jan 2014 A1
20150305765 Fojtik et al. Oct 2015 A1
20160095615 Orczy-Timko Apr 2016 A1
20170049441 Sauer et al. Feb 2017 A1
20170105607 Truckai Apr 2017 A1
20170105736 Chen et al. Apr 2017 A1
20170333119 Truckai Nov 2017 A1
20170360466 Brown Dec 2017 A1
20170367687 Hibner Dec 2017 A1
20200253628 Brown et al. Aug 2020 A1
20210169512 Wood Jun 2021 A1
Foreign Referenced Citations (2)
Number Date Country
102961173 Mar 2013 CN
2010089777 Aug 2010 WO
Non-Patent Literature Citations (7)
Entry
Chinese Office Action issued in Chinese Application No. 201580072549.4 dated May 14, 2019, 10 pages.
International Search Report issued in corresponding International Application No. PCT/US2015/066111 dated Jun. 23, 2016, 4 pages.
Written Opinion issued in corresponding International Application No. PCT/US2015/066111 dated Jun. 23, 2016, 9 pages.
International Preliminary Report on Patentability issued in corresponding International Application No. PCT/US2015/066111 dated Jun. 20, 2017, 10 pages.
Australian Examination Report issue in corresponding Australian Application No. 2015364676 dated Sep. 26, 2019, 3 pages.
U.S. Appl. No. 16/593,432 to Begg et al.
Extended European Search Report issued in corresponding application EP 21207063.5 dated Mar. 29, 2022 (7 pages).
Related Publications (1)
Number Date Country
20220151652 A1 May 2022 US