Tissue-removing catheter with rotatable cutter

Information

  • Patent Grant
  • 9943329
  • Patent Number
    9,943,329
  • Date Filed
    Thursday, November 8, 2012
    11 years ago
  • Date Issued
    Tuesday, April 17, 2018
    6 years ago
Abstract
A tissue-removing catheter includes a cutting element. A radially innermost portion of the leading radial wall of a raised element of the cutting element may be spaced a radial distance from the longitudinal axis that is less than 66% of the radius of the annular cutting edge. The cutting element may be extendable through the window during operation such that as the cutting element is being rotated about its longitudinal axis, less than an entire radial portion of the leading radial wall passes through the window. A plurality of abrading members may be formed on at least the central portion of the inner surface of the cutting element to abrade hardened tissue as the cutting element is rotating about its longitudinal axis. A radially outermost portion of the leading radial edge of the raised element may be spaced apart radially from an inner surface of the cutting element.
Description
FIELD OF THE DISCLOSURE

The present invention generally relates to tissue-removing catheter with a rotatable cutter.


BACKGROUND

Catheters are used to remove unwanted tissue from the body. As an example, atherectomy catheters are used to remove material from a blood vessel to open the blood vessel and improve blood flow through the vessel.


SUMMARY

In one aspect, a tissue-removing catheter generally comprises an elongate catheter body having opposite distal and proximal portions and being sized and shaped for introduction into a body lumen of a subject. A drive shaft extends longitudinally within the catheter body. The drive shaft is rotatable relative to the catheter body about a longitudinal axis of the drive shaft. A cutting element at the distal portion of the elongate catheter body has opposite proximal and distal ends and a longitudinal axis extending therebetween. The cutting element is operatively connected to the drive shaft for rotation about a longitudinal axis of the cutting element. The cutting element includes an annular cutting edge at the distal end of the cutting element surrounding the longitudinal axis of the cutting element. The annular cutting edge has a radius as taken from the longitudinal axis of the cutting element. An inner surface of the cutting element extends proximally from the cutting edge and defines an internal cavity. At least one raised element in the internal cavity of the cutting element extends generally longitudinally outward from the inner surface. The at least one raised element includes a leading radial wall extending generally radially inward toward the longitudinal axis of the cutting element. The leading radial wall has a radially outermost portion relative to the longitudinal axis of the cutting element, a radially innermost portion relative to the longitudinal axis of the cutting element, and a radial length extending between the radially outermost and innermost portions. The radially innermost portion of the leading radial wall is spaced a radial distance from the longitudinal axis that is less than 66% of the radius of the annular cutting edge.


In another aspect, a tissue-removing catheter generally comprises an elongate catheter body having opposite distal and proximal portions and being sized and shaped for introduction into a body lumen of a subject. The catheter body has a window at the distal portion thereof. A drive shaft extends longitudinally within the catheter body. The drive shaft is rotatable relative to the catheter body about a longitudinal axis of the drive shaft. A cutting element at the distal portion of the elongate catheter body is adjacent the window. The cutting element has opposite proximal and distal ends and a longitudinal axis extending therebetween, the cutting element being operatively connected to the drive shaft for rotation about the longitudinal axis of the cutting element. The cutting element includes an annular cutting edge at the distal end of the cutting element surrounding the longitudinal axis of the cutting element, the annular cutting edge having a radius as taken from the longitudinal axis of the cutting element. An inner surface of the cutting element extends proximally from the cutting edge and defining an internal cavity. At least one raised element in the internal cavity has leading radial wall extending generally radially inward toward the longitudinal axis of the cutting element. The cutting element is extendable through the window during operation such that as the cutting element is being rotated about its longitudinal axis, less than an entire radial portion of the leading radial wall passes through the window.


In another aspect, a tissue-removing catheter generally comprises an elongate catheter body having opposite distal and proximal portions and being sized and shaped for introduction into a body lumen of a subject. A drive shaft extends longitudinally within the catheter body, wherein the drive shaft is rotatable relative to the catheter body about a longitudinal axis of the drive shaft. A cutting element at the distal portion of the elongate catheter body has opposite proximal and distal ends and a longitudinal axis extending therebetween. The cutting element is operatively connected to the drive shaft for rotation about a longitudinal axis of the cutting element. The cutting element includes an annular cutting edge at the distal end of the cutting element surrounding the longitudinal axis of the cutting element. The annular cutting edge has a radius as taken from the longitudinal axis of the cutting element. An inner surface extends proximally from the cutting edge and defining an internal cavity. At least one raised element in the internal cavity extends generally longitudinally outward from the inner surface. The at least one raised element includes a leading radial wall extending generally radially inward toward the longitudinal axis of the cutting element. The leading radial wall has a radially outermost portion relative to the longitudinal axis of the cutting element, a radially innermost portion relative to the longitudinal axis of the cutting element, and a radial length extending between the radially outermost and innermost portions. The radially outermost portion is spaced apart radially from the inner surface of the cutting element.


Other features will be in part apparent and in part pointed out hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective of a distal end of an atherectomy catheter;



FIG. 2 is an enlarged fragmentary section of the atherectomy catheter of FIG. 1 with a cutting element in a stowed position;



FIG. 3 is the enlarged fragmentary section of FIG. 1 but with a cutting element in a working position;



FIG. 4 is a perspective of an embodiment of a cutting element;



FIG. 5 is an enlarged end view of the cutting element;



FIG. 6 is a longitudinal section of the cutting element of FIG. 4;



FIG. 7 is an end view of another embodiment of a cutting element, which may be used with the atherectomy catheter shown in FIG. 1;



FIG. 8 is a perspective of the cutting element of FIG. 7;



FIG. 8A is an enlarged detail of FIG. 8 showing one of the raised elements of the cutting element;



FIG. 9 is an end view of another embodiment of a cutting element, which may be used with the atherectomy catheter shown in FIG. 1;



FIG. 10 is a perspective of the embodiment of the cutting element illustrated in FIG. 9;



FIG. 10A is an enlarged detail of FIG. 10 showing of the raised elements of the cutting element embodiment;



FIG. 11 is perspective of a modified version of the embodiment of the cutting element illustrated in FIG. 8;



FIG. 11A is an enlarged detail of FIG. 11 showing one of the raised elements;



FIG. 12 is a perspective of another embodiment of a cutting element;



FIG. 13 is an end view of the cutting element of FIG. 12;



FIG. 14 is similar to FIG. 13, but enlarged and including imaginary circles for determining radial distances and radial lengths;



FIG. 15 is an enlarged, fragmentary view of FIG. 14;



FIG. 16 is similar to FIG. 13, but including a schematic representation of the catheter body;



FIG. 17 is similar to FIG. 16, except the schematic representation of the catheter body is shown in phantom;



FIG. 18 is a fragmentary, longitudinal section of a catheter including the cutting element of FIG. 12 removing tissue from a body lumen;



FIG. 19 is a perspective of another embodiment of a cutting element;



FIG. 20 is a perspective of another embodiment of a cutting element;



FIG. 21 is a perspective of another embodiment of a cutting element;



FIG. 22 is an end view of the cutting element of FIG. 21;



FIG. 23 is an enlarged, fragmentary section of the cutting element taken in the plane containing the line 23-23 in FIG. 22;



FIG. 24 is an enlarged view of a raised element of the cutting element of FIG. 21; and



FIG. 25 is a further enlarged, fragmentary view of FIG. 23.





Corresponding reference characters indicate corresponding parts throughout the drawings.


DETAILED DESCRIPTION OF THE DRAWINGS

Referring now to the drawings, several embodiments of a tissue-removing catheter for removing tissue from a body lumen are disclosed. In particular, the illustrated catheter embodiments are suitable for removing tissue from a body lumen wall, and are particularly suitable for removing (i.e., excising) plaque tissue from a vessel wall (e.g., peripheral arterial or peripheral venous wall). Features of the disclosed embodiments, however, may also be suitable for treating chronic total occlusion (CTO) of blood vessels, particularly peripheral arteries, and stenoses of other body lumens and other hyperplastic and neoplastic conditions in other body lumens, such as the ureter, the biliary duct, respiratory passages, the pancreatic duct, the lymphatic duct, and the like. Neoplastic cell growth will often occur as a result of a tumor surrounding and intruding into a body lumen. Removal of such material can thus be beneficial to maintain patency of the body lumen. While the remaining discussion is directed toward catheters for removing tissue from and penetrating occlusions in blood vessels (e.g., atheromatous or thrombotic occlusive material in an artery, or other occlusions in veins), it will be appreciated that the teachings of the present disclosure apply equally to other types of tissue-removing catheters, including, but not limited to, catheters for penetrating and/or removing tissue from a variety of occlusive, stenotic, or hyperplastic material in a variety of body lumens.


Referring to FIGS. 1 to 4, an atherectomy catheter 2, which has a cutting element 4, which is used to cut material from a blood flow lumen. The catheter has an elongate body 8 having distal and proximal portions and being sized and shaped for insertion into a body lumen of a subject. The cutting element 4 is movable between a stored position (FIG. 2) and a cutting position (FIG. 3) relative to a window or opening 6 in the catheter body 8 adjacent the distal portion. The cutting element 8 moves outwardly relative to the opening 6 so that an exposed portion of the element 4 extends outside the body 8 through the opening 6. The cutting element 4 may be positioned relative to the body 8 and opening 6 so that less than 90 degrees of the cutting element 4 is exposed to cut tissue. Of course, more of the cutting element 4 may be exposed without departing from numerous aspects of the invention.


Catheter 2 may have a maximum size of 3, 4, 5, 6, 7, 8, 9, 10, or 12 French (1, 1.3, 1.7, 2, 2.3, 2.7, 3, 3.3, or 4 mm) and may have a working length ranging of 20, 30, 40, 60, 80, 100, 120, 150, 180 or 210 cm depending on the requirements of the anatomical location in which use of the catheter is contemplated. Cutter 4 preferably has a diameter slightly less than that of the maximum size of catheter 2, typically 0.010″ (0.025 cm), 0.015″ (0.038 cm), 0.020″ (0.051 cm), 0.025″ (0.064 cm) or 0.030″ (0.076 cm) less. However these relative dimensions are not meant to be limiting.


The catheter 2 is moved distally through a vessel with the cutting element 4 in the working or cutting position as described in further detail below. As the catheter 2 moves through the blood vessel, the tissue is cut by the cutting element 4 and is directed into a tissue chamber 12 positioned distal to the cutting element 4. The tissue chamber 12 may be somewhat elongate to accommodate the tissue that has been cut.


The cutting element 4 is moved proximally from the stored position so that a cam surface 14 on the cutting element 4 engages a ramp 16 on the body 8 of the catheter 2. The interaction between the cam surface 14 and the ramp 16 causes the cutting element 4 to move to the cutting position and also causes a tip 18 to deflect which tends to move the cutting element 4 toward the tissue to be cut.


The cutting element 4 is coupled to a drive shaft 20 that extends through a lumen 21 in the catheter 2. The cutting element 4 is rotated about a longitudinal axis LA when the drive shaft rotates about its longitudinal axis. The cutting element 4 is rotated at about 1 to 160,000 rpm but may be rotated at any other suitable speed depending upon the particular application.


Referring to FIGS. 2, 4 and 5, the cutting element 4 is shown. The term “along the longitudinal axis” as used herein shall mean the view of FIG. 5 that shows the distal end of the cutting element 4 when viewed in the direction of the longitudinal axis and/or the axis of rotation. The cutting element 4 has an annular cutting edge 22 that may be a continuous, uninterrupted, circular-shaped edge although it may also include ridges, teeth, serrations or other features without departing from the scope of the invention. The cutting edge 22 may be at a radially outer edge 23 of the cutting element 4 when the cutting element 4 is in the cutting position. A circumferential inner surface 25 of the cutting element 4 extends from the cutting edge 22 and is chamfered or beveled.


The cutting element 4 has an inner cup-shaped surface 24, which directs the tissue cut by the cutting edge 22 into the tissue chamber 12. In the illustrated embodiment, the circumferential inner surface 25 and the inner cup-shaped surface 24 define an internal cavity of the cutting element 4. The cup-shaped surface 24 may be a smooth and continuous surface free of through-holes, teeth, fins or other features, which disrupt the smooth nature of the surface 24 for at least half the distance from the longitudinal axis LA to the outer radius at the cutting edge 22. The cup-shaped surface 24 may also be free of any such features throughout an area of at least 300 degrees relative to the longitudinal axis LA.


Cutter 4 may be comprised of steel, tungsten carbide, tungsten carbide cobalt, tungsten carbide molybdenum, silicon carbide, silicon nitride, ceramic, amorphous metals or other materials and may be manufactured by methods including turning, grinding, sintering, electro-discharge machining (EDM), laser cutting, heat treating, precipitation hardening, casting or other methods.


Referring to FIGS. 4 to 6, one or more raised elements 26 extend outwardly from the cup-shaped surface 24 with FIG. 5 showing two raised elements 26. The raised element 26 is a small wedge of material that rises relatively abruptly from the cup-shaped surface 24. The raised element 26 has a first wall 30 and a second wall 32 that both extend radially and form an angle of about 20 degrees therebetween so that the two raised elements 26 together occupy an area of about 40 degrees and altogether may be less than 60 degrees. A third wall 34 extends between the radially inner portion of the first and second walls 30, 32. The raised element 26 helps to break up hard tissue and plaque by applying a relatively blunt force to the hard tissue or plaque since cutting such tissue with the cutting edge 22 is often not effective.


The raised elements 26 altogether occupy a relatively small part of the cup-shaped surface 24. The raised elements 26 together may occupy less than 5% of a surface area of the cutting element 4. The term “surface area of the cutting element” as used herein shall mean the surface area which is radially inward from the outer or cutting edge 22 and is exposed when viewed along the longitudinal axis LA. Stated another way, at least 95% of the surface area of the cutting element is a smooth cup-shaped surface when viewed along the longitudinal axis. However, the raised element surface area may occupy more of the total surface area of the cup. By sizing and positioning the raised element 26 in this manner, the raised element 26 does not interfere with the ability of the cutting element 4 to cut and re-direct tissue into the tissue chamber while still providing the ability to break up hard tissue and plaque with the raised element 26.


The raised element 26 may be recessed from the cutting edge 22 longitudinally and/or radially. The raised element 26 may be recessed longitudinally (along axis LA) from the cutting edge 0.0010 to 0.0020 inch (0.0025 to 0.0051 cm) and may be recessed about 0.0015 inch (0.0038 cm). The raised element 26 may be recessed radially from the cutting edge 22 by about the same amount. A distal wall 38 of the cutting element 4 forms a flat surface 40, which is perpendicular to the longitudinal axis LA so that the entire surface is recessed the same distance from the cutting edge. The distal wall 38 may take any other shape, such as a curved shape, or may be tilted, inclined or beveled as now described. The raised element may have other shapes, sizes and locations within the scope of the present invention.


Referring to FIGS. 7, 8 and 8A, another cutting element 4A is shown wherein the same or similar reference numbers refer to the same or similar structure and all discussion concerning the same or similar features of the cutting element 4 are equally applicable here unless noted otherwise. The cutting element 4A has a cutting edge 22A that may be a continuous, uninterrupted, circular-shaped edge although it may also include ridges, teeth, serrations or other features without departing from the scope of the invention. The cutting edge 22A may be at a radially outer edge 23A of the cutting element 4A when the cutting element 4A is in the cutting position. The cutting element 4A has a cup-shaped surface 24A that directs the tissue cut by the cutting edge 22A into the tissue chamber 12 (see FIG. 2). The cup-shaped surface 24A may be a substantially smooth and continuous surface as described above in connection with the cutting element 4.


One or more raised elements 26A extend outwardly from the cup-shaped surface 24A. FIG. 8 shows four raised elements 26A but may include any number such as 1, 2, 3, 4, 6 or 8 raised elements. The raised element 26A is a small wedge of material that rises relatively abruptly from the cup-shaped surface 24A. The raised element 26A has a first wall 30A and a second wall 32A which, in one embodiment, both extend radially and form an angle of about 1 to 30 degrees therebetween so that the four raised elements 26A together occupy an area of about 4 to 60 degrees and altogether may be less than 60 degrees. A third wall 34A extends between the radially inner portion of the first and second walls 30A, 32A. In some embodiments the raised elements 26A may occupy a relatively small part of the cup-shaped surface 24A and may be recessed from the cutting edge 22A in the manner described above in connection with the cutting element 4. In other embodiments at least 60%, 70%, 80% or 90% of the surface area of the cutting element is a smooth cup-shaped surface.


A distal wall 38A of the cutting element 4A has a surface 40A that forms an angle of about 30 to 90 degrees with respect to the longitudinal axis LA. The entire surface 40A may still be somewhat close to but recessed from the cutting edge 22A so that the entire surface 40A is at least 0.0010, 0.0020, 0.0030, 0.0040 or 0.0050 inches (0.0025, 0.0051, 0.0076, 0.0101, or 0.0127 cm) from the cutting edge. A leading edge 50 formed at the intersection of wall 30A and distal wall 38A is closer to the cutting edge 22A than an edge 52 formed at the intersection of wall 32A and distal wall 38A. The cutting element 4A may be rotated in either direction so that the raised edge 50 may be the leading or trailing edge. In some embodiments the raised edge may be 0.0010 to 0.0020 inch (0.0025 to 0.0051 cm) from the cutting edge. The raised elements 26A may all be formed in the same manner or may be different from one another. For example, some of the elements 26A could be angled in different directions so that two of the elements have the raised edge 50 as the leading edge and two of the elements 26A have the raised edge 50 as the trailing edge. The raised elements 26A may also subtend different angles, be of different heights or may have different radial lengths without departing from various aspects of the present invention.


Referring to FIGS. 9, 10 and 10A, another cutting element 4B is shown wherein the same or similar reference numbers refer to the same or similar structure and all discussion concerning the same or similar features of the cutting element 4 are equally applicable here unless noted otherwise. The cutting element 4B has a cutting edge 22B that may be a continuous, uninterrupted, circular-shaped edge although it may also include ridges, teeth, serrations or other features without departing from the scope of the invention. The cutting edge 22B may be at a radially outer edge 23B of the cutting element 4B when the cutting element 4B is in the cutting position. The cutting element 4B has a cup-shaped surface 24B that directs the tissue cut by the cutting edge 22B into the tissue chamber 12 (see FIG. 2). In one embodiment the cup-shaped surface 24B may be a substantially smooth and continuous surface as described above in connection with the cutting element 4.


One or more raised elements 26B, extend outwardly from the cup-shaped surface 24B. FIGS. 9 and 10 show four raised elements 26B but may include any number such as 1, 2, 3, 4, 6 or 8 raised elements. The raised element 26B is a small wedge of material that rises relatively abruptly from the cup-shaped surface 24B and which subtends an arc of about 1 to 30 degrees relative to axis LA, the four raised elements 26B subtending an arc of about 4 to 60 degrees altogether. The raised element 26B has a first wall 30B that extends between a curved leading edge 50B and cup-shaped surface 24B and also has a second wall 32B which extends radially relative to axis LA. A third wall 34B extends between the radially inner portion of the first and second walls 30B, 32B. In some embodiments the raised elements 26B may occupy a relative small part of the cup-shaped surface 24B and may be recessed from the cutting edge 22B in the manner described above in connection with the cutting element 4. In other embodiments at least 60%, 70%, 80% or 90% of the surface area of the cutting element is a smooth cup-shaped surface.


A distal wall 38B of the cutting element 4B has a surface 40B that forms an angle of less than 90 degrees with respect to the longitudinal axis LA. In some embodiments the surface 40B is angled such that edge 50B is more distal than edge 52B. The entire surface 40B may still be somewhat close to but recessed from the cutting edge 22B so that the entire surface 40B is from 0.0010 to 0.0050 inch (0.0025 to 0.0127 cm), including 0.0010, 0.0020, 0.0030, 0.0040 or 0.0050 inch (0.0025, 0.0051, 0.0076, 0.0101, or 0.0127 cm), from the cutting edge. An edge 50B formed at the intersection of wall 30B and distal wall 38B is closer to the cutting edge 22B than an edge 52B formed at the intersection of wall 32B and distal wall 38B. The included angle between wall 30B and surface 40B, in the vicinity of edge 50B, is greater than 90 degrees. The cutting element 4B may be rotated in either direction so that the raised edge 50B may be the leading or trailing edge. In one embodiment, the cutter 4B is rotated in the direction of arrow R so that edge 50B is the leading edge. Raised edges 50B, 52B may be 0.0010 to 0.0020 inch (0.0025 to 0.0051 cm) from the cutting edge. The raised elements 26B may all be formed in the same manner or may be different from one another. For example, some of the elements 26B could be angled in different directions so that two of the elements have the raised edge 50B as the leading edge and two of the elements 26A have the raised edge 50B as the trailing edge. The raised elements 26B may also subtend different angles, be of different heights or may have different radial lengths without departing from various aspects of the present invention.


In one embodiment cutter 4B is rotated in the direction of arrow R and pushed distally to force cup-shaped surface 24B and raised elements 26B into contact with material such as atheroma or plaque. Raised elements 26B will tend to concentrate cutting force along edge 50B due to relief angle between cutter axis LA and surface 40B. Cutter 4B will tend to scrape away material such as atheroma or plaque rather than cut into this material due to the obtuse included angle between wall 30B and surface 40B, in the vicinity of edge 50B. Material contacted by raised elements 26B will tend to be directed toward axis LA by surface 30B which curves from a relatively tangential angle near edge 22B to a relatively radial angle near edge 34B.


Referring to FIGS. 11 and 11A, another cutting element 4C is shown. Cutting element 4C is a modified version of cutting element 4A. The modification consists of adding an undercut 41C to the leading face of one or more raised element 26A, resulting in modified raised element 26C. When cutter 4C is rotated in the direction of arrow T the undercut directs particles of material into the concave cavity defined by cup-shaped surface 24A of the cutter, and towards axis LA of the cutter. Optionally an undercut can be applied to the leading face of one or more raised element 26, 26B of cutting elements 4, 4B respectively as well as to one or more raised elements 26A of cutting element 4A.


Undercut 41C is defined by wall 30C which is oriented at an acute angle to surface 40A, which intersects cup-shaped surface 24A, and which meets wall 34A. The plane of wall 30C also intersects axis LA at less than 5, 10, 15, or 20 degrees such that, when cutter 4C is spinning in direction T, particles of material tend to travel along wall 30C in directions away from cutting edge 22A and toward axis LA. In some embodiments wall 43C may be interspersed between the intersection of wall 30C and wall 40A. Wall 43C may be oriented at any desired rake angle, such as for example a negative rake angle where the raised element will tend to not dig in to material being cut.


Referring to FIGS. 12-18, another embodiment of a cutting element is indicated generally at 4D. The cutting element 4D is similar to cutting element 4B, except that, as explained below, radial lengths of the raised elements, generally indicated at 26D, are greater than radial lengths of the raised elements 26B of the cutting element 4B. The cutting element 4D has an annular cutting edge 22D that may be a continuous, uninterrupted, arcuate-shaped edge although it may also include ridges, teeth, serrations or other features without departing from the scope of the invention. In the illustrated embodiment, an inner surface of the cutting element 4D defines an internal cavity of the cutting element. The inner surface includes a circumferential inner surface 25D, which is chamfered or beveled, extending from the cutting edge 22, and a central cup-shaped surface 24D that directs the tissue cut by the cutting edge 22D into the tissue chamber 12 (see FIG. 2). The cutting edge 22D may be at a radially outer edge 23D of the cutting element 4D when the cutting element is in the cutting position. In one embodiment the cup-shaped surface 24D may be a substantially smooth and continuous surface as described above in connection with the cutting element 4. As disclosed in another embodiment below (FIGS. 19 and 20), the cup-shaped surface 24D may be abrasive. In other embodiments, a through opening (not shown) may extend longitudinally through the cup-shaped surface 24D to direct removed tissue proximally through the cutting element 4D.


The raised elements 26D extend generally longitudinally outward from the cup-shaped surface 24B, within the internal cavity of the cutting element 4D. The embodiment illustrated in FIGS. 12-18 includes four raised elements 26D, but the cutting element 4D may include any number such as 1, 2, 3, 4, 6 or 8 raised elements. Each raised element 26D is a small wedge of material that rises relatively abruptly from the inner surface (e.g., the cup-shaped surface 24D) and which subtends an arc of about 1 to 30 degrees relative to axis LA, the four raised elements 26D subtending an arc of about 4 to 60 degrees altogether. Referring to FIG. 13, each raised element 26D has a leading radial wall (broadly, a first wall) 30D, a trailing radial wall (broadly, a second wall) 32D, a radially inner end wall 34D (broadly, a third wall), and a distal wall (broadly, a fourth wall) 38D. The leading radial wall 30D has a depth extending longitudinally relative to the cutter 4D between the distal wall 38D and the cup-shaped surface 24D, and a radial length RL (FIG. 15) extending generally inward from adjacent the cutting edge 22D of the cutting element 4D, as explained in more detail below. The leading radial wall 30D is curved along its depth (i.e., curved longitudinally with respect to the cutting element 4D) and is also curved along its radial length RL. A leading edge 50D of the cutting element 26D is defined at the intersection of the leading radial wall 30D and the distal wall 38D. The leading edge 50D is curved radially relative to the cutter 4D. In some embodiments the raised elements 26D may occupy a relative small part of the cup-shaped surface 24D and may be recessed from the cutting edge 22D in the manner described above in connection with the cutting element 4. In other embodiments at least 60%, 70%, 80% or 90% of the surface area of the cutting element is a smooth cup-shaped surface.


The distal wall 38D of the cutting element 4D forms an angle of less than 90 degrees with respect to the longitudinal axis LA. In some embodiments the wall 38D is angled such that edge 50D is more distal than the edge defined at the intersection of the distal wall 38D and the trailing wall 32D. The entire distal wall 38D may adjacent to, but recessed longitudinally from, the cutting edge 22D so that the distal wall is spaced a minimum longitudinal distance from about 0.0010 to about 0.0050 inch (0.0025 to 0.0127 cm), including about 0.0010, about 0.0020, about 0.0030, about 0.0040 or about 0.0050 inch (0.0025, 0.0051, 0.0076, 0.0101, or 0.0127 cm), from the cutting edge. The included angle between leading radial wall 30D and the distal wall 38D, in the vicinity of the leading edge 50D, may be greater than 90 degrees. The cutting element 4D is rotated in the direction R (FIG. 13) so that the leading edge 50D engages the tissue to be removed. As shown in FIG. 15, the leading edge 50D of the raised element 26D may be spaced a radial distance d1 measuring from about 0.0010 to about 0.0020 inch (0.0025 to 0.0051 cm) from the cutting edge 22D. The raised elements 26D may all be formed in the same manner or may be different from one another. The raised elements 26D may also subtend different angles, be of different heights, have different radial lengths, or have a different spacing (including zero) from the cutting edge without departing from various aspects of the present invention.


Referring to FIGS. 14 and 15, the radial length RL of the leading radial wall 30D of each raised element 26D is defined by the radial distance between the radially outermost portion P1 and the radially innermost portion P2 of the leading radial wall. In FIG. 15, the radial length RL of the radial wall 30D is measured using concentric, outer and inner imaginary circles C1, C2, respectively, each having a center that is coincident with the longitudinal axis LA. The radially outermost portion P1 of the leading radial wall 30D lies on the circumference of the outer imaginary circle C1, and the radially innermost portion P2 lies on the circumference of the inner imaginary circle C2. In the illustrated embodiment, each radially outermost portion P1 of the leading radial walls 30D lies on the circumference of the same outer imaginary circle C1, and each radially innermost portion P2 lies on the circumference of the same inner imaginary circle C2, though it is understood that the radially outermost and innermost portions, respectively, may not lie on the same imaginary circles without departing from the scope of the present invention. In the illustrated embodiment, the radially inner end wall 34D is arcuately shaped so that substantially the entire radially inner end wall lies on the circumference of the inner imaginary circle C2, although this may not be the case in other embodiments. The radial distance between the circumferences of the outer and inner imaginary circles C1, C2, respectively, determines the radial length RL of the leading radial wall 30D, as shown in FIG. 15. In one example, the radial length RL of the leading radial wall 30D may measure from about 0.0050 in to about 0.0200 in, or from about 0.0075 in to about 0.0175 in, or from about 0.0100 in to about 0.0150 in. In one example, the radial length RL of the leading radial wall may be at least about 33%, or at least about 40%, or at least about 50%, or at least about 60% or at least about 70% or at least about 80% of the radius R (FIG. 15) of the cutting edge 22D.


Referring still to FIG. 15, the radially innermost portion P2 of the leading radial wall 30D of each raised element 26D is spaced a radial distance d2 from the longitudinal axis LA of the cutting element 4D. As set forth above, the radially innermost portion P2 of the leading radial wall 30D lies on the circumference of the inner imaginary circle C2. The radial distance between the longitudinal axis LA and the circumference of the inner imaginary circle C2 determines the radial distance d2 between the longitudinal axis and the radially innermost portion P2 of the leading radial wall 30D. In one example, radial distance d between the longitudinal axis and the radially innermost portion P2 of the leading radial wall 30D may measure from about 0.0150 in to about 0.0300 in, or from about 0.0175 in to about 0.0275 in, or from about 0.0200 in to about 0.0250 in. In one example, the radial distance d2 may be less than about 66%, or less than about 60%, or less than about 55%, or less than about 50%, or less than about 45%, or less than about 40%, or less than about 35% of the radius R of the annular cutting edge 22D, as shown in FIG. 15. In one example, the radial distance d2 may be from about 15% to about 66%, or from about 20% to about 60%, or from about 25% to about 50%, or from about 30% to about 40% of the radius R of the annular cutting edge 22D.


As disclosed above herein, in the deployed configuration the cutting element 4D extends through the window or opening 6 in the tip 18. In this embodiment, each raised element 26D is configured such that as the cutting element 4D is rotated 360 degrees, less than an entirety of the leading radial wall 30D is ever exposed through the opening 6. Stated another way, a radially outer portion of each raised element 26D is cyclically exposed through the opening 6 while a radial inner portion of the leading radial wall never passes through the opening (i.e., is never exposed). This feature is shown in FIG. 17, where the circle indicated by reference character S defines an outer surface of the tip 18 that is immediately adjacent the window 6 (see also, FIG. 16). As can be seen from FIG. 17, an imaginary line L is drawn to show the location where a radial portion of the cutting element 4D is at its maximum exposure outside the catheter body. However, as can be seen from this figure, a radial inner portion of the leading radial wall 30D of cutting element 26D at the imaginary line L does not cross the exposure plane EP and does not pass through the window 6.


The cutter 4D is rotated in the direction of arrow R and pushed distally to force cup-shaped surface 24D and raised elements 26D into contact with material such as atheroma or plaque. Raised elements 26D will tend to concentrate cutting force along edge 50D because of the negative rake angle of the leading radial wall 30D. Cutter 4D will tend to scrape away material such as atheroma or plaque rather than cut into this material due to the obtuse included angle between wall 30D and distal wall 38D, in the vicinity of edge 50D. Material contacted by raised elements 26D will tend to be directed toward axis LA by surface 30D which curves from a more circumferential extent near edge 22D to a more radial extent near edge 34D. Moreover, it is believed that configuring the raised element(s) 26D so that only a portion of the leading radial wall 30D intermittently passes through the window 6 (i.e., only a portion and not the entirety of the leading radial wall is exposed) and is intermittently exposed (as explained above), facilitates cutting and/or breaking of hardened tissue (e.g., calcified tissue) by ensuring that the raised elements 26D engage tissue that may enter the window 6, as shown in FIG. 18. The leading radial wall 30D also more reliably guides or directs removed material toward the axis LA.


The cutting element 4D may be formed in a suitable manner such as integrally as a single, one-piece construction. For example, the cutting element 4D may be comprised of steel, tungsten carbide, tungsten carbide cobalt, tungsten carbide molybdenum, silicon carbide, silicon nitride, ceramic, amorphous metals or other materials and may be manufactured by methods including turning, grinding, sintering, electro-discharge machining (EDM), laser cutting, heat treating, precipitation hardening, casting or other methods.


Referring to FIGS. 19 and 20, cutting elements 4E and 4F are shown (respectively). Cutting element 4E and 4F include raised elements 26E, 26F, that may be identical to the raised elements 26A-26D of any of the previously disclosed cutting element 4A-4D disclosed above or have a different configuration. Accordingly, the teachings of the raised elements 26A-26D set forth above are incorporated in this embodiment. As opposed to the previously disclosed cutting elements, the cutting elements 4E and 4F each has an abrasive cup-shaped surface 24E, 24F. In one embodiment, other than the abrasive cup-shaped surface 24E, 24F, the cutting elements 4E and 4F are identical to the cutting element 4D, including the raised elements 26E being identical to the raised elements 26D. Accordingly, in this embodiment each of the cutting elements 4E and 4F includes the cutting element 4D and the respective one of the abrasive cup-shaped surfaces 24E, 24F. Referring to FIG. 19, cutting element 4E includes the embossed area of the cup-shaped surface 24E, including raised, diamond-shaped abrading members 100. Referring to FIG. 20, cutting element 4F includes a dimpled area of the cup shape surface 24F including depressed portions 102. In each embodiment, the abrasive cup-shaped surface 24E, 24F abrades hardened tissue (e.g., calcified tissue), and in particular, the abrasive cup-shaped surface abrades hardened tissue that is not engaged by the raised elements 26E. Thus, it is believed that the cutting elements 4E and 4F may more effectively remove hardened tissue compared to the cutting element 4, which is free from an abrading surface.


The cutting elements 4E and 4F each may be formed integrally as a single, one-piece construction, or may be formed as a multiple-piece construction. As an example, each cutting element 4E and 4F may be comprised of steel, tungsten carbide, tungsten carbide cobalt, tungsten carbide molybdenum, silicon carbide, silicon nitride, ceramic, amorphous metals or other materials and may be manufactured by methods including turning, grinding, sintering, electro-discharge machining (EDM), laser cutting, heat treating, precipitation hardening, casting or other methods.


Referring to FIGS. 21-25, another embodiment of a cutting element is indicated generally at 4G. The cutting element 4G is similar to the cutting element 4B, and therefore, like components are indicated by similar reference numerals, and the teachings set forth with respect to the cutting element 4B apply equally to this embodiment. Briefly, each raised element 26G of the cutting element 4G has a leading wall 30G, a radial inner end wall 34G, a distal wall 38G, and a leading edge 50G. For purposes of this disclosure, the main difference between the present cutting element 4G and the prior cutting element 4B is that the radial distance between the leading edge 50G of each raised element 26G and the cutting edge 22G of the present cutting element 4G is greater than the radial distance between the leading edge 50B of each raised element 26B and the cutting edge 22B of the cutting element 4B. It is understood that the teachings set forth herein for the cutting element 4G apply equally to the other cutting elements 4A-4F.


In the illustrated example, the present cutting element 4G includes an undercut (e.g., groove, recess, notch or cutout) 106 in each of the raised elements 26G adjacent the cutting edge 22G. The undercut 106 extends through the leading wall 30G, the leading edge 50G, and the distal wall 38G of each raised element 26G. The undercut 106 extends generally radially into the raised element 26G at the radially outermost portion of the raised element. As best seen in FIG. 24, the undercut 106 has a circumferential extent almost perpendicular to the wall 30G. The depth of the undercut 106 shallows slightly circumferentially away from the leading edge 50G. In contrast, the undercut 41C of FIGS. 11 and 11A extends circumferentially into the raised element 26C and has a generally radial extent along the wall 30C. As shown best in FIG. 25, because of the undercut 106, the radially outermost portion P1 of the leading edge 50G of the cutting element 4G is radially spaced from the chamfered circumferential inner surface 25G (broadly, the inner surface) of the cutting element a radial distance D1 (FIG. 25). In one example, the radial distance D1 may measure from greater than 0.0000 in to about 0.0100 in, or from greater than 0.0000 to about 0.0050 in, or from about 0.0005 in to about 0.0015 in. The radially outermost portion P1 of the leading edge 50G is radially spaced from the cutting edge 22G of the cutting element 4G a distance D2, which is greater than the radial distance between the leading edge 50B and the cutting edge 22B of the cutting element 4B. In one example, the distance D2 may measure from greater than 0.0000 in to about 0.0100 in, or from greater than 0.0000 to about 0.0050 in, or from about 0.0005 in to about 0.0020 in. Moreover, the leading edge 50G of the cutting element 4G may be spaced a minimum longitudinal distance D3 from the cutting edge 22G. In one example, the distance D3 may measure from about 0.0000 to about 0.0020 in. In one example, the leading edge 50G is similar to the leading edge 50B, except for the undercut 106, and therefore, an imaginary extrapolated line extending from the leading edge 50G intersects the chamfered inner surface 25G of the cutting element 4G at portion P3 (FIG. 24), which may be substantially the same location as the radially outermost portion P1 of the raised element 26B (see, e.g., FIG. 14).


It is believed that by spacing the leading edges 50G of the raised elements 26G from the chamfered inner circumferential portion 25G of the cutting element 4G, while maintaining a suitable minimum longitudinal distance between the cutting edge 22G and the leading edges of the raised elements, the raised elements 26G have better engagement with tissue than the cutting element 4B, without sacrificing cutting efficiency of the cutting element.


The cutting elements 4G may be formed integrally as a single, one-piece construction, or may be formed as a multiple-piece construction. As an example, the cutting element 4G may be comprised of steel, tungsten carbide, tungsten carbide cobalt, tungsten carbide molybdenum, silicon carbide, silicon nitride, ceramic, amorphous metals or other materials and may be manufactured by methods including turning, grinding, sintering, electro-discharge machining (EDM), laser cutting, heat treating, precipitation hardening, casting or other methods.


Use of the catheter 2 is now described in connection with the cutting element 4 but is equally applicable to use of the catheter 2 with either the cutting element 4A, the cutting element 4B, or the cutting element 4C. The catheter 2 is introduced into the patient in a conventional manner using a guidewire (not shown) or the like. The catheter 2 is advanced with the cutting element in the stored position of FIG. 2 until the catheter is positioned proximal to the location where material is to be removed. The cutting element 4 is then moved proximally so that the ramp 16 and cam surface 14 engage to move the cutting element 4 to the cutting position of FIG. 3 and to deflect the tip of the catheter 2 to move the cutting element 4 toward the tissue to be cut. The cutting element 4 is rotated about longitudinal axis LA and catheter 2 is then moved distally through the vessel so that the cutting element 4 cuts tissue. The tissue, which has been cut, is directed into the tissue chamber 12 by the cup-shaped surface 24, one or more raised elements 26, by curved surface 30B (of cutting element 4B), or by any combination of a cup-shaped surface, raised element, or curved surface. The location for collection of cut tissue may be other than described within the scope of the present invention.


More specifically, when using cutting element 4B and rotating the cutting element in the direction of arrow R (FIG. 9) cutting edge 22B slices softer material and cup-shaped surface directs the cut material into tissue chamber 12; the relief angle assures that distally directed force on the catheter is concentrated at raised element edge 50B rather than distributed over wall 38B; raised elements 26B will tend to scrape away or pulverize harder material such as calcium due to the obtuse included angle between leading radial wall 30B and distal wall 38B in the vicinity of edge 50B; curved surface 30B directs material particles towards cutter axis LA; and curved surface 30B when rotating creates a fluid vortex that tends to direct material particles towards cutter axis LA and distally into tissue chamber 12.


More specifically, when using an undercut such as that shown for cutting element 4C and rotating the cutting element in the direction of arrow T (FIG. 11) undercut 41C directs material away from cutting edge 22A, along cup-shaped surface towards axis LA, and radially towards axis LA of the cutting element.


More specifically, when using the cutting element 4D with raised elements 26D having leading radial walls 30D as set forth above, the raised elements facilitate cutting and/or breaking of hardened tissue (e.g., calcified tissue) by ensuring that the raised elements 26D engage tissue that may enter the window 6, as shown in FIG. 18.


When using the cutting elements 4E or 4F, the abrasive cup-shaped surface 24E, 24F abrades hardened tissue (e.g., calcified tissue), and in particular, the abrasive cup-shaped surface abrades hardened tissue that is not engaged by the raised elements 26E.


When using the cutting element 4G, the raised elements 26G have improved engagement with tissue, as compared to the cutting element 4B, without sacrificing cutting efficiency of the cutting element.


Having described the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.


When introducing elements of the present invention or the preferred embodiments(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.


As various changes could be made in the above constructions, products, and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

Claims
  • 1. A tissue-removing catheter comprising: an elongate catheter body having opposite distal and proximal portions and being sized and shaped for introduction into a body lumen of a subject;a drive shaft extending longitudinally within the catheter body, wherein the drive shaft is rotatable relative to the catheter body about a longitudinal axis of the drive shaft; anda cutting element at the distal portion of the elongate catheter body, the cutting element having opposite proximal and distal ends and a longitudinal axis extending therebetween, the cutting element being operatively connected to the drive shaft for rotation about a longitudinal axis of the cutting element, the cutting element including an annular cutting edge at the distal end of the cutting element surrounding the longitudinal axis of the cutting element, the annular cutting edge having a radius as taken from the longitudinal axis of the cutting element,an inner surface extending proximally from the cutting edge and defining an internal cavity,at least one raised element in the internal cavity extending generally longitudinally outward from the inner surface, the at least one raised element including a leading radial wall extending generally radially inward toward the longitudinal axis of the cutting element,a distal wall intersecting the leading radial wall, anda leading edge defined by the intersection of the distal wall and the leading radial wall, the leading edge having a radially outermost portion relative to the longitudinal axis of the cutting element, a radially innermost portion relative to the longitudinal axis of the cutting element, and a radial length extending between the radially outermost and innermost portions,wherein the radially outermost portion of the leading edge is discontinuous with and does not intersect the inner surface of the cutting element so that a radial gap is disposed radially between the radially outermost portion of the leading edge and the inner surface of the cutting element.
  • 2. The tissue-removing catheter set forth in claim 1, wherein the radial gap has a radial dimension from greater than 0.0000 in to about 0.0100 in.
  • 3. The tissue-removing catheter set forth in claim 1, wherein the cutting element includes an undercut extending generally radially into the raised element and defining the radial gap.
  • 4. The tissue-removing catheter set forth in claim 1, wherein the leading edge of the at least one raised element is spaced apart longitudinally from the annular cutting edge.
  • 5. The tissue-removing catheter set forth in claim 1, wherein a circumferential portion of the inner surface of the cutting element extending from the annular cutting edge is chamfered.
  • 6. The tissue-removing catheter set forth in claim 1, wherein the at least one raised element comprises a plurality of raised elements.
US Referenced Citations (575)
Number Name Date Kind
1481078 Albertson Jan 1924 A
2178790 Henry Nov 1939 A
2701559 Cooper Feb 1955 A
2850007 Lingley Sep 1958 A
3064651 Henderson Nov 1962 A
3082805 Royce Mar 1963 A
3320957 Sokolik May 1967 A
3614953 Moss Oct 1971 A
3683891 Eskridge et al. Aug 1972 A
3705577 Sierra Dec 1972 A
3732858 Banko May 1973 A
3749085 Wilson et al. Jul 1973 A
3800783 Jamshidi Apr 1974 A
3815604 O'Malley et al. Jun 1974 A
3831585 Brondy et al. Aug 1974 A
3837345 Matar Sep 1974 A
3845375 Stiebel Oct 1974 A
3937222 Banko Feb 1976 A
3945375 Banko Mar 1976 A
3976077 Kerfoot, Jr. Aug 1976 A
3995619 Glatzer Dec 1976 A
4007732 Kvavle et al. Feb 1977 A
4020847 Clark, III May 1977 A
4030503 Clark, III Jun 1977 A
4034744 Goldberg Jul 1977 A
4038985 Chiulli Aug 1977 A
4112708 Fukuda Sep 1978 A
4177797 Baylis et al. Dec 1979 A
4210146 Banko Jul 1980 A
4273128 Lary Jun 1981 A
4306562 Osborne Dec 1981 A
4306570 Matthews Dec 1981 A
4349032 Koyata Sep 1982 A
4368730 Sharrock Jan 1983 A
4424045 Kulischenko et al. Jan 1984 A
4436091 Blanko Mar 1984 A
4445509 Auth May 1984 A
4490139 Huizenga et al. Dec 1984 A
4494057 Hotta Jan 1985 A
4512344 Barber Apr 1985 A
4589412 Kensey May 1986 A
4603694 Wheeler Aug 1986 A
4620547 Boebel Nov 1986 A
4631052 Kensey Dec 1986 A
4646719 Neuman et al. Mar 1987 A
4646736 Auth Mar 1987 A
4646738 Trott Mar 1987 A
4649919 Thimsen et al. Mar 1987 A
4653496 Bundy et al. Mar 1987 A
4664112 Kensey et al. May 1987 A
4669469 Gifford, III et al. Jun 1987 A
4686982 Nash Aug 1987 A
4692141 Mahurkar Sep 1987 A
4696298 Higgins et al. Sep 1987 A
4696667 Masch Sep 1987 A
4705038 Sjostrom et al. Nov 1987 A
4706671 Weinrib Nov 1987 A
4728319 Masch Mar 1988 A
4729763 Henrie Mar 1988 A
4730616 Frisbie et al. Mar 1988 A
4732154 Shiber Mar 1988 A
4733662 DeSatnick et al. Mar 1988 A
4747406 Nash May 1988 A
4747821 Kensey et al. May 1988 A
4749376 Kensey et al. Jun 1988 A
4754755 Husted Jul 1988 A
4757819 Yokoi et al. Jul 1988 A
4765332 Fischell et al. Aug 1988 A
4771774 Simpson et al. Sep 1988 A
4781186 Simpson et al. Nov 1988 A
4784636 Rydell Nov 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4794931 Yock Jan 1989 A
4817613 Jaraczewski et al. Apr 1989 A
4819634 Shiber Apr 1989 A
4819635 Shapiro Apr 1989 A
4838268 Keith et al. Jun 1989 A
4842579 Shiber Jun 1989 A
4844064 Thimsen et al. Jul 1989 A
4846192 MacDonald Jul 1989 A
4848343 Wallsten et al. Jul 1989 A
4850957 Summers Jul 1989 A
4857046 Stevens et al. Aug 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4870953 DonMicheal et al. Oct 1989 A
4883458 Shiber Nov 1989 A
4886061 Fischell et al. Dec 1989 A
4886490 Shiber Dec 1989 A
4887613 Farr et al. Dec 1989 A
4894051 Shiber Jan 1990 A
4899757 Pope, Jr. et al. Feb 1990 A
4919133 Chiang Apr 1990 A
4923462 Stevens May 1990 A
4926858 Gifford, III et al. May 1990 A
4928693 Goodin et al. May 1990 A
4936987 Persinski et al. Jun 1990 A
RE33258 Onik et al. Jul 1990 E
4950238 Sullivan Aug 1990 A
4954338 Mattox Sep 1990 A
4957482 Shiber Sep 1990 A
4966604 Reiss Oct 1990 A
4973409 Cook Nov 1990 A
4979939 Shiber Dec 1990 A
4979951 Simpson Dec 1990 A
4986807 Farr Jan 1991 A
4990134 Auth Feb 1991 A
4994067 Summers Feb 1991 A
4997435 Demeter Mar 1991 A
5000185 Yock Mar 1991 A
5002553 Shiber Mar 1991 A
5003918 Olson et al. Apr 1991 A
5007896 Shiber Apr 1991 A
5007917 Evans Apr 1991 A
5009659 Hamlin et al. Apr 1991 A
5011490 Fischell et al. Apr 1991 A
5019088 Farr May 1991 A
5024234 Leary et al. Jun 1991 A
5024651 Shiber Jun 1991 A
5026384 Farr et al. Jun 1991 A
5029588 Yock et al. Jul 1991 A
5030201 Palestrant Jul 1991 A
5047040 Simpson et al. Sep 1991 A
5049124 Bales, Jr. Sep 1991 A
5053044 Mueller et al. Oct 1991 A
5054492 Scribner et al. Oct 1991 A
5061273 Yock Oct 1991 A
5064435 Porter Nov 1991 A
5071425 Gifford, III et al. Dec 1991 A
5074841 Ademovic et al. Dec 1991 A
5077506 Krause Dec 1991 A
5078722 Stevens Jan 1992 A
5078723 Dance et al. Jan 1992 A
5084010 Plaia et al. Jan 1992 A
5085662 Willard Feb 1992 A
5087265 Summers Feb 1992 A
5092839 Kipperman Mar 1992 A
5092873 Simpson et al. Mar 1992 A
5095911 Pomeranz Mar 1992 A
5100423 Fearnot Mar 1992 A
5100424 Jang et al. Mar 1992 A
5100426 Nixon Mar 1992 A
5101806 Hunt et al. Apr 1992 A
5108500 Mattox Apr 1992 A
5110822 Sherba et al. May 1992 A
5112345 Farr May 1992 A
5114399 Kovalcheck May 1992 A
5115814 Griffith et al. May 1992 A
5116352 Schnepp-Pesch et al. May 1992 A
5120323 Shockey et al. Jun 1992 A
5127902 Fischell Jul 1992 A
5127917 Niederhauser et al. Jul 1992 A
5135531 Shiber Aug 1992 A
5139506 Bush Aug 1992 A
5154705 Fleischhacker et al. Oct 1992 A
5154724 Andrews Oct 1992 A
5165421 Fleischhacker et al. Nov 1992 A
5176693 Pannek, Jr. Jan 1993 A
5178625 Groshong Jan 1993 A
5181920 Mueller et al. Jan 1993 A
5183432 Noguchi Feb 1993 A
5190528 Fonger et al. Mar 1993 A
5192291 Pannek, Jr. Mar 1993 A
5195956 Stockmeier Mar 1993 A
5211651 Reger et al. May 1993 A
5217474 Zacca et al. Jun 1993 A
5222966 Perkins et al. Jun 1993 A
5224488 Neuffer Jul 1993 A
5224945 Pannek, Jr. Jul 1993 A
5224949 Gomringer et al. Jul 1993 A
5226909 Evans et al. Jul 1993 A
5226910 Kajiyama et al. Jul 1993 A
5234451 Osypka Aug 1993 A
5242460 Klein et al. Sep 1993 A
5242461 Kortenbach et al. Sep 1993 A
5250059 Andreas et al. Oct 1993 A
5250065 Clement et al. Oct 1993 A
5261877 Fine et al. Nov 1993 A
5263928 Trauthen et al. Nov 1993 A
5263959 Fischell Nov 1993 A
5267955 Hanson Dec 1993 A
5267982 Sylvanowicz Dec 1993 A
5269793 Simpson Dec 1993 A
5273526 Dance et al. Dec 1993 A
5282484 Reger Feb 1994 A
5284486 Kotula et al. Feb 1994 A
5285795 Ryan et al. Feb 1994 A
5290303 Pingleton et al. Mar 1994 A
5295493 Radisch, Jr. Mar 1994 A
5306294 Winston et al. Apr 1994 A
5308354 Zacca et al. May 1994 A
5312427 Shturman May 1994 A
5314438 Shturman May 1994 A
5318032 Lonsbury et al. Jun 1994 A
5318528 Heaven et al. Jun 1994 A
5318576 Plassche, Jr. et al. Jun 1994 A
5321501 Swanson et al. Jun 1994 A
5322508 Viera Jun 1994 A
5336167 Sullivan et al. Aug 1994 A
5350390 Sher Sep 1994 A
5356418 Shturman Oct 1994 A
5358472 Vance et al. Oct 1994 A
5358485 Vance et al. Oct 1994 A
5360432 Shturman Nov 1994 A
5366463 Ryan Nov 1994 A
5368035 Hamm et al. Nov 1994 A
5370609 Drasler et al. Dec 1994 A
5370651 Summers Dec 1994 A
5372601 Lary Dec 1994 A
5372602 Burke Dec 1994 A
5373849 Maroney et al. Dec 1994 A
5377682 Ueno et al. Jan 1995 A
5378234 Hammerslag et al. Jan 1995 A
5383460 Jang et al. Jan 1995 A
5395311 Andrews Mar 1995 A
5395313 Naves et al. Mar 1995 A
5395335 Jang Mar 1995 A
5397345 Lazarus Mar 1995 A
5402790 Jang et al. Apr 1995 A
5409454 Fischell et al. Apr 1995 A
5413107 Oakley et al. May 1995 A
5419774 Willard et al. May 1995 A
5421338 Crowley et al. Jun 1995 A
5423799 Shiu Jun 1995 A
5423846 Fischell Jun 1995 A
5427107 Milo et al. Jun 1995 A
5429136 Milo et al. Jul 1995 A
5431673 Summers et al. Jul 1995 A
5441510 Simpson et al. Aug 1995 A
5443446 Shturman Aug 1995 A
5443497 Venbrux Aug 1995 A
5444078 Yu et al. Aug 1995 A
5445155 Sieben Aug 1995 A
5449369 Imran Sep 1995 A
5454809 Janssen Oct 1995 A
5456667 Ham et al. Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5458585 Salmon et al. Oct 1995 A
5459570 Swanson et al. Oct 1995 A
5464016 Nicholas et al. Nov 1995 A
5466382 Downey et al. Nov 1995 A
5485840 Bauman Jan 1996 A
5487729 Avellanet et al. Jan 1996 A
5489295 Piplani et al. Feb 1996 A
5491524 Hellmuth et al. Feb 1996 A
5496267 Drasler et al. Mar 1996 A
5501694 Ressemann et al. Mar 1996 A
5503155 Salmon et al. Apr 1996 A
5505210 Clement Apr 1996 A
5507760 Wynne et al. Apr 1996 A
5507761 Duer Apr 1996 A
5507769 Marin et al. Apr 1996 A
5507795 Chiang et al. Apr 1996 A
5512044 Duer Apr 1996 A
5514115 Frantzen et al. May 1996 A
5520189 Malinowski et al. May 1996 A
5522825 Kropf et al. Jun 1996 A
5522880 Barone et al. Jun 1996 A
5527292 Adams et al. Jun 1996 A
5527298 Vance et al. Jun 1996 A
5527325 Conley et al. Jun 1996 A
5531685 Hemmer et al. Jul 1996 A
5531690 Solar Jul 1996 A
5531700 Moore et al. Jul 1996 A
5540707 Ressemann et al. Jul 1996 A
5549601 McIntyre et al. Aug 1996 A
5554163 Shturman Sep 1996 A
5556408 Farhat Sep 1996 A
5558093 Pomeranz Sep 1996 A
5562726 Chuter Oct 1996 A
5562728 Lazarus et al. Oct 1996 A
5569275 Kotula et al. Oct 1996 A
5569279 Rainin Oct 1996 A
5571122 Kelly et al. Nov 1996 A
5571130 Simpson et al. Nov 1996 A
5575817 Martin Nov 1996 A
5584842 Fogarty et al. Dec 1996 A
5584843 Wulfman et al. Dec 1996 A
5609605 Marshall et al. Mar 1997 A
5618293 Sample et al. Apr 1997 A
5620415 Lucey et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5624457 Farley et al. Apr 1997 A
5626444 Campian May 1997 A
5626562 Castro May 1997 A
5628761 Rizik May 1997 A
5632754 Farley et al. May 1997 A
5632755 Nordgren et al. May 1997 A
5643296 Hundertmark et al. Jul 1997 A
5649941 Lary Jul 1997 A
5662671 Barbut et al. Sep 1997 A
5674232 Halliburton Oct 1997 A
5676697 McDonald Oct 1997 A
5681336 Clement et al. Oct 1997 A
5683449 Marcade Nov 1997 A
5683453 Palmaz Nov 1997 A
5688234 Frisbie Nov 1997 A
5695506 Pike et al. Dec 1997 A
5695507 Auth et al. Dec 1997 A
5697944 Lary Dec 1997 A
5700240 Barwick, Jr. et al. Dec 1997 A
5700687 Finn Dec 1997 A
5707350 Krause et al. Jan 1998 A
5707376 Kavteladze et al. Jan 1998 A
5707383 Bays et al. Jan 1998 A
5709698 Adams et al. Jan 1998 A
5713913 Lary et al. Feb 1998 A
5716410 Wang et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5724977 Yock et al. Mar 1998 A
5728123 Lemelson et al. Mar 1998 A
5733296 Rogers et al. Mar 1998 A
5735816 Lieber et al. Apr 1998 A
5741270 Hansen et al. Apr 1998 A
5766192 Zacca Jun 1998 A
5772674 Nakhjavan Jun 1998 A
5775327 Randolph et al. Jul 1998 A
5776153 Rees Jul 1998 A
5779643 Lum et al. Jul 1998 A
5779673 Roth et al. Jul 1998 A
5779721 Nash Jul 1998 A
5779722 Shturman et al. Jul 1998 A
5792157 Mische et al. Aug 1998 A
5797949 Parodi Aug 1998 A
5807329 Gelman Sep 1998 A
5810867 Zarbatany et al. Sep 1998 A
5816923 Milo et al. Oct 1998 A
5820592 Hammerslag Oct 1998 A
5823971 Robinson et al. Oct 1998 A
5824055 Spiridigliozzi et al. Oct 1998 A
5827201 Samson et al. Oct 1998 A
5827229 Auth et al. Oct 1998 A
5827304 Hart Oct 1998 A
5827322 Williams Oct 1998 A
5830222 Makower Nov 1998 A
5830224 Cohn et al. Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5843022 Willard et al. Dec 1998 A
5843103 Wulfman Dec 1998 A
5843161 Solovay Dec 1998 A
5855563 Kaplan et al. Jan 1999 A
5865748 Co et al. Feb 1999 A
5868685 Powell et al. Feb 1999 A
5868767 Farley et al. Feb 1999 A
5871536 Lazarus Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876414 Straub Mar 1999 A
5879361 Nash Mar 1999 A
5879397 Kalberer et al. Mar 1999 A
5883458 Sumita et al. Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5895399 Barbut et al. Apr 1999 A
5910150 Saadat Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5916210 Winston Jun 1999 A
5922003 Anctil et al. Jul 1999 A
5935108 Katoh et al. Aug 1999 A
5938645 Gordon Aug 1999 A
5938671 Katoh et al. Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5947985 Imran Sep 1999 A
5951480 White et al. Sep 1999 A
5951482 Winston et al. Sep 1999 A
5954745 Gertler et al. Sep 1999 A
5968064 Selmon et al. Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5985397 Witt et al. Nov 1999 A
5989281 Barbut et al. Nov 1999 A
6001112 Taylor Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6010522 Barbut et al. Jan 2000 A
6013072 Winston et al. Jan 2000 A
6019778 Wilson et al. Feb 2000 A
6022362 Lee et al. Feb 2000 A
6027450 Brown et al. Feb 2000 A
6027460 Shturman Feb 2000 A
6027514 Stine et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6036646 Barthe et al. Mar 2000 A
6036656 Slater Mar 2000 A
6036707 Spaulding Mar 2000 A
6039693 Seward et al. Mar 2000 A
6048349 Winston et al. Apr 2000 A
6050949 White et al. Apr 2000 A
6066153 Lev May 2000 A
6068603 Suzuki May 2000 A
6081738 Hinohara et al. Jun 2000 A
RE36764 Zacca et al. Jul 2000 E
6095990 Parodi Aug 2000 A
6106515 Winston et al. Aug 2000 A
6110121 Lenker Aug 2000 A
6120516 Selmon et al. Sep 2000 A
6126649 VanTassel et al. Oct 2000 A
6129734 Shturman et al. Oct 2000 A
6134003 Tearney et al. Oct 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6152938 Curry Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6157852 Selmon et al. Dec 2000 A
6159195 Ha et al. Dec 2000 A
6179859 Bates et al. Jan 2001 B1
6183432 Milo Feb 2001 B1
6187025 Machek Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6191862 Swanson et al. Feb 2001 B1
6193676 Winston et al. Feb 2001 B1
6196963 Williams Mar 2001 B1
6206898 Honeycutt et al. Mar 2001 B1
6217527 Selmon et al. Apr 2001 B1
6217549 Selmon et al. Apr 2001 B1
6217595 Shturman et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6221076 Albrektsson Apr 2001 B1
6221332 Thumm et al. Apr 2001 B1
6228049 Schroeder et al. May 2001 B1
6228076 Winston et al. May 2001 B1
6231546 Milo et al. May 2001 B1
6231549 Noecker et al. May 2001 B1
6238405 Findlay, III et al. May 2001 B1
6241667 Vetter et al. Jun 2001 B1
6241744 Imran et al. Jun 2001 B1
6245012 Kleshinski Jun 2001 B1
6263236 Kasinkas et al. Jul 2001 B1
6264611 Ishikawa et al. Jul 2001 B1
6277138 Levinson et al. Aug 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6283983 Makower et al. Sep 2001 B1
6299622 Snow et al. Oct 2001 B1
6299623 Wulfman Oct 2001 B1
6302875 Makower et al. Oct 2001 B1
6305834 Schubert et al. Oct 2001 B1
6312444 Barbut Nov 2001 B1
6319275 Lashinski et al. Nov 2001 B1
6330884 Kim Dec 2001 B1
6361545 Macoviak et al. Mar 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383205 Samson et al. May 2002 B1
6394976 Winston et al. May 2002 B1
6398798 Selmon et al. Jun 2002 B2
6422736 Antonaides et al. Jul 2002 B1
6425870 Flesch Jul 2002 B1
6428551 Hall et al. Aug 2002 B1
6428552 Sparks Aug 2002 B1
6445939 Swanson et al. Sep 2002 B1
6447525 Follmer et al. Sep 2002 B2
6454727 Burbank et al. Sep 2002 B1
6475226 Belef et al. Nov 2002 B1
6482217 Pintor et al. Nov 2002 B1
6497711 Plaia et al. Dec 2002 B1
6501551 Tearney et al. Dec 2002 B1
6520975 Branco Feb 2003 B2
RE38018 Anctil et al. Mar 2003 E
6532380 Close et al. Mar 2003 B1
6533749 Mitusina et al. Mar 2003 B1
6561998 Roth et al. May 2003 B1
6565588 Clement et al. May 2003 B1
6569177 Dillard et al. May 2003 B1
6592526 Lenker Jul 2003 B1
6605061 VanTassel et al. Aug 2003 B2
6610059 West, Jr. Aug 2003 B1
6620180 Bays et al. Sep 2003 B1
6623437 Hinchcliffe et al. Sep 2003 B2
6623495 Findlay, III et al. Sep 2003 B2
6627784 Hudson et al. Sep 2003 B2
6629953 Boyd Oct 2003 B1
6638233 Corvi et al. Oct 2003 B2
RE38335 Aust et al. Nov 2003 E
6652505 Tsugita Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6656195 Peters et al. Dec 2003 B2
6666874 Heitzmann et al. Dec 2003 B2
6682536 Vardi et al. Jan 2004 B2
6790204 Zadno-Azizi et al. Sep 2004 B2
6790215 Findlay, III et al. Sep 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6830577 Nash et al. Dec 2004 B2
6843797 Nash et al. Jan 2005 B2
6849068 Bagaoisan et al. Feb 2005 B1
6863676 Lee et al. Mar 2005 B2
6911026 Hall et al. Jun 2005 B1
6932502 Childers et al. Aug 2005 B2
6935768 Lowe et al. Aug 2005 B2
7004173 Sparks et al. Feb 2006 B2
7153315 Miller Dec 2006 B2
7169165 Belef et al. Jan 2007 B2
7208511 Williams et al. Apr 2007 B2
7318831 Alvarez et al. Jan 2008 B2
7344546 Wulfman et al. Mar 2008 B2
7388495 Fallin et al. Jun 2008 B2
7479148 Beaupre Jan 2009 B2
7488322 Brunnett et al. Feb 2009 B2
7524289 Lenker Apr 2009 B2
7526481 Cusson et al. Apr 2009 B1
7603166 Casscells, III et al. Oct 2009 B2
7629829 Lee Dec 2009 B2
7699790 Simpson Apr 2010 B2
7708749 Simpson et al. May 2010 B2
7713235 Torrance et al. May 2010 B2
7713279 Simpson et al. May 2010 B2
7729745 Maschke Jun 2010 B2
7734332 Sher Jun 2010 B2
7753852 Maschke Jul 2010 B2
7771444 Patel et al. Aug 2010 B2
7887556 Simpson et al. Feb 2011 B2
7951161 Bonnette et al. May 2011 B2
7959634 Sennett Jun 2011 B2
7981128 To et al. Jul 2011 B2
8007506 To et al. Aug 2011 B2
8052704 Olson Nov 2011 B2
8062316 Patel et al. Nov 2011 B2
8070762 Escudero et al. Dec 2011 B2
8109951 Mashke Feb 2012 B2
8142464 Mitusina Mar 2012 B2
8192452 Moberg Jun 2012 B2
8208990 Maschke Jun 2012 B2
8211025 Donaldson et al. Jul 2012 B2
8236016 To et al. Aug 2012 B2
8246640 Rosenthal et al. Aug 2012 B2
8257375 Maschke Sep 2012 B2
8275201 Rangwala et al. Sep 2012 B2
8298147 Huennekens et al. Oct 2012 B2
8328829 Olson Dec 2012 B2
8361094 To et al. Jan 2013 B2
20010031784 Petersen et al. Oct 2001 A1
20010031981 Evans et al. Oct 2001 A1
20020007190 Wulfman Jan 2002 A1
20020019644 Hastings et al. Feb 2002 A1
20020055732 Wilson May 2002 A1
20020058904 Boock et al. May 2002 A1
20020177800 Bagaoisan et al. Nov 2002 A1
20020188307 Pintor Dec 2002 A1
20030023263 Krolik et al. Jan 2003 A1
20030039169 Ehrfeld et al. Feb 2003 A1
20030120295 Simpson et al. Jun 2003 A1
20030125757 Patel et al. Jul 2003 A1
20030199747 Michlitsch et al. Oct 2003 A1
20040049225 Denison Mar 2004 A1
20040167554 Simpson et al. Aug 2004 A1
20040193034 Wasicek et al. Sep 2004 A1
20040210245 Erickson et al. Oct 2004 A1
20050004594 Nool et al. Jan 2005 A1
20050042239 Lipiecki et al. Feb 2005 A1
20050090849 Adams Apr 2005 A1
20060074442 Noriega et al. Apr 2006 A1
20060235334 Corvi et al. Oct 2006 A1
20070049958 Adams Mar 2007 A1
20070135886 Maschke Jun 2007 A1
20070167824 Lee et al. Jul 2007 A1
20070276419 Rosenthal Nov 2007 A1
20080004643 To et al. Jan 2008 A1
20080004645 To et al. Jan 2008 A1
20080045986 To et al. Feb 2008 A1
20080051812 Schmitz et al. Feb 2008 A1
20080125799 Adams May 2008 A1
20080161840 Osiroff et al. Jul 2008 A1
20080177139 Courtney et al. Jul 2008 A1
20080208227 Kadykowski et al. Aug 2008 A1
20080249553 Gruber et al. Oct 2008 A1
20080312673 Viswanathan et al. Dec 2008 A1
20090012548 Thatcher et al. Jan 2009 A1
20090018565 To et al. Jan 2009 A1
20090018566 Escudero et al. Jan 2009 A1
20090048602 O'Donoghue Feb 2009 A1
20090138031 Tsukernik May 2009 A1
20090187203 Corvi et al. Jul 2009 A1
20090216180 Lee Aug 2009 A1
20090275966 Mitusina Nov 2009 A1
20090306689 Welty et al. Dec 2009 A1
20100030216 Arcenio Feb 2010 A1
20100130996 Doud et al. May 2010 A1
20100312263 Moberg et al. Dec 2010 A1
20110004107 Rosenthal et al. Jan 2011 A1
20110028977 Rauscher et al. Feb 2011 A1
20110130777 Zhang Jun 2011 A1
20110144673 Zhang et al. Jun 2011 A1
Foreign Referenced Citations (27)
Number Date Country
2000621 Apr 1990 CA
3732236 Dec 1988 DE
8900059 May 1989 DE
9303531 Jul 1994 DE
4444166 Jun 1998 DE
29722136 Apr 1999 DE
0107009 May 1984 EP
0229620 Jul 1987 EP
0330843 Sep 1989 EP
0431752 Jun 1991 EP
0514810 Nov 1992 EP
1767159 Mar 2007 EP
2093353 Sep 1982 GB
2115829 Sep 1983 GB
4200459 Jul 1992 JP
5042162 Feb 1993 JP
5056984 Mar 1993 JP
442795 Sep 1974 SU
665908 Jun 1979 SU
9746164 Dec 1997 WO
9824372 Jun 1998 WO
0054735 Sep 2000 WO
0062913 Oct 2000 WO
0072955 Dec 2000 WO
0115609 Mar 2001 WO
0119444 Mar 2001 WO
0130433 May 2001 WO
Non-Patent Literature Citations (5)
Entry
Brezinski et al., “Optical Coherence Tomography for Optical Biopsy,” Circulation, 93:1206-1213 (1996).
Brezinski et al., “Assessing Atherosclerotic Plaque Morphology: Comparison of Optical Coherence Tomography and High Frequency Intravascular Ultraound,” Heart, 77:397-403 (1997).
Huang et al., “Optical Coherence Tomography,” Science, 254:1178-1181 (1991).
Amplatz Coronary Catheters, posted: Feb. 25, 2009, [online], [retrieved on Mar. 29, 2011], retrieved from the Cardiophile MD using Internet website <URL:http://cardiophile.org/2009/02/amplatzcoronary-catheter.html> (2 pages).
Judkins Left Coronary Catheter, posted: Feb. 19, 2009, [online], [retrieved on Mar. 29, 2011], retrieved from the Cardiophile MD using Internet website <URL:http://cardiophile.org/2009/02/judkins-left-coronary-catheter.html> (2 pages).
Related Publications (1)
Number Date Country
20140128893 A1 May 2014 US