The present disclosure generally relates to a tissue-removing catheter including a moveable distal tip, and more particularly a moveable distal tip that enables on wire tissue cleaning.
Debulking or tissue-removing catheters are used to remove unwanted tissue from the body. As an example, atherectomy catheters are used to remove material from a blood vessel to open the blood vessel and improve blood flow through the vessel. An atherectomy catheter may be advanced over a guide wire which extends through a guide wire lumen of the catheter to facilitate insertion of the catheter though the vessel. Current atherectomy catheters may require removal of the guide wire from the guide wire lumen to clean the catheter.
In one aspect, a catheter includes a tissue-removing element and a tissue-containment chamber configured to receive tissue removed by the tissue-removing element. The tissue-containment chamber has a tissue-removing opening for use in removing tissue from the chamber. A closure component is associated with the tissue-removing opening for selectively opening and closing the opening. Embodiments of the tissue-containment chamber and the closure component facilitate removal of tissue from the tissue-containment chamber.
Other features will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the drawings.
Embodiments of a tissue-removing catheter having moveable distal portions for removing material stored in the catheter are disclosed. In particular, the illustrated catheter embodiments are particularly suitable for removing (i.e., excising) plaque tissue from a blood vessel (e.g., peripheral arterial or peripheral venous wall). Features of the disclosed embodiments, however, may also be suitable for treating chronic total occlusion (CTO) of blood vessels, particularly peripheral arteries, and stenoses of other body lumens and other hyperplastic and neoplastic conditions in other body lumens, such as the ureter, the biliary duct, respiratory channels, the pancreatic duct, the lymphatic duct, and the like. Neoplastic cell growth will often occur as a result of a tumor surrounding and intruding into a body lumen. Removal of such material can thus be beneficial to maintain patency of the body lumen. While the remaining discussion is directed toward catheters for removing tissue from, and penetrating occlusions in, blood vessels (e.g., atheromatous or thrombotic occlusive material in an artery, or other occlusions in veins), it will be appreciated that the teachings of the present disclosure apply equally to other types of tissue-removing catheters, including, but not limited to, catheters for penetrating and/or removing tissue from a variety of occlusive, stenotic, or hyperplastic material in a variety of body lumens.
Referring to
Referring to
Referring still to
The tissue-removing element 16 is movable between a stored position (not shown) and a deployed position (
The material cut by the tissue-removing element 16 is directed through the window 38 and into the lumen 15 of the tissue-containment chamber 17 located distal to the window. The catheter 10 may be passed through the vessel a number of times with the material from each pass being stored in the tissue-containment chamber 17. When the tissue-containment chamber 17 is full, the catheter 10 is removed from the patient and the tissue-containment chamber may be cleaned for subsequent use as described below.
Referring now to
In the illustrated embodiment, as shown in
The closure component 54 includes a plurality of L-shaped slots 64 (broadly, one or more grooves) each having a circumferentially extending portion 66, an axially extending portion 68, and a juncture connecting the axially extending portion to the circumferentially extending portion. Only one L-shaped slot 64 is visible in
To move the closure component 54 from the closed position (
The guide wire lumen 19 extends along the catheter 10 and includes a proximal section 19a extending along (e.g., mounted on) the tissue-containment chamber 17 and a distal section 19b extending along (e.g., mounted on) the distal tip component 50. The proximal and distal sections 19a, 19b of the guide wire lumen 19 are spaced apart by a gap or void 70. The proximal section 19a of the guide wire lumen 19 is aligned with the distal section 19b when the closure component 54 is in the closed position of
The construction of the tissue-containment chamber 17 and closure component 54 permit rotation and axial sliding of the distal tip component 50 to expose the tissue-removing opening 52 without having to remove the guide wire 18 from either of the sections 19a, 19b of the guide wire lumen 19. When the rotational force is applied to the distal tip component 50, the closure component 54 rotates and the tabs 58 on the tissue containment chamber 17 track in the circumferentially extending portions 68 of the slots 64 in the closure component and into the juncture. Rotating the distal tip component 50 applies bending stress to the guide wire 18 because proximal and distal portions 19a, 19b of the guide wire lumen 19 become unaligned. The guide wire resiliently bends under the applied bending stress and stores a return force biasing the closure component 54 to the closed position. As a result, the return force in the guide wire 18 can automatically move the closure component 54 to the closed position when the tabs 58 are located at the junctures and the rotational force applied by the user is removed. However, if the rotational force is maintained by the user, the distal tip component 50 can then be pulled distally, and/or urged distally by a stored energy component (e.g., spring) to move the closure component 54 distally and track the tabs 58 on the tissue-containment chamber 17 in the axially extending portions 68 of the slots 64 in the closure component 54 to open the tissue-removing opening 52. With the tabs 58 received in the axially extending portions 68 of the slots 64, the return force being generated by the guide wire 18 acts to hold the closure component 54 in the open position. This reduces the chance of the closure component 54 sliding back into the closed position. When the catheter 10 is removed from the patient, the guide wire 18 remains in the guide wire lumen 19. By leaving the guide wire 18 in the guide wire lumen 19, cleaning the catheter 10 is more efficient than having to remove the guide wire before cleaning and then reinsert the guide wire into the guide wire lumen after cleaning.
When it is desired to close the tissue-removing opening 52, the distal tip component 50 is pushed proximally to track the tabs 58 into the junctures between the axially extending portions 68 and the circumferentially extending portions 66 of the slots 64. The return force of the guide wire 18 may aid in or automatically move the closure component 54 back to the closed position, thereby closing the tissue-removing opening 52. Additionally, if the distal tip component 50 and closure component 54 are not moved to the closed position before the catheter 10 is used, a distal to proximal force acting on the distal tip component when the catheter is inserted into a hemostasis valve can move the closure component axially (e.g., proximally) to track the tabs 58 into the junctures so that the closure component moves to the closed position under the return force of the guide wire 18.
Additionally or alternatively, a snapping mechanism (not shown) may lock the distal tip component 50 and closure component 54 in the closed or open position. A small axial force may be necessary to unseat the snapping mechanism to move the distal tip component 50 and closure component 54 relative to the tissue-containment chamber 17. The snapping mechanism may comprise a metal to metal or metal interference fit or a metal to plastic interference fit to lock the distal tip component 50 and closure component 54 in the closed or open position.
Referring to
To move the closure component 54′ from a closed and locked position (
From the rotational position shown in
Referring to
Additionally or alternatively, tabs (not shown) can be machined into the closure component, and a slot (e.g., laser cut) may be formed in the tissue-containment chamber.
Additionally or alternatively, multiple laser cut tabs may be formed on the distal end of a tissue-containment chamber. A most proximal tab can lock a machined feature on a closure component until a distal tip component is pushed proximally against a gasket (not shown) and then rotated and pulled distally as described in previous embodiments. Movement of the distal tip component and closure component in the distal direction is stopped by a distal most tab on the tissue-containment chamber. Thus, the locking mechanism is built into the tabs rather than using the return force created between the guide wire and sections of the guide wire lumen when the closure component is rotated.
Referring to
The tissue-containment chamber 17″ includes a plurality of catches, generally indicated at 99 (only one is shown), near the distal end of the tissue-containment chamber. Each catch 99 is generally in the form of a deflectable cantilever snap-fit arm defining an opening 100 therein. The openings 100 are spaced circumferentially around the tissue-containment chamber 17″ and each opening is spaced from a distal edge of the tissue-containment chamber. A plurality of narrow slits 102 are formed in the distal end to the tissue-containment chamber 17″ and spaced circumferentially around the tissue-containment chamber to form the catches 99. Each slit 102 extends from the distal edge of the tissue-containment chamber 17″ to a widened base 104. A pair of slits 102 is associated with each catch 99. As illustrated, each pair of slits 100 is disposed on opposite circumferential sides of a catch 100. Each catch 99 is resiliently deflectable or flexible radially outward when engaged by the closure component 54″ as will be explained in greater detail below.
The closure component 54″ includes a plurality of hooks 108 disposed adjacent a proximal end of the closure component. In the illustrated embodiment, the hooks 108 are connected to one another and are part of a single hook base unit 109. When the proximal end of the closure component 54″ is fully received in the distal end of the tissue-containment chamber 17″, the hooks 108 are captured within the openings 100 of the respective catches 99 to secure the distal tip component 50″ and closure component 54″ to the tissue-containment chamber 17″. Referring to
A first tube lumen 116 is disposed on the tissue-containment chamber 17″. The first tube lumen 116 extends from a distal edge of the tissue-containment chamber 17″ to a location proximal to the distal edge of the tissue-containment chamber. A first tube 118 is fixedly disposed in first the tube lumen 116 generally at a distal end of the first tube lumen. A second tube lumen 120 is disposed on the closure component 54″. The second tube lumen 120 extends from a proximal edge of the closure component 54″ to a location distal to the proximal edge of the closure component. A second tube 122 is fixedly disposed in the second tube lumen 120 and extends into the first tube lumen 116 in the tissue-containment chamber 17″ and through the first tube 118 in the first tube lumen. The second tube 122 comprises a first diameter portion 124 sized to be received in the first tube 118 and slide within the first tube, and a second diameter portion 126 wider than the first diameter portion. The second diameter portion 126 is sized to abut the first tube 118 when the second hollow tube 122 is slid distally relative to the first tube. This configuration limits movement of the distal tip component 50″ and closure component 54″ away from the tissue-containment chamber 17″ and allows rotation of the distal tip component and closure component relative to the tissue-containment chamber as will be explained in greater detail below. The tubes 118, 122 may be fixedly disposed in the lumens 116, 120 by any suitable means such as welding, brazing or adhesive. Moreover, the lumens 116, 120 may be omitted without departing from the scope of the present invention. The first and second diameter portions 124, 126 of the second tube 122 may be formed separately and attached to each other by any suitable means such as welding, brazing, or adhesive. Alternatively, the first and second diameter portion 124, 126 can be formed integrally. The first and second tubes 118, 122 are aligned with the proximal and distal guide wire lumen portions 19a, 19b, respectively, to partially define the guide wire lumen 19″. A guide wire (not shown) is insertable through the guide wire lumen 19″, including the first and second tubes 118, 122, respectively.
In the closed position, the closure component 54″ is received in the tissue-removing opening 52″ of the tissue-containment chamber 17″ and the hooks 108 on the closure component are captured in the openings 100 of the catches 99 to secure the distal tip component 50″ and closure component to the tissue-containment chamber. To open the tissue-removing opening 52″, an axial pulling force in a distal direction is applied to the distal tip component 50″. A sufficient amount of force causes the closure component 54″ to move distally and an inner surface of the catches 99 to ride up the first ramp surfaces 110 of the hooks 108. As the catches 99 ride up the first hook surfaces 110, the catches resiliently deflect outward and away from the hooks 108 providing clearance for the closure component 54″ to continue its distal movement. Continued distal movement of the closure component 54″ will cause the inner surfaces of the catches 99 to reach the second ramp surfaces 112 and then ride down the third ramp surfaces 114 freeing the hooks from the openings 100. Once the hooks 108 are free from the openings 100 the closure component 54″ and hooks 108 can be pulled completely out of the tissue-containment chamber 17″. Distal movement of the distal tip component 50″ and closure component 54″ is stopped when the second diameter portion 126 of the second hollow tube 122 engages the first hollow tube 118.
After removing the closure component 54″ from the tissue-containment chamber 17″, the distal tip component 50″ and closure component 54″ are rotated, whereby the second tube 122 rotates about an axis of the first tube 118, until the tissue-removing open is open. For instance, the distal tip component 50″ and closure component 54″ can be rotated about 180 degrees about the first tube 118 to open the tissue-removing opening 52″. Other degrees of rotation are also envisioned. Thus, the distal tip component 50″ and closure component 54″ rotate about an axis that is radially offset from a longitudinal axis of the tissue-containment chamber 17″. In the illustrated embodiment, the rotation is around an axis coincident with at least a portion of the guide wire lumen 19″. As a result, the guide wire (not shown) and guide wire lumen 19″ are not placed in shear or deformed by rotation of the distal tip component 50″ and closure component 54″.
To close the tissue-removing opening 52″, the distal tip component 50″ and closure component 54″ are rotated back into alignment with the tissue-removing opening and pushed proximally until the hooks 108 on the closure component are captured by the openings 100 of the catches 99, thereby locking the distal tip component 50″ and closure component to the tissue-containment chamber 17″. As the closure component 54″ is pushed proximally into the tissue-containment chamber 17″, the third ramp surfaces 114 of the hooks 108 engage interior surfaces of the catches 99. A sufficient amount of force causes the closure component 54″ to move proximally and the inner surfaces of the catches 99 to ride up the third ramp surfaces 114 of the ramps 108. As the catches 99 ride up the third ramp surfaces 114, the catches resiliently deflect outward and away from the hooks 108 providing clearance for the closure component 54″ to continue its proximal movement. Continued proximal movement of the closure component 54″ will cause the inner surfaces of the catches 99 to reach the second ramp surfaces 112 and then ride down the first ramp surfaces 110 capturing the hooks 108 in the openings 100.
The catheter 10″ of this embodiment is also capable of being cleaned without the use of a separate flush tool. By adjusting a packing stroke length of the catheter 10″ it is possible to push any tissue in the tissue-containment chamber 17″ out of the catheter 10″ by pushing the tissue distally in the tissue-containment chamber. In this embodiment, a cutter driver (not shown) may operate in at least two settings for controlling the packing stroke of the cutter. For instance, the cutter driver may operate in a first setting for packing tissue while the tissue-removing opening 52″ is closed and a second setting for expelling tissue from the catheter 10″ when the tissue-removing opening is open. Because the tissue-removing opening 52″ is aligned with the longitudinal axis of the tissue-containment chamber 17″, the tissue can be removed from the catheter 10″ by this operation alone. To further facilitate removing tissue from the catheter 10″ in this manner, a distal end of the tissue-containment chamber 17″ may have a tapered inner diameter to reduce friction between the packed tissue and the tissue-containment chamber.
Having described embodiments of the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As various changes could be made in the above constructions, products, and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
1481078 | Albertson | Jan 1924 | A |
2178790 | Henry | Nov 1939 | A |
2701559 | Cooper | Feb 1955 | A |
2850007 | Lingley | Sep 1958 | A |
3064651 | Henderson | Nov 1960 | A |
3082805 | Royce | Mar 1963 | A |
3320957 | Sokolik | May 1967 | A |
3614953 | Moss | Oct 1971 | A |
3683891 | Eskridge et al. | Aug 1972 | A |
3705577 | Sierra | Dec 1972 | A |
3732858 | Banko | May 1973 | A |
3749085 | Wilson et al. | Jul 1973 | A |
3800783 | Jamshidi | Apr 1974 | A |
3815604 | O'Malley et al. | Jun 1974 | A |
3831585 | Brondy et al. | Aug 1974 | A |
3837345 | Matar | Sep 1974 | A |
3845375 | Stiebel | Oct 1974 | A |
3937222 | Banko | Feb 1976 | A |
3945375 | Banko | Mar 1976 | A |
3976077 | Kerfoot, Jr. | Aug 1976 | A |
3995619 | Glatzer | Dec 1976 | A |
4007732 | Kvavle et al. | Feb 1977 | A |
4020847 | Clark, III | May 1977 | A |
4030503 | Clark, III | Jun 1977 | A |
4034744 | Goldberg | Jul 1977 | A |
4038985 | Chiulli | Aug 1977 | A |
4112708 | Fukuda | Sep 1978 | A |
4177797 | Baylis et al. | Dec 1979 | A |
4210146 | Banko | Jul 1980 | A |
4273128 | Lary | Jun 1981 | A |
4306562 | Osborne | Dec 1981 | A |
4306570 | Matthews | Dec 1981 | A |
4349032 | Koyata | Sep 1982 | A |
4368730 | Sharrock | Jan 1983 | A |
4424045 | Kulischenko et al. | Jan 1984 | A |
4436091 | Banko | Mar 1984 | A |
4445509 | Auth | May 1984 | A |
4490139 | Huizenga et al. | Dec 1984 | A |
4494057 | Hotta | Jan 1985 | A |
4512344 | Barber | Apr 1985 | A |
4589412 | Kensey | May 1986 | A |
4603694 | Wheeler | Aug 1986 | A |
4620547 | Boebel | Nov 1986 | A |
4631052 | Kensey | Dec 1986 | A |
4646719 | Neuman et al. | Mar 1987 | A |
4646736 | Auth | Mar 1987 | A |
4646738 | Trott | Mar 1987 | A |
4649919 | Thimsen et al. | Mar 1987 | A |
4653496 | Bundy et al. | Mar 1987 | A |
4664112 | Kensey et al. | May 1987 | A |
4669469 | Gifford, III et al. | Jun 1987 | A |
4679558 | Kensey et al. | Jul 1987 | A |
4686982 | Nash | Aug 1987 | A |
4692141 | Mahurkar | Sep 1987 | A |
4696298 | Higgins et al. | Sep 1987 | A |
4696667 | Masch | Sep 1987 | A |
4705038 | Sjostrom | Nov 1987 | A |
4706671 | Weinrib | Nov 1987 | A |
4728319 | Masch | Mar 1988 | A |
4729763 | Henrie | Mar 1988 | A |
4730616 | Frisbie et al. | Mar 1988 | A |
4732154 | Shiber | Mar 1988 | A |
4733662 | Desatnick et al. | Mar 1988 | A |
4745919 | Bundey et al. | May 1988 | A |
4747406 | Nash | May 1988 | A |
4747821 | Kensey et al. | May 1988 | A |
4749376 | Kensey et al. | Jun 1988 | A |
4754755 | Husted | Jul 1988 | A |
4757819 | Yokoi et al. | Jul 1988 | A |
4765332 | Fischell et al. | Aug 1988 | A |
4771774 | Simpson et al. | Sep 1988 | A |
4781186 | Simpson et al. | Nov 1988 | A |
4784636 | Rydell | Nov 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4794931 | Yock | Jan 1989 | A |
4817613 | Jaraczewski et al. | Apr 1989 | A |
4819634 | Shiber | Apr 1989 | A |
4819635 | Shapiro | Apr 1989 | A |
4838268 | Keith et al. | Jun 1989 | A |
4842579 | Shiber | Jun 1989 | A |
4844064 | Thimsen et al. | Jul 1989 | A |
4848343 | Wallsten et al. | Jul 1989 | A |
4850957 | Summers | Jul 1989 | A |
4857046 | Stevens et al. | Aug 1989 | A |
4867157 | McGurk-Burleson et al. | Sep 1989 | A |
4870953 | DonMichael et al. | Oct 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4886061 | Fischell et al. | Dec 1989 | A |
4886490 | Shiber | Dec 1989 | A |
4887613 | Farr et al. | Dec 1989 | A |
4894051 | Shiber | Jan 1990 | A |
4899757 | Pope, Jr. et al. | Feb 1990 | A |
4919133 | Chiang | Apr 1990 | A |
4923462 | Stevens | May 1990 | A |
4926858 | Gifford, III et al. | May 1990 | A |
4928693 | Goodin et al. | May 1990 | A |
4936987 | Persinksi et al. | Jun 1990 | A |
RE33258 | Onik et al. | Jul 1990 | E |
4950238 | Sullivan | Aug 1990 | A |
4954338 | Mattox | Sep 1990 | A |
4957482 | Shiber | Sep 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4973409 | Cook | Nov 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4979951 | Simpson | Dec 1990 | A |
4986807 | Farr | Jan 1991 | A |
4990134 | Auth | Feb 1991 | A |
4994067 | Summers | Feb 1991 | A |
4997435 | Demeter | Mar 1991 | A |
5000185 | Yock | Mar 1991 | A |
5002553 | Shiber | Mar 1991 | A |
5003918 | Olson et al. | Apr 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5009659 | Hamlin et al. | Apr 1991 | A |
5019088 | Farr | May 1991 | A |
5024234 | Leary et al. | Jun 1991 | A |
5024651 | Shiber | Jun 1991 | A |
5026384 | Farr et al. | Jun 1991 | A |
5029588 | Yock et al. | Jul 1991 | A |
5030201 | Palestrant | Jul 1991 | A |
5047040 | Simpson et al. | Sep 1991 | A |
5049124 | Bales, Jr. | Sep 1991 | A |
5053044 | Mueller et al. | Oct 1991 | A |
5054492 | Scribner et al. | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5071425 | Gifford et al. | Dec 1991 | A |
5074841 | Ademovic et al. | Dec 1991 | A |
5077506 | Krause et al. | Dec 1991 | A |
5078722 | Stevens | Jan 1992 | A |
5078723 | Dance et al. | Jan 1992 | A |
5084010 | Plaia et al. | Jan 1992 | A |
5085662 | Willard | Feb 1992 | A |
5087265 | Summers | Feb 1992 | A |
5092839 | Kipperman | Mar 1992 | A |
5092873 | Simpson et al. | Mar 1992 | A |
5095911 | Pomeranz | Mar 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5100424 | Jang et al. | Mar 1992 | A |
5100426 | Nixon | Mar 1992 | A |
5110822 | Sherba et al. | May 1992 | A |
5112345 | Farr | May 1992 | A |
5114399 | Kovalcheck | May 1992 | A |
5115814 | Griffith et al. | May 1992 | A |
5120323 | Shockey et al. | Jun 1992 | A |
5127902 | Fischeil | Jul 1992 | A |
5127917 | Niederhauser et al. | Jul 1992 | A |
5135531 | Shiber | Aug 1992 | A |
5154705 | Fleischhacker et al. | Oct 1992 | A |
5154724 | Andrews | Oct 1992 | A |
5165421 | Fleischhacker et al. | Nov 1992 | A |
5176693 | Pannek, Jr. | Jan 1993 | A |
5178625 | Groshong | Jan 1993 | A |
5181920 | Mueller et al. | Jan 1993 | A |
5183432 | Noguchi | Feb 1993 | A |
5190528 | Fonger et al. | Mar 1993 | A |
5192291 | Pannek, Jr. | Mar 1993 | A |
5195956 | Stockmeier | Mar 1993 | A |
5211651 | Reger et al. | May 1993 | A |
5217474 | Zacca et al. | Jun 1993 | A |
5222966 | Perkins et al. | Jun 1993 | A |
5224488 | Neuffer | Jul 1993 | A |
5224945 | Pannek, Jr. | Jul 1993 | A |
5224949 | Gomringer et al. | Jul 1993 | A |
5226909 | Evans et al. | Jul 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5234451 | Osypka | Aug 1993 | A |
5242460 | Klein et al. | Sep 1993 | A |
5242461 | Kortenbach et al. | Sep 1993 | A |
5250059 | Andreas et al. | Oct 1993 | A |
5250065 | Clement et al. | Oct 1993 | A |
5263928 | Trauthen et al. | Nov 1993 | A |
5263959 | Fischell | Nov 1993 | A |
5267955 | Hanson | Dec 1993 | A |
5267982 | Sylvanowicz | Dec 1993 | A |
5269793 | Simpson et al. | Dec 1993 | A |
5273526 | Dance et al. | Dec 1993 | A |
5282484 | Reger | Feb 1994 | A |
5284486 | Kotula et al. | Feb 1994 | A |
5285795 | Ryan et al. | Feb 1994 | A |
5295493 | Radisch, Jr. | Mar 1994 | A |
5300085 | Yock | Apr 1994 | A |
5306294 | Winston et al. | Apr 1994 | A |
5308354 | Zacca et al. | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5312427 | Shturman | May 1994 | A |
5314438 | Shturman | May 1994 | A |
5318032 | Lonsbury et al. | Jun 1994 | A |
5318528 | Heaven et al. | Jun 1994 | A |
5318576 | Plassche, Jr. et al. | Jun 1994 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5322508 | Viera | Jun 1994 | A |
5350390 | Sher | Sep 1994 | A |
5356418 | Shturman | Oct 1994 | A |
5358472 | Vance et al. | Oct 1994 | A |
5358485 | Vance et al. | Oct 1994 | A |
5360432 | Shturman | Nov 1994 | A |
5366463 | Ryan | Nov 1994 | A |
5368035 | Hamm et al. | Nov 1994 | A |
5370609 | Drasler et al. | Dec 1994 | A |
5370651 | Summers | Dec 1994 | A |
5372601 | Lary | Dec 1994 | A |
5372602 | Burke | Dec 1994 | A |
5373619 | Fleischhacker et al. | Dec 1994 | A |
5373849 | Maroney et al. | Dec 1994 | A |
5377682 | Ueno et al. | Jan 1995 | A |
5378234 | Hammerslag et al. | Jan 1995 | A |
5383460 | Jang et al. | Jan 1995 | A |
5395311 | Andrews | Mar 1995 | A |
5395313 | Naves et al. | Mar 1995 | A |
5395335 | Jung | Mar 1995 | A |
5397345 | Lazarus | Mar 1995 | A |
5402790 | Jang et al. | Apr 1995 | A |
5403334 | Evans et al. | Apr 1995 | A |
5409454 | Fischell et al. | Apr 1995 | A |
5413107 | Oakley et al. | May 1995 | A |
5419774 | Willard et al. | May 1995 | A |
5423740 | Sullivan | Jun 1995 | A |
5423799 | Shiu | Jun 1995 | A |
5423838 | Willard | Jun 1995 | A |
5423846 | Fischell | Jun 1995 | A |
5427107 | Milo et al. | Jun 1995 | A |
5429136 | Milo et al. | Jul 1995 | A |
5431673 | Summers et al. | Jul 1995 | A |
5441510 | Simpson et al. | Aug 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5443497 | Venbrux | Aug 1995 | A |
5444078 | Yu et al. | Aug 1995 | A |
5445155 | Sieben | Aug 1995 | A |
5449369 | Imran | Sep 1995 | A |
5451233 | Yock | Sep 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5456689 | Kresch et al. | Oct 1995 | A |
5458585 | Salmon et al. | Oct 1995 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5464016 | Nicholas et al. | Nov 1995 | A |
5470415 | Perkins et al. | Nov 1995 | A |
5485042 | Burke et al. | Jan 1996 | A |
5485840 | Bauman | Jan 1996 | A |
5487729 | Avellanet et al. | Jan 1996 | A |
5489295 | Piplani et al. | Feb 1996 | A |
5491524 | Hellmuth et al. | Feb 1996 | A |
5496267 | Drasler et al. | Mar 1996 | A |
5501694 | Ressemann et al. | Mar 1996 | A |
5503155 | Salmon et al. | Apr 1996 | A |
5505210 | Clement | Apr 1996 | A |
5507292 | Jang et al. | Apr 1996 | A |
5507760 | Wynne et al. | Apr 1996 | A |
5507761 | Duer | Apr 1996 | A |
5507795 | Chiang et al. | Apr 1996 | A |
5512044 | Duer | Apr 1996 | A |
5514115 | Frantzen et al. | May 1996 | A |
5520189 | Malinowski et al. | May 1996 | A |
5522825 | Kropf et al. | Jun 1996 | A |
5522880 | Barone et al. | Jun 1996 | A |
5527292 | Adams et al. | Jun 1996 | A |
5527298 | Vance et al. | Jun 1996 | A |
5527325 | Conley et al. | Jun 1996 | A |
5531685 | Hemmer et al. | Jul 1996 | A |
5531690 | Solar | Jul 1996 | A |
5531700 | Moore et al. | Jul 1996 | A |
5540707 | Ressemann et al. | Jul 1996 | A |
5549601 | McIntyre et al. | Aug 1996 | A |
5554163 | Shturman | Sep 1996 | A |
5556408 | Farhat | Sep 1996 | A |
5558093 | Pomeranz | Sep 1996 | A |
5562726 | Chuter | Oct 1996 | A |
5562728 | Lazarus | Oct 1996 | A |
5569275 | Kotula et al. | Oct 1996 | A |
5569276 | Jang et al. | Oct 1996 | A |
5569277 | Evans et al. | Oct 1996 | A |
5569279 | Rainin | Oct 1996 | A |
5570693 | Jang et al. | Nov 1996 | A |
5571122 | Kelly et al. | Nov 1996 | A |
5571130 | Simpson et al. | Nov 1996 | A |
5575817 | Martin | Nov 1996 | A |
5584842 | Fogarty et al. | Dec 1996 | A |
5584843 | Wulfman et al. | Dec 1996 | A |
5609605 | Marshall et al. | Mar 1997 | A |
5618293 | Sample et al. | Apr 1997 | A |
5620447 | Smith et al. | Apr 1997 | A |
5624457 | Farley et al. | Apr 1997 | A |
5626562 | Castro | May 1997 | A |
5626576 | Janssen | May 1997 | A |
5628761 | Rizik | May 1997 | A |
5632754 | Farley et al. | May 1997 | A |
5632755 | Nordgren et al. | May 1997 | A |
5634464 | Jang et al. | Jun 1997 | A |
5643296 | Hundertmark et al. | Jul 1997 | A |
5643298 | Nordgren et al. | Jul 1997 | A |
5649941 | Lary | Jul 1997 | A |
5660180 | Malinowski et al. | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5665098 | Kelly et al. | Sep 1997 | A |
5669920 | Conley et al. | Sep 1997 | A |
5674232 | Halliburton | Oct 1997 | A |
5676696 | Marcade | Oct 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5681336 | Clement et al. | Oct 1997 | A |
5682897 | Pomeranz | Nov 1997 | A |
5683449 | Marcade | Nov 1997 | A |
5683453 | Palmaz | Nov 1997 | A |
5688234 | Frisbie | Nov 1997 | A |
5695506 | Pike | Dec 1997 | A |
5695507 | Auth et al. | Dec 1997 | A |
5697944 | Lary | Dec 1997 | A |
5700240 | Barwick, Jr. et al. | Dec 1997 | A |
5700687 | Finn | Dec 1997 | A |
5707350 | Krause et al. | Jan 1998 | A |
5707376 | Kavteladze et al. | Jan 1998 | A |
5707383 | Bays et al. | Jan 1998 | A |
5709698 | Adams et al. | Jan 1998 | A |
5713913 | Lary et al. | Feb 1998 | A |
5715825 | Crowley | Feb 1998 | A |
5716410 | Wang et al. | Feb 1998 | A |
5720735 | Dorros | Feb 1998 | A |
5724977 | Yock et al. | Mar 1998 | A |
5728123 | Lemelson et al. | Mar 1998 | A |
5733296 | Rogers et al. | Mar 1998 | A |
5735816 | Lieber et al. | Apr 1998 | A |
5741270 | Hansen et al. | Apr 1998 | A |
5766192 | Zacca | Jun 1998 | A |
5772674 | Nakhjavan | Jun 1998 | A |
5775327 | Randolph et al. | Jul 1998 | A |
5776114 | Frantzen et al. | Jul 1998 | A |
5776153 | Rees | Jul 1998 | A |
5779643 | Lum et al. | Jul 1998 | A |
5779673 | Roth et al. | Jul 1998 | A |
5779721 | Nash | Jul 1998 | A |
5779722 | Shturman et al. | Jul 1998 | A |
5792157 | Mische et al. | Aug 1998 | A |
5797949 | Parodi | Aug 1998 | A |
5799655 | Jang et al. | Sep 1998 | A |
5807329 | Gelman | Sep 1998 | A |
5810867 | Zarbatany et al. | Sep 1998 | A |
5816923 | Milo et al. | Oct 1998 | A |
5820592 | Hammerslag | Oct 1998 | A |
5823971 | Robinson et al. | Oct 1998 | A |
5824039 | Piplani et al. | Oct 1998 | A |
5824055 | Spiridigliozzi et al. | Oct 1998 | A |
5827201 | Samson et al. | Oct 1998 | A |
5827229 | Auth et al. | Oct 1998 | A |
5827304 | Hart | Oct 1998 | A |
5827322 | Williams | Oct 1998 | A |
5830224 | Cohn et al. | Nov 1998 | A |
5836957 | Schulz et al. | Nov 1998 | A |
5843022 | Willard et al. | Dec 1998 | A |
5843103 | Wulfman | Dec 1998 | A |
5843161 | Solovay | Dec 1998 | A |
5855563 | Kaplan et al. | Jan 1999 | A |
5865748 | Co et al. | Feb 1999 | A |
5868685 | Powell et al. | Feb 1999 | A |
5868767 | Farley et al. | Feb 1999 | A |
5871536 | Lazarus | Feb 1999 | A |
5873882 | Straub et al. | Feb 1999 | A |
5876414 | Straub | Mar 1999 | A |
5879397 | Kalberer et al. | Mar 1999 | A |
5883458 | Sumita et al. | Mar 1999 | A |
5888201 | Stinson et al. | Mar 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5895402 | Hundertmark et al. | Apr 1999 | A |
5902245 | Yock | May 1999 | A |
5910150 | Saadat | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5916210 | Winston | Jun 1999 | A |
5922003 | Anctil et al. | Jul 1999 | A |
5935108 | Katoh et al. | Aug 1999 | A |
5938645 | Gordon | Aug 1999 | A |
5938671 | Katoh et al. | Aug 1999 | A |
5938672 | Nash | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5947985 | Imran | Sep 1999 | A |
5948184 | Frantzen et al. | Sep 1999 | A |
5951480 | White et al. | Sep 1999 | A |
5951482 | Winston et al. | Sep 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5968064 | Selmon et al. | Oct 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
5985397 | Witt et al. | Nov 1999 | A |
5989281 | Barbut et al. | Nov 1999 | A |
5997557 | Barbut et al. | Dec 1999 | A |
6001112 | Taylor | Dec 1999 | A |
6010449 | Selmon et al. | Jan 2000 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6013072 | Winston et al. | Jan 2000 | A |
6019778 | Wislon et al. | Feb 2000 | A |
6022362 | Lee et al. | Feb 2000 | A |
6027450 | Brown et al. | Feb 2000 | A |
6027460 | Shturman | Feb 2000 | A |
6027514 | Stine et al. | Feb 2000 | A |
6032673 | Savage et al. | Mar 2000 | A |
6036646 | Barthe et al. | Mar 2000 | A |
6036656 | Slater | Mar 2000 | A |
6036707 | Spaulding | Mar 2000 | A |
6048349 | Winston et al. | Apr 2000 | A |
6050949 | White et al. | Apr 2000 | A |
6063093 | Winston et al. | May 2000 | A |
6066153 | Lev | May 2000 | A |
6068603 | Suzuki | May 2000 | A |
6068638 | Makower | May 2000 | A |
6081738 | Hinohara et al. | Jun 2000 | A |
RE36764 | Zacca et al. | Jul 2000 | E |
6095990 | Parodi | Aug 2000 | A |
6099542 | Cohn et al. | Aug 2000 | A |
6106515 | Winston et al. | Aug 2000 | A |
6110121 | Lenker | Aug 2000 | A |
6120515 | Rogers et al. | Sep 2000 | A |
6120516 | Selmon et al. | Sep 2000 | A |
6126649 | VanTassel et al. | Oct 2000 | A |
6129734 | Shturman et al. | Oct 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6152909 | Bagaoisan et al. | Nov 2000 | A |
6152938 | Curry | Nov 2000 | A |
6156046 | Passafaro et al. | Dec 2000 | A |
6157852 | Selmon et al. | Dec 2000 | A |
6159195 | Ha et al. | Dec 2000 | A |
6159225 | Makower | Dec 2000 | A |
6165127 | Crowley | Dec 2000 | A |
6179859 | Bates et al. | Jan 2001 | B1 |
6183432 | Milo | Feb 2001 | B1 |
6187025 | Machek | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6191862 | Swanson et al. | Feb 2001 | B1 |
6193676 | Winston et al. | Feb 2001 | B1 |
6196963 | Williams | Mar 2001 | B1 |
6206898 | Honeycutt et al. | Mar 2001 | B1 |
6217527 | Selmon et al. | Apr 2001 | B1 |
6217549 | Selmon et al. | Apr 2001 | B1 |
6217595 | Shturman et al. | Apr 2001 | B1 |
6221049 | Selmon et al. | Apr 2001 | B1 |
6221332 | Thumm et al. | Apr 2001 | B1 |
6228049 | Schroeder et al. | May 2001 | B1 |
6228076 | Winston et al. | May 2001 | B1 |
6231546 | Milo et al. | May 2001 | B1 |
6231549 | Noecker et al. | May 2001 | B1 |
6235000 | Milo et al. | May 2001 | B1 |
6238405 | Findlay, III et al. | May 2001 | B1 |
6241667 | Vetter et al. | Jun 2001 | B1 |
6241744 | Imran et al. | Jun 2001 | B1 |
6245012 | Kleshinski | Jun 2001 | B1 |
6258052 | Milo | Jul 2001 | B1 |
6263236 | Kasinkas et al. | Jul 2001 | B1 |
6264611 | Ishikawa et al. | Jul 2001 | B1 |
6266550 | Selmon et al. | Jul 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6283983 | Makower et al. | Sep 2001 | B1 |
6299622 | Snow et al. | Oct 2001 | B1 |
6299623 | Wulfman | Oct 2001 | B1 |
6302875 | Makower et al. | Oct 2001 | B1 |
6305834 | Schubert et al. | Oct 2001 | B1 |
6312444 | Barbut | Nov 2001 | B1 |
6319242 | Patterson et al. | Nov 2001 | B1 |
6319275 | Lashinski et al. | Nov 2001 | B1 |
6330884 | Kim | Dec 2001 | B1 |
6355005 | Powell et al. | Mar 2002 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6383195 | Richard | May 2002 | B1 |
6383205 | Samson et al. | May 2002 | B1 |
6394976 | Winston et al. | May 2002 | B1 |
6398798 | Selmon et al. | Jun 2002 | B2 |
6422736 | Antonaides et al. | Jul 2002 | B1 |
6423081 | Lee et al. | Jul 2002 | B1 |
6425870 | Flesch | Jul 2002 | B1 |
6428551 | Hall et al. | Aug 2002 | B1 |
6428552 | Sparks | Aug 2002 | B1 |
6443966 | Shiu | Sep 2002 | B1 |
6445939 | Swanson et al. | Sep 2002 | B1 |
6447525 | Follmer et al. | Sep 2002 | B2 |
6451036 | Heitzmann et al. | Sep 2002 | B1 |
6454779 | Taylor | Sep 2002 | B1 |
6475226 | Belef et al. | Nov 2002 | B1 |
6482217 | Pintor et al. | Nov 2002 | B1 |
6497711 | Plaia et al. | Dec 2002 | B1 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6520975 | Branco | Feb 2003 | B2 |
RE38018 | Anctil et al. | Mar 2003 | E |
6532380 | Close et al. | Mar 2003 | B1 |
6533749 | Mitusina et al. | Mar 2003 | B1 |
6561998 | Roth et al. | May 2003 | B1 |
6565588 | Clement et al. | May 2003 | B1 |
6569177 | Dillard et al. | May 2003 | B1 |
6592526 | Lenker | Jul 2003 | B1 |
6620180 | Bays et al. | Sep 2003 | B1 |
6623437 | Hinchliffe et al. | Sep 2003 | B2 |
6623495 | Findlay, III et al. | Sep 2003 | B2 |
6623496 | Snow et al. | Sep 2003 | B2 |
6629953 | Boyd | Oct 2003 | B1 |
6638233 | Corvi et al. | Oct 2003 | B2 |
RE38335 | Aust et al. | Nov 2003 | E |
6652505 | Tsugita | Nov 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6656195 | Peters et al. | Dec 2003 | B2 |
6666874 | Heitzmann et al. | Dec 2003 | B2 |
6682543 | Barbut et al. | Jan 2004 | B2 |
6733511 | Hall et al. | May 2004 | B2 |
6740103 | Hall et al. | May 2004 | B2 |
6746462 | Selmon et al. | Jun 2004 | B1 |
6764495 | Lee et al. | Jul 2004 | B2 |
6790204 | Zadno-Azizi et al. | Sep 2004 | B2 |
6790215 | Findlay, III et al. | Sep 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6830577 | Nash et al. | Dec 2004 | B2 |
6843797 | Nash et al. | Jan 2005 | B2 |
6849068 | Bagaoisan et al. | Feb 2005 | B1 |
6863676 | Lee et al. | Mar 2005 | B2 |
6911026 | Hall et al. | Jun 2005 | B1 |
6970732 | Winston et al. | Nov 2005 | B2 |
6997934 | Snow et al. | Feb 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
7172610 | Heitzmann et al. | Feb 2007 | B2 |
7208511 | Williams et al. | Apr 2007 | B2 |
7235088 | Pintor et al. | Jun 2007 | B2 |
7318831 | Alvarez et al. | Jan 2008 | B2 |
7388495 | Fallin et al. | Jun 2008 | B2 |
7479148 | Beaupre | Jan 2009 | B2 |
7488322 | Brunnett et al. | Feb 2009 | B2 |
7524289 | Lenker | Apr 2009 | B2 |
7603166 | Casscells, III et al. | Oct 2009 | B2 |
7708749 | Simpson et al. | May 2010 | B2 |
7713235 | Torrance et al. | May 2010 | B2 |
7713279 | Simpson et al. | May 2010 | B2 |
7729745 | Maschke | Jun 2010 | B2 |
7734332 | Sher | Jun 2010 | B2 |
7753852 | Maschke | Jul 2010 | B2 |
7758599 | Snow et al. | Jul 2010 | B2 |
7771444 | Patel et al. | Aug 2010 | B2 |
7887556 | Simpson et al. | Feb 2011 | B2 |
8192452 | Moberg | Jun 2012 | B2 |
8574249 | Moberg | Nov 2013 | B2 |
20010000041 | Selmon et al. | Mar 2001 | A1 |
20010031784 | Petersen et al. | Oct 2001 | A1 |
20010031981 | Evans et al. | Oct 2001 | A1 |
20010044622 | Vardi et al. | Nov 2001 | A1 |
20010049500 | VanTassel et al. | Dec 2001 | A1 |
20020019644 | Hastings et al. | Feb 2002 | A1 |
20020022788 | Corvi et al. | Feb 2002 | A1 |
20020058904 | Boock et al. | May 2002 | A1 |
20020077373 | Hudson | Jun 2002 | A1 |
20020077642 | Patel et al. | Jun 2002 | A1 |
20020095141 | Belef et al. | Jul 2002 | A1 |
20020103459 | Sparks et al. | Aug 2002 | A1 |
20020177800 | Bagaoisan et al. | Nov 2002 | A1 |
20020188307 | Pintor et al. | Dec 2002 | A1 |
20030018346 | Follmer et al. | Jan 2003 | A1 |
20030023263 | Krolik et al. | Jan 2003 | A1 |
20030093098 | Heitzmann et al. | May 2003 | A1 |
20030120295 | Simpson et al. | Jun 2003 | A1 |
20030125757 | Patel et al. | Jul 2003 | A1 |
20030125758 | Simpson et al. | Jul 2003 | A1 |
20030163126 | West, Jr. | Aug 2003 | A1 |
20030199747 | Michlitsch et al. | Oct 2003 | A1 |
20030206484 | Childers et al. | Nov 2003 | A1 |
20030229369 | Findlay, III et al. | Dec 2003 | A1 |
20040006358 | Wulfman et al. | Jan 2004 | A1 |
20040049225 | Denison | Mar 2004 | A1 |
20040167553 | Simpson et al. | Aug 2004 | A1 |
20040167554 | Simpson et al. | Aug 2004 | A1 |
20040193034 | Wasicek et al. | Sep 2004 | A1 |
20040210245 | Erickson et al. | Oct 2004 | A1 |
20050004585 | Hall et al. | Jan 2005 | A1 |
20050004594 | Nool et al. | Jan 2005 | A1 |
20050021063 | Hall et al. | Jan 2005 | A1 |
20050042239 | Lipiecki et al. | Feb 2005 | A1 |
20050090845 | Boyd | Apr 2005 | A1 |
20050090849 | Adams | Apr 2005 | A1 |
20050177068 | Simpson | Aug 2005 | A1 |
20050216018 | Sennett | Sep 2005 | A1 |
20050222596 | Maschke | Oct 2005 | A1 |
20050222663 | Simpson et al. | Oct 2005 | A1 |
20060015126 | Sher | Jan 2006 | A1 |
20060235334 | Corvi et al. | Oct 2006 | A1 |
20060259052 | Pintor et al. | Nov 2006 | A1 |
20070010840 | Rosenthal et al. | Jan 2007 | A1 |
20070038061 | Huennekens et al. | Feb 2007 | A1 |
20070049958 | Adams | Mar 2007 | A1 |
20070135712 | Maschke | Jun 2007 | A1 |
20070135886 | Maschke | Jun 2007 | A1 |
20070167824 | Lee et al. | Jul 2007 | A1 |
20070225739 | Pintor et al. | Sep 2007 | A1 |
20070265647 | Bonnette et al. | Nov 2007 | A1 |
20070276419 | Rosenthal | Nov 2007 | A1 |
20080001643 | Lee | Jan 2008 | A1 |
20080004644 | To et al. | Jan 2008 | A1 |
20080004645 | To et al. | Jan 2008 | A1 |
20080004646 | To et al. | Jan 2008 | A1 |
20080004647 | To et al. | Jan 2008 | A1 |
20080045986 | To et al. | Feb 2008 | A1 |
20080051812 | Schmitz et al. | Feb 2008 | A1 |
20080065124 | Olson | Mar 2008 | A1 |
20080065125 | Olson | Mar 2008 | A1 |
20080097403 | Donaldson et al. | Apr 2008 | A1 |
20080125799 | Adams | May 2008 | A1 |
20080161840 | Osiroff et al. | Jul 2008 | A1 |
20080177139 | Courtney et al. | Jul 2008 | A1 |
20080208227 | Kadykowski et al. | Aug 2008 | A1 |
20080249553 | Gruber et al. | Oct 2008 | A1 |
20080312673 | Viswanathan et al. | Dec 2008 | A1 |
20090012548 | Thatcher et al. | Jan 2009 | A1 |
20090018565 | To et al. | Jan 2009 | A1 |
20090018566 | Escudero et al. | Jan 2009 | A1 |
20090138031 | Tsukernik et al. | May 2009 | A1 |
20090187203 | Corvi et al. | Jul 2009 | A1 |
20090216125 | Lenker | Aug 2009 | A1 |
20090216180 | Lee et al. | Aug 2009 | A1 |
20090226063 | Rangwala et al. | Sep 2009 | A1 |
20090234378 | Escudero et al. | Sep 2009 | A1 |
20090270888 | Patel et al. | Oct 2009 | A1 |
20090275966 | Mitusina | Nov 2009 | A1 |
20090299394 | Simpson et al. | Dec 2009 | A1 |
20090306689 | Welty et al. | Dec 2009 | A1 |
20100030216 | Arcenio | Feb 2010 | A1 |
20100049225 | To et al. | Feb 2010 | A1 |
20100130996 | Doud et al. | May 2010 | A1 |
20100198240 | Simpson et al. | Aug 2010 | A1 |
20100241147 | Maschke | Sep 2010 | A1 |
20100280534 | Sher | Nov 2010 | A1 |
20100292721 | Moberg | Nov 2010 | A1 |
20100298850 | Snow et al. | Nov 2010 | A1 |
20100312263 | Moberg et al. | Dec 2010 | A1 |
20110004107 | Rosenthal et al. | Jan 2011 | A1 |
20110022069 | Mitusina | Jan 2011 | A1 |
20110040315 | To et al. | Feb 2011 | A1 |
20110130777 | Zhang et al. | Jun 2011 | A1 |
20110144673 | Zhang et al. | Jun 2011 | A1 |
20110152841 | Nemoto | Jun 2011 | A1 |
20140222044 | Ladd et al. | Aug 2014 | A1 |
20150057690 | Simpson et al. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
2000621 | Apr 1990 | CA |
3732236 | Dec 1988 | DE |
8900059 | May 1989 | DE |
93 03 531 | Jul 1994 | DE |
44 44 166 | Jun 1996 | DE |
29722136 | May 1999 | DE |
0086048 | Aug 1983 | EP |
0 107 009 | May 1984 | EP |
0 229 620 | Jul 1987 | EP |
0291170 | Nov 1988 | EP |
0 302 701 | Feb 1989 | EP |
0330843 | Sep 1989 | EP |
0373927 | Jun 1990 | EP |
0421457 | Apr 1991 | EP |
0 431 752 | Jun 1991 | EP |
0448859 | Oct 1991 | EP |
0463798 | Jan 1992 | EP |
0 490 565 | Jun 1992 | EP |
0514810 | Nov 1992 | EP |
0 526 042 | Feb 1993 | EP |
0533320 | Mar 1993 | EP |
0 608 911 | Aug 1994 | EP |
0 608 912 | Aug 1994 | EP |
0 611 522 | Aug 1994 | EP |
0 648 414 | Apr 1995 | EP |
0657140 | Jun 1995 | EP |
0 680 695 | Nov 1998 | EP |
0 983 749 | Mar 2000 | EP |
1 767 159 | Mar 2007 | EP |
1 875 871 | Jan 2008 | EP |
2093353 | Sep 1982 | GB |
2 115 829 | Sep 1983 | GB |
2210965 | Jun 1989 | GB |
2-206452 A | Aug 1990 | JP |
2271847 | Nov 1990 | JP |
3186256 | Aug 1991 | JP |
4200459 | Jul 1992 | JP |
5042162 | Feb 1993 | JP |
5056984 | Mar 1993 | JP |
5184679 | Jul 1993 | JP |
6269460 | Sep 1994 | JP |
7075611 | Aug 1995 | JP |
442795 | Sep 1974 | SU |
665908 | Jun 1979 | SU |
WO 8906517 | Jul 1989 | WO |
WO 9207500 | May 1992 | WO |
WO 9313716 | Jul 1993 | WO |
WO 9313717 | Jul 1993 | WO |
WO 9521576 | Aug 1995 | WO |
WO 9611648 | Apr 1996 | WO |
WO 9746164 | Dec 1997 | WO |
WO 9804199 | Feb 1998 | WO |
WO 9824372 | Jun 1998 | WO |
WO 9939648 | Aug 1999 | WO |
WO 9952454 | Oct 1999 | WO |
WO 0030531 | Jun 2000 | WO |
WO 0054735 | Sep 2000 | WO |
WO 0062913 | Oct 2000 | WO |
WO 0063800 | Nov 2000 | WO |
WO 0072955 | Dec 2000 | WO |
WO 0115609 | Mar 2001 | WO |
WO 0119444 | Mar 2001 | WO |
WO 0130433 | May 2001 | WO |
WO 0143857 | Jun 2001 | WO |
WO 0143809 | Jun 2001 | WO |
WO 0216017 | Feb 2002 | WO |
WO 0245598 | Jun 2002 | WO |
Entry |
---|
Amplatz Coronary Catheters, posted: Feb. 25, 2009, [online], [retrieved on Mar. 29, 2011], retrieved from the Cardiophile MD using Internet website <URL:http://cardiophile.org/2009/02/amplatzcoronary-catheter.html> (3 pages). |
Judkins Left Coronary Catheter, posted: Feb. 19, 2009, [online], [retrieved on Mar. 29, 2011], retrieved from the Cardiophile MD using Internet website <URL:http://cardiophile.org/2009/02/judkins-left-coronary-catheter.html> (3 pages). |
International Search Report and Written Opinion for PCT Application No. PCT/US2016/043103, dated Oct. 12, 2016, 16 pages. |
Brezinski et al., “Optical Coherence Tomography for Optical Biopsy,” Circulation, 93:1206-1213 (1996). |
Brezinski et al., “Assessing Atherosclerotic Plaque Morphology: Comparison of Optical Coherence Tomography and High Frequency Intravascular Ultrasound,” Heart, 77:397-403 (1997). |
Huang et al., “Optical Coherence Tomography,” Science, 254:1178-1181 (1991). |
Number | Date | Country | |
---|---|---|---|
20170020539 A1 | Jan 2017 | US |