Tissue-removing catheter with guidewire isolation liner

Information

  • Patent Grant
  • 10987126
  • Patent Number
    10,987,126
  • Date Filed
    Thursday, May 3, 2018
    6 years ago
  • Date Issued
    Tuesday, April 27, 2021
    3 years ago
Abstract
A tissue-removing catheter for removing tissue in a body lumen includes an elongate body and a handle mounted to a proximal end portion of the elongate body. The handle is operable to cause rotation of the elongate body. A tissue-removing element is mounted on a distal end portion of the elongate body. The tissue-removing element is configured to remove the tissue as the tissue-removing element is rotated by the elongate body within the body lumen. An inner liner is received within the elongate body and is coupled to the handle at a proximal end portion of the inner liner. The inner liner defines a guidewire lumen. The inner liner is coupled to the tissue-removing element at a distal end portion of the inner liner such that translational movement of the inner liner in the body lumen causes a corresponding translational movement of the tissue-removing element.
Description
FIELD

The present disclosure generally relates to a tissue-removing catheter, and more particular, to an isolation liner and tissue-removing element for a tissue-removing catheter.


BACKGROUND

Tissue-removing catheters are used to remove unwanted tissue in body lumens. As an example, atherectomy catheters are used to remove material from a blood vessel to open the blood vessel and improve blood flow through the vessel. This process can be used to prepare lesions within a patient's coronary artery to facilitate percutaneous coronary angioplasty (PTCA) or stent delivery in patients with severely calcified coronary artery lesions. Atherectomy catheters typically employ a rotating element which is used to abrade or otherwise break up the unwanted tissue.


SUMMARY

In one aspect, a tissue-removing catheter for removing tissue in a body lumen generally comprises an elongate body having an axis and proximal and distal end portions spaced apart from one another along the axis. The elongate body is sized and shaped to be received in the body lumen. A handle is mounted to the proximal end portion of the elongate body and is operable to cause rotation of the elongate body. A tissue-removing element is mounted on the distal end portion of the elongate body. The tissue-removing element is configured to remove the tissue as the tissue-removing element is rotated by the elongate body within the body lumen. An inner liner is received within the elongate body and is coupled to the handle at a proximal end portion of the inner liner. The inner liner defines a guidewire lumen. The inner liner is coupled to the tissue-removing element at a distal end portion of the inner liner such that translational movement of the inner liner in the body lumen causes a corresponding translational movement of the tissue-removing element.


In another aspect, a tissue-removing catheter for removing tissue in a body lumen generally comprises an elongate body having an axis, and proximal and distal end portions spaced apart from one another along the axis, wherein the elongate body is sized and shaped to be received in the body lumen. A tissue-removing element is mounted on the distal end portion of the elongate body. The tissue-removing element is configured to remove the tissue as the tissue-removing element is rotated by the elongate body within the body lumen. An inner liner is received within the elongate body. The inner liner defines a guidewire lumen. The inner liner is coupled to the tissue-removing element at a distal end portion of the inner liner such that translational movement of the inner liner in the body lumen causes a corresponding translational movement of the tissue-removing element.


In still another aspect, a method of removing tissue in a body lumen generally comprises advancing an elongate body and a tissue removing element mounted on a distal end portion of the elongate body through the body lumen to position the tissue-removing element adjacent the tissue and a proximal end portion of the elongate body outside of the body lumen. Advancing an inner liner disposed within the elongate body through the body lumen to position a distal end portion of the inner liner adjacent the tissue and a proximal end portion of the inner liner outside of the body lumen. The inner liner defines a guidewire lumen. Coupling the inner liner to the tissue-removing element at a distal end portion of the inner liner such that translational movement of the inner liner in the body lumen causes a corresponding translational movement of the tissue-removing element.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an elevation of a catheter of the present disclosure;



FIG. 2 is an enlarged elevation of a distal end portion of the catheter;



FIG. 3 is an enlarged elevation of a proximal end portion of the catheter;



FIG. 4 is an enlarged fragmentary longitudinal cross section of the distal end portion of the catheter in FIG. 2;



FIG. 5 is a cross section taken through line 5-5 in FIG. 2;



FIG. 6 is a fragmentary elevation of an isolation liner of the catheter with portions broken away to show internal details;



FIG. 7 is an enlarged longitudinal cross section of a tissue-removing element of the catheter;



FIG. 8 is a perspective of a bushing of the catheter;



FIG. 9 is a perspective of a first bearing of the catheter; and



FIG. 10 is a perspective of a second bearing of the catheter.





Corresponding reference characters indicate corresponding parts throughout the drawings.


DETAILED DESCRIPTION

Referring to the drawings, and in particular FIG. 1, a rotational tissue-removing catheter for removing tissue in a body lumen is generally indicated at reference number 10. The illustrated catheter 10 is a rotational atherectomy device suitable for removing (e.g., abrading, cutting, excising, ablating, etc.) occlusive tissue (e.g., embolic tissue, plaque tissue, atheroma, thrombolytic tissue, stenotic tissue, hyperplastic tissue, neoplastic tissue, etc.) from a vessel wall (e.g., coronary arterial wall, etc.). The catheter 10 may be used to facilitate percutaneous coronary angioplasty (PTCA) or the subsequent delivery of a stent. Features of the disclosed embodiments may also be suitable for treating chronic total occlusion (CTO) of blood vessels, and stenoses of other body lumens and other hyperplastic and neoplastic conditions in other body lumens, such as the ureter, the biliary duct, respiratory passages, the pancreatic duct, the lymphatic duct, and the like. Neoplastic cell growth will often occur as a result of a tumor surrounding and intruding into a body lumen. Removal of such material can thus be beneficial to maintain patency of the body lumen.


The catheter 10 is sized for being received in a blood vessel of a subject. Thus, the catheter 10 may have a maximum size of 3, 4, 5, 6, 7, 8, 9, 10, or 12 French (1, 1.3, 1.7, 2, 2.3, 2.7, 3, 3.3, or 4 mm) and may have a working length of 20, 30, 40, 60, 80, 100, 120, 150, 180 or 210 cm depending of the body lumen. While the remaining discussion is directed toward a catheter for removing tissue in blood vessels, it will be appreciated that the teachings of the present disclosure also apply to other types of tissue-removing catheters, including, but not limited to, catheters for penetrating and/or removing tissue from a variety of occlusive, stenotic, or hyperplastic material in a variety of body lumens.


Referring to FIGS. 1 and 2, the catheter 10 comprises an elongate outer layer 12 disposed around an elongate inner liner 14. The outer layer 12 and inner liner 14 extend along a longitudinal axis LA of the catheter from a proximal end portion 16 to a distal end portion 18 of the catheter. A tissue-removing element 20 is disposed on a distal end of the outer layer 12 and is configured for rotation to remove tissue from a body lumen as will be explained in greater detail below. A sheath 22 is disposed around the outer layer 12. The outer layer 12 and the inner liner 14 are both configured to translate relative to the sheath 22. The catheter 10 is sized and shaped for insertion into a body lumen of a subject. The sheath 22 isolates the body lumen from at least a portion of the outer layer 12 and inner liner 14. The inner liner 14 defines a guidewire lumen 24 (FIG. 5) for slidably receiving a guidewire 26 therein so that the catheter 10 can be advanced through the body lumen by traveling along the guidewire. The guidewire can be a standard 0.014 inch outer diameter, 300 cm length guidewire. In certain embodiments, the inner liner 14 may have a lubricious inner surface for sliding over the guidewire 26 (e.g., a lubricious surface may be provided by a lubricious polymer layer or a lubricious coating). In the illustrated embodiment, the guidewire lumen 24 extends from the proximal end portion 16 through the distal end portion 18 of the catheter 10 such that the guidewire 26 is extendable along an entire working length of the catheter 10. In one embodiment, the overall working length of the catheter 10 may be between about 135 cm (53 inches) and about 142 cm (56 inches).


The catheter 10 further comprises a handle 40 secured at the proximal end portion 16 of the catheter. The handle 40 supports an actuator 42 (e.g., a lever, a button, a dial, a switch, or other device) configured for selectively actuating a motor 43 disposed in the handle to drive rotation of the outer layer 12, and tissue-removing element 20 mounted at the distal end of the outer layer. The motor 43 is coupled to the outer layer 12 by a gear assembly 44 and a drive 48 supported by the handle 40. A slide or advancer 45 is positioned on the handle 40 and operatively coupled to the outer layer 12 for movement of the outer layer relative to the handle to advance and retract the outer layer and tissue-removing element 20. The handle 40 defines a slot (not shown) which limits the movement of the slide 45 relative to the handle. Thus, the length of the slot determines the amount of relative movement between the outer layer 12 and the handle 40. A perfusion port 46 may be disposed at the proximal end 16 of the catheter 10. The port 46 communicates with a space between the sheath 22 and the outer layer 12 for delivering fluid (e.g., saline) to cool the rotating outer layer during use. A proximal port 47 allows for passage of the guidewire 26 and inner liner 14 through the proximal end of the handle 40. A guidewire lock (not shown) may be provided on the handle 40 to lock the guidewire 26 in place relative to the handle.


It is understood that other suitable actuators, including but not limited to touchscreen actuators, wireless control actuators, automated actuators directed by a controller, etc., may be suitable to selectively actuate the motor in other embodiments. In some embodiments, a power supply may come from a battery (not shown) contained within the handle 40. In other embodiments, the power supply may come from an external source.


Referring to FIGS. 1 and 3, the outer sheath 22 comprises a tubular sleeve configured to isolate and protect a subject's arterial tissue within a body lumen from the rotating outer layer 12. The sheath 22 is fixed to the handle 40 at a proximal end of the sheath and does not rotate. A hub 52 mounted on the proximal end of the sheath 22 attaches the sheath to the handle 40. The hub 52 includes a locking feature 54 (e.g., threaded luer lock) for engaging the handle 40 to attach the sheath 22 to the handle. The sheath 22 provides a partial enclosure for the outer layer 12 and inner liner 14 to move within the sheath. The inner diameter of the sheath 22 is sized to provide clearance for the outer layer 12. The space between the sheath 22 and the outer layer 12 allows for the outer layer to rotate within the sheath and provides an area for saline perfusion between the sheath and outer layer. The outer diameter of the sheath 22 is sized to provide clearance with an inner diameter of a guide catheter (not shown) for delivering the catheter 10 to the desired location in the body lumen. A strain relief 56 is provided at the proximal end of the sheath 22 to alleviate tension applied to the proximal end of the sheath 22 as the sheath is bent during use of the catheter 10. In one embodiment, the sheath 22 has an inner diameter of about 0.050 inches (1.27 mm), an outer diameter of about 0.055 inches (1.4 mm), and a length of about 1500 mm (59 inches). The sheath 22 can have other dimensions without departing from the scope of the disclosure. In one embodiment, the outer sheath 22 is made from Polytetrafluorethylene (PTFE). Alternatively, the outer sheath 22 may comprise a multi-layer construction. For example, the outer sheath 22 may comprises an inner layer of perfluoroalkox (PFA), a middle braided wire layer, and an outer layer of Pebax.


Referring to FIGS. 1, 2, 4, and 5, the outer layer 12 may comprise a tubular stainless steel coil configured to transfer rotation and torque from the motor 43 to the tissue-removing element 20. Configuring the outer layer 12 as a coiled structure provides the outer layer with a flexibility that facilitates delivery of the catheter 10 through the body lumen. Also, the coil configuration allows for the rotation and torque of the outer layer 12 to be applied to the tissue-removing element 20 when the catheter 10 is traversed across a curved path. The stiffness of the outer layer 12 also impacts the ease at which the coil is traversed through the body lumen as well as the coil's ability to effectively transfer torque to the tissue-removing element 20. In one embodiment, the outer layer 12 is relatively stiff such that axial compression and extension of the coil is minimized during movement of the catheter 10 through a body lumen. The coil configuration of the outer layer 12 is also configured to expand its inner diameter when the coil is rotated so that the outer layer remains spaced from the inner liner 14 during operation of the catheter 10. In one embodiment, the outer layer 12 has an inner diameter of about 0.023 inches (0.6 mm) and an outer diameter of about 0.035 inches (0.9 mm). The outer layer 12 may have a single layer construction. For example, the outer layer may comprise a 7 filar (i.e., wire) coil with a lay angle of about 30 degrees. Alternatively, the outer layer 12 could be configured from multiple layers without departing from the scope of the disclosure. For example, the outer layer 12 may comprise a base coil layer and a jacket (e.g., Tecothane™) disposed over the base layer. In one embodiment, the outer layer comprises a 15 filar coil with a lay angle of about 45 degrees. The Tecothane™ jacket may be disposed over the coil. Alternatively, the outer layer 12 may comprise a dual coil layer configuration which also includes an additional jacket layer over the two coil layers. For example, the outer layer may comprise an inner coil layer comprising a 15 filar coil with a lay angle of about 45 degrees, and an outer coil layer comprising a 19 filar coil with a lay angle of about 10 degrees. Outer layers having other configurations are also envisioned.


Referring to FIGS. 1, 2, and 4-6, the inner liner 14 comprises a multiple layer tubular body configured to isolate a least a portion of the guidewire 26 from the outer layer 12 and tissue-removing element 20. The inner liner 14 is extendable through the handle 40 from a position proximal of the handle to a position distal of the handle. In one embodiment, the inner liner 14 is coupled to the handle 40 but is not fixedly attached to the handle 40 to allow translation of the inner liner relative to the handle. In this embodiment, rotation of the inner liner 14 is not prohibited. However, the clearance between the inner liner 14 and the outer layer 12, and the attachment of the inner liner to a coupling assembly 57 in the tissue-removing element 20 prevents any rotation of the inner liner caused by the rotation of the outer layer and tissue-removing element. In this embodiment, both the inner liner 14 and outer layer 12 are permitted to translate relative to the handle 40.


The inner liner 14 has an inner diameter that is sized to pass the guidewire 26. The inner liner 14 protects the guide wire from being damaged by the rotation of the outer layer 12 by isolating the guidewire from the rotatable outer layer. The inner liner 14 also extends past the tissue-removing element 20 to protect the guidewire 26 from the rotating tissue-removing element. Thus, the inner liner 14 is configured to prevent any contact between the guidewire 26 and the rotating components of the catheter 10. Therefore, any metal-to-metal engagement is eliminated by the inner liner 14. This isolation of the outer layer 12 and tissue-removing element 20 from the guidewire 26 also ensures that the rotation of the outer layer and tissue-removing element is not transferred or transmitted to the guidewire. As a result, a standard guidewire 26 can be used with the catheter 10 because the guidewire does not have to be configured to withstand the torsional effects of the rotating components. Additionally, by extending through the tissue-removing element 20 and past the distal end of the tissue-removing element, the inner liner 14 stabilizes the tissue-removing element by providing a centering axis for rotation of the tissue-removing element about the inner liner.


In the illustrated embodiment, the inner liner 14 comprises an inner PTFE layer 60, an intermediate braided layer 62 comprised of stainless steel, and an outer layer 64 of polyimide. The PTFE inner layer 60 provides the inner liner 14 with a lubricous interior which aids in the passing of the guidewire 26 though the inner liner. The braided stainless steel intermediate layer 62 provides rigidity and strength to the inner liner 14 so that the liner can withstand the torsional forces exerted on the inner liner by the outer layer 12. In one embodiment, the intermediate layer 62 is formed from 304 stainless steel. The outer polyimide layer 64 provides wear resistance as well as having a lubricous quality which reduces friction between the inner liner 14 and the outer layer 12. In one embodiment, the inner liner 14 has an inner diameter ID of about 0.016 inches (0.4 mm), an outer diameter OD of about 0.019 inches (0.5 mm), and a length of about 59 inches (1500 mm). The inner diameter ID of the inner liner 14 provides clearance for the standard 0.014 inch guidewire 26. The outer diameter OD of the inner liner 14 provides clearance for the outer layer 12 and tissue-removing element 20. Having a space between the inner liner 14 and the outer layer 12 reduces friction between the two components as well as allows for saline perfusion between the components.


Referring to FIGS. 1, 2, 5, and 7, the tissue-removing element 20 extends along the longitudinal axis LA from a proximal end adjacent the distal end portion of the outer layer 12 to an opposite distal end. The tissue-removing element 20 is operatively connected to the motor 43 for being rotated by the motor. When the catheter 10 is inserted into the body lumen and the motor 43 is rotating the tissue-removing element 20, the tissue-removing element is configured to remove occlusive tissue in the body lumen to separate the tissue from the wall of the body lumen. Any suitable tissue-removing element for removing tissue in the body lumen as it is rotated may be used in one or more embodiments. In the illustrated embodiment, the tissue-removing element 20 comprises an abrasive burr configured to abrade tissue in the body lumen when the motor 43 rotates the abrasive burr. The abrasive burr 20 has an abrasive outer surface formed, for example, by a diamond grit coating, surface etching, or the like. In other embodiments, the tissue-removing element can comprise one or more cutting elements having smooth or serrated cutting edges, a macerator, a thrombectomy wire, etc.


Referring to FIG. 7, a cavity 72 extends longitudinally through the tissue-removing element 20 such that the tissue-removing element defines openings at its proximal and distal ends. The cavity 72 includes a first diameter portion 74 extending distally from the proximal end of the tissue-removing element 20 and a second diameter portion 78 extending distally from the first diameter portion forming a first shoulder 80 disposed between the first and second diameter portions. A third diameter portion 82 extends distally from the second diameter portion 78 and forms a second shoulder 84 between the second and third diameter portions. A fourth diameter portion 86 extends distally from the third diameter portion to the distal end of the tissue-removing element and forms a third shoulder 88 between the third and fourth diameter portions. The diameters of the first, second, third, and fourth diameter portions 74, 78, 82, 86 are constant along their lengths. In the illustrated embodiment, a diameter D1 of the first diameter portion 74 is larger than a diameter D2 of the second diameter portion 78, the diameter D2 is larger than a diameter D3 of the third diameter portion 82, and the diameter D3 is larger than a diameter D4 of the fourth diameter portion 86. In one embodiment, the diameter D1 of the first diameter portion 74 is about 0.037 inches (0.95 mm), the diameter D2 of the second diameter portion 78 is about 0.035 inches (0.9 mm), the diameter D3 of the third diameter portion 82 is about 0.033 inches (0.85 mm), and the diameter D4 of the fourth diameter portion 86 is about 0.031 inches (0.8 mm). Other cross-sectional dimensions are also envisioned without departing from the scope of the disclosure.


Referring to FIGS. 4 and 7-10, a bushing 90 is received in the cavity 72 of the tissue-removing element 20 and around the inner liner 14. The busing 90 comprises a center ring portion 92, a proximal ring portion 94 extending proximally from the center ring portion, and a distal ring portion 96 extending distally from the center ring portion. The ring portions of the bushing 90 define a channel 99 extending through the bushing that receives a portion of the inner liner 14. In the illustrated embodiment, the center ring portion 92 has a larger outer diameter than the proximal and distal ring portions 94, 96. The center ring portion 92 is disposed in the second diameter portion 78 of the cavity 72, the proximal ring portion 94 is disposed in the first diameter portion 74, and the distal ring portion 96 is disposed in the second and third diameter portions 78, 82. In one embodiment, the bushing 90 is made from polyetheretherketone (PEEK) and polytetrafluoroethylene (PTFE). However, the bushing 90 can be formed from other material without departing from the scope of the disclosure.


A first bearing 98 is disposed around the proximal ring portion 94 of the bearing 90, and a second bearing 100 is disposed around the distal ring portion 96 of the bearing. The first bearing 98 has an outer diameter D5 that is greater than an outer diameter D6 of the second bearing 100. In one embodiment, the bearings 98, 100 are made from Zirconia. The first bearing 98 is disposed in registration with the first diameter portion 74 of the cavity 72 in the tissue-removing element 20 and seats between a distal end of the outer layer 12 at a proximal end of the first bearing, and the center ring portion 92 of the bushing 90 and first shoulder 80 at a distal end of the first bearing. The second bearing 100 is disposed in registration with the second diameter portion 78 of the cavity 72 and is seated between the second shoulder 84 at a distal end of the second bearing, and the center ring portion 92 of the bushing 90 at a proximal end of the second bearing. As such the bushing 90 and bearings 98, 100 are held within the cavity 72 of the tissue-removing element 20. Broadly, the bushing 90 and bearings 98, 100 may be considered a coupling assembly 57 for coupling the inner liner 14 to the tissue-removing element 20.


Referring to FIG. 4, an interior surface of the bushing 90 is fixedly attached to the inner liner 14 such that the inner liner is coupled to the tissue-removing element 20 through the bushing. In one embodiment an adhesive such as an epoxy glue bonds the bushing 90 to the inner liner 14. As such, the bushing 90 does not rotate around the inner liner 14. The outer layer 12 is directly and fixedly attached to the tissue-removing element 20. The tissue-removing element 20 can be fixedly attached to the distal end of the outer layer 12 by any suitable means. In one embodiment, adhesive bonds the outer layer 12 to the tissue-removing element 20. The outer layer 12 is received in the first diameter portion 74 of the cavity 72 and a distal end of the outer layer abuts the first bearing 98. However, the outer layer 12 is not directly attached to the bushing 90, bearings 98, 100, or inner liner 12. Thus, rotation of the outer layer 12 and tissue-removing element 20 is not transmitted to the inner liner 14 to also rotate the inner liner. Rather the tissue-removing element 20 rotates around the bushing 90 and bearings 98, 100. And because the inner liner is fixedly attached to the bushing 90, which is retained within the cavity 72 of the tissue-removing element 20 by the outer layer 12, the inner liner 14 is coupled to the outer layer through the bushing and bearing arrangement. Therefore, translational movement of the outer layer 12 is transmitted to the inner liner 14 such that the inner liner and outer layer will translate together when one of the inner layer and outer layer is advanced or retracted within the body lumen. This configuration prevents the outer layer 12 and tissue-removing element 20 from advancing past a distal end of the inner liner 14 and contacting the guidewire 26. As a result, a configuration where the inner liner 14 is not positioned to isolate the guidewire 26 from the outer layer 12 and tissue-removing element 20 is prevented.


The inner liner 14 extends through the outer layer 12 and past the distal end of the tissue-removing element 20. The fourth diameter portion 86 of the cavity 72 is sized to pass the inner liner 14 with a small clearance. The inner diameter D4 provides clearance between the tissue-removing element 20 and the inner liner 14 to reduce friction between the components. Accordingly, the tissue-removing element 20 is shaped and arranged to extend around at least a portion of the outer layer 12 and inner liner 14 and thus provides a relatively compact assembly for abrading tissue at the distal end portion of the catheter 10.


Referring to FIG. 7, an exterior surface of the body of the tissue-removing element 20 includes a proximal segment 102, a middle segment 104, and a distal segment 106. A diameter of the proximal segment 102 increases from the proximal end of the tissue-removing element 20 to the middle segment 104. The middle segment has a constant diameter and extends from the proximal segment 102 to the distal segment 106. The diameter of the distal segment 106 tapers from the middle segment 104 to the distal end of the tissue-removing element 20. A transition between the proximal segment 102 and the middle segment 104 forms a first angle α between the proximal and middle segments. In one embodiment, the angle α is less than about 170 degrees. In one embodiment, the angle α is about 165 degrees. Similarly, a transition between the middle segment 104 and the distal segment 106 forms a second angle β between the middle and distal segments. In one embodiment, the angle β is less than about 170 degrees. In one embodiment, the angle β is about 165 degrees. The tapered proximal and distal segments 102, 106 provide the tissue-removing element 20 with a general front and back wedge shaped configuration for wedging apart constricted tissue passages as it simultaneously opens the passage by removing tissue using the abrasive action of the tissue-removing element.


Referring to FIGS. 1 and 2, to remove tissue in the body lumen of a subject, a practitioner inserts the guidewire 26 into the body lumen of the subject, to a location distal of the tissue that is to be removed. Subsequently, the practitioner inserts the proximal end portion of the guidewire 26 through the guidewire lumen 24 of the inner liner 14 and through the handle 40 so that the guidewire extends through the proximal port 47 in the handle. The inner liner 14 may also extend through the handle 40 and out the proximal port 47. With the catheter 10 loaded onto the guidewire 26, the practitioner advances the catheter along the guidewire until the tissue-removing element 20 is positioned proximal and adjacent the tissue. When the tissue-removing element 20 is positioned proximal and adjacent the tissue, the practitioner actuates the motor 43 using the actuator 42 to rotate the outer layer 12 and the tissue-removing element mounted on the outer layer. The tissue-removing element 20 abrades (or otherwise removes) the tissue in the body lumen as it rotates. While the tissue-removing element 20 is rotating, the practitioner may selectively move the outer layer 12 and inner liner 14 distally along the guidewire 26 to abrade the tissue and, for example, increase the size of the passage through the body lumen. The practitioner may also move the outer layer 12 and inner liner 14 proximally along the guidewire 26, and may repetitively move the components in distal and proximal directions to obtain a back-and-forth motion of the tissue-removing element 20 across the tissue. During the abrading process, the bushing 90 and bearings 98, 100 couple the inner liner 14 to the outer layer 12 and allow the outer layer and tissue-removing-element to rotate around the inner liner. The inner liner 14 isolates the guidewire 26 from the rotating outer layer 12 and tissue-removing element 20 to protect the guidewire from being damaged by the rotating components. As such, the inner liner 14 is configured to withstand the torsional and frictional effects of the rotating outer layer 12 and tissue-removing element 20 without transferring those effects to the guidewire 26. Also, the coupling of the inner liner 14 and tissue removing element 20 allows for movement of the inner liner, such as translational movement within the body lumen, to be transmitted to the outer layer 12 and tissue-removing element to move outer layer and tissue-removing element through the body lumen with the inner liner


When the practitioner is finished using the catheter 10, the catheter can be withdrawn from the body lumen and unloaded from the guidewire 26 by sliding the catheter proximally along the guidewire. The guidewire 26 used for the abrading process may remain in the body lumen for use in a subsequent procedure.


When introducing elements of the present invention or the one or more embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.


As various changes could be made in the above apparatuses, systems, and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

Claims
  • 1. A tissue-removing catheter for removing tissue in a body lumen, the tissue-removing catheter comprising: an elongate body having an axis, and proximal and distal end portions spaced apart from one another along the axis, wherein the elongate body is sized and shaped to be received in the body lumen;a tissue-removing element mounted on the distal end portion of the elongate body, the tissue-removing element being configured to remove the tissue as the tissue-removing element is rotated by the elongate body within the body lumen;an inner liner received within the elongate body, the inner liner defining a guidewire lumen, the inner liner being coupled to the tissue-removing element at a distal end portion of the inner liner; anda coupling assembly disposed in the tissue-removing element for coupling the inner liner to the tissue-removing element, the coupling assembly comprises a bushing attached to the distal end portion of the inner liner, the bushing including a center ring portion, a proximal ring portion extending proximally from the center ring portion, and a distal ring portion extending distally from the center ring portion, the coupling assembly further comprising a first bearing disposed around the proximal ring portion and a second bearing disposed around the distal ring portion.
  • 2. A tissue-removing catheter as set forth in claim 1, wherein the tissue-removing element is rotatable about at least a portion of the coupling assembly.
  • 3. A tissue-removing catheter as set forth in claim 2, wherein the elongate body retains the coupling assembly in the tissue-removing element.
  • 4. A tissue-removing catheter as set forth in claim 2, wherein the bushing receives a section of the inner liner within a channel of the bushing.
  • 5. A tissue-removing catheter as set forth in claim 4, wherein the center ring portion has an outer cross-sectional dimension that is larger than an outer cross-sectional dimension of the proximal and distal ring portions.
  • 6. A tissue-removing catheter as set forth in claim 1, wherein the first bearing has an outer cross-sectional dimension that is larger than an outer cross-sectional dimension of the second bearing.
  • 7. A tissue-removing catheter as set forth in claim 1, wherein the bushing is made from polyetheretherketone (PEEK) and polytetrafluoroethylene (PTFE) and the bearings are made from Zirconia.
  • 8. A tissue-removing catheter as set forth in claim 1, wherein a distal end of the inner liner extends distally of the tissue-removing element.
  • 9. A tissue-removing catheter as set forth in claim 1, further comprising a handle mounted to the proximal end portion of the elongate body and operable to cause rotation of the elongate body.
  • 10. A tissue-removing catheter as set forth in claim 1, wherein the inner liner extends distally of the bushing.
  • 11. A tissue-removing catheter for removing tissue in a body lumen, the tissue-removing catheter comprising: an elongate body having an axis, and proximal and distal end portions spaced apart from one another along the axis, wherein the elongate body is sized and shaped to be received in the body lumen;a tissue-removing element mounted on the distal end portion of the elongate body, the tissue-removing element being configured to remove the tissue as the tissue-removing element is rotated by the elongate body within the body lumen;an inner liner received within the elongate body, the inner liner defining a guidewire lumen, the inner liner being coupled to the tissue-removing element at a distal end portion of the inner liner such rotational movement of the inner liner is prevented during operation of the catheter to remove the tissue; anda coupling assembly disposed in the tissue-removing element for coupling the inner liner to the tissue-removing element, wherein the coupling assembly comprises a bushing attached to the distal end portion of the inner liner, the bushing including a center ring portion, a proximal ring portion extending proximally from the center ring portion, a distal ring portion extending distally from the center ring portion, and a channel extending through the bushing, the bushing receiving a section of the inner liner within the channel of the bushing, the coupling assembly further comprising a first bearing disposed around the proximal ring portion and a second bearing disposed around the distal ring portion.
  • 12. A tissue-removing catheter as set forth in claim 11, wherein the tissue-removing element is rotatable about at least a portion of the coupling assembly.
  • 13. A tissue-removing catheter as set forth in claim 12, wherein the elongate body retains the coupling assembly in the tissue-removing element.
  • 14. A tissue-removing catheter as set forth in claim 11, wherein the center ring portion has an outer cross-sectional dimension that is larger than an outer cross-sectional dimension of the proximal and distal ring portions.
  • 15. A tissue-removing catheter as set forth in claim 11, wherein the first bearing has an outer cross-sectional dimension that is larger than an outer cross-sectional dimension of the second bearing.
  • 16. A tissue-removing catheter as set forth in claim 11, wherein the bushing is made from polyetheretherketone (PEEK) and polytetrafluoroethylene (PTFE) and the bearings are made from Zirconia.
  • 17. A tissue-removing catheter as set forth in claim 11, wherein a distal end of the inner liner extends distally of the tissue-removing element.
  • 18. A tissue-removing catheter as set forth in claim 11, wherein the inner liner extends distally of the bushing.
  • 19. A tissue-removing catheter as set forth in claim 11, further comprising for removing tissue in a body lumen, the tissue-removing catheter comprising: an elongate body having an axis, and proximal and distal end portions spaced apart from one another along the axis, wherein the elongate body is sized and shaped to be received in the body lumen;a tissue-removing element mounted on the distal end portion of the elongate body, the tissue-removing element being configured to remove the tissue as the tissue-removing element is rotated by the elongate body within the body lumen;an inner liner received within the elongate body, the inner liner defining a guidewire lumen, the inner liner being coupled to the tissue-removing element at a distal end portion of the inner liner such that rotational movement of the inner liner is prevented during operation of the catheter to remove the tissue; anda cavity extending through the tissue-removing element from a proximal end to a distal end of the tissue-removing element, wherein the cavity includes a first section extending distally from the proximal end of the tissue-removing element and a second section extending distally from the first section, the first section having a larger cross-sectional dimension than a cross-sectional dimension of the second section.
  • 20. A tissue-removing catheter as set forth in claim 19, further comprising a bushing disposed in the cavity, the bushing comprising a center ring portion, a proximal ring portion extending proximally from the center ring portion, and a distal ring portion extending distally from the center ring portion, the center ring portion being disposed in the second section of the cavity.
  • 21. A tissue-removing catheter as set forth in claim 20, further comprising a first bearing disposed around the proximal ring portion of the bushing and a second bearing disposed around the distal ring portion of the bushing, the first bearing being disposed in the first section of the cavity and the second bearing being disposed in the second section of the cavity.
  • 22. A tissue-removing catheter as set forth in claim 21, wherein the cavity includes a third section extending distally from the second section, and a fourth section extending distally from the third section to the distal end of the tissue removing element, the third section having a larger cross-sectional dimension than a cross-sectional dimension of the fourth section.
  • 23. A tissue-removing catheter as set forth in claim 22, wherein the proximal ring portion of the bushing is disposed in the first section of the cavity and the distal ring portion of the bushing is disposed in the second and third sections of the cavity.
  • 24. A tissue-removing catheter as set forth in claim 21, wherein the first bearing has an outer cross-sectional dimension that is larger than an outer cross-sectional dimension of the second bearing.
  • 25. A tissue-removing catheter as set forth in claim 21, wherein the bushing is made from polyetheretherketone (PEEK) and polytetrafluoroethylene (PTFE) and the bearings are made from Zirconia.
  • 26. A tissue-removing catheter as set forth in claim 19, wherein a distal end of the inner liner extends distally of the tissue-removing element.
  • 27. A tissue-removing catheter as set forth in claim 20, wherein the bushing receives a section of the inner liner within a channel of the bushing.
  • 28. A tissue-removing catheter as set forth in claim 20, wherein the inner liner extends distally of the bushing.
  • 29. A tissue-removing catheter as set forth in claim 20, wherein the center ring portion has an outer cross-sectional dimension that is larger than an outer cross-sectional dimension of the proximal and distal ring portions.
  • 30. A tissue-removing catheter for removing tissue in a body lumen, the tissue-removing catheter comprising: an elongate body having an axis, and proximal and distal end portions spaced apart from one another along the axis, wherein the elongate body is sized and shaped to be received in the body lumen;a handle mounted to the proximal end portion of the elongate body and operable to cause rotation of the elongate body;a tissue-removing element mounted on the distal end portion of the elongate body, the tissue-removing element being configured to remove the tissue as the tissue-removing element is rotated by the elongate body within the body lumen;an inner liner received within the elongate body and coupled to the handle at a proximal end portion of the inner liner, the inner liner defining a guidewire lumen, the inner liner being coupled to the tissue-removing element at a distal end portion of the inner liner such that translational movement of the inner liner in the body lumen causes a corresponding translational movement of the tissue-removing element; anda coupling assembly disposed in the tissue-removing element for coupling the inner liner to the tissue-removing element, the coupling assembly comprises a bushing attached to the distal end portion of the inner liner, the bushing including a center ring portion, a proximal ring portion extending proximally from the center ring portion, and a distal ring portion extending distally from the center ring portion, the coupling assembly further comprising a first bearing disposed around the proximal ring portion and a second bearing disposed around the distal ring portion.
  • 31. A tissue-removing catheter as set forth in claim 30, wherein the tissue-removing element is rotatable about at least a portion of the coupling assembly.
  • 32. A tissue-removing catheter as set forth in claim 31, wherein the elongate body retains the coupling assembly in the tissue-removing element.
  • 33. A tissue-removing catheter as set forth in claim 31, wherein the bushing receives a section of the inner liner within a channel of the bushing.
  • 34. A tissue-removing catheter as set forth in claim 33, wherein the center ring portion has an outer cross-sectional dimension that is larger than an outer cross-sectional dimension of the proximal and distal ring portions.
  • 35. A tissue-removing catheter as set forth in claim 30, wherein the first bearing has an outer cross-sectional dimension that is larger than an outer cross-sectional dimension of the second bearing.
  • 36. A tissue-removing catheter as set forth in claim 30, wherein the bushing is made from polyetheretherketone (PEEK) and polytetrafluoroethylene (PTFE) and the bearings are made from Zirconia.
  • 37. A tissue-removing catheter as set forth in claim 30, wherein a distal end of the inner liner extends distally of the tissue-removing element.
  • 38. A tissue-removing catheter as set forth in claim 30, wherein the inner liner extends distally of the bushing.
  • 39. A tissue-removing catheter for removing tissue in a body lumen, the tissue-removing catheter comprising: an elongate body having an axis, and proximal and distal end portions spaced apart from one another along the axis, wherein the elongate body is sized and shaped to be received in the body lumen;a tissue-removing element mounted on the distal end portion of the elongate body, the tissue-removing element being configured to remove the tissue as the tissue-removing element is rotated by the elongate body within the body lumen;an inner liner received within the elongate body, the inner liner defining a guidewire lumen, the inner liner being coupled to the tissue-removing element at a distal end portion of the inner liner such that translational movement of the inner liner in the body lumen causes a corresponding translational movement of the tissue-removing element;a coupling assembly disposed in the tissue-removing element for coupling the inner liner to the tissue-removing element, the tissue-removing element being rotatable about at least a portion of the coupling assembly, wherein the coupling assembly comprises a bushing attached to the distal end portion of the inner liner, the bushing including a center ring portion, a proximal ring portion extending proximally from the center ring portion, a distal ring portion extending distally from the center ring portion, and a channel extending through the bushing, the bushing receiving a section of the inner liner within the channel of the bushing, the coupling assembly further comprising a first bearing disposed around the proximal ring portion and a second bearing disposed around the distal ring portion.
  • 40. A tissue-removing catheter as set forth in claim 39, wherein the elongate body retains the coupling assembly in the tissue-removing element.
  • 41. A tissue-removing catheter as set forth in claim 40, wherein the center ring portion has an outer cross-sectional dimension that is larger than an outer cross-sectional dimension of the proximal and distal ring portions.
  • 42. A tissue-removing catheter as set forth in claim 39, wherein the first bearing has an outer cross-sectional dimension that is larger than an outer cross-sectional dimension of the second bearing.
  • 43. A tissue-removing catheter as set forth in claim 39, wherein the bushing is made from polyetheretherketone (PEEK) and polytetrafluoroethylene (PTFE) and the bearings are made from Zirconia.
  • 44. A tissue-removing catheter as set forth in claim 39, wherein a distal end of the inner liner extends distally of the tissue-removing element.
  • 45. A tissue-removing catheter as set forth in claim 39, wherein the inner liner extends distally of the bushing.
  • 46. A tissue-removing catheter for removing tissue in a body lumen, the tissue-removing catheter comprising: an elongate body having an axis, and proximal and distal end portions spaced apart from one another along the axis, wherein the elongate body is sized and shaped to be received in the body lumen;a tissue-removing element mounted on the distal end portion of the elongate body, the tissue-removing element being configured to remove the tissue as the tissue-removing element is rotated by the elongate body within the body lumen;an inner liner received within the elongate body, the inner liner defining a guidewire lumen, the inner liner being coupled to the tissue-removing element at a distal end portion of the inner liner such that translational movement of the inner liner in the body lumen causes a corresponding translational movement of the tissue-removing element; anda cavity extending through the tissue-removing element from a proximal end to a distal end of the tissue-removing element, wherein the cavity includes a first section extending distally from the proximal end of the tissue-removing element and a second section extending distally from the first section, the first section having a larger cross-sectional dimension than a cross-sectional dimension of the second section.
  • 47. A tissue-removing catheter as set forth in claim 46, further comprising a bushing disposed in the cavity, the bushing comprising a center ring portion, a proximal ring portion extending proximally from the center ring portion, and a distal ring portion extending distally from the center ring portion, the center ring portion being disposed in the second section of the cavity.
  • 48. A tissue-removing catheter as set forth in claim 47, further comprising a first bearing disposed around the proximal ring portion of the bushing and a second bearing disposed around the distal ring portion of the bushing, the first bearing being disposed in the first section of the cavity and the second bearing being disposed in the second section of the cavity.
  • 49. A tissue-removing catheter as set forth in claim 48, wherein the cavity includes a third section extending distally from the second section, and a fourth section extending distally from the third section to the distal end of the tissue removing element, the third section having a larger cross-sectional dimension than a cross-sectional dimension of the fourth section.
  • 50. A tissue-removing catheter as set forth in claim 49, wherein the proximal ring portion of the bushing is disposed in the first section of the cavity and the distal ring portion of the bushing is disposed in the second and third sections of the cavity.
  • 51. A tissue-removing catheter as set forth in claim 46, wherein a distal end of the inner liner extends distally of the tissue-removing element.
  • 52. A tissue-removing catheter as set forth in claim 46, wherein the inner liner extends distally of the bushing.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of, and priority to, U.S. Provisional Application Ser. No. 62/500,867, which was filed May 3, 2017, and U.S. Patent Application Ser. No. 62/500,879, which was filed May 3, 2017, each of which is incorporated herein by reference in its entirety for all purposes.

US Referenced Citations (774)
Number Name Date Kind
1045879 Peterson Dec 1912 A
2429356 Hicks Oct 1947 A
4445509 Auth May 1984 A
4650466 Luther Mar 1987 A
4679557 Opie et al. Jul 1987 A
4729763 Henrie Mar 1988 A
4784636 Rydell Nov 1988 A
4795438 Kensey et al. Jan 1989 A
4829999 Auth May 1989 A
4850957 Summers Jul 1989 A
4857046 Stevens et al. Aug 1989 A
4883460 Zanetti Nov 1989 A
4886061 Fischell et al. Dec 1989 A
4890611 Monfort et al. Jan 1990 A
4917085 Smith Apr 1990 A
4950238 Sullivan Aug 1990 A
4990134 Auth Feb 1991 A
5030201 Palestrant Jul 1991 A
5041082 Shiber Aug 1991 A
5049124 Bales, Jr. Sep 1991 A
5059203 Rusted Oct 1991 A
5100425 Fischell et al. Mar 1992 A
5116350 Stevens May 1992 A
5116352 Schnepp et al. May 1992 A
5158564 Schnepp et al. Oct 1992 A
5160342 Reger et al. Nov 1992 A
5170805 Kensey et al. Dec 1992 A
5176693 Pannek, Jr. Jan 1993 A
5178625 Groshong Jan 1993 A
5195954 Schnepp et al. Mar 1993 A
5242460 Klein et al. Sep 1993 A
5242461 Kortenbach et al. Sep 1993 A
5250060 Carbo Oct 1993 A
5267955 Hanson Dec 1993 A
5287858 Hammerslag et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5308354 Zacca et al. May 1994 A
5312427 Zacca et al. May 1994 A
5314407 Auth et al. May 1994 A
5314438 Shturman May 1994 A
5318576 Plassche, Jr. et al. Jun 1994 A
5344395 Whalen et al. Sep 1994 A
5356481 Yoshimura et al. Oct 1994 A
5360432 Shturman Nov 1994 A
5366463 Ryan Nov 1994 A
5366464 Belknap Nov 1994 A
5376077 Gomringer Dec 1994 A
5376100 Lefebvre Dec 1994 A
5417703 Brown et al. May 1995 A
5490859 Mische et al. Feb 1996 A
5501694 Ressemann et al. Mar 1996 A
5507760 Wynne et al. Apr 1996 A
5507761 Duer Apr 1996 A
5507795 Chiang et al. Apr 1996 A
5512044 Duer Apr 1996 A
5540707 Ressemann et al. Jul 1996 A
5554163 Shtruman Sep 1996 A
5569275 Kotula et al. Oct 1996 A
5569276 Jang et al. Oct 1996 A
5571136 Weaver Nov 1996 A
5584843 Wulfman et al. Dec 1996 A
5626562 Castro May 1997 A
5628761 Rizik May 1997 A
5667490 Keith et al. Sep 1997 A
5681336 Clement et al. Oct 1997 A
5701119 Jurras, III Dec 1997 A
5728123 Lemelson et al. Mar 1998 A
5728129 Summers Mar 1998 A
5766190 Wulfman Jun 1998 A
5766192 Zacca Jun 1998 A
5779721 Nash Jul 1998 A
5792157 Mische et al. Aug 1998 A
5836868 Ressemann et al. Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5843103 Wulfman Dec 1998 A
5843150 Dreessen et al. Dec 1998 A
5855601 Bessler et al. Jan 1999 A
5868767 Farley et al. Feb 1999 A
5895397 Jang et al. Apr 1999 A
5895399 Barbut et al. Apr 1999 A
5895400 Abela Apr 1999 A
5895402 Hundertmark et al. Apr 1999 A
5897566 Shturman et al. Apr 1999 A
5897567 Ressemann et al. Apr 1999 A
5904698 Thomas et al. May 1999 A
5916227 Keith et al. Jun 1999 A
5916234 Lam Jun 1999 A
5919200 Stambaugh et al. Jul 1999 A
5925055 Adrian et al. Jul 1999 A
5938670 Keith et al. Aug 1999 A
5954747 Lee Sep 1999 A
5961534 Banik et al. Oct 1999 A
5976165 Ball et al. Nov 1999 A
5989208 Nita Nov 1999 A
5997557 Barbut et al. Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6015420 Wulfman et al. Jan 2000 A
6027450 Brown et al. Feb 2000 A
6039747 Shturman et al. Mar 2000 A
6059812 Clerc et al. May 2000 A
6077282 Shturman et al. Jun 2000 A
6080171 Keith et al. Jun 2000 A
RE36764 Zacca et al. Jul 2000 E
6083228 Michelson Jul 2000 A
6090135 Plaia et al. Jul 2000 A
6093157 Chandrasekaran Jul 2000 A
6096054 Wyzgala et al. Aug 2000 A
6099534 Bates et al. Aug 2000 A
6113579 Eidenschink et al. Sep 2000 A
6113613 Spaulding Sep 2000 A
6113614 Mears Sep 2000 A
6113615 Wulfman Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6120517 Daum et al. Sep 2000 A
6126667 Barry et al. Oct 2000 A
6129698 Beck Oct 2000 A
6129734 Shturman et al. Oct 2000 A
6132444 Shturman Oct 2000 A
6146395 Kanz Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6165187 Reger Dec 2000 A
6165209 Patterson et al. Dec 2000 A
6183487 Berry Feb 2001 B1
6193735 Stevens Feb 2001 B1
6217595 Shturman et al. Apr 2001 B1
6221015 Yock Apr 2001 B1
6221087 Anderson et al. Apr 2001 B1
6235042 Katzman May 2001 B1
6245007 Bedingham Jun 2001 B1
6251121 Saadat Jun 2001 B1
6258052 Milo Jul 2001 B1
6266550 Selmon et al. Jul 2001 B1
6270509 Berry Aug 2001 B1
6295712 Shturman et al. Oct 2001 B1
6299623 Wulfman Oct 2001 B1
6306151 Lary Oct 2001 B1
6312444 Barbut Nov 2001 B1
6319242 Patterson et al. Nov 2001 B1
6328750 Berry Dec 2001 B1
6343605 Lafontaine Feb 2002 B1
6375609 Hastings et al. Apr 2002 B1
6391832 Lyons et al. May 2002 B2
6398798 Selmon et al. Jun 2002 B2
6400980 Lemelson Jun 2002 B1
6416523 Lafontaine Jul 2002 B1
6416526 Wyzgala et al. Jul 2002 B1
6425904 Lemelson Jul 2002 B1
6428552 Sparks et al. Aug 2002 B1
6434507 Clayton et al. Aug 2002 B1
6436111 Kadavy et al. Aug 2002 B1
6440503 Merdan et al. Aug 2002 B1
6443967 Kadavy et al. Sep 2002 B1
6443979 Stalker et al. Sep 2002 B1
6451037 Chandraskaran et al. Sep 2002 B1
6461383 Gesswein et al. Oct 2002 B1
6468227 Zimmon Oct 2002 B2
6475225 Wulfman et al. Nov 2002 B1
6482209 Engh et al. Nov 2002 B1
6482215 Shiber Nov 2002 B1
6482216 Hiblar et al. Nov 2002 B1
6488654 Gonzalez et al. Dec 2002 B2
6491660 Guo et al. Dec 2002 B2
6494890 Shturman et al. Dec 2002 B1
6497711 Plaia et al. Dec 2002 B1
6500186 Lafontaine et al. Dec 2002 B2
6503227 Guo et al. Jan 2003 B1
6503261 Bruneau et al. Jan 2003 B1
6517544 Michelson Feb 2003 B1
6537202 Frantzen Mar 2003 B1
6537279 Michelson Mar 2003 B1
6540719 Bigus et al. Apr 2003 B2
6554846 Hamilton et al. Apr 2003 B2
6562049 Norlander et al. May 2003 B1
6569177 Dillard et al. May 2003 B1
6572630 McGuckin, Jr. et al. Jun 2003 B1
6579298 Bruneau et al. Jun 2003 B1
6579299 McGuckin, Jr. et al. Jun 2003 B2
6589251 Yee Jul 2003 B2
6596005 Kanz Jul 2003 B1
6602265 Dubrul et al. Aug 2003 B2
6613066 Fukaya et al. Sep 2003 B1
6616676 Bashiri Sep 2003 B2
6620179 Book et al. Sep 2003 B2
6626861 Hart et al. Sep 2003 B1
6626923 Wyzgala Sep 2003 B1
6632230 Barry Oct 2003 B2
6638228 Chandrasekaran et al. Oct 2003 B1
6638288 Shturman et al. Oct 2003 B1
6652548 Evans et al. Nov 2003 B2
6669710 Moutafis et al. Dec 2003 B2
6682543 Barbut et al. Jan 2004 B2
6685718 Wyzgala et al. Feb 2004 B1
6702834 Boylan Mar 2004 B1
6719775 Slaker et al. Apr 2004 B2
6719781 Kim Apr 2004 B1
6723390 Merdan et al. Apr 2004 B2
6761733 Chobotov et al. Jul 2004 B2
6764498 Mische Jul 2004 B2
6786876 Cox Sep 2004 B2
6790215 Findlay Sep 2004 B2
6792979 Konya et al. Sep 2004 B2
6800083 Hiblar et al. Oct 2004 B2
6800085 Selmon et al. Oct 2004 B2
6800086 Strong Oct 2004 B2
6808531 Lafontaine et al. Oct 2004 B2
6827734 Fariabi Dec 2004 B2
6837890 Chludzinski et al. Jan 2005 B1
6852097 Fulton Feb 2005 B1
6852118 Shturman et al. Feb 2005 B2
6872204 Houser et al. Mar 2005 B2
6884235 McGuckin, Jr. et al. Apr 2005 B2
6899712 Moutafis et al. May 2005 B2
6911026 Hall et al. Jun 2005 B1
6939352 Buzzard et al. Sep 2005 B2
6951554 Johansen et al. Oct 2005 B2
6951570 Linder et al. Oct 2005 B2
6953468 Jones et al. Oct 2005 B2
6986778 Zadno et al. Jan 2006 B2
7004173 Sparkes et al. Feb 2006 B2
7027460 Iyer et al. Apr 2006 B2
7063714 Dorros et al. Jun 2006 B2
7141045 Johansson et al. Nov 2006 B2
7169118 Reynolds et al. Jan 2007 B2
7172571 Moskowitz et al. Feb 2007 B2
7179269 Welch et al. Feb 2007 B2
7189240 Dekel Mar 2007 B1
7211041 Mueller May 2007 B2
7217255 Boyle et al. May 2007 B2
7247269 Keidar Jul 2007 B2
7252674 Wyzgala et al. Aug 2007 B2
7311719 Bonutti Dec 2007 B2
7344546 Wulfman et al. Mar 2008 B2
7381216 Buzzard et al. Jun 2008 B2
7384407 Rodriguez et al. Jun 2008 B2
7485127 Nistal Feb 2009 B2
7494485 Beck et al. Feb 2009 B2
7507245 Shturman et al. Mar 2009 B2
7513886 Konstantino Apr 2009 B2
7517352 Evans et al. Apr 2009 B2
7534249 Nash et al. May 2009 B2
7537588 Palasis et al. May 2009 B2
7582112 Scheuemann et al. Sep 2009 B2
7585300 Cha Sep 2009 B2
7591996 Hwang et al. Sep 2009 B2
7594900 Nash et al. Sep 2009 B1
7618434 Santra et al. Nov 2009 B2
D607102 Robinson Dec 2009 S
7632301 Alt Dec 2009 B2
7645290 Lucas Jan 2010 B2
D610258 Robinson Feb 2010 S
7670327 Kucharczyk et al. Mar 2010 B2
7674272 Torrance et al. Mar 2010 B2
7686824 Konstantino et al. Mar 2010 B2
7687144 Clark et al. Mar 2010 B2
7691121 Rosenbluth et al. Apr 2010 B2
7697996 Manning et al. Apr 2010 B2
7699865 Johnson et al. Apr 2010 B2
7715896 Ramzipoor et al. May 2010 B2
7731731 Abela Jun 2010 B2
7734332 Sher Jun 2010 B2
7744587 Murphy Jun 2010 B2
7749266 Forster et al. Jul 2010 B2
7758604 Wu et al. Jul 2010 B2
7789860 Brady et al. Sep 2010 B2
7819863 Eggers et al. Oct 2010 B2
7832406 Ellis et al. Nov 2010 B2
7833240 Okushi et al. Nov 2010 B2
7854755 Lafontaine et al. Dec 2010 B2
7887557 Kelley et al. Feb 2011 B2
7909873 Tan-Malecki et al. Mar 2011 B2
7922650 McWeeney et al. Apr 2011 B2
7938851 Olson et al. May 2011 B2
7951161 Bonnette et al. May 2011 B2
7963915 Bleich Jun 2011 B2
7967790 Whiting et al. Jun 2011 B2
7967834 Tal et al. Jun 2011 B2
7976460 Richardson Jul 2011 B2
7985200 Lary et al. Jul 2011 B2
7993384 Wu et al. Aug 2011 B2
7997226 Diaz et al. Aug 2011 B2
8002725 Hogendijk Aug 2011 B2
8011316 Diaz et al. Sep 2011 B2
8012153 Woloszko et al. Sep 2011 B2
8021379 Thompson et al. Sep 2011 B2
8043287 Conquergood et al. Oct 2011 B2
8043362 Gong et al. Oct 2011 B2
8052637 Von Oepen et al. Nov 2011 B2
8052716 Gilson et al. Nov 2011 B2
8062298 Schmitz et al. Nov 2011 B2
8067055 Savage et al. Nov 2011 B2
8080026 Konstantino et al. Dec 2011 B2
8083713 Smith et al. Dec 2011 B2
8105351 Lehman et al. Jan 2012 B2
8109954 Shturman Feb 2012 B2
8109955 Shtruman Feb 2012 B2
8123750 Norton et al. Feb 2012 B2
8123776 Gilson et al. Feb 2012 B2
8134041 Etchells Mar 2012 B2
8137369 Shturman Mar 2012 B2
8142457 Lafontaine Mar 2012 B2
8147507 Shtruman Apr 2012 B2
8157825 Shtruman Apr 2012 B2
8158670 Kunz et al. Apr 2012 B2
8162964 Piippo et al. Apr 2012 B2
8175677 Sayler et al. May 2012 B2
8177801 Kallock et al. May 2012 B2
8182499 Abraham et al. May 2012 B2
8192402 Anderson et al. Jun 2012 B2
8192451 Cambronne et al. Jun 2012 B2
8208990 Maschke Jun 2012 B2
8221348 Hackett et al. Jul 2012 B2
8241335 Truckai et al. Aug 2012 B2
8308711 Lee et al. Nov 2012 B2
8308790 Arbefeuille et al. Nov 2012 B2
8317786 Dahla et al. Nov 2012 B2
8323249 Wulfman et al. Dec 2012 B2
8323261 Kugler et al. Dec 2012 B2
8323279 Dahla et al. Dec 2012 B2
8337518 Nance et al. Dec 2012 B2
8348965 Prudnikov et al. Jan 2013 B2
8348987 Eaton Jan 2013 B2
8353923 Shturman Jan 2013 B2
8353944 Weber et al. Jan 2013 B2
8377037 Sachdeva et al. Feb 2013 B2
8382423 Frodis et al. Feb 2013 B1
8382739 Walak Feb 2013 B2
8388582 Eubanks et al. Mar 2013 B2
8388636 Shturman Mar 2013 B2
8388637 Shturman Mar 2013 B2
8398663 Paul et al. Mar 2013 B2
8435228 Wulfman et al. May 2013 B2
8439937 Montague et al. May 2013 B2
8449566 Finitsis May 2013 B2
8454638 Shturman Jun 2013 B2
8465510 Shturman Jun 2013 B2
8475478 Robinson Jul 2013 B2
8475487 Bonnette et al. Jul 2013 B2
8480628 Hawkins et al. Jul 2013 B2
8496678 Shturman Jul 2013 B2
8500764 Shturman Aug 2013 B2
8500765 Shturman Aug 2013 B2
8524132 Von Oepen et al. Sep 2013 B2
8529614 Berez et al. Sep 2013 B2
8530783 Ow et al. Sep 2013 B2
8532746 Gelbart et al. Sep 2013 B2
8551128 Hanson et al. Oct 2013 B2
8551130 Schoenle et al. Oct 2013 B2
8562607 Truckai et al. Oct 2013 B2
8568432 Straub Oct 2013 B2
8579926 Pinto et al. Nov 2013 B2
8597239 Gerrans et al. Dec 2013 B2
8597313 Thatcher et al. Dec 2013 B2
8603038 Nelson Dec 2013 B2
8612022 Morero et al. Dec 2013 B1
8613721 Wulfman Dec 2013 B2
8617144 Ravikumar Dec 2013 B2
8628550 Narveson Jan 2014 B2
8628551 Hanson et al. Jan 2014 B2
8632556 Jacobs et al. Jan 2014 B2
8632557 Thatcher et al. Jan 2014 B2
8657821 Palermo Feb 2014 B2
8663195 Shturman Mar 2014 B2
8663228 Schmitz et al. Mar 2014 B2
8663260 Shturman Mar 2014 B2
8663261 Shturman Mar 2014 B2
8679141 Goodin et al. Mar 2014 B2
8684952 Weitzner et al. Apr 2014 B2
8696645 Tal et al. Apr 2014 B2
8702652 Fiorella et al. Apr 2014 B2
8702735 Rivers Apr 2014 B2
8709087 Cragg Apr 2014 B2
8715227 Kontos May 2014 B2
8715240 Cunningham May 2014 B2
8728106 Weber et al. May 2014 B2
8758325 Webster et al. Jun 2014 B2
8758377 Rivers et al. Jun 2014 B2
8771302 Woolfson et al. Jul 2014 B2
8779328 Anukhin et al. Jul 2014 B2
8790299 Gunday et al. Jul 2014 B2
8792962 Esguerra et al. Jul 2014 B2
8795241 O'Connell et al. Aug 2014 B2
8795303 McBroom et al. Aug 2014 B2
8795304 Pippo Svendsen Aug 2014 B2
8814892 Galdonik et al. Aug 2014 B2
8827951 Besser et al. Sep 2014 B2
8840566 Seibel et al. Sep 2014 B2
8864762 Gunday et al. Oct 2014 B2
8882697 Celermajer Nov 2014 B2
8882790 Kassab et al. Nov 2014 B2
8888787 Wynberg Nov 2014 B2
8920402 Nash et al. Dec 2014 B2
8926560 Dinh et al. Jan 2015 B2
8932694 Rolfes et al. Jan 2015 B2
8936589 Shturman Jan 2015 B2
8945089 Johnson et al. Feb 2015 B2
8951224 Wulfman et al. Feb 2015 B2
8961533 Stahler et al. Feb 2015 B2
8968346 Lockard et al. Mar 2015 B2
8974519 Gennrich et al. Mar 2015 B2
8986331 Chekan et al. Mar 2015 B2
8992553 Diamant et al. Mar 2015 B2
8992557 Whayne et al. Mar 2015 B2
8992717 Zeroni et al. Mar 2015 B2
8998843 Bonnette et al. Apr 2015 B2
9017294 McGuckin, Jr. et al. Apr 2015 B2
9050127 Bonnette et al. Jun 2015 B2
9050414 Schoenie et al. Jun 2015 B2
9055951 Deshpande Jun 2015 B2
9055966 Cambronne et al. Jun 2015 B2
9072873 Lippert et al. Jul 2015 B2
9078692 Shturman et al. Jul 2015 B2
9078779 Dorn et al. Jul 2015 B2
9084620 Ludin et al. Jul 2015 B2
9084627 Weber Jul 2015 B2
9089362 Shturman Jul 2015 B2
9101382 Krolik et al. Aug 2015 B2
9101387 Plowe et al. Aug 2015 B2
9101430 Muller Aug 2015 B2
9108027 Eubanks et al. Aug 2015 B2
9114235 Cambronne Aug 2015 B2
9119662 Moberg Sep 2015 B2
9119944 Chambers et al. Sep 2015 B2
9138210 Schulte et al. Sep 2015 B2
9162040 Vo et al. Oct 2015 B2
9162046 Hill et al. Oct 2015 B2
9174019 Gregersen Nov 2015 B2
9180274 Cully et al. Nov 2015 B2
9186129 Blitzer et al. Nov 2015 B2
9186170 Welty et al. Nov 2015 B2
9186210 Jenson Nov 2015 B2
9192405 Shturman Nov 2015 B2
9199058 Lentz Dec 2015 B2
9205234 Hardin Dec 2015 B2
9211138 Shturman Dec 2015 B2
9211386 Aboytes Dec 2015 B2
9216033 Feld et al. Dec 2015 B2
9216034 Avneri Dec 2015 B2
9217442 Wiessler et al. Dec 2015 B2
9220529 Rivers et al. Dec 2015 B2
9220530 Moberg Dec 2015 B2
9226763 To et al. Jan 2016 B2
9237903 Shturman Jan 2016 B2
9238126 Gerrans et al. Jan 2016 B2
9254143 Huynh et al. Feb 2016 B2
9259215 Chou et al. Feb 2016 B2
9265563 Racz et al. Feb 2016 B2
9289230 Cambronne Mar 2016 B2
9295373 Torrance et al. Mar 2016 B2
9301769 Brady et al. Apr 2016 B2
9301774 O'Day Apr 2016 B2
9308007 Cully et al. Apr 2016 B2
9308019 Kugler et al. Apr 2016 B2
9314324 Janardhan et al. Apr 2016 B2
9320530 Grace Apr 2016 B2
9320535 Zaretzka et al. Apr 2016 B2
9320540 Badie Apr 2016 B2
9326789 Fruland et al. May 2016 B2
9333006 Shturman May 2016 B2
9333335 Ollivier et al. May 2016 B2
9345508 Hendrick May 2016 B2
9345511 Smith et al. May 2016 B2
9345858 Flaherty et al. May 2016 B2
9351741 Schmitz et al. May 2016 B2
9351757 Kusleika May 2016 B2
9364255 Weber Jun 2016 B2
9364256 Shturman Jun 2016 B2
9370649 Chang et al. Jun 2016 B2
9375234 Vrba Jun 2016 B2
9375328 Farnan Jun 2016 B2
9381062 Kapur et al. Jul 2016 B2
9387006 Shtruman Jul 2016 B2
9387305 Courtney et al. Jul 2016 B2
9398837 Vazales et al. Jul 2016 B2
9402981 Anderson Aug 2016 B2
9413896 Bowe et al. Aug 2016 B2
9414852 Gifford, III et al. Aug 2016 B2
9427553 Nelson Aug 2016 B2
D766433 Blackledge et al. Sep 2016 S
9433437 Kesten et al. Sep 2016 B2
9439674 Rydberg et al. Sep 2016 B2
9445829 Brady et al. Sep 2016 B2
9452241 Gill et al. Sep 2016 B2
9456843 Kessler et al. Oct 2016 B2
9463041 Bleich et al. Oct 2016 B2
9468457 Blackledge et al. Oct 2016 B2
9474536 Carrison et al. Oct 2016 B2
9474543 McGuckin, Jr. et al. Oct 2016 B2
9486611 Petersen et al. Nov 2016 B2
9498183 Brown et al. Nov 2016 B2
9498290 Piferi et al. Nov 2016 B2
9510885 Burger et al. Dec 2016 B2
9526519 Kessler et al. Dec 2016 B2
9526674 Heyns et al. Dec 2016 B2
9532797 Vreeman Jan 2017 B2
9532799 Simpson et al. Jan 2017 B2
9539019 Sullivan et al. Jan 2017 B2
9545298 Ginn et al. Jan 2017 B2
9561347 Holm et al. Feb 2017 B2
9572492 Simpson et al. Feb 2017 B2
9597109 Shturman Mar 2017 B2
9597110 Kessler et al. Mar 2017 B2
9675376 To et al. Jun 2017 B2
9687266 Moberg et al. Jun 2017 B2
9693796 Rydberg Jul 2017 B2
9700346 Levine et al. Jul 2017 B2
9700347 Shiber Jul 2017 B2
9717520 Zeroni et al. Aug 2017 B2
9750509 Carrison Sep 2017 B2
9901252 Tran Feb 2018 B2
10413318 Grothe et al. Sep 2019 B2
10786278 Nishio et al. Sep 2020 B2
20010018591 Brock et al. Aug 2001 A1
20020007190 Wulfman et al. Jan 2002 A1
20020098278 Bates et al. Jul 2002 A1
20030069522 Jacobsen et al. Apr 2003 A1
20030109837 McBride Jun 2003 A1
20030139689 Shturman et al. Jul 2003 A1
20030187498 Bishop Oct 2003 A1
20030199889 Kanz et al. Oct 2003 A1
20030236533 Wilson et al. Dec 2003 A1
20040097995 Nash et al. May 2004 A1
20040147934 Kiester Jul 2004 A1
20040215222 Krivoruchko Oct 2004 A1
20040225355 Stevens Nov 2004 A1
20040267191 Gifford et al. Dec 2004 A1
20050031495 Choi et al. Feb 2005 A1
20050096633 Moskowitz May 2005 A1
20050149083 Prudnikov et al. Jul 2005 A1
20050149084 Kanz et al. Jul 2005 A1
20050187537 Loeb et al. Aug 2005 A1
20050187556 Stack et al. Aug 2005 A1
20050203553 Maschke Sep 2005 A1
20050216044 Hong Sep 2005 A1
20050228417 Teitelbaum et al. Oct 2005 A1
20050251187 Beane et al. Nov 2005 A1
20060030934 Hogendijk et al. Feb 2006 A1
20060047291 Barry Mar 2006 A1
20060095059 Bleich et al. May 2006 A1
20060142630 Meretei Jun 2006 A1
20060142632 Meretei Jun 2006 A1
20060264988 Boyle Nov 2006 A1
20060271155 Herr Nov 2006 A1
20070088230 Terashi et al. Apr 2007 A1
20070093779 Kugler et al. Apr 2007 A1
20070093781 Kugler et al. Apr 2007 A1
20070203516 Nayak Aug 2007 A1
20070213753 Waller Sep 2007 A1
20070282367 Jeffrey et al. Dec 2007 A1
20080033423 Peacock Feb 2008 A1
20080161840 Osiroff et al. Jul 2008 A1
20080208230 Chin Aug 2008 A1
20080221566 Krishnan Sep 2008 A1
20080228208 Wulfman et al. Sep 2008 A1
20080306498 Thatcher et al. Dec 2008 A1
20090018564 Shturman Jan 2009 A1
20090112239 To Apr 2009 A1
20090149865 Schmitz et al. Jun 2009 A1
20090163940 Sliwa Jun 2009 A1
20090182359 Shturman Jul 2009 A1
20090182362 Thompson et al. Jul 2009 A1
20090216284 Chin et al. Aug 2009 A1
20090264907 Vrba et al. Oct 2009 A1
20090306689 Welty et al. Dec 2009 A1
20090306690 Rivers et al. Dec 2009 A1
20090318942 Shturman Dec 2009 A1
20090326568 Shturman Dec 2009 A1
20100010522 Shturman Jan 2010 A1
20100030251 Sandhu et al. Feb 2010 A1
20100063534 Kugler et al. Mar 2010 A1
20100082051 Thorpe et al. Apr 2010 A1
20100121361 Plowe et al. May 2010 A1
20100211088 Narveson Aug 2010 A1
20100234864 Keller Sep 2010 A1
20100241148 Schon et al. Sep 2010 A1
20100280534 Sher Nov 2010 A1
20100292720 Thatcher et al. Nov 2010 A1
20110046543 Brandeis Feb 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110082483 Diamant et al. Apr 2011 A1
20110087254 Welty Apr 2011 A1
20110172598 Sampognaro et al. Jul 2011 A1
20110184447 Leibowitz Jul 2011 A1
20110213391 Rivers et al. Sep 2011 A1
20110224625 Flickinger et al. Sep 2011 A1
20110282354 Schulte Nov 2011 A1
20110282368 Swayze et al. Nov 2011 A1
20110301626 To Dec 2011 A1
20110306995 Moberg Dec 2011 A1
20120035633 Shturman Feb 2012 A1
20120035705 Giasolli Feb 2012 A1
20120046599 Schoenle et al. Feb 2012 A1
20120046600 Kohler et al. Feb 2012 A1
20120065639 Schmitz Mar 2012 A1
20120109170 Shturman May 2012 A1
20120109171 Zeroni May 2012 A1
20120158120 Hacker Jun 2012 A1
20120165846 Shturman Jun 2012 A1
20120165847 Shturman Jun 2012 A1
20120172901 Manderfeld et al. Jul 2012 A1
20120172903 Shturman Jul 2012 A1
20120209176 Anderson Aug 2012 A1
20120232570 Jenson et al. Sep 2012 A1
20120253372 Ross et al. Oct 2012 A1
20120259354 Kellett Oct 2012 A1
20120265229 Rottenberg et al. Oct 2012 A1
20130005218 von Oepen et al. Jan 2013 A1
20130018398 Rivers et al. Jan 2013 A1
20130018399 Rivers et al. Jan 2013 A1
20130023913 Rivers et al. Jan 2013 A1
20130060234 Besser et al. Mar 2013 A1
20130072936 To et al. Mar 2013 A1
20130085514 Lee et al. Apr 2013 A1
20130092298 Bregulla et al. Apr 2013 A1
20130103067 Fabo et al. Apr 2013 A1
20130116655 Bacino et al. May 2013 A1
20130123661 Dewaele et al. May 2013 A1
20130158578 Ghodke et al. Jun 2013 A1
20130253467 Gianotti et al. Sep 2013 A1
20130267870 Lonky Oct 2013 A1
20130296904 Shturman Nov 2013 A1
20130296905 Shturman Nov 2013 A1
20130310859 Shturman Nov 2013 A1
20130317529 Golden et al. Nov 2013 A1
20140025044 Zamarripa et al. Jan 2014 A1
20140039494 Kick et al. Feb 2014 A1
20140074097 Schmitz Mar 2014 A1
20140081298 Cambronne Mar 2014 A1
20140094833 Malhi Apr 2014 A1
20140100585 Anderson et al. Apr 2014 A1
20140128893 Guggenheimer et al. May 2014 A1
20140128963 Quill et al. May 2014 A1
20140155990 Nyuli et al. Jun 2014 A1
20140163664 Goldsmith Jun 2014 A1
20140180317 Shturman Jun 2014 A1
20140180319 Shturman Jun 2014 A1
20140214060 Bonnette et al. Jul 2014 A1
20140222045 Schneider et al. Aug 2014 A1
20140275770 Gunday Sep 2014 A1
20140276390 Eubanks et al. Sep 2014 A1
20140276407 DeVries et al. Sep 2014 A1
20140276684 Huennekens et al. Sep 2014 A1
20140276696 Schneider Sep 2014 A1
20140276920 Hendrick et al. Sep 2014 A1
20140277002 Grace Sep 2014 A1
20140277011 Meader Sep 2014 A1
20140296706 Chronos et al. Oct 2014 A1
20140296742 Kalloo et al. Oct 2014 A1
20140296868 Garrison Oct 2014 A1
20140296897 Sotak et al. Oct 2014 A1
20140303658 Bonnette et al. Oct 2014 A1
20140316448 Higgins Oct 2014 A1
20140316449 Grothe et al. Oct 2014 A1
20140330284 Sawada Nov 2014 A1
20140330286 Wallace Nov 2014 A1
20140343538 Lenker et al. Nov 2014 A1
20140350582 Higgins Nov 2014 A1
20140358123 Ueda et al. Dec 2014 A1
20140358156 Argentine Dec 2014 A1
20140371770 Schoenle et al. Dec 2014 A1
20150005791 Schoenle et al. Jan 2015 A1
20150032141 Silvestro Jan 2015 A1
20150032142 Silvestro Jan 2015 A1
20150038902 Mark et al. Feb 2015 A1
20150051625 Petrucci et al. Feb 2015 A1
20150068069 Tran et al. Mar 2015 A1
20150080795 Mattison et al. Mar 2015 A1
20150080928 Kugler et al. Mar 2015 A1
20150088246 Astarci et al. Mar 2015 A1
20150119909 Rydberg Apr 2015 A1
20150127035 Trapp et al. May 2015 A1
20150133978 Paul, Jr. May 2015 A1
20150142028 Ellering et al. May 2015 A1
20150150587 Smith et al. Jun 2015 A1
20150150588 Rydberg Jun 2015 A1
20150157303 Brandeis Jun 2015 A1
20150164541 Shiber Jun 2015 A1
20150190622 Saab Jul 2015 A1
20150201956 Higgins et al. Jul 2015 A1
20150202044 Chau et al. Jul 2015 A1
20150209066 Dahm et al. Jul 2015 A1
20150209072 Higgins et al. Jul 2015 A1
20150223948 Lopez Aug 2015 A1
20150224281 Kim et al. Aug 2015 A1
20150230810 Creighton et al. Aug 2015 A1
20150230821 Batchelor et al. Aug 2015 A1
20150238207 Cox et al. Aug 2015 A1
20150245851 McGuckin, Jr. Sep 2015 A1
20150258258 Bonnette et al. Sep 2015 A1
20150265813 Xie et al. Sep 2015 A1
20150273184 Scott et al. Oct 2015 A1
20150289902 Hehrlein Oct 2015 A1
20150290438 Gerrans et al. Oct 2015 A1
20150313629 Shturman Nov 2015 A1
20150320971 Leeflang et al. Nov 2015 A1
20150327884 Moberg Nov 2015 A1
20150335348 Cohen et al. Nov 2015 A1
20150342682 Bowe Dec 2015 A1
20150342718 Weber et al. Dec 2015 A1
20150351729 Chin et al. Dec 2015 A1
20150352330 Wasdyke et al. Dec 2015 A1
20150359595 Ben et al. Dec 2015 A1
20150374908 Piferi Dec 2015 A1
20160001062 Weber et al. Jan 2016 A1
20160015420 Higgins et al. Jan 2016 A1
20160015434 Stieglitz et al. Jan 2016 A1
20160022244 Courtney et al. Jan 2016 A1
20160022296 Brady et al. Jan 2016 A1
20160022307 Wasdyke et al. Jan 2016 A1
20160051323 Stigall et al. Feb 2016 A1
20160058467 Shturman Mar 2016 A1
20160058468 Shturman Mar 2016 A1
20160066803 Hu et al. Mar 2016 A1
20160067465 Gerrans et al. Mar 2016 A1
20160095733 Sharma et al. Apr 2016 A1
20160128718 Aggerholm et al. May 2016 A1
20160128857 Kao May 2016 A1
20160135796 Hundertmark et al. May 2016 A1
20160136393 Tsai et al. May 2016 A1
20160151639 Scharf et al. Jun 2016 A1
20160157872 Cage et al. Jun 2016 A1
20160157886 Wasdyke et al. Jun 2016 A1
20160158490 Leeflang et al. Jun 2016 A1
20160166265 Nita Jun 2016 A1
20160174964 Tobis Jun 2016 A1
20160183963 Richter et al. Jun 2016 A1
20160183966 McGuckin, Jr. et al. Jun 2016 A1
20160183968 Cambronne Jun 2016 A1
20160199091 Pigott Jul 2016 A1
20160199093 Cambronne Jul 2016 A1
20160206340 Vetter et al. Jul 2016 A1
20160213397 Shturman Jul 2016 A1
20160220399 Longo Aug 2016 A1
20160228681 di Palma et al. Aug 2016 A1
20160242790 Brandeis Aug 2016 A1
20160242805 Kohler et al. Aug 2016 A1
20160242809 Shturman Aug 2016 A1
20160249942 Olson Sep 2016 A1
20160256620 Scheckel et al. Sep 2016 A1
20160263361 Vadivelu et al. Sep 2016 A1
20160263391 Tasci et al. Sep 2016 A1
20160270814 Palme et al. Sep 2016 A1
20160278805 Hatta et al. Sep 2016 A1
20160287438 Badawi et al. Oct 2016 A1
20160296683 Jin et al. Oct 2016 A1
20160302950 Marmur et al. Oct 2016 A1
20160310709 Gotou et al. Oct 2016 A1
20160324535 Chang et al. Nov 2016 A1
20160331394 Rottenberg et al. Nov 2016 A1
20160338727 Bowe et al. Nov 2016 A1
20160346003 Grothe et al. Dec 2016 A1
20160354107 Nakano et al. Dec 2016 A1
20160354108 Nakano et al. Dec 2016 A1
20160361528 Kanz et al. Dec 2016 A1
20160374715 McPeak Dec 2016 A1
20160375235 Schoenle et al. Dec 2016 A1
20170000518 Smith et al. Jan 2017 A1
20170000977 Dtorbeck et al. Jan 2017 A1
20170027725 Argentine Feb 2017 A1
20170056169 Johnson et al. Mar 2017 A1
20170071624 McGuckin, Jr. et al. Mar 2017 A1
20170079546 Costello et al. Mar 2017 A1
20170100570 Giasolli et al. Apr 2017 A1
20170156749 Pigott Jun 2017 A1
20170164965 Chang et al. Jun 2017 A1
20170173262 Veltz Jun 2017 A1
20170273698 McGuckin, Jr. et al. Sep 2017 A1
20170354435 Hatta et al. Dec 2017 A1
20180133436 Garrison et al. May 2018 A1
20190201052 Sahadevan et al. Jul 2019 A1
20190247084 Spangler et al. Aug 2019 A1
20190307483 Flury et al. Oct 2019 A1
20190365412 Wasdyke et al. Dec 2019 A1
20200046403 Piippo Svendsen et al. Feb 2020 A1
20200229844 Rawson et al. Jul 2020 A1
Foreign Referenced Citations (131)
Number Date Country
2007271820 Feb 2009 AU
2009255433 Nov 2010 AU
2011267862 Dec 2012 AU
2013316091 Mar 2015 AU
2648870 Jan 2008 CA
2722317 Dec 2009 CA
2800920 Dec 2011 CA
2883961 Mar 2014 CA
102056558 May 2011 CN
102946815 Feb 2013 CN
104955406 Sep 2015 CN
446932 Sep 1991 EP
566426 Oct 1993 EP
566656 Oct 1993 EP
689468 Jan 1996 EP
895458 Feb 1999 EP
921761 Jun 1999 EP
1003425 May 2000 EP
1030705 Aug 2000 EP
1037560 Sep 2000 EP
1039864 Oct 2000 EP
1083829 Mar 2001 EP
1105049 Jun 2001 EP
1112103 Jul 2001 EP
1148900 Oct 2001 EP
1168965 Jan 2002 EP
1187561 Mar 2002 EP
1250108 Oct 2002 EP
1274372 Jan 2003 EP
1343422 Sep 2003 EP
1377234 Jan 2004 EP
1776938 Feb 2004 EP
1302178 Mar 2006 EP
1660151 May 2006 EP
1673003 Jun 2006 EP
1708779 Oct 2006 EP
1737335 Jan 2007 EP
1755489 Feb 2007 EP
1761206 Mar 2007 EP
1874224 Jan 2008 EP
1879499 Jan 2008 EP
1897581 Mar 2008 EP
1906888 Apr 2008 EP
1983882 Oct 2008 EP
2010265 Jan 2009 EP
2024001 Feb 2009 EP
2040626 Apr 2009 EP
2040627 Apr 2009 EP
2040628 Apr 2009 EP
2079407 Jul 2009 EP
2099368 Sep 2009 EP
1864618 Oct 2009 EP
2203121 Jul 2010 EP
2280657 Feb 2011 EP
2282688 Feb 2011 EP
2303149 Apr 2011 EP
2303151 Apr 2011 EP
2398405 Dec 2011 EP
2579791 Apr 2013 EP
2280656 Oct 2013 EP
2742881 Jun 2014 EP
2819586 Jan 2015 EP
2895088 Jul 2015 EP
2298220 Jun 2016 EP
3141201 Mar 2017 EP
3166512 May 2017 EP
2967635 Jun 2017 EP
2482608 Aug 2014 ES
2594707 Dec 2016 ES
2440220 Jan 2008 GB
2440221 Jan 2008 GB
2440222 Jan 2008 GB
2013532027 Aug 2013 JP
2015529530 Oct 2015 JP
2012150415 Jul 2014 RU
2538174 Jan 2015 RU
9417739 Aug 1994 WO
1994028803 Dec 1994 WO
1997043949 Nov 1997 WO
1998008554 Mar 1998 WO
1999018862 Apr 1999 WO
1999018864 Apr 1999 WO
199929240 Jun 1999 WO
1999035980 Jul 1999 WO
1999044516 Sep 1999 WO
1999047053 Sep 1999 WO
2000056230 Sep 2000 WO
2002049518 Jun 2002 WO
2002083226 Oct 2002 WO
2004073524 Sep 2004 WO
2005112834 Dec 2005 WO
2006084256 Aug 2006 WO
2008006705 Jan 2008 WO
2008006706 Jan 2008 WO
2008006708 Jan 2008 WO
2008062069 May 2008 WO
2008099424 Aug 2008 WO
2008154480 Dec 2008 WO
2009146248 Dec 2009 WO
2009148805 Dec 2009 WO
2009148807 Dec 2009 WO
2010002507 Jan 2010 WO
2010096140 Aug 2010 WO
2010112617 Oct 2010 WO
2010112618 Oct 2010 WO
2011057060 May 2011 WO
2011143203 Nov 2011 WO
2011159697 Dec 2011 WO
2013123007 Aug 2013 WO
2014022866 Feb 2014 WO
2014042752 Mar 2014 WO
2014080424 May 2014 WO
2014106847 Jul 2014 WO
2015006309 Jan 2015 WO
2015013590 Jan 2015 WO
2015075708 May 2015 WO
2015148284 Oct 2015 WO
2016007652 Jan 2016 WO
2016011312 Jan 2016 WO
2016019991 Feb 2016 WO
2016044406 Mar 2016 WO
2016073710 May 2016 WO
2016077758 May 2016 WO
2016108860 Jul 2016 WO
2016123557 Aug 2016 WO
2016126974 Aug 2016 WO
2016133931 Aug 2016 WO
2016133932 Aug 2016 WO
2016150806 Sep 2016 WO
2017035381 Mar 2017 WO
2017109788 Jun 2017 WO
Non-Patent Literature Citations (4)
Entry
US 7,316,661 B2, 01/2008, Zadno (withdrawn)
Boston Scientific Convex Burrs, Rotablator, Rotational Atherectomy System Reference Guide, Apr. 2014, 22 pages, Natick, MA.
Non-Final Office Action for U.S. Appl. No. 15/970,736, dated May 6, 2020, 12 pages.
International Preliminary Report on Patentability for PCT/US2018/03095, dated Nov. 28, 2019, 9 pages, Geneva, Switzerland.
Related Publications (1)
Number Date Country
20180317952 A1 Nov 2018 US
Provisional Applications (2)
Number Date Country
62500867 May 2017 US
62500879 May 2017 US