The present invention relates to systems and methods for resecting and extracting tissue in arthroscopy and other fields.
Electrosurgical cutting devices often comprise a shaft or sleeve having a tissue extraction lumen with one or more radio frequency (RF) cutting blades arranged to resect tissue which may then be drawn into the extraction lumen, often via vacuum assistance. Most such electrosurgical tissue cutting devices rely on manually engaging the electrode or other tissue-cutting edge against the target tissue to be resected. While such manual engagement is often sufficient, in other cases, such as in laparoscopic procedures having limited access, the target tissue can be difficult to immobilize prior to resection. For these reasons, it would be desirable to provide improved electrosurgical cutting tools having the ability to engage and immobilize tissue prior to cutting.
Related patents and applications include U.S. Pat. No. 8,221,404; U.S. Pat. No. 7,744,595; U.S. 2010/0305565; U.S. 2007/0213704; U.S. 2009/0270849; and U.S. 2013/0090642.
In a first aspect of the present invention, a tissue-resecting probe comprises an elongated outer sleeve extending about an axis to a distal housing having a first window for receiving tissue. An edge of the first window has a dielectric surface. A rotatable inner sleeve has a second window wherein at least a portion of an edge of the second window comprises a first polarity electrode and wherein rotation of the inner sleeve within the outer sleeve moves the probe between window-open and window-closed configurations to resect tissue.
The edge of the second window usually includes a plurality of openings and bridges between the first polarity electrode, and a portion of the inner sleeve that has dielectric surfaces. A proximal edge of the second window typically has a dielectric surface, and a lateral edge of the second window comprises the first polarity electrode. In some embodiments, both lateral edges of the second window comprise the first polarity electrode.
In other embodiments, a lateral edge of the second window has a dielectric surface, and a distal edge of the second window may at least partly comprise the first polarity electrode. In still other specific embodiments, the first polarity electrode is symmetric about the second window relative to said axis, and in still other embodiments, the first polarity electrode is asymmetric about the second window relative to said axis. In still further specific aspects, the edge of the second window includes a plurality of openings and bridges between the first polarity electrode and a portion of the inner sleeve having dielectric surfaces, wherein the cumulative length of the openings parallel to the edge of the second window is typically at least 50% of the length of said first polarity electrode about the edge of the second window.
Further optionally, a portion of the outer sleeve may comprise a second polarity electrode, and a negative pressure source may be placed in communication with an interior passageway in the inner sleeve.
In a second aspect of the present invention, a tissue-resecting probe comprises an elongated probe including a windowed outer sleeve and cooperating windowed inner sleeve that is rotatable to resect tissue. An edge of the inner sleeve window comprises a first polarity electrode and a portion of the outer sleeve comprises a second polarity electrode. A controller and electrical source are operatively connected to the first and second electrodes, and the controller is configured to activate the electrodes only during part of each 360° rotation of the inner sleeve.
The controller is usually configured to activate the electrodes during 90° to 180° rotation of each 360° rotation of the inner sleeve. Optionally, the controller is configured to activate the electrodes only when an advancing edge of the inner sleeve window is exposed in the outer sleeve window. In such embodiments, a microswitch is configured for actuation during each 360° rotation of the inner sleeve, wherein the controller activates and de-activates the electrodes in response to signals from the microswitch, and the controller optionally activates and de-activates the electrodes in response to a measured electrical parameter, typically impedance, relative to electrodes that varies during each 360° rotation of the inner sleeve.
In a third aspect of the present invention, a tissue-resecting probe comprises an elongated probe having a windowed outer sleeve and a cooperating windowed inner sleeve that is rotatable to resect tissue. An edge of the inner sleeve window comprises a first polarity electrode and a portion of the outer sleeve comprises a second polarity electrode. A controller and electrical source are operatively connected to the first and second electrodes, and the controller is configured to receive user inputs to stop the inner sleeve rotationally relative to the outer sleeve in at least first and second positions.
In said first position, the tissue-resecting probe aligns the outer and inner sleeve windows to provide an open window configuration. In said second position, the outer and inner sleeve windows are not aligned, providing a partly open window configuration.
A microswitch is configured for actuation during each 360° rotation of the inner sleeve, and the controller includes an algorithm to stop the inner sleeve rotationally in the first or second positions in response to a signal from the microswitch. The controller includes an algorithm to stop the inner sleeve rotationally in the first or second positions in response to a measured electrical parameter, typically impedance, relative to electrodes that varies during each 360° rotation of the inner sleeve.
In a fourth aspect of the present invention, a tissue-resecting probe comprises an elongated probe including a windowed outer sleeve and a cooperating windowed inner sleeve that is rotatable to resect tissue, wherein an edge of the inner sleeve window comprises a first polarity electrode and a portion of the outer sleeve comprises a second polarity electrode. A motor probe for rotating the inner sleeve is disposed within a handle, and a slip couples between a motor shaft and the inner sleeve. The slip may comprise at least one belt and acts as a clutch which slips if resistance to rotation of the inner sleeve exceeds a predetermined level. A controller and electrical source may be provided for operating the motor and for energizing the electrodes. An exemplary controller operates with an algorithm for detecting electrical parameters of the motor indicative of slipping of the slip coupling.
The algorithm may be further configured to de-energize the electrodes upon detection of slipping of the slip coupling.
In a fifth aspect, a method for fabricating an electrosurgical component including an electrically conductive core covered by thin polymeric insulating coating comprises providing a metal core having an external metal surface. A plurality of adherence features are created over at least a portion of the external metal surface, wherein the adherence features include undercuts. A polymeric insulating layer is formed over the external surface wherein the polymer extends beneath the undercuts to enhance adherence of the polymeric insulating layer to the external metal surface.
The creating step typically includes at least one of metal or ceramic sputtering, metal spraying, and electroless plating under conditions selected to apply discrete metal features and not apply a continuous metal film. Optionally, the creating step may also include drilling, e.g. laser drilling, to provide the undercut features. Alternatively, the creating step may include at least one of sandblasting and burnishing. Usually, the metal core is formed at least partially from stainless steel, and the polymeric insulating layer is composed at least partially of a FEP (fluorinated ethylene propylene) or a PFA (perfluoroalkoxy). The polymeric insulating layer is often formed to have a thickness in the range of 0.001 inch to 0.05 inch.
In a sixth aspect of the present invention, a tissue-resecting probe comprises an elongated probe comprising a windowed outer sleeve and cooperating windowed inner sleeve that is rotatable to resect tissue, wherein an edge of the inner sleeve window comprises a first polarity electrode and a portion of the outer sleeve comprises a second polarity electrode. A controller is configured to control a negative pressure source in communication with a passageway in the inner sleeve, wherein the controller is configured to activate the negative pressure source only during part of each 360° rotation of the inner sleeve.
The controller is typically configured to activate the negative pressure source during 30° to 180° rotation of each 360° rotation of the inner sleeve.
In a seventh aspect of the present invention, a tissue-resecting probe comprises an elongated probe having a working end with a windowed outer sleeve and cooperating windowed inner sleeve that is rotatable to resect tissue, wherein an edge of the inner sleeve window comprises a first polarity electrode and a portion of the outer sleeve comprises a second polarity electrode. At least one port is formed in the outer sleeve of the working end, and a moveable member has a first position that permits fluid flow through the at least one port and a second position that prevents fluid flow through the at least one port.
The outer sleeve usually has a plurality of ports and the moveable member is moveable between a plurality of positions to permit fluid flow through one or more ports.
In an eighth aspect of the present invention, a tissue-resecting probe comprises an elongated probe including a windowed outer sleeve and a cooperating windowed inner sleeve that is rotatable to resect tissue. An edge of the inner sleeve window comprises a first polarity electrode and a portion of the outer sleeve comprises a second polarity electrode. A motor is attached to move the inner sleeve, and an electrical source is operatively connected to the first and second electrodes. A pressure source is in communication with a passageway in the inner sleeve, and a controller controls the motor, the electrical source and the pressure source, and the controller is configured to selectively provide negative pressure or positive pressure to the interior passageway.
The controller is usually configured to receive user input to select negative pressure or positive pressure. For example, the controller may be configured to receive a signal of an operational parameter of the motor to select negative pressure or positive pressure. Alternatively, the controller may be configured to receive a pressure signal from a pressure sensor to select negative pressure or positive pressure. The controller could also be configured to de-activate the first and second electrodes in response to a signal of an operational parameter of the motor or be configured to de-activate the first and second electrodes in response to a pressure signal from a pressure sensor. As another option, the controller may be configured to de-activate the first and second electrodes in response to selection of a negative pressure or positive pressure applied to the interior passageway.
In a ninth aspect of the present invention, a tissue-resecting probe comprises an elongated outer sleeve extending about an axis to a distal housing having a first window for receiving tissue. An edge of the first window has a dielectric surface, and a rotatable inner sleeve has a second window wherein at least a portion of an edge of the second window comprises a first polarity electrode having a surface area of less than 0.02 sq. in., less than 0.01 sq. in. or less than 0.005 sq. in.
Referring to
The tissue resecting probe 100 of
Referring now to
Now turning to
In
An electric DC motor 142 is housed with the handle with motor shaft 186 having a pulley 188 that carries at least one flexible belt 190 for rotating the inner sleeve 122. The inner sleeve 122 has pulley 192 that engages the belts 190 which can be fabricated of rubber, Viton® or the like. The DC motor can be geared (together with pulleys 188 and 192) to drive the inner sleeve 122 at from 500 to 5000 rpm and in one embodiment is 900 rpm. The motor 142 an has electrical cable 194 extending therefrom to the controller 145 and a DC electrical source 195.
In one aspect of the invention, the at least one flexible belt 190 is adapted to slip in the event that rotation of inner sleeve 122 is met with excessive resistance during a procedure, for example which could occur when the inner sleeve 122 is resecting very dense tissue or when the inner sleeve 122 comes into contact with bone. In another variation, the controller 145 also can have an algorithm that continuously receives signals from a sensor mechanism that signals the controller of the actual rpm of the inner sleeve 122 during use, and the algorithm further can de-energize the electrode arrangement if rotation of the inner sleeve 122 stalls or slows to a predetermined low cut-off speed, such as below 100 rpm, 200 rpm, or 300 rpm. The algorithm can further provide for re-energizing the electrode arrangement if the inner sleeve 122 regains a predetermined rpm above the cut-off speed, which could occur when the physician moves or re-adjusts the working end relative to dense tissue or bone that had impeded rotation. In one embodiment, the sensor mechanism for determining rpm of the inner sleeve 122 comprises a microswitch 196 shown in
As can be seen in
Now turning to another aspect of the invention,
In another variation and method similar to that described with reference to
Now turning to
In another variation, the controller 145 can have an algorithm adapted to energize and de-energize the electrodes (150, 175) on each revolution of the inner sleeve 122 in bore 168 of outer sleeve 112. More in particular, in the working end embodiment of
In another embodiment, a tissue resecting probe can use signals from the microswitch 196 (
In another variation, the controller 145 can have an algorithm adapted to modulate negative pressure in the tissue extraction channel 146 upon each revolution of the inner sleeve 122 in bore 168 of outer sleeve 112. In one method, the negative pressure source 135 is actuated for the interval in which leading edge 160a of inner sleeve 122 is exposed and energized as the electrode 150 advances past the edge of window 120 in outer sleeve 112 and for the following 180° of rotation until leading edge 160a advances to a window-closed position. During the following 180° of rotation, the negative pressure source 135 can be turned off or can operate at a lower setting. This aspect of the invention allows for a high level of negative pressure for suctioning tissue into the window and a lower level of negative pressure at other times. In another variation, the higher level of negative pressure for suctioning tissue into the window can occur for an interval, for example 10° to 90° of rotation before the leading edge 160a of inner sleeve 122 is exposed and advances past the edge of window 120 in outer sleeve 112, again to suction tissue into the window.
In
As a further optional feature, the variation of
In another aspect of the invention relating to
This application claims the benefit of U.S. Provisional Application No. 61/821,936, filed May 10, 2013, the entire content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2513564 | Ingwersen | Jul 1950 | A |
2514545 | Ingwersen | Jul 1950 | A |
2625625 | Ingwersen | Jan 1953 | A |
2689895 | Ingwersen | Sep 1954 | A |
3336525 | Church | Aug 1967 | A |
3611023 | Souza, Jr. et al. | Oct 1971 | A |
3838242 | Goucher | Sep 1974 | A |
3848211 | Russell | Nov 1974 | A |
3868614 | Riendeau | Feb 1975 | A |
3903891 | Brayshaw | Sep 1975 | A |
4060088 | Morrison, Jr. et al. | Nov 1977 | A |
4272687 | Borkan | Jun 1981 | A |
4781175 | McGreevy et al. | Nov 1988 | A |
4977346 | Gibson et al. | Dec 1990 | A |
5012495 | Munroe et al. | Apr 1991 | A |
5122138 | Manwaring | Jun 1992 | A |
5207675 | Canady | May 1993 | A |
5256138 | Burek et al. | Oct 1993 | A |
5281217 | Edwards et al. | Jan 1994 | A |
5449356 | Walbrink et al. | Sep 1995 | A |
5618293 | Sample | Apr 1997 | A |
5669907 | Platt, Jr. et al. | Sep 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5720745 | Farin et al. | Feb 1998 | A |
5776092 | Farin et al. | Jul 1998 | A |
5849010 | Wurzer et al. | Dec 1998 | A |
5860970 | Goddard | Jan 1999 | A |
5873855 | Eggers et al. | Feb 1999 | A |
5888198 | Eggers et al. | Mar 1999 | A |
5891095 | Eggers et al. | Apr 1999 | A |
5904681 | West, Jr. | May 1999 | A |
5964752 | Stone | Oct 1999 | A |
5989248 | Tu et al. | Nov 1999 | A |
6013076 | Goble et al. | Jan 2000 | A |
6024733 | Eggers et al. | Feb 2000 | A |
6032674 | Eggers et al. | Mar 2000 | A |
6039736 | Platt, Jr. | Mar 2000 | A |
6056747 | Saadat et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6013075 | Avramenko et al. | Jul 2000 | A |
6099523 | Kim et al. | Aug 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6159208 | Hovda et al. | Dec 2000 | A |
6193715 | Wrublewski | Feb 2001 | B1 |
6225883 | Wellner et al. | May 2001 | B1 |
6235020 | Cheng et al. | May 2001 | B1 |
6238391 | Olsen et al. | May 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6348051 | Farin et al. | Feb 2002 | B1 |
6394956 | Chandrasekaran et al. | May 2002 | B1 |
6413256 | Truckai et al. | Jul 2002 | B1 |
6419674 | Bowser et al. | Jul 2002 | B1 |
6443948 | Suslov | Sep 2002 | B1 |
6471712 | Burres | Oct 2002 | B2 |
6475215 | Tanrisever | Nov 2002 | B1 |
6538549 | Renne et al. | Mar 2003 | B1 |
6579289 | Schnitzler | Jun 2003 | B2 |
6610059 | West, Jr. | Aug 2003 | B1 |
6632220 | Eggers | Oct 2003 | B1 |
6635034 | Cosmescu | Oct 2003 | B1 |
6669694 | Shadduck | Dec 2003 | B2 |
6720856 | Pellon et al. | Apr 2004 | B1 |
6780178 | Palanker et al. | Aug 2004 | B2 |
6821275 | Truckai et al. | Nov 2004 | B2 |
6837884 | Woloszko | Jan 2005 | B2 |
6890332 | Truckai et al. | May 2005 | B2 |
6902564 | Morgan et al. | Jun 2005 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7220261 | Truckai et al. | May 2007 | B2 |
7247161 | Johnston | Jul 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7549989 | Morgan et al. | Jun 2009 | B2 |
7713269 | Auge, II et al. | May 2010 | B2 |
7744595 | Truckai et al. | Jun 2010 | B2 |
7771422 | Auge, II et al. | Aug 2010 | B2 |
7819861 | Auge, II et al. | Oct 2010 | B2 |
7819864 | Morgan et al. | Oct 2010 | B2 |
7955331 | Truckai et al. | Jun 2011 | B2 |
8016823 | Shadduck | Sep 2011 | B2 |
8075555 | Truckai et al. | Dec 2011 | B2 |
8192424 | Woloszko | Jun 2012 | B2 |
8192428 | Truckai et al. | Jun 2012 | B2 |
8221404 | Truckai | Jul 2012 | B2 |
8323280 | Germain et al. | Dec 2012 | B2 |
8333763 | Truckai et al. | Dec 2012 | B2 |
8568418 | Matusaitis | Oct 2013 | B2 |
20030014051 | Woloszko | Jan 2003 | A1 |
20030060862 | Goble | Mar 2003 | A1 |
20030125727 | Truckai et al. | Jul 2003 | A1 |
20040044341 | Truckai et al. | Mar 2004 | A1 |
20050075630 | Truckai et al. | Apr 2005 | A1 |
20050228372 | Truckai et al. | Oct 2005 | A1 |
20060058782 | Truckai et al. | Mar 2006 | A1 |
20060178670 | Woloszko | Aug 2006 | A1 |
20060200123 | Ryan | Sep 2006 | A1 |
20060224154 | Shadduck et al. | Oct 2006 | A1 |
20060264927 | Ryan | Nov 2006 | A1 |
20070213704 | Truckai et al. | Sep 2007 | A1 |
20090076498 | Saadat et al. | Mar 2009 | A1 |
20090093806 | Govari | Apr 2009 | A1 |
20090270849 | Truckai et al. | Oct 2009 | A1 |
20100100091 | Truckai | Apr 2010 | A1 |
20100305565 | Truckai et al. | Dec 2010 | A1 |
20120245580 | Germain et al. | Sep 2012 | A1 |
20120330292 | Shadduck | Dec 2012 | A1 |
20130090642 | Shadduck et al. | Apr 2013 | A1 |
20130296847 | Germain | Nov 2013 | A1 |
20130296849 | Germain et al. | Nov 2013 | A1 |
20130317493 | Truckai et al. | Nov 2013 | A1 |
20130331833 | Bloom | Dec 2013 | A1 |
20130345704 | Palmer | Dec 2013 | A1 |
20140100567 | Edwards | Apr 2014 | A1 |
20140303611 | Shadduck | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
1034747 | Sep 2000 | EP |
WO 0053112 | Sep 2000 | WO |
WO 0062685 | Oct 2000 | WO |
WO 0053112 | Dec 2000 | WO |
Entry |
---|
U.S. Appl. No. 13/369,983, filed Feb. 9, 2012, Truckai et al. |
European search report dated Nov. 2, 2009 for EP Application No. 01967968.7. |
International search report dated Jan. 14, 2002 for PCT/US2001/025409. |
International search report and written opinion dated May 23, 2012 for PCT/US2012/023390. |
Tucker et al. Histologic characteristics of electrosurgical injuries. J. Am. Assoc. Gyneco. Laproscopy. 1997; 4(2):857-862. |
Kim, et al. Optical feedbacksignal for ultra short pulse ablation of tissue. Appl. Surface Sci. 1998; 127-129:857-862. |
Number | Date | Country | |
---|---|---|---|
20140336643 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
61821936 | May 2013 | US |