Tissue resecting instrument including an outflow control seal

Information

  • Patent Grant
  • 11744606
  • Patent Number
    11,744,606
  • Date Filed
    Tuesday, September 28, 2021
    2 years ago
  • Date Issued
    Tuesday, September 5, 2023
    8 months ago
Abstract
A tissue resecting end effector includes a housing, a shaft extending from the housing, and a drive assembly operably coupled to the shaft such that a rotational input provided to the drive assembly effects the rotation and reciprocation of the shaft relative to the housing. The assembly includes a proximal portion translationally fixed and rotatably coupled to the housing and configured to receive the rotational input and to rotate relative to the housing in response thereto, a distal portion translationally and rotatably coupled to the housing and operably coupled to the proximal portion such that the rotation of the proximal portion relative to the housing effects rotation and reciprocation of the distal portion relative to the housing to thereby rotate and reciprocate the first shaft relative to the housing, and a seal member disposed on the proximal portion or the distal portion and configured to selectively establish a seal therebetween.
Description
FIELD

The present disclosure relates generally to the field of tissue resection. In particular, the present disclosure relates to a tissue resecting instrument including an outflow control seal.


BACKGROUND

Tissue resection may be performed endoscopically within an organ, such as a uterus, by inserting an endoscope (or hysteroscope) into the uterus and passing a tissue resection instrument through the endoscope (or hysteroscope) and into the uterus. With respect to such endoscopic tissue resection procedures, it often is desirable to distend the uterus with a fluid, for example, saline, sorbitol, or glycine. The inflow and outflow of the fluid during the procedure maintains the uterus in a distended state and flushes tissue and other debris from within the uterus to maintain a visible working space.


SUMMARY

As used herein, the term “distal” refers to the portion that is described which is further from a user, while the term “proximal” refers to the portion that is described which is closer to a user. Further, to the extent consistent, any or all of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.


Provided in accordance with aspects of the present disclosure is an end effector assembly of a tissue resecting instrument. The end effector assembly includes a proximal hub housing, an outer shaft extending from the proximal hub housing, an inner shaft disposed within the outer shaft and configured to rotate and reciprocate relative to the outer shaft for cutting tissue, and an inner core drive assembly disposed at least partially within the proximal hub housing. The inner core drive assembly is operably coupled to the inner shaft and configured such that a rotational input provided to the inner core drive assembly effects the rotation and reciprocation of the inner shaft relative to the outer shaft. The inner core drive assembly includes a proximal receiver configured to receive the rotational input and to rotate relative to the proximal hub housing in response thereto. The proximal receiver includes a seal member disposed thereon. The inner core drive assembly further includes a connector operably coupled to the proximal receiver such that the rotation of the proximal receiver effects rotation of the connector relative to the proximal hub housing and reciprocation of the connector relative to the proximal receiver and the proximal hub housing between a proximal position and a distal position. The connector is operably coupled to the inner shaft such that the rotation and reciprocation of the connector effects the rotation and reciprocation of the inner shaft. The connector defines a cavity disposed in fluid communication with an interior of the inner shaft. In the proximal position, the connector abuts the seal member to establish a seal that blocks outflow from the cavity. In the distal position, the connector is displaced from the seal member to permit outflow from the cavity.


In an aspect of the present disclosure, the inner core drive assembly further includes a threaded coupler operably coupled to the connector and a follower operably engaged with the threaded coupler. The rotation of the connector in response to the rotation of the proximal receiver rotates the threaded coupled relative to the follower, thereby reciprocating the threaded coupler and the connector relative to the proximal receiver.


In another aspect of the present disclosure, the connector is rotationally fixed relative to the proximal receiver via at least partial receipt of a distal spine of the proximal receiver within the cavity of the connector.


In another aspect of the present disclosure, the distal spine is slidable relative to the cavity of the connector to permit the reciprocation of the connector relative to the proximal receiver.


In still another aspect of the present disclosure, the seal member is disposed about the distal spine.


In yet another aspect of the present disclosure, the reciprocation of the connector effects similar reciprocation of the inner shaft.


In still yet another aspect of the present disclosure, gearing is operably coupled between the connector and the inner shaft such that the rotation of the inner shaft is amplified or attenuated relative to the rotation of the connector.


In another aspect of the present disclosure, the outer shaft defines a window and the inner shaft is configured to rotate and reciprocate relative to the window to cut tissue extending through the window.


In yet another aspect of the present disclosure, the proximal position of the connector corresponds to a proximal position of the inner shaft relative to the outer shaft.


A tissue resecting instrument provided in accordance with aspects of the present disclosure includes a handpiece assembly including a drive rotor and an outflow conduit, and an end effector assembly configured to releasably engage the handpiece assembly. The end effector assembly includes an outer shaft, an inner shaft disposed within the outer shaft and configured to rotate and reciprocate relative to the outer shaft for cutting tissue, and an inner core drive assembly. The inner core drive assembly includes a proximal receiver configured to receive a rotational input from the drive rotor and to rotate in response thereto. The proximal receiver includes a seal member disposed thereon. The inner core drive assembly further includes a connector operably coupled to the proximal receiver such that the rotation of the proximal receiver effects rotation of the connector and reciprocation of the connector between a proximal position and a distal position. The connector is operably coupled to the inner shaft such that the rotation and reciprocation of the connector effects the rotation and reciprocation of the inner shaft. The connector defines a cavity disposed in fluid communication with an interior of the inner shaft. In the proximal position, the connector abuts the seal member to establish a seal that blocks outflow from the cavity into the outflow conduit. In the distal position, the connector is displaced from the seal member to permit outflow from the cavity into the outflow conduit.


In an aspect of the present disclosure, the handpiece assembly further includes a motor configured to drive rotation of the drive rotor.


In another aspect of the present disclosure, the inner core drive assembly further includes a threaded coupler operably coupled to the connector and a follower operably engaged with the threaded coupler. The rotation of the connector in response to the rotation of the proximal receiver rotates the threaded coupled relative to the follower, thereby reciprocating the threaded coupler and the connector relative to the proximal receiver.


In still another aspect of the present disclosure, the connector is rotationally fixed relative to the proximal receiver via at least partial receipt of a distal spine of the proximal receiver within the cavity of the connector. In such aspects, the distal spine may be slidable relative to the cavity of the connector to permit the reciprocation of the connector relative to the proximal receiver. Additionally or alternatively, the seal member is disposed about the distal spine.


In yet another aspect of the present disclosure, wherein the reciprocation of the connector effects similar reciprocation of the inner shaft.


In still yet another aspect of the present disclosure, gearing is operably coupled between the connector and the inner shaft such that the rotation of the inner shaft is amplified or attenuated relative to the rotation of the connector.


In another aspect of the present disclosure, the outer shaft defines a window and the inner shaft is configured to rotate and reciprocate relative to the window to cut tissue extending through the window.


In an aspect of the present disclosure, the proximal position of the connector corresponds to a proximal position of the inner shaft relative to the outer shaft.


In another aspect of the present disclosure, the drive rotor is configured to provide a further rotational input to the proximal receiver after the rotational input to the proximal receiver to return the connector to the proximal position, thereby establishing the seal that blocks outflow from the cavity into the outflow conduit.


Also provided in accordance with aspects of the present disclosure is an end effector assembly of a tissue resecting instrument that includes a housing, a first shaft extending from the housing and configured to rotate and reciprocate relative to the housing to cut tissue, and an inner core drive assembly disposed at least partially within the housing. The inner core drive assembly is operably coupled to the first shaft and configured such that a rotational input provided to the inner core drive assembly effects the rotation and reciprocation of the first shaft relative to the housing. The inner core drive assembly includes a proximal portion, a distal portion, and a seal member. The proximal portion is translationally fixed and rotatably coupled to the housing and configured to receive the rotational input and to rotate relative to the housing in response thereto. The distal portion is translationally and rotatably coupled to the housing and operably coupled to the proximal portion such that the rotation of the proximal portion relative to the housing effects rotation and reciprocation of the distal portion relative to the housing to thereby rotate and reciprocate the first shaft relative to the housing. The seal member is disposed on one of the proximal portion or the distal portion. In at least one first translational position of the distal portion relative to the proximal portion, the seal member establishes a seal between the proximal and distal portions to inhibit fluid flow therebetween. In at least one second position of the distal portion relative to the proximal portion, the seal member is displaced to permit fluid flow between the proximal and distal portions.


In an aspect of the present disclosure, the seal member is disposed on the proximal portion such that the distal portion reciprocates relative to the seal member. Alternatively, the seal member is disposed on the distal portion such that the seal member reciprocates relative to the proximal portion.


In another aspect of the present disclosure, a second shaft is fixed relative to and extends distally from the housing. In such aspects, the first shaft is translationally and rotatably disposed within the second shaft.


In yet another aspect of the present disclosure, an end face of the seal member is configured to establish the seal.


In still another aspect of the present disclosure, an outer periphery of the seal member is configured to establish the seal.


Another end effector assembly of a tissue resecting instrument provided in accordance with aspects of the present disclosure includes a housing, a first shaft extending from the housing and configured to rotate and reciprocate relative to the housing to cut tissue, and an inner core drive assembly disposed at least partially within the housing. The inner core drive assembly is operably coupled to the first shaft and configured such that a rotational input provided to the inner core drive assembly effects the rotation and reciprocation of the first shaft relative to the housing. The inner core drive assembly includes a proximal portion translationally fixed and rotatably coupled to the housing. The proximal portion is configured to receive the rotational input and to rotate relative to the housing in response thereto. The inner core drive assembly further includes a distal portion translationally and rotatably coupled to the housing and operably coupled to the proximal portion such that the rotation of the proximal portion relative to the housing effects rotation and reciprocation of the distal portion relative to the housing to thereby rotate and reciprocate the first shaft relative to the housing. The inner core drive assembly also includes a seal member disposed on the distal portion and slidably received within the proximal portion. In at least one first translational position of the distal portion relative to the proximal portion, the seal member establishes a seal about an inner surface of the proximal portion to inhibit fluid flow therebetween. In at least one second position of the distal portion relative to the proximal portion, the seal member is displaced to permit fluid flow between the proximal and distal portions.


In an aspect of the present disclosure, the proximal portion includes an extension having a first section defining plurality of longitudinally-extending slots configured to permit passage of fluid therethrough and a second section devoid of longitudinally-extending slots.


In another aspect of the present disclosure, in the at least one first translational position, the seal member is positioned within the first section of the extension of the proximal portion. In the at least one second position, the seal member is positioned within the second section of the extension of the proximal portion.


In still another aspect of the present disclosure, the at least one first translational position corresponds to a more-distal position of the distal portion relative to the proximal portion and the at least one second translational position corresponds to a more-proximal position of the distal portion relative to the proximal portion.


In yet another aspect of the present disclosure, a second shaft is fixed relative to and extends distally from the housing. The first shaft, in such aspects, is translationally and rotatably disposed within the second shaft. Further, the second shaft may define a window wherein the first shaft is configured to rotate and reciprocate relative to the window to cut tissue extending through the window.


A tissue resecting instrument provided in accordance with aspects of the present disclosure includes a handpiece assembly including a drive rotor and an outflow conduit and an end effector assembly configured to releasably engage the handpiece assembly. The end effector assembly may be provided in accordance with any of the aspects detailed above.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and features of the present disclosure are described hereinbelow with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views.



FIG. 1 is a side view of a tissue resecting instrument provided in accordance with aspects of the present disclosure including a handpiece assembly and an end effector assembly, wherein a distal end portion of the end effector assembly is enlarged to better illustrate features thereof;



FIG. 2 is a perspective view of the end effector assembly of the tissue resecting instrument of FIG. 1;



FIG. 3 is a longitudinal, cross-sectional view of the end effector assembly of FIG. 2;



FIG. 4 is a longitudinal, cross-sectional view of a portion of the tissue resecting instrument of FIG. 1 with the end effector assembly operably coupled to a drive rotor of the handpiece assembly and fluidly coupled to an outflow conduit of the handpiece assembly, wherein the remainder of the handpiece assembly is removed;



FIG. 5 is a longitudinal, cross-sectional view of the portion of the tissue resecting instrument of FIG. 1 illustrated in FIG. 4, with the end effector assembly operably coupled to the drive rotor of the handpiece assembly and sealed from the outflow conduit of the handpiece assembly, wherein the remainder of the handpiece assembly is removed;



FIG. 6 is a front view of a seal member of the end effector assembly of FIG. 2;



FIG. 7 is a side view of the seal member of FIG. 6;



FIG. 8 is a longitudinal, cross-sectional view taken across section line “8-8” of FIG. 6;



FIG. 9 is a front view of another seal member configured for use with the end effector assembly of FIG. 2;



FIG. 10 is a side view of the seal member of FIG. 9;



FIG. 11 is a rear view of the seal member of FIG. 9;



FIG. 12 is a longitudinal, cross-sectional view taken across section line “12-12” of FIG. 10;



FIG. 13 is a longitudinal, cross-sectional view of a portion of another tissue resecting instrument provided in accordance with the present disclosure with an end effector assembly operably coupled to a drive rotor of a handpiece assembly and fluidly coupled to an outflow conduit of the handpiece assembly, wherein the remainder of the handpiece assembly is removed; and



FIG. 14 is a longitudinal, cross-sectional view of the portion of the tissue resecting instrument illustrated in FIG. 13, with the end effector assembly operably coupled to the drive rotor of the handpiece assembly and sealed from the outflow conduit of the handpiece assembly, wherein the remainder of the handpiece assembly is removed.





DETAILED DESCRIPTION

Referring generally to FIG. 1, a tissue resecting instrument 10 provided in accordance with the present disclosure and configured to resect tissue includes an end effector assembly 100 and a handpiece assembly 200. Tissue resecting instrument 10 is adapted to connect to a control unit (not shown) via a cable 300 to provide power and control functionality to tissue resecting instrument 10, although tissue resecting instrument 10 may alternatively or additionally include controls associated with handpiece assembly 200 and/or a power source, e.g., battery, disposed within handpiece assembly 200. Tissue resecting instrument 10 is further adapted to connect to a fluid management system (not shown) via outflow tubing 400 for applying suction to remove fluid, tissue, and debris from a surgical site via tissue resecting instrument 10, as detailed below. The control unit and fluid management system may be integral with one another, coupled to one another, or separate from one another.


Tissue resecting instrument 10 may be configured as a single-use device that is discarded after use or sent to a manufacturer for reprocessing, a reusable device capable of being cleaned and/or sterilized for repeated use by the end-user, or a partially-single-use, partially-reusable device. With respect to partially-single-use, partially-reusable configurations, handpiece assembly 200 may be configured as a cleanable/sterilizable, reusable component, while end effector assembly 100 is configured as a single-use, disposable/reprocessable component. In any of the above configurations, end effector assembly 100 is configured to releasably engage handpiece assembly 200 to facilitate disposal/reprocessing of any single-use components and cleaning and/or sterilization of any reusable components. Further, enabling releasable engagement of end effector assembly 100 with handpiece assembly 200 allows for interchangeable use of different end effector assemblies, e.g., different length, configuration, etc., end effector assemblies, with handpiece assembly 200.


Continuing with reference to FIG. 1, handpiece assembly 200 generally includes a handle housing 210, an outflow conduit 220 defined through (as shown), extending through, disposed on, or otherwise associated with handle housing 210, a motor 250 disposed within handle housing 210, and a drive rotor 260 disposed at least partially within handle housing 210 and operably coupled to motor 250. Handpiece assembly 200 may further include one or more controls (not shown) disposed on or operably associated with handle housing 210 to facilitate activation of tissue resecting instrument 10. Further, outflow tubing 400 is configured to connect to a proximal end portion of outflow conduit 220 to thereby connect outflow conduit 220 to the fluid management system (not shown). The fluid management system includes a vacuum source to establish suction through tissue resecting instrument 10 and outflow tubing 400 to facilitate removal of fluid, tissue, and debris from the surgical site and may also include a collection reservoir, e.g., a collection canister, for collecting the removed fluid, tissue, and debris. As an alternative or in addition to a vacuum source establishing suction through tissue resecting instrument 10 and outflow tubing 400, vacuum may be created therethrough via a pressure differential between the surgical site and the outflow path.


Handle housing 210 defines a pencil-grip configuration, although other configurations are also contemplated, e.g., pistol-grip configurations, and includes a distal hub 212 disposed at an open distal end portion 214 thereof. Distal hub 212 defines an annular recess 216 configured to facilitate releasably engagement of end effector assembly 100 with handpiece assembly 200, as detailed below. Open distal end portion 214 of handle housing 210 provides access to drive rotor 260 and a distal end portion of outflow conduit 220 within handle housing 210 such that, upon engagement of end effector assembly 100 with handpiece assembly 200, as also detailed below, a portion of end effector assembly 100 extends through open distal end portion 214 and into the interior of handle housing 210 to operably couple with drive rotor 260 and a distal end portion of outflow conduit 220.


Cable 300 extends proximally from handle housing 210 and is configured to connect to the control unit (not shown) to provide power and control functionality to tissue resecting instrument 10. Cable 300, more specifically, houses one or more wires 310 that extend into handle housing 210 and connect to the controls thereof and/or motor 250 to power motor 250 and control operation of tissue resecting instrument 10 in accordance with controls associated with handpiece assembly 200, the control unit, and/or other remote control devices, e.g., a footswitch (not shown).


Drive rotor 260 is operably coupled with and extends distally from motor 250 such that, upon activation of motor 250, motor 250 drives rotation of drive rotor 260. At least a portion of drive rotor 260 defines a non-circular cross-sectional configuration, e.g., a square or other polygonal configuration. Drive rotor 260 is configured for at least partial receipt within proximal receiver 146 of end effector assembly 100 (see FIG. 2) in fixed rotational orientation relative thereto upon engagement of end effector assembly 100 with handpiece assembly 200. As such, activation of motor 250 drives rotation of drive rotor 260 to, in turn, drive rotation of inner cutting shaft 130 of end effector assembly 100, as detailed below.


Referring to FIGS. 1-3, end effector assembly 100 includes a proximal hub housing 110, an elongated outer shaft 120 monolithically formed, fixedly engaged, or otherwise connected with and extending distally from proximal hub housing 110, an inner cutting shaft 130 disposed within elongated outer shaft 120, and an inner core drive assembly 140.


Proximal hub housing 110 of end effector assembly 100 includes a distal body portion 112 and a proximal extension portion 114 that may be monolithically formed, engaged, or otherwise connected to one another. With end effector assembly 100 engaged with handpiece assembly 200, proximal extension portion 114 of proximal hub housing 110 extends into handle housing 210 of handpiece assembly 200 while distal body portion 112 substantially abuts and extends distally from handle housing 210 of handpiece assembly 200. An engagement lever 116 extends from proximal hub housing 110. Engagement lever 116 includes a finger tab 117a and an engagement tooth 117b disposed on opposite sides of a living hinge pivot 117c such that urging finger tab 117a towards proximal hub housing 110 urges engagement tooth 117b away from proximal hub housing 110, and vice versa.


Upon insertion of proximal extension portion 114 of proximal hub housing 110 of end effector assembly 100 into handle housing 210 of handpiece assembly 200, engagement tooth 117b is configured to cam over distal hub 212 of handpiece assembly 200 and into engagement within annular recess 216 of distal hub 212 of handpiece assembly 200 to engage end effector assembly 100 and handpiece assembly 20 with one another. Disengagement of end effector assembly 100 from handpiece assembly 200 is effected by depressing finger tab 117a towards proximal hub housing 110 to thereby withdraw engagement tooth 117b from annular recess 216. With engagement tooth 117b disengaged from annular recess 216, end effector assembly 100 may be moved distally relative to handpiece assembly 200 to withdraw proximal extension portion 114 from handle housing 210, thereby disengaging end effector assembly 100 from handpiece assembly 200.


With reference to FIG. 1, elongated outer shaft 120 of end effector assembly 100, as noted above, includes a proximal end portion 122 fixedly engaged with distal body portion 112 of proximal hub housing 110 (see FIG. 3). Elongated outer shaft 120 further includes a distal end portion 124 defining a closed distal end 126 and a window 128 proximally-spaced from closed distal end 126. Window 128 provides access to the interior of elongated outer shaft 120 and may be surrounded by a cutting edge 129 about the outer perimeter of window 128 so as to facilitate cutting of tissue passing through window 128 and into elongated outer shaft 120.


Inner cutting shaft 130 of end effector assembly 100 extends through elongated outer shaft 120 and defines a proximal end portion 132 and a distal end portion 134 defining an open distal end 136. Proximal end portion 132 of inner cutting shaft 130 is operably coupled with inner core drive assembly 140, as detailed below (see FIG. 3). Inner cutting shaft 130 defines an annular cutting edge 138 surrounding open distal end 136 so as to facilitate cutting of tissue passing into inner cutting shaft 130 via open distal end 136. Inner cutting shaft 130 is rotatable and reciprocatable within and relative to elongated outer shaft 120. More specifically, inner cutting shaft 130 is configured to reciprocate and rotate such that annular cutting edge 138 is exposed within window 128 of elongated outer shaft 120 during at least a portion of the reciprocation motion of inner cutting shaft 130 to enable cutting of tissue therewith. As detailed below, suction is provided to facilitate drawing tissue into window 128 of elongated outer shaft 120 and, thus, to facilitate the cutting of tissue with inner cutting shaft 130 and removal of tissue through inner cutting shaft 130. Other suitable configurations of elongated outer shaft 120 and/or inner cutting shaft 130 that cooperate to facilitate tissue cutting are also contemplated.


Referring to FIGS. 2 and 3, inner core drive assembly 140 is partially disposed within proximal hub housing 110 and extends proximally from proximal hub housing 110 to facilitate operable engagement with handpiece assembly 200. Further, inner core drive assembly 140 is coupled to inner cutting shaft 130 within proximal hub housing 110 such that rotational input imparted to inner core drive assembly 140, e.g., via handpiece assembly 200, drives reciprocation and rotation of inner cutting shaft 130 within and relative to elongated outer shaft 120, as detailed below.


Inner core drive assembly 140, more specifically, includes a ferrule 142 fixedly engaged about proximal end portion 132 of inner cutting shaft 130, a threaded coupler 144, a proximal receiver 146, and a connector 148 operably coupling ferrule 142, threaded coupler 144, and proximal receiver 146 with one another, as detailed below. Inner core drive assembly 140 further includes a follower 150 fixed relative to proximal hub housing 110. Follower 150 includes a cap 152 fixedly engaged with proximal hub housing 110 and an arm 154 extending from cap 152 into operable engagement with helical channel 145 of threaded coupler 144.


Continuing with reference to FIGS. 2 and 3, proximal receiver 146 of inner core drive assembly 140 includes a proximally-facing cavity 147a at least a portion of which has a non-circular cross-sectional configuration, e.g., an 8-point star or other polygonal configuration, that is configured to at least partially receive drive rotor 260 of handpiece assembly 200 in fixed rotational orientation (see FIGS. 4 and 5). Proximal receiver 146 further includes a central collar 147b received within an interior annular recess 115 defined within proximal extension portion 114 of proximal hub housing 110 to longitudinally fixed and rotatably couple proximal receiver 146 relative to proximal hub housing 110. Proximal receiver 146 additionally includes a distal spine 147c extending distally from central collar 147b and a seal member 160 engaged about distal spine 147c. At least a portion of distal spine 147c defines a non-circular cross-sectional configuration, e.g., a rectangular or other polygonal configuration.


Connector 148 defines a proximally-facing cavity 149a at least a portion of which has a non-circular cross-sectional configuration, e.g., a rectangular or other polygonal configuration, that is configured to receive at least a portion of distal spine 147c of proximal receiver 146 in fixed rotational orientation while permitting relative translation therebetween. Connector 148 additionally includes an annular, proximally-facing surface 149b surrounding proximally-facing cavity 149a. Proximally-facing surface 149b may be a substantially flat, smooth surface to facilitate establishing a fluid-tight seal between proximally-facing surface 149b and seal member 160, as detailed below. Connector 148 further includes a distal body 149c that is fixedly engaged with threaded coupler 144 and operably engaged with ferrule 142 to thereby translationally fix and rotationally couple connector 148 and threaded coupler 144 with inner cutting shaft 130. Distal body 149c of connector 148, more specifically, is operably engaged with ferrule 142 via gearing 143 to amplify or attenuate the rotational input to inner cutting shaft 130 relative to the rotation output from drive rotor 260. Alternatively, distal body 149c of connector 148 may be fixedly engaged about ferrule 142 (or operably coupled via a 1:1 gear ratio or other suitable 1:1 input to output ratio) such that the rotation imparted to inner cutting shaft 130 is equal to the rotational output from drive rotor 260. In either configuration, ferrule 142 and connector 148 are positioned relative to proximal end portion 132 of inner cutting shaft 130 such that proximally-facing cavity 149a of connector 148 is disposed in fluid communication with the interior of inner cutting shaft 130 via the open proximal end of inner cutting shaft 130.


Turning to FIGS. 4 and 5, in use, motor 250 of handpiece assembly 200 (see FIG. 1) is activated to drive rotation of drive rotor 260. Upon activation of motor 250 (FIG. 1), with a head-start or delay relative to activation of motor 250, or independently thereof, suction is established through outflow conduit 220 of handpiece assembly 200 and outflow tubing 400, e.g., via activating the vacuum source of the fluid management system.


Due to the fixed rotational engagement of drive rotor 260 at least partially within proximally-facing cavity 147a of proximal receiver 146 of inner core drive assembly 140, rotation of drive rotor 260 effects similar rotation of proximal receiver 146. Rotation of proximal receiver 146 relative to proximal hub housing 110, in turn, is transmitted to connector 148 via the fixed rotational engagement of distal spine 147c of proximal receiver 146 at least partially within proximally-facing cavity 149a of connector 148. This rotation imparted to connector 148, in turn, is transmitted to threaded coupler 144 via the fixed engagement of distal body 149c of connector 148 therewith.


Further, due to the operable engagement of arm 154 of follower 150 within helical channel 145 of threaded coupler 144, the imparted rotation to threaded coupler 144 reciprocates threaded coupler 144 and, thus, also reciprocates connector 148 relative to proximal hub housing 110 and proximal receiver 146 (whereby distal spine 147c of proximal receiver 146 reciprocates within proximally-facing cavity 149a of connector 148). The reciprocation and rotation of threaded coupler 144 and connector 148 is also transmitted to inner cutting shaft 130 by way of gearing 143 and ferrule 142 such that inner cutting shaft 130 is rotated and reciprocated within and relative to elongated outer shaft 120. While gearing 143 may vary the rotation of inner cutting shaft 130 relative to threaded coupler 144 and connector 148, inner cutting shaft 130 is reciprocated similarly as threaded coupler 144 and connector 148.


With additional reference to FIG. 1, while motor 250 is active, threaded coupler 144 and connector 148 are rotated and reciprocated to effect rotation and reciprocation of inner cutting shaft 130. With respect to reciprocation in particular, inner cutting shaft 130, threaded coupler 144, and connector 148 are repeatedly reciprocated from respective proximal-most positions to respective distal-most positions and back to the respective proximal-most positions.


When connector 148 is displaced from the proximal-most position thereof, as illustrated in FIG. 4, proximally-facing surface 149b of connector 148 is spaced-apart from seal member 160 and, thus, proximally-facing cavity 149a of connector 148, which is disposed in fluid communication with the interior of inner cutting shaft 130, is also disposed in fluid communication with outflow conduit 220 of handpiece assembly 200 such that suction applied through outflow conduit 220 establishes vacuum within inner cutting shaft 130 to draw tissue through window 128 of elongated outer shaft 120 and into inner cutting shaft 130, while cutting edges 129, 138 facilitate cutting of tissue as it passes through window 128 and into inner cutting shaft 130. The cut tissue, fluids, and debris are suctioned through inner cutting shaft 130, proximally-facing cavity 149a of connector 148, outflow conduit 220 of handpiece assembly 200, and outflow tubing 400 to the collection reservoir.


However, when connector 148 is disposed in the proximal-most position thereof, as illustrated in FIG. 5, proximally-facing surface 149b of connector 148 is sealingly engaged with seal member 160, thus sealing proximally-facing cavity 149a of connector 148 from outflow conduit 220 of handpiece assembly 200 and inhibiting fluid communication therebetween. Thus, in the proximal-most position of connector 148, no suction is applied through inner cutting shaft 130.


The proximal-most position of connector 148 illustrated in FIG. 5 (which also corresponds to the proximal-most position of threaded coupler 144 and inner cutting shaft 130), wherein proximally-facing surface 149b of connector 148 is sealingly engaged with seal member 160, may correspond to an initial and/or home position of end effector assembly 100. More specifically, end effector assembly 100 may initially be disposed with connector 148 in its proximal-most position prior to engagement of end effector assembly 100 with handpiece assembly 200. Thus, upon engagement of end effector assembly 100 with handpiece assembly 200, proximally-facing cavity 149a of connector 148 is sealed off from outflow conduit 220 of handpiece assembly 200. Further, this initial position may be designated as a home position, whereby a control program (not shown) associated with motor 250 records the rotational position of drive rotor 260 upon engagement of end effector assembly 100 with handpiece assembly 200 (see FIG. 1) and, after activation, ensures that drive rotor 260 stops at a rotational position corresponding to the proximal-most position of connector 148 and, thus, a position where proximally-facing cavity 149a of connector 148 is sealed off from outflow conduit 220 of handpiece assembly 200.


The control program may utilize correlation information correlating, for example, rotation of drive rotor 260 with reciprocation of connector 148 to ensure that connector 148 is returned to its proximal-most position after each activation. As the correlating information may vary depending upon the particular end effector assembly 100 utilized, the control program may communicate with or read information from end effector assembly 100 in order to correlate rotation of drive rotor 260 with reciprocation of connector 148 and, thus, set the home position.


Turning to FIGS. 6-8, seal member 160 is shown. Other suitable seal members configured for use with tissue resecting instrument 10 (FIG. 1) are also contemplated such as, for example, seal member 1160 (FIGS. 9-12). Seal member 160 includes a generally cylindrical body 162, a proximal rim 164 protruding radially outwardly from body 162, and a distal rim 166 protruding radially outwardly from body 162 at a position spaced-apart relative to proximal rim 164. Seal member 160 may be monolithically formed, e.g., molded, from any suitable material, e.g., silicone, rubber, PTFE, etc.


With additional reference to FIGS. 4 and 5, body 162 defined a longitudinal lumen 163 extending therethrough that is configured to receive distal spine 147c of proximal receiver 146 to secure seal member 160 about distal spine 147c. Distal rim 166 defines a distally-facing seal surface 167 and is configured to establish a seal against proximally-facing surface 149b of connector 148, in response to proximal-urging of proximally-facing surface 149b into contact with distally-facing seal surface 167, e.g., in the proximal-most position of connector 148 (see FIG. 5). In this manner, distal rim 166 functions as a face seal. An outer periphery 165 of proximal rim 164, on the other hand, is configured to sealingly engage an interior surface of proximal extension portion 114 of proximal hub housing 110 to inhibit any fluids disposed within proximal extension portion 114 of proximal hub housing 110 from passing proximally beyond seal member 160 and to inhibit fluid proximally of seal member 160 (but outside the outflow path) from being suctioned into the outflow path. Proximal rim 164 is configured as a dynamic seal in that outer periphery 165 thereof maintains a seal with the interior surface of proximal extension portion 114 of proximal hub housing 110 throughout rotation of distal spine 147c and, thus, seal member 160 relative to proximal extension portion 114 of proximal hub housing 110. Accordingly, seal member 160 provides a dual-seal configuration.


Turning to FIGS. 9-12, another seal member 1160 configured for use with tissue resecting instrument 10 (FIG. 1) is shown. Seal member 1160 includes a generally cylindrical body 1162 defining a proximal end portion 1163, a distal end portion 1165, and a lumen 1166 extending longitudinally therethrough. Distal end portion 1165 of seal member 1160 is inverted outwardly and back onto the exterior of body 1162 to define a distally-facing surface 1168a and a radially-outwardly-facing surface 1168b.


With additional reference to FIGS. 4 and 5, body 1162 is configured for positioning about distal spine 147c of proximal receiver 146 (with distal spine 147c extending through lumen 1166) to secure seal member 1160 about distal spine 147c. Distally-facing surface 1168a is configured to establish a seal against proximally-facing surface 149b of connector 148, in response to proximal-urging of proximally-facing surface 149b into contact with distally-facing seal surface 1168a, e.g., in the proximal-most position of connector 148 (see FIG. 5). In this manner, distally-facing surface 1168a functions as a face seal. Radially-outwardly-facing surface 1168b, on the other hand, is configured to sealingly engage an interior surface of proximal extension portion 114 of proximal hub housing 110 to inhibit any fluids disposed within proximal extension portion 114 of proximal hub housing 110 from passing proximally beyond seal member 1160 and to inhibit fluid proximally of seal member 1160 (but outside the outflow path) from being suctioned into the outflow path. Radially-outwardly-facing surface 1168b is configured as a dynamic seal that is configured to maintain a seal with the interior surface of proximal extension portion 114 of proximal hub housing 110 throughout rotation of distal spine 147c and, thus, seal member 1160 relative to proximal extension portion 114 of proximal hub housing 110. Accordingly, seal member 1160 provides a dual-seal configuration.


Turning to FIGS. 13 and 14, a portion of another tissue resecting instrument provided in accordance with the present disclosure and configured to resect tissue is shown generally identified by reference numeral 2010. Tissue resecting instrument 2010 includes an end effector assembly 2100 and a handpiece assembly 2200 and is similar to and may include any of the features of tissue resecting instrument 10 (FIG. 1) detailed above, except as explicitly contradicted below. For purposes of brevity, only the differences between tissue resecting instrument 2010 and tissue resecting instrument 10 (FIG. 1) are described in detail below while similarities are summarily described or omitted entirely.


Handpiece assembly 2200 of tissue resecting instrument 2010 includes an outflow conduit 2220 configured to fluidly couple with end effector assembly 2100 upon engagement of handpiece assembly 2200 with end effector assembly 2100. Handpiece assembly 2200 also includes a drive rotor 2260 operably coupled to a motor (not shown) and extending distally from the motor.


End effector assembly 2100 of tissue resecting instrument 2010 includes a proximal hub housing 2110, an inner cutting shaft 2130 disposed within an elongated outer shaft (not shown), and an inner core drive assembly 2140. Inner core drive assembly 2140 includes a ferrule sleeve 2142 fixedly engaged about inner cutting shaft 2130 and extending along a proximal portion thereof, a proximal receiver 2146, and a connector 2148 including a proximal extension portion 2148a integrally formed with or otherwise fixed relative to the body of connector 2148. Ferrule sleeve 2142 is operably coupled with connector 2148 while proximal extension portion 2148a of connector 2148 is operably coupled with proximal receiver 2146 (similarly as detailed above with respect to tissue resecting instrument 10 (FIGS. 1-5)), such that rotational input imparted to proximal receiver 2146, e.g., via drive rotor 2260 of handpiece assembly 2200, drives both reciprocation and rotation of inner cutting shaft 2130 within and relative to the elongated outer shaft (not shown).


Continuing with reference to FIGS. 13 and 14, proximal receiver 2146 of inner core drive assembly 2140 is longitudinally fixed and rotatable relative to proximal hub housing 2110 and defines a proximally-facing cavity 2147a and a distal extension 2147c. At least a portion of proximally-facing cavity 2147a has a non-circular cross-sectional configuration and is configured to at least partially receive drive rotor 2260 of handpiece assembly 2200 in fixed rotational orientation. Distal extension 2147c extends distally from a closed proximal end 2147d to an open distal end 2147e. Distal extension 2147c defines a lumen 2147f extending between the proximal and distal ends 2147d and 2147e, respectively, thereof and a plurality of longitudinal slots 2147g extending along a portion of the length of distal extension 2147c and defined through a side wall thereof to communicate with lumen 2147f. Notably, a proximal portion 2147h of distal extension 2147c is devoid of longitudinal slots 2147g. At least a portion of distal extension 2147c is configured to slidably receive ferrule sleeve 2142 within lumen 2147f thereof.


As a result of the above-detailed configuration, rotational input imparted to proximal receiver 2146 via drive rotor 2260 rotates and reciprocates connector 2148 (wherein proximal extension 2148a of connector 2148 is coupled to proximal receiver 2146 similarly as detailed above with respect to tissue resection instrument 10 (FIGS. 1-5); this coupling is not explicitly shown in FIGS. 13 and 14). Due to the operable coupling of ferrule sleeve 2142 with connector 2148 (similarly as detailed above with respect to tissue resection instrument 10 (FIGS. 1-5)), rotation and reciprocation of connector 2148 relative to proximal hub housing 2110 effects rotation and reciprocation of ferrule sleeve 2142 relative to proximal hub housing 2110. With inner cutting shaft 2130 fixed relative to ferrule sleeve 2142, inner cutting shaft 2130 is also reciprocated and rotated.


A seal member 2160 is fixedly engaged about a proximal portion of proximal extension portion 2148a of connector 2148. Seal member 2160 defines a tubular configuration that partially overlaps proximal portion of ferrule sleeve 2142 and extends proximally therefrom. Seal member 2160 defines a central passageway 2162 communicating with the interior of inner cutting shaft 2130, and an open proximal end 2164. Seal member 2160, being fixedly engaged about the proximal portion of proximal extension portion 2148a of connector 2148, is configured to rotate with connector 2148 and translate herewith relative to proximal receiver 2146.


Referring still to FIGS. 13 and 14, in use, the motor (not shown) of handpiece assembly 2200 is activated to drive rotation of drive rotor 2260 to, in turn, rotate proximal receiver 2146 which thereby rotates connector 2148. As detailed above, rotation of connector 2148 also results in reciprocation of connector 2148 and, thus, rotation and reciprocation of ferrule sleeve 2142. The reciprocation and rotation of ferrule sleeve 2142 is transmitted to inner cutting shaft 2130 such that inner cutting shaft 2130 is rotated and reciprocated within and relative to the elongated outer shaft (not shown).


With respect to the reciprocation, ferrule sleeve 2142, inner cutting shaft 2130, and connector 2148 (including proximal extension portion 2148a thereof) are repeatedly reciprocated from respective proximal-most positions to respective distal-most positions and back to the respective proximal-most positions. When proximal extension portion 2148a of connector 2148 is distally-displaced from proximal portion 2147h of distal extension 2147c, e.g., when ferrule proximal extension portion 2148a of connector 2148 is sufficiently distally-displaced from the proximal-most position thereof, as illustrated in FIG. 13, seal member 2160 is displaced from distal extension 2147c of proximal receiver 2146 such that a fluid outflow path is defined from the interior of inner cutting shaft 2130, through central passageway 2162 and open proximal end 2164 of seal member 2160, through lumen 2147f of distal extension 2147c, through one or more of longitudinal slots 2147g of distal extension 2147c, and to outflow conduit 2220 of handpiece assembly 2200. As such, suction applied through outflow conduit 2220 in this position establishes vacuum within inner cutting shaft 2130 to draw cut tissue, fluid, and debris therethrough.


When proximal extension portion 2148a of connector 2148 is disposed in or in close proximity to the proximal-most position thereof such that seal member 2160 is at least partially disposed within proximal portion 2147h of distal extension 2147c, an outer periphery of seal member 2160 is sealed against an inner wall of proximal portion 2147h of distal extension 2147c. As noted above, proximal portion 2147h of distal extension 2147c is devoid of longitudinal slots 2147g and, thus, the seal of seal member 2160 against the inner wall of proximal portion 2147h of distal extension 2147c seals off the flow path to outflow conduit 2220 of handpiece assembly 2200. Thus, when proximal extension portion 2148a of connector 2148 is disposed in or in close proximity to the proximal-most position, no suction is applied through inner cutting shaft 2130.


Referring generally to FIG. 1, as an alternative to handpiece assemblies 200, 1200 configured for manual grasping and manipulation during use, tissue resecting instruments 10, 1000 may alternatively be configured for use with a robotic surgical system wherein handle housings 210, 1210 are configured to engage a robotic arm of the robotic surgical system. The robotic surgical system may employ various robotic elements to assist the surgeon and allow remote operation (or partial remote operation). More specifically, various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with the robotic surgical system to assist the surgeon during the course of an operation or treatment. The robotic surgical system may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.


The robotic surgical system may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with the surgical device disclosed herein while another surgeon (or group of surgeons) remotely control the surgical device via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.


The robotic arms of the robotic surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, cameras, fluid delivery devices, etc.) which may complement the use of the tissue resecting devices described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as examples of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.


Although the foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity or understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

Claims
  • 1. An end effector assembly of a tissue resecting instrument, the end effector assembly comprising: a housing defining an outflow exit;an outer shaft fixed relative to and extending distally from the housing;an inner shaft disposed within the outer shaft and defining an outflow lumen therethrough;a proximal drive connector disposed within the housing and translationally fixed relative to the housing;a distal drive connector disposed within the housing, the distal drive connector operably coupled to the inner shaft within the housing and configured to translate relative to the housing and the proximal drive connector between an approximated position and a spaced-apart position to thereby translate the inner shaft relative to the outer shaft between a proximal position and a distal position; anda seal member disposed on one of the proximal drive connector or the distal drive connector,wherein, in the approximated position of the distal drive connector, the seal member forms a seal between the distal drive connector and the proximal drive connector to thereby inhibit fluid communication between the outflow lumen and the outflow exit, andwherein, in the spaced-apart position of the distal drive connector, the outflow lumen and the outflow exit are disposed in fluid communication with one another.
  • 2. The end effector assembly according to claim 1, wherein the seal member is disposed on the proximal drive connector such that the seal is translationally fixed relative to the housing.
  • 3. The end effector assembly according to claim 1, wherein the seal member is disposed on the distal drive connector such that the seal is configured to translate with the distal drive connector relative to the housing.
  • 4. The end effector assembly according to claim 1, wherein an end face of the seal member is configured to establish the seal.
  • 5. The end effector assembly according to claim 1, wherein an outer periphery of the seal member is configured to establish the seal.
  • 6. The end effector assembly according to claim 1, wherein the outer shaft defines a window therethrough towards a distal end thereof, the window disposed in fluid communication with the outflow lumen of the inner shaft.
  • 7. The end effector assembly according to claim 6, wherein the inner shaft defines a distal opening that establishes fluid communication between the window and the outflow lumen.
  • 8. The end effector assembly according to claim 7, wherein the distal opening is an open distal end of the inner shaft.
  • 9. The end effector assembly according to claim 1, wherein the proximal drive connector is configured to rotate relative to the housing and to impart rotational motion to the distal drive connector to rotate the distal drive connector relative to the housing at a same rate of speed as the rotation of the proximal drive connector.
  • 10. The end effector assembly according to claim 9, wherein a gear assembly rotationally couples the distal drive connector with the inner shaft such that, in response to rotation of the distal drive connector relative to the housing, the inner shaft is rotated relative to the housing at an increased rotation rate compared to a rotational speed of the distal drive connector.
  • 11. A tissue resecting instrument, comprising: a handpiece assembly including an outflow conduit; andan end effector assembly, including: a housing configured to releasably engage the handpiece assembly, the housing defining an outflow exit configured to fluidly communicate with the outflow conduit when the housing is engaged with the handpiece assembly;an outer shaft fixed relative to and extending distally from the housing;an inner shaft disposed within the outer shaft and defining an outflow lumen therethrough;a proximal drive connector disposed within the housing and translationally fixed relative to the housing;a distal drive connector disposed within the housing, the distal drive connector operably coupled to the inner shaft within the housing and configured to translate relative to the housing and the proximal drive connector between an approximated position and a spaced-apart position to thereby translate the inner shaft relative to the outer shaft between a proximal position and a distal position; anda seal member disposed on one of the proximal drive connector or the distal drive connector,wherein, in the approximated position of the distal drive connector, the seal member forms a seal between the distal drive connector and the proximal drive connector to thereby inhibit fluid communication between the outflow lumen and the outflow exit, andwherein, in the spaced-apart position of the distal drive connector, the outflow lumen and the outflow exit are disposed in fluid communication with one another.
  • 12. The tissue resecting instrument according to claim 11, wherein the handpiece assembly includes a drive rotor configured to operably connect to the end effector assembly to drive translation of the inner shaft.
  • 13. The tissue resecting instrument according to claim 12, wherein the handpiece assembly further includes a motor configured to drive rotation of the drive rotor.
  • 14. The tissue resecting instrument according to claim 11, wherein the seal member is disposed on the proximal drive connector such that the seal is translationally fixed relative to the housing.
  • 15. The tissue resecting instrument according to claim 11, wherein the seal member is disposed on the distal drive connector such that the seal is configured to translate with the distal drive connector relative to the housing.
  • 16. The tissue resecting instrument according to claim 11, wherein an end face of the seal member is configured to establish the seal or an outer periphery of the seal member is configured to establish the seal.
  • 17. The tissue resecting instrument according to claim 11, wherein the outer shaft defines a window therethrough towards a distal end thereof and wherein the inner shaft defines a distal opening that establishes fluid communication between the window and the outflow lumen.
  • 18. The tissue resecting instrument according to claim 11, wherein the proximal drive connector is configured to rotate relative to the housing and to impart rotational motion to the distal drive connector to rotate the distal drive connector relative to the housing at a same rate of speed as the rotation of the proximal drive connector.
  • 19. The tissue resecting instrument according to claim 18, wherein a gear assembly rotationally couples the distal drive connector with the inner shaft such that, in response to rotation of the distal drive connector relative to the housing, the inner shaft is rotated relative to the housing at an increased rotation rate compared to a rotational speed of the distal drive connector.
  • 20. The tissue resecting instrument according to claim 11, wherein the outflow conduit of the handpiece assembly is adapted to connect to a source of vacuum to establish suction through the inner shaft when the distal drive connector is disposed in the spaced-apart position.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/409,977, filed on May 13, 2019, which is a continuation-in-part of U.S. patent application Ser. No. 16/282,417, filed on Feb. 22, 2019, now U.S. Pat. No. 11,083,481, the entire contents of each of which are hereby incorporated herein by reference.

US Referenced Citations (288)
Number Name Date Kind
1585934 Muir May 1926 A
1666332 Hirsch Apr 1928 A
1831786 Duncan Nov 1931 A
2708437 Hutchins May 1955 A
3297022 Wallace Jan 1967 A
3686706 Finley Aug 1972 A
3734099 Bender et al. May 1973 A
3791379 Storz Feb 1974 A
3812855 Banko May 1974 A
3835842 Iglesias Sep 1974 A
3850162 Iglesias Nov 1974 A
3945375 Banko Mar 1976 A
3980252 Tae Sep 1976 A
3995619 Glatzer Dec 1976 A
3996921 Neuwirth Dec 1976 A
4011869 Seiler, Jr. Mar 1977 A
4108182 Hartman et al. Aug 1978 A
4146405 Timmer et al. Mar 1979 A
4198958 Utsugi Apr 1980 A
4203444 Bonnell et al. May 1980 A
4210146 Banko Jul 1980 A
4246902 Martinez Jan 1981 A
4247180 Norris Jan 1981 A
4258721 Parent et al. Mar 1981 A
4261346 Wettermann Apr 1981 A
4294234 Matsuo Oct 1981 A
4316465 Dotson, Jr. Feb 1982 A
4369768 Vukovic Jan 1983 A
4392485 Hiltebrandt Jul 1983 A
4414962 Carson Nov 1983 A
4449538 Corbitt et al. May 1984 A
4493698 Wang et al. Jan 1985 A
4517977 Frost May 1985 A
4543965 Pack et al. Oct 1985 A
4567880 Goodman Feb 1986 A
4589414 Yoshida et al. May 1986 A
4601284 Arakawa et al. Jul 1986 A
4601290 Effron et al. Jul 1986 A
4606330 Bonnet Aug 1986 A
4630598 Bonnet Dec 1986 A
4644952 Patipa et al. Feb 1987 A
4649919 Thimsen et al. Mar 1987 A
4700694 Shishido Oct 1987 A
4706656 Kuboto Nov 1987 A
4718291 Wood et al. Jan 1988 A
4737142 Heckele Apr 1988 A
4749376 Kensey et al. Jun 1988 A
4756309 Sachse et al. Jul 1988 A
4819635 Shapiro Apr 1989 A
4844064 Thimsen et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4856919 Takeuchi et al. Aug 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4924851 Ognier et al. May 1990 A
4940061 Terwilliger et al. Jul 1990 A
4950278 Sachse et al. Aug 1990 A
4955882 Hakky Sep 1990 A
4986827 Akkas et al. Jan 1991 A
4998527 Meyer Mar 1991 A
4998914 Wiest et al. Mar 1991 A
5007917 Evans Apr 1991 A
5027792 Meyer Jul 1991 A
5037386 Marcus et al. Aug 1991 A
5059204 Lawson Oct 1991 A
5105800 Takahashi et al. Apr 1992 A
5106364 Hayafuji et al. Apr 1992 A
5112299 Pascaloff May 1992 A
5116868 Chen et al. May 1992 A
5125910 Freitas Jun 1992 A
5133713 Huang et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5158553 Berry et al. Oct 1992 A
5163433 Kagawa et al. Nov 1992 A
5169397 Sakashita et al. Dec 1992 A
5176677 Wuchinich Jan 1993 A
5195541 Obenchain Mar 1993 A
5226910 Kajiyama et al. Jul 1993 A
5244459 Hill Sep 1993 A
5254117 Rigby et al. Oct 1993 A
5269785 Bonutti Dec 1993 A
5270622 Krause Dec 1993 A
5275609 Pingleton et al. Jan 1994 A
5288290 Brody Feb 1994 A
5304118 Trese et al. Apr 1994 A
5312399 Hakky et al. May 1994 A
5312425 Evans et al. May 1994 A
5312430 Rosenbluth et al. May 1994 A
5320091 Grossi et al. Jun 1994 A
5347992 Pearlman et al. Sep 1994 A
5350390 Sher Sep 1994 A
5364395 West, Jr. Nov 1994 A
5374253 Burns, Sr. et al. Dec 1994 A
5390585 Ryuh Feb 1995 A
5392765 Muller Feb 1995 A
5395313 Naves et al. Mar 1995 A
5403276 Schechter et al. Apr 1995 A
5409013 Clement Apr 1995 A
5409453 Lundquist et al. Apr 1995 A
5411513 Ireland et al. May 1995 A
5421819 Edwards et al. Jun 1995 A
5425376 Banys et al. Jun 1995 A
5429601 Conley et al. Jul 1995 A
5435805 Edwards et al. Jul 1995 A
5443476 Shapiro Aug 1995 A
5449356 Walbrink et al. Sep 1995 A
5456673 Ziegler et al. Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5483951 Frassica et al. Jan 1996 A
5490819 Nicholas et al. Feb 1996 A
5490860 Middle et al. Feb 1996 A
5492537 Vancaillie Feb 1996 A
5498258 Hakky et al. Mar 1996 A
5527331 Kresch et al. Jun 1996 A
5549541 Muller Aug 1996 A
5556378 Storz et al. Sep 1996 A
5563481 Krause Oct 1996 A
5569164 Lurz Oct 1996 A
5569254 Carlson et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575756 Karasawa et al. Nov 1996 A
5591187 Dekel Jan 1997 A
5601583 Donahue et al. Feb 1997 A
5601603 Illi Feb 1997 A
5602449 Krause et al. Feb 1997 A
5603332 O'Connor Feb 1997 A
5630798 Beiser et al. May 1997 A
5649547 Ritchart et al. Jul 1997 A
5669927 Boebel et al. Sep 1997 A
5672945 Krause Sep 1997 A
5674179 Bonnet et al. Oct 1997 A
5676497 Kim Oct 1997 A
5695448 Kimura et al. Dec 1997 A
5702420 Sterling et al. Dec 1997 A
5709698 Adams et al. Jan 1998 A
5730752 Alden et al. Mar 1998 A
5733298 Berman et al. Mar 1998 A
5741286 Recuset Apr 1998 A
5741287 Alden et al. Apr 1998 A
5749885 Sjostrom et al. May 1998 A
5749889 Bacich et al. May 1998 A
5759185 Grinberg Jun 1998 A
5772634 Atkinson Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5782849 Miller Jul 1998 A
5807240 Muller et al. Sep 1998 A
5807282 Fowler Sep 1998 A
5810770 Chin et al. Sep 1998 A
5810861 Gaber Sep 1998 A
5814009 Wheatman Sep 1998 A
5833643 Ross et al. Nov 1998 A
5840060 Beiser et al. Nov 1998 A
5857995 Thomas et al. Jan 1999 A
5873886 Larsen et al. Feb 1999 A
5899915 Saadat May 1999 A
5911699 Anis et al. Jun 1999 A
5911722 Adler et al. Jun 1999 A
5913867 Dion Jun 1999 A
5916229 Evans Jun 1999 A
5925055 Adrian et al. Jul 1999 A
5928163 Roberts et al. Jul 1999 A
5944668 Vancaillie et al. Aug 1999 A
5947990 Smith Sep 1999 A
5951490 Fowler Sep 1999 A
5956130 Vancaillie et al. Sep 1999 A
5957832 Taylor et al. Sep 1999 A
6001116 Heisler et al. Dec 1999 A
6004320 Casscells et al. Dec 1999 A
6007513 Anis et al. Dec 1999 A
6024751 Lovato et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6039748 Savage et al. Mar 2000 A
6042552 Cornier Mar 2000 A
6068641 Varsseveld May 2000 A
6086542 Glowa et al. Jul 2000 A
6090094 Clifford, Jr. et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6119973 Galloway Sep 2000 A
6120147 Vijfvinkel et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6132448 Perez et al. Oct 2000 A
6149633 Maaskamp Nov 2000 A
6156049 Lovato et al. Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159209 Hakky Dec 2000 A
6171316 Kovac et al. Jan 2001 B1
6203518 Anis et al. Mar 2001 B1
6217543 Anis et al. Apr 2001 B1
6224603 Marino May 2001 B1
6244228 Kuhn et al. Jun 2001 B1
6258111 Ross et al. Jul 2001 B1
6277096 Cortella et al. Aug 2001 B1
6293957 Peters et al. Sep 2001 B1
6315714 Akiba Nov 2001 B1
6358200 Grossi Mar 2002 B1
6358263 Mark et al. Mar 2002 B2
6359200 Day Mar 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6471639 Rudischhauser et al. Oct 2002 B2
6494892 Ireland et al. Dec 2002 B1
6585708 Maaskamp Jul 2003 B1
6610066 Dinger et al. Aug 2003 B2
6626827 Felix et al. Sep 2003 B1
6632182 Treat Oct 2003 B1
6656132 Ouchi Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6712773 Viola Mar 2004 B1
6824544 Boebel et al. Nov 2004 B2
6837847 Ewers et al. Jan 2005 B2
7025720 Boebel et al. Apr 2006 B2
7025732 Thompson et al. Apr 2006 B2
7150713 Shener et al. Dec 2006 B2
7226459 Cesarini et al. Jun 2007 B2
7249602 Emanuel Jul 2007 B1
7510563 Cesarini et al. Mar 2009 B2
7763033 Gruber et al. Jul 2010 B2
7922737 Cesarini et al. Apr 2011 B1
3062214 Shener et al. Nov 2011 A1
8419626 Shener-Irmakoglu et al. Apr 2013 B2
8574253 Gruber et al. Nov 2013 B2
8663264 Cesarini et al. Mar 2014 B2
8678999 Isaacson Mar 2014 B2
8840626 Adams et al. Sep 2014 B2
8852085 Shener-Irmakoglu et al. Oct 2014 B2
8893722 Emanuel Nov 2014 B2
8932208 Kendale et al. Jan 2015 B2
8951274 Adams et al. Feb 2015 B2
9060800 Cesarini et al. Jun 2015 B1
9060801 Cesarini et al. Jun 2015 B1
9066745 Cesarini et al. Jun 2015 B2
9072431 Adams et al. Jul 2015 B2
9089358 Emanuel Jul 2015 B2
9125550 Shener-Irmakoglu et al. Sep 2015 B2
9155454 Sahney et al. Oct 2015 B2
11154318 Wood et al. Oct 2021 B2
20010039963 Spear et al. Nov 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20020058859 Brommersma May 2002 A1
20020165427 Yachia et al. Nov 2002 A1
20030050603 Todd Mar 2003 A1
20030050638 Yachia et al. Mar 2003 A1
20030078609 Finlay et al. Apr 2003 A1
20030114875 Sjostrom Jun 2003 A1
20040010258 Carusillo et al. Jan 2004 A1
20040092980 Cesarini May 2004 A1
20040204671 Stubbs et al. Oct 2004 A1
20040220602 Deng et al. Nov 2004 A1
20050043690 Todd Feb 2005 A1
20050085692 Kiehn et al. Apr 2005 A1
20050240206 Sjostrom Oct 2005 A1
20060036132 Renner et al. Feb 2006 A1
20060047185 Shener Mar 2006 A1
20060161191 Bucina Jul 2006 A1
20060241586 Wilk Oct 2006 A1
20080015621 Emanuel Jan 2008 A1
20080058588 Emanuel Mar 2008 A1
20080058842 Emanuel Mar 2008 A1
20080097468 Adams et al. Apr 2008 A1
20080097469 Gruber et al. Apr 2008 A1
20080097470 Gruber Apr 2008 A1
20080097471 Adams et al. Apr 2008 A1
20080135053 Gruber et al. Jun 2008 A1
20080146872 Gruber et al. Jun 2008 A1
20080146873 Adams et al. Jun 2008 A1
20080245371 Gruber Oct 2008 A1
20080249366 Gruber et al. Oct 2008 A1
20080249534 Gruber et al. Oct 2008 A1
20080249553 Gruber et al. Oct 2008 A1
20080262308 Prestezog et al. Oct 2008 A1
20090082628 Kucklick et al. Mar 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270895 Churchill Oct 2009 A1
20090270896 Sullivan et al. Oct 2009 A1
20090270897 Adams et al. Oct 2009 A1
20090270898 Chin et al. Oct 2009 A1
20100087798 Adams et al. Apr 2010 A1
20100125287 Cole et al. May 2010 A1
20100152647 Shener et al. Jun 2010 A1
20110166419 Reif et al. Jul 2011 A1
20120078038 Sahney et al. Mar 2012 A1
20120209289 Duque et al. Aug 2012 A1
20120253227 Shener-Irmakoglu et al. Oct 2012 A1
20130131452 Kuroda et al. May 2013 A1
20140031834 Germain et al. Jan 2014 A1
20170020545 Loreth Jan 2017 A1
20180318133 Clauson et al. Nov 2018 A1
20190223898 Curtin Jul 2019 A1
20190247068 Whipple Aug 2019 A1
Foreign Referenced Citations (5)
Number Date Country
102010050352 May 2012 DE
2397084 Dec 2011 EP
1753350 Aug 2014 EP
3275381 Jan 2018 EP
2015023965 Feb 2015 WO
Non-Patent Literature Citations (2)
Entry
Extended European Search Report issued in corresponding European Application No. 20158825.8 dated Jun. 12, 2020, 10 pages.
Extended European Search Report issued in corresponding European Application No. 21214979.3 dated Apr. 12, 2022, 12 pages.
Related Publications (1)
Number Date Country
20220015790 A1 Jan 2022 US
Continuations (1)
Number Date Country
Parent 16409977 May 2019 US
Child 17488064 US
Continuation in Parts (1)
Number Date Country
Parent 16282417 Feb 2019 US
Child 16409977 US