TISSUE RESIDENT MEMORY CELL PROFILES, AND USES THEREOF

Abstract
This disclosure provides methods of treating cancer or eliciting an anti-tumor response in a subject by administering an effective amount of a population of T-cells that exhibits higher or lower than baseline expression of one or more genes. In other aspects, methods are provided to diagnose cancer and determine prognosis of cancer patients. Also provided are methods to identify the antigens or antigen receptors associated with the isolated and/or purified cell populations that elicit a more positive prognosis.
Description
BACKGROUND

High numbers of tissue-resident memory T (TRM) cells are associated with better clinical outcomes in cancer patients. However, the molecular characteristics that drive their efficient immune response to tumors are poorly understood. Thus, a need exists in the art to identify, characterize and harness these potent cells for therapeutic interventions. This disclosure satisfies this need and provides related advantages as well.


SUMMARY OF THE DISCLOSURE

To address the above identified limitations in the art, this disclosure provides methods of treating cancer or eliciting an anti-tumor response in a subject in need thereof, the methods comprising, or consisting essentially of, or consisting of administering to the subject an effective amount of a population of T-cells that exhibits higher or lower than baseline expression of one or more select genes. In one aspect, this method comprises, or consists essentially of, or yet further consists of administering to the subject an effective amount of an active agent that induces higher or lower than baseline expression of one or more genes, or the one or more genes itself.


For the disclosed methods, in one aspect, the one or more genes are set forth in Table 1, Table 2, Table 3, Table 4, Table 5, or Table 7. In another aspect, the one or more genes are set forth in Table 1 and/or Table 2.


In other aspects, provided are one or more methods of diagnosing cancer, identifying a subject likely to benefit from or respond to cancer treatment, (including but not limited to immunotherapy (including anti-cancer or anti-tumor immunotherapy)), determining the effectiveness of cancer treatment, and/or determining a prognosis of a subject having cancer. The one or more methods comprise, or alternatively consist essentially of, or yet further consist of, detecting or measuring the population or amount of TRMs, or a sub-population of TRMs expressing high levels of one or more of, or all three TIM3, CXCL13 and CD39, in the subject or in a sample isolated from the subject. In certain embodiments, a higher amount of TRMs or higher amount of the sub-population of TRMs expressing high levels of TIM3, CXCL13 and CD39 in the subject or sample indicates that the subject is likely to benefit from or respond to cancer treatment, including immunotherapy (e.g., anti-cancer or anti-tumor immunotherapy), that the cancer treatment is effective in the subject, or that the subject is likely to proceed have a positive clinical response, e.g., longer overall survival, remission or longer time to tumor progression or lack of cancer recurrence. In certain embodiments, a lower amount of TRMs or lower amount of the sub-population of TRMs expressing high levels of one or more of or all three TIM3, CXCL13 and CD39 in the subject or sample indicates that the subject is less likely to benefit from or respond to cancer treatment, including immunotherapy (including anti-cancer or anti-tumor immunotherapy), that the cancer treatment is not as effective in the subject as other therapies, or that the subject has a poor prognosis with available therapies.


In certain aspects, the cells are T-cells, CD8+ T-cells, tumor-infiltrating lymphocytes (TILs), tissue-resident memory (Trm) cells. In certain other aspects, the T-cells and/or TRMs are CD19CD20CD14CD56CD4CD45+CD3+CD8 cells. In certain aspects, the TRMs are TRMs expressing high levels of one or more of or all three of TIM3, CXCL13 and CD39.


This disclosure also provides the isolated or purified T-cell populations that are modified to exhibit higher or lower than baseline expression of one or more genes. In certain aspects, the T-cells are isolated and/or purified from a patient population using the markers provided herein, e.g., CD19CD20CD14CD56CD4CD45+CD3+CD8 or modified expression of one or more of, or all three of TIM3, CXCL13 and CD39. In certain aspects, the isolated or purified T-cells including modified populations of same, are expanded to create homogeneous or heterogenous cell populations and/or combined with carriers, such as pharmaceutically acceptable carriers. In some aspect, the cell populations are administered to a subject in need thereof as an adoptive cell therapy. In certain aspects, T-cells are cells engineered or modified to reduce or eliminate expression and/or the function of one or more genes.


Also provided herein are methods to identify the antigens or antigen receptors associated with the isolated and/or purified cell populations disclosed herein. In some aspect, the receptors are T-cell receptors (TCRs). In particular embodiments, the TCRs comprise one or more of the sequences listed in Table 6. In certain embodiments, the identified antigens or antigen receptors are used to vaccinate or treat a subject against cancer, cancer progression or an immune response. In other aspects, the identified antigens or antigen receptors are used to engineer cells, for example a chimeric-antigen receptor T-cell (CAR-T cell). In still other aspects, the engineered CAR-T cell are used to provide immunotherapy to a subject in need thereof, such as for example, a human patient.


Also provided herein are methods to induce an immune response and treat conditions requiring selective immunotherapy, comprising, or consisting essentially of, or yet further consisting of, contacting a target cell with the cells or compositions as described herein. The contacting can be performed in vitro, or alternatively in vivo, thereby providing immunotherapy to a subject such as for example, a human patient.


In one aspect, the cancer or tumor is in head, neck, lung, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, brain, or comprises a lymphoma, breast, endometrium, uterus, ovary, testes, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, or brain. In other aspects, the cancer comprises a metastasis or recurring tumor, cancer or neoplasia. In certain aspects, the cancer comprises a non-small cell lung cancer (NSCLC) or head and neck squamous cell cancer (HNSCC).


Provided herein is a method of treating cancer and/or eliciting an anti-tumor response in a subject comprising, or consisting essentially of, or yet further consisting of administering to the subject an effective amount of a population of T-cells that exhibit higher than or lower than baseline expression of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7, or that express a T-cell receptor comprising at least one of the amino acid sequences set forth in Table 6. In one aspect, the method comprises, or consists essentially of, or yet further consists of administering to the subject an effective amount of an agent that induces higher than or lower than baseline expression of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 in T-cells, or a T-cell receptor comprising at least one of the amino acid sequences set forth in Table 6. In another aspect, the method comprises, or consists essentially of, or yet further consists of administering an effective amount of one or more an agent that induces or inhibits in T-cells activity of one or more proteins encoded by genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 to the subject or sample. The active agent can be an antibody, a small molecule, a protein, a peptide, a ligand mimetic or a nucleic acid. The one or more gene may be selected from the group of 4-1BB, PD-1, CD103 or TIM3. In one aspect, the baseline expression is normalized mean gene expression. In another aspect, the higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression. In a further aspect, the T-cells are tissue-resident memory cells (TRM) or CD8+ T-cells. In one particular embodiment, the T-cells are autologous to the subject being treated. The methods of treating cancer and/or eliciting an anti-tumor response disclosed herein may further comprise, or consist essentially of, or yet further consist of administering to the subject an effective amount of a cytoreductive therapy. The cytoreductive therapy can be one or more of chemotherapy, immunotherapy, or radiation therapy.


Also disclosed herein is a modified T-cell modified to exhibit higher than or lower than baseline expression of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7, or to express a T-cell receptor comprising, or consisting essentially of, or yet further consisting of at least one of the amino acid sequences set forth in Table 6. The one or more gene may be selected from the group of 4-1BB, PD-1, CD103 or TIM3. In one aspect, the baseline expression is normalized mean gene expression. In another aspect, the higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression. In a further aspect, the T-cells are tissue-resident memory cells (TRM) or CD8+ T-cells. In one particular embodiment, the T-cells are autologous to the subject being treated.


The modified T-cell can be genetically modified, optionally using recombinant methods and/or a gene editing technology such as TALENs or a CRISPR/Cas system. The modified T-cell disclosed herein can also be further modified to express a protein that binds to a cytokine, chemokine, lymphokine, or a receptor each thereof. In one aspect, the protein comprises, or consists essentially of, or yet further consists of an antibody or an antigen binding fragment thereof. In another aspect, the antibody is an IgG, IgA, IgM, IgE or IgD, or a subclass thereof. The antibody can also be an IgG selected from the group of IgG1, IgG2, IgG3 or IgG4. Furthermore, the antigen binding fragment can be selected from the group of a Fab, Fab′, F(ab′)2, Fv, Fd, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv) or VL or VH.


In one aspect, the modified T-cell of this disclosure comprises, or consists essentially of, or yet further consists of modification that includes a chimeric antigen receptor (CAR). In one embodiment, the chimeric antigen receptor (CAR) comprises, or consists essentially of, or yet further consists of: (a) an antigen binding domain; (b) a hinge domain; (c) a transmembrane domain; (d) and an intracellular domain. The CAR can further comprise, or consist essentially of, or yet further consist of one or more costimulatory signaling regions. Further modifications are contemplated and within the scope of this disclosure, e.g., as reviewed in Ajina and Maher, (2018) Mol. Cancer Ther. 17(9):1795-1815. In one embodiment, the antigen binding domain comprises, or consists essentially of, or yet further consists of an anti-CD19 antigen binding domain, the transmembrane domain comprises, or consists essentially of, or yet further consists of a AMICA1, a CD28H (TMIGD2), a CD28 or a CD8α transmembrane domain and the one or more costimulatory regions selected from a CD28 costimulatory signaling region, a 4-1BB costimulatory signaling region, an AMICA1 costimulatory signaling region, a CD28H (TMIGD2) costimulatory signaling region, an ICOS costimulatory signaling region, and an OX40 costimulatory region or a CD3 zeta signaling domain. In a further embodiment, the anti-CD19 binding domain comprises, or consists essentially of, or yet further consists of a single-chain variable fragment (scFv) that specifically recognizes a humanized anti-CD19 binding domain. The anti-CD19 binding domain scFv of the CAR may comprise, or consist essentially of, or yet further consist of a heavy chain variable region and a light chain variable region.


In one aspect, the anti-CD19 binding domain of the CAR further comprises, or consists essentially of, or yet further consists of a linker polypeptide located between the anti-CD19 binding domain scFv heavy chain variable region and the anti-CD19 binding domain scFv light chain variable region. The linker polypeptide of the CAR may comprise, or consist essentially of, or yet further consist of a polypeptide of the sequence (GGGGS)n wherein n is an integer from 1 to 6. In another aspect, the CAR can further comprise, or consist essentially of, or yet further consist of a detectable marker attached to the CAR. In a separate aspect, the CAR can further comprise, or consist essentially of, or yet further consist of a purification marker attached to the CAR.


Further provided herein is a modified T-cell comprising, or consisting essentially of, or yet further consisting of a polynucleotide encoding the CAR, and optionally, wherein the polynucleotide encodes and anti-CD19 binding domain. In one aspect, the polynucleotide may further comprise, or consist essentially of, or yet further consist of a promoter operatively linked to the polynucleotide to express the polynucleotide in the modified T-cell. In another aspect, the polynucleotide may further comprise, or consist essentially of, or yet further consist of a 2A self-cleaving peptide (T2A) encoding polynucleotide sequence located upstream of a polynucleotide encoding the anti-CD19 binding domain. In yet a further aspect, the polynucleotide may further comprise, or consist essentially of, or yet further consist of a polynucleotide encoding a signal peptide located upstream of a polynucleotide encoding the anti-CD19 binding domain. In one embodiment, the polynucleotide further comprises, or consists essentially of, or yet further consists of a vector. In one particular embodiment, the vector is a plasmid. In another embodiment, the vector is a viral vector selected from the group of a retroviral vector, a lentiviral vector, an adenoviral vector, and an adeno-associated viral vector.


Also disclosed herein is a composition comprising, or consisting essentially of, or yet further consisting of a population of modified T-cells described above. Further provided herein is a method of treating cancer in a subject and/or eliciting an anti-tumor response comprising, or consisting essentially of, or yet further consisting of administering to the subject or contacting the tumor with an effective amount of the modified T-cells disclosed herein and/or the composition of this disclosure.


Further provided herein is a method of diagnosing a subject for cancer, comprising, or consisting essentially of, or yet further consisting of contacting a sample isolated from the subject with an agent that detects the presence of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table Sand/or Table 7, wherein the presence of the one or more genes at higher or lower than baseline expression levels is diagnostic of cancer. In one aspect, the method comprises, or consists essentially of, or yet further consists of contacting tissue-resident memory cells (TRMs) isolated from the subject with an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds CD28H (TMIGD2), and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of CD8+PD1+, CD8+TIM3+, CD8+LAG3+, CD8+AMICA1+, CD8+CD28H+, CD8+CTLA4+, CD8+PD1+TIM3+, CD8+PD1+LAG3+, CD8+PD1+AMICA1+, CD8+PD1+CD281-r CD8+PD1+CTLA4+′CD8+TIM3+LAG3+, CD8+TIM3+AMICA1+, CD8+TIM3+CD28H+, CD8+TIM3+CTLA4+, CD8+LAG3+CTLA4+, CD8+LAG3+AMICA1+, CD8+LAG3+CD28H+, CD8+PD1+TIM3+LAG3+, CD8+LAG3+PD1+AMICA1+, CD8+LAG3+PD1+CD28H+, CD8+PD1+LAG3+CTLA4+, CD8+PD1+TIM3+CTLA4+, CD8+PD1+TIM3+CTLA4+ AMICA1+′, CD8+PD1+TIM3+CTLA4+CD28H+, or CD8+PD1+TIM3+CTLA4+AMICA+CD28H+′ TRMs, wherein a high frequency of one or more of these TRMs is diagnostic of cancer.


In another aspect, the method of diagnosing cancer in a subject comprises, or consists essentially of, or yet further consists of contacting tissue-resident memory cells (TRMs) isolated from the subject with an antibody or agent that recognizes and binds one or more proteins encoded by a gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 and, optionally, an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAGS, an antibody or agent that recognizes and binds S1PR1, an antibody or agent that recognizes and binds CD28H (TMIGD2), an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds KLF3, an antibody or agent that recognizes and binds S1PR5, an antibody or agent that recognizes and binds KLF2 and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of TRMs expressing these proteins, wherein a high frequency of TRMs expressing these proteins is diagnostic of cancer.


Additionally, disclosed herein is a method of determining the density of tissue-resident memory cells (TRMs) in a cancer, tumor, or sample isolated from the subject likely to contain these cells, the method comprising, or consisting essentially of, or yet further consisting of measuring expression of one or more gene selected from the group of 4-1BB, PD-1, CD103, AMICA1, CD28H or TIM3 or genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 in the cancer, tumor, or sample thereof, wherein higher or lower than baseline expression indicates higher density of TRMs in the cancer, tumor, or sample thereof.


Further provided herein is a method of determining prognosis of a subject having cancer comprising, or consisting essentially of, or yet further consisting of measuring the density of tissue-resident memory cells (TRM) in the cancer or a sample isolated from the patient, wherein a high density of TRM indicates a more positive prognosis, e.g., an increased probability and/or duration of survival. In one aspect, the method of prognosis of a subject having cancer comprises, or consists essentially of, or yet further consists of contacting tissue-resident memory cells (TRMs) isolated from the subject (e.g., of the cancer or a sample thereof) with an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds CD28H (TMIGD2), and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of CD8+PD1+, CD8+TIM3+, CD8+LAG3+, CD8+AMICA1+, CD8+CD28H+, CD8+CTLA4+, CD8+PD1+TIM3+, CD8+PD1+LAG3+, CD8+PD1+AMICA1+, CD8+PD1+CD28H+, CD8+PD1+CTLA4+′CD8+TIM3+LAG3+, CD8+TIM3+AMICA1+, CD8+TIM3+CD28H+, CD8+TIM3+CTLA4+, CD8+LAG3+CTLA4+, CD8+LAG3+AMICA1+, CD8+LAG3+CD28H+, CD8+PD1+TIM3+LAG3+, CD8+LAG3+PD1+AMICA1+, CD8+LAG3+PD1+CD28H+, CD8+PD1+LAG3+CTLA4+, CD8+PD1+TIM3+CTLA4+, CD8+PD1+TIM3+CTLA4+AMICA1+′, CD8+PD1+TIM3+CTLA4+CD28H+′ or CD8+PD1+TIM3+CTLA4+AMICA+CD28H+′ TRMs, wherein a high frequency of one or more of these TRMs indicates a more positive prognosis, e.g., an increased probability and/or duration of survival. In another aspect, the method of prognosis of a subject having cancer comprises, or consists essentially of, or yet further consists of contacting tissue-resident memory cells (TRMs) of the cancer or a sample thereof with an antibody or agent that recognizes and binds one or more proteins encoded by a gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 and, optionally, an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds S1PR1, an antibody or agent that recognizes and binds CD28H (TMIGD2), an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds KLF3, an antibody or agent that recognizes and binds S1PR5, an antibody or agent that recognizes and binds KLF2 and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of TRMs expressing these proteins, wherein a high frequency of TRMs expressing these proteins indicates a more positive prognosis, e.g., an increased probability and/or duration of survival.


In yet a further aspect, the method of determining prognosis of a subject having cancer comprises, or consists essentially of, or yet further consists of contacting tissue-resident memory cells (TRMs) isolated from the subject, (e.g., of the cancer or a sample thereof) with an antibody or agent that recognizes and binds CD103 to determine the frequency of CD103+ TRMs or an antibody or agent that recognizes and binds a protein encoded by a gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 to determine the frequency of TRMs expressing the protein, wherein a high or low frequency of TRMs expressing the protein indicates a more positive prognosis, e.g., an increased probability and/or duration of survival. In a separate aspect, the method of determining prognosis of a subject having cancer comprises, or consists essentially of, or yet further consists of measuring the density of CD103 or proteins encoded by one or more gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 in the sample (e.g., cancer or a sample thereof), wherein a high or low density of proteins indicates a more positive prognosis, e.g., an increased probability and/or duration of survival.


Also described herein is a method of determining the responsiveness of a subject having cancer to immunotherapy comprising, or consisting essentially of, or yet further consisting of contacting tissue-resident memory cells (TRMs) isolated from the subject, (e.g., of the cancer or a sample thereof) with an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds CD28H (TMIGD2), an antibody or agent that recognizes and binds LAG3, and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of CD8+PD1+, CD8+TIM3+, CD8+LAG3+, CD8+AMICA1+, CD8+CD28H+, CD8+CTLA4+, CD8+PD1+TIM3+, CD8+PD1+LAG3+, CD8+PD1+AMICA1+, CD8+PD1+CD28H+, CD8+PD1+CTLA4+, CD8+TIM3+LAG3+, CD8+TIM3+AMICA1+, CD8+TIM3+CD28H+, CD8+TIM3+CTLA4+, CD8+LAG3+CTLA4+, CD8+LAG3+AMICA1+, CD8+LAG3+CD28H+, CD8+PD1+TIM3+LAG3+, CD8+LAG3+PD1+AMICA1+, CD8+LAG3+PD1+CD28H+, CD8+PD1+LAG3+CTLA4+, CD8+PD1+TIM3+CTLA4+, CD8+PD1+TIM3+CTLA4+AMICA1+′, CD8+PD1+TIM3+CTLA4+CD28H+′ or CD8+PD1+TIM3+CTLA4+AMICA+CD28H+′ TRMs, wherein a high frequency of one or more of these TRMs indicates responsiveness to immunotherapy. In one aspect, the method of determining the responsiveness of a subject having cancer to immunotherapy comprises, or consists essentially of, or yet further consists of contacting tissue-resident memory cells (TRMs) isolated from the subject, (e.g., of the cancer or a sample thereof) with an antibody that recognizes and binds one or more proteins encoded by a gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 and, optionally, an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds CD28H (TMIGD2), an


antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds KLF3, an antibody or agent that recognizes and binds S1PR5, an antibody or agent that recognizes and binds S1PR1, an antibody or agent that recognizes and binds KLF2 and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of TRMs expressing these proteins, wherein a high frequency of TRMs expressing these proteins indicates responsiveness to immunotherapy. For any of the methods disclosed herein, the TRMs may comprise, or consist essentially of, or yet further consist of CD19CD20CD14CD56CD4CD45+CD3+CD8+ T-cells.


Further disclosed are methods of identifying a subject that will or is likely to respond to a cancer therapy, comprising, or consisting essentially of, or yet further consisting of contacting the same with an agent that detects the presence of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 in a sample isolated from the subject, (e.g., the cancer or a sample thereof), wherein the presence of the one or more genes at higher or lower than baseline expression levels indicates that the subject is likely to respond to cancer therapy. In one aspect, the baseline expression is normalized mean gene expression. In another aspect, the higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression. The method may further comprise, or consist essentially of, or yet further consist of administering a cancer therapy to the subject. The cancer therapy or cytoreductive therapy can be chemotherapy, immunotherapy, radiation therapy, and/or administering to the subject or contacting the tumor with an effective amount of the modified T-cells and/or the composition of this disclosure.


The cancer, tumor, or sample can be contacted with an agent, optionally including a detectable label or tag. In one aspect, the detectable label or tag can comprise, or consist essentially of, or yet further consist of a radioisotope, a metal, horseradish peroxidase, alkaline phosphatase, avidin or biotin. In another aspect, the agent can comprise, or consist essentially of, or yet further consist of a polypeptide that binds to an expression product encoded by the gene, or a polynucleotide that hybridizes to a nucleic acid sequence encoding all or a portion of the gene. The polypeptide may comprise, or consist essentially of, or yet further consist of an antibody, an antigen binding fragment thereof, or a receptor that binds to the gene. In one aspect, the antibody is an IgG, IgA, IgM, IgE or IgD, or a subclass thereof. In another aspect, the IgG antibody is an IgG1, IgG2, IgG3 or IgG4. The antigen binding fragment can be a Fab, Fab′, F(ab′)2, Fv, Fd, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv) or VL or VH. In one aspect, the agent is contacted with the cancer, tumor, or sample in conditions under which it can bind to the gene it targets.


The methods of this disclosure comprise, or consist essentially of, or yet further consist of detection by immunohistochemistry (IHC), in-situ hybridization (ISH), ELISA, immunoprecipitation, immunofluorescence, chemiluminescence, radioactivity, X-ray, nucleic acid hybridization, protein-protein interaction, immunoprecipitation, flow cytometry, Western blotting, polymerase chain reaction, DNA transcription, Northern blotting and/or Southern blotting. The sample may comprise, or consist essentially of, or yet further consist of cells, tissue, an organ biopsy, an epithelial tissue, a lung, respiratory or airway tissue or organ, a circulatory tissue or organ, a skin tissue, bone tissue, muscle tissue, head, neck, brain, skin, bone and/or blood sample. While the cancer or tumor described herein can be an epithelial, a head, neck, lung, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, brain, or comprises a lymphoma, breast, endometrium, uterus, ovary, testes, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland and/or brain cancer or tumor, a metastasis or recurring tumor, cancer or neoplasia, a non-small cell lung cancer (NSCLC) and/or head and neck squamous cell cancer (HNSCC).


In a further aspect, the methods of this disclosure comprise, or consist essentially of, or yet further consist of, detecting in the subject, in the cells or in a sample isolated from the subject, the number or density of Trm cells that are CD19-CD20-CD14-CD56-CD4-CD45+CD3+CD8+ T-cells.


Finally, provided herein is a kit comprising, or consisting essentially of, or yet further consisting of one or more of the modified T-cells and/or the composition of this disclosure and instructions for use. In one aspect, the instruction for use provide directions to conduct any of the methods described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate embodiments of the technology and are not limiting. For clarity and ease of illustration, the drawings are not made to scale, and, in some instances, various aspects may be shown exaggerated or enlarged to facilitate an understanding of particular embodiments.



FIGS. 1A-1F: CD103 expressing CTLs in human lungs are enriched for tissue residency features but are transcriptionally distinct from previously characterized TRM cells. (FIG. 1A) tSNE plot of lung TRM (CD103+) and non-TRM (CD103) CTLs. Each symbol represents an individual patient sample (n=21 non-TRM; n=20 TRM). (FIG. 1B) RNA-Seq analysis of transcripts (one per row) expressed differentially between lung TRM and lung non-TRM, (pairwise comparison; change in expression of 2-fold with an adjusted P value of <0.05 (DESeq2 analysis; Benjamini-Hochberg test)), presented as row-wise z-scores of transcripts per million (TPM). Each column represents an individual sample; key known TRM or non-TRM transcripts are indicated. Color scheme and number of samples is identical to (FIG. 1A). (FIG. 1C) GSEA of the murine composite TRM signature in the transcriptome of lung TRM vs. lung non-TRM: top, running enrichment score (RES) for the gene set, from most over-represented genes at left to most under-represented at right; middle, positions of gene set members (blue vertical lines) in the ranked list of genes; bottom, value of the ranking metric. Values above the plot represent the normalized enrichment score (NES) and false discovery rate (FDR)-corrected significance value. (FIG. 1D) Flow-cytometry analysis of the expression of CD49A and KLRG1 versus that of CD103 among live and singlet-gated CD19CD20CD14CD45+CD3+CD8+ cells obtained from lung; right, frequency of CD103+ CTLs or CD103 CTLs that express the indicated surface marker (*P≤0.05, n=6), bars represent the mean, t-line the s.e.m., and symbol represents data from individual samples. (FIGS. 1E-1F) Venn diagrams (upper) showing overlap of transcripts differentially expressed in lung TRM versus other previously characterized TRM cells. Waterfall plots (lower) represent the DESeq2 normalized fold change of genes not significantly (<2-fold) differentially expressed between lung TRM (CD103+) and non-TRM (CD103) CTLs.



FIGS. 2A-2H: TRM cells in normal lung and lung tumors share tissue residency features but are otherwise distinct. (FIG. 2A) GSEA of murine composite TRM signature in the transcriptome of lung tumor TRM vs. that of tumor non-TRM cells; top, running enrichment score (RES) for the gene set, from most over-represented genes at left to most under-represented at right; middle, position of gene set members (blue vertical lines) in the ranked list of genes; bottom, value of the ranking metric. Values above the plots represent the normalized enrichment score (NES) and FDR-corrected significance value. (FIG. 2B) tSNE plot of tumor and lung CTL transcriptomes segregated by CD103 expression (lung non-TRM=21, lung TRM=20, tumor non-TRM=25, tumor TRM=19). (FIG. 2C) Venn diagram and (FIG. 2D) heat map of RNA-Seq analysis of 89 common transcripts (one per row) expressed differentially by lung TRM versus lung non-TRM, and tumor TRM versus tumor non-TRM (pairwise comparison; change in expression of 2-fold with an adjusted P value of <0.05 (DESeq2 analysis; Benjamini-Hochberg test)), presented as row-wise z-scores of TTPM; each column represents an individual sample; key known TRM or non-TRM transcripts are indicated. Color scheme and number of samples is identical to (FIG. 2B). (FIG. 2E) Spearman co-expression analysis of the 89 differentially expressed genes as in (c) and (d); values are clustered with complete linkage. A topological overlap matrix was calculated at power 5 using weighted gene co-expression network analysis and visualized in Gephi. The nodes are colored and sized according to the number of edges (connections), and the edge thickness is proportional to the edge weight (strength of correlation). The network layout is assigned by the Fruchterman-Reingold algorithm, using Noverlap to prevent overlapping labels. (FIG. 2F) Quantitated expression according to RNA-Seq data of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each symbol represents an individual sample, the bar represents the mean and colored as in (FIG. 2B), t-line the s.e.m. (FIG. 2G) Flow-cytometry analysis of the expression of PD1 versus that of CD103 on live and singlet-gated CD19CD20CD14CD56CD4CD45+CD3+CD8+ cells obtained from lung cancer TILs; right, frequency of cell that express PD-1 in the indicated populations (* P≤0.05; n=8), each symbol represents a sample, bars represent the mean, t-line the s.e.m. (FIG. 2H) RNA-Seq analysis of genes (row) up- or downregulated in the 4 cell types following 4 h of ex vivo stimulation. Left, heat map as in (FIG. 2D); right, bar graphs showing expression of transcripts in the indicated populations (n=6 for all comparisons; represented as in (FIG. 2F)).



FIGS. 3A-3F: Tumor TRM cells proliferate, express the inhibitory checkpoint TIM3 and markers of enhanced function. (FIG. 3A) RNA-Seq analysis of transcripts (one per row) differentially expressed by tumor TRM relative to lung TRM, lung non-TRM, and tumor non-TRM (pairwise comparison; change in expression of 2-fold with an adjusted P value of <0.05 (DESeq2 analysis; Benjamini-Hochberg test)), presented as row-wise z-scores of TPM; each column represents an individual sample (lung non-TRM=21, lung TRM=20, tumor non-TRM=25, tumor TRM=19). (FIG. 3B) Summary of over-representation analysis (using Reactome) of genes involved in the cell cycle that are differentially expressed by lung tumor TRM relative to the other lung CTLs; q values represent false discovery rate (FIG. 3C) Shannon-Wiener diversity and Inverse Simpson indices obtained using V(D)J tools following TCR-seq analysis of β chains in tumor TRM and tumor non-TRM populations. Bars represent the mean, t-line the s.e.m., and symbols represent individual data points (**P<0.01; n=10 patients). (FIG. 3D) Left, bar graphs show the percentage of total TCRβ chains that were expanded (≥3 clonotypes). Bars represent the mean, t-line the s.e.m., and dots individual data points (** P≤0.01; n=10 patients). Right, pie charts show the distribution of TCRβ clonotypes based on clonal frequency. (FIG. 3E) Left, Spearman co-expression analysis of the 77 genes up-regulated (FIG. 3A) in tumor TRM cells; values are clustered with complete linkage. Right, topological overlap matrix calculated at power 5 using weighted gene co-expression network analysis and visualized in Gephi. Node color and size are scaled according to the number of edges, edge thickness is proportional to the weight, and the network layout is assigned by the Fruchterman-Reingold algorithm, using Noverlap to prevent overlapping labels. (FIG. 3F) Correlation of the expression of HAVCR2 (TIM3) transcripts and the indicated transcripts in tumor TRM population; r indicates Spearman correlation value (*P≤0.05; *** P≤0.001; **** P≤0.0001).



FIGS. 4A-4G: Single-cell transcriptomic analysis reveals previously uncharacterized TRM subsets. (FIG. 4A) tSNE visualization of ˜12,000 live and singlet-gated, CD19CD20CD14CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples. Each symbol represents a cell; color indicates protein expression of CD103 detected by flow cytometry. (FIG. 4B) Seurat clustering of cells in (FIG. 4A) identifying 9 clusters. (FIG. 4C) Cells from tumor and lung were randomly downsampled to equivalent numbers of cells. Left, distribution of TRM-enriched clusters in tumor and lung. Right, pie chart representing the relative proportions of cells in each TRM cluster. (FIG. 4D) Expression of transcripts previously identified as upregulated in the bulk tumor TRM population (FIG. 3A) by each cluster; each column represents the average expression in a particular cluster. (FIG. 4E) Breakdown of cell type and tissue localization of cells defined as being in cluster 1. (FIG. 4F) Violin plots of expression of example tumor TRM genes in each TRM-enriched cluster (square below indicates the cluster type); shape represents the distribution of expression among cells and color represents the Seurat-normalized average expression. (FIG. 4G) Cell-state hierarchy maps generated by Monocle2 bioinformatics modeling of the TRM clusters; center plot, each dot represents a cell colored according to Seurat-assigned assigned cluster; surrounding panels show relative Seurat-normalized expression of the indicated genes.



FIGS. 5A-5D: A subset of tumor TRM cells has a transcriptional program indicative of superior functional properties. (FIG. 5A) Single-cell RNA-Seq analysis of transcripts (one per row) uniquely differentially expressed by each tumor TRM subset in pairwise analysis compared to other clusters (adjusted P value of <0.01; MAST analysis), presented as row-wise z-scores of Seurat-normalized count, each column represents an individual cell. Horizontal breaks separate genes enriched in each of the 4 tumor TRM subtypes. (FIG. 5B) Seurat-normalized expression of indicated transcripts identified as differentially enriched in each cluster, overlaid across the tSNE plot, with expression levels represented by the color scale. (FIG. 5C) Violin plot of expression of functionally important genes identified as significantly enriched in the ‘highly functional’ TRM subset; shape represents the distribution of expression among cells and color represents the Seurat-normalized average expression. The 91 transcripts enriched in cluster 2 compared to the other TRM clusters included several which encoded products linked to cytotoxic activity such as PRF1, GZMB, GZMA, CTSW38, and CRTAM38, as well as transcripts encoding effector cytokines and chemokines such as IFNγ, CCL3, CXCL13, IL17A and IL26. TRM cells exhibited a transcriptional program suggestive of superior effector properties and cell proliferation expressed high transcript levels for cytotoxicity molecules (Perforin, Granzyme A and Granzyme B) and several co-stimulatory molecules such as 4-1BB, ICOS and GITR (TNFRSF18). (FIG. 5D) Top, violin plot of expression of genes encoding key effector molecules in specific tumor-infiltrating CTL subsets. Below, percentage of cells expressing IFNG transcripts in each population, where positive expression was defined as greater than 1 Seurat-normalized count; “Other TRM” corresponds to tumor CTLs isolated from clusters 3, 4, and 5.



FIGS. 6A-6J: PD-1- and TIM3-expressing tumor-infiltrating TRM lack an exhausted phenotype and exhibit enhanced clonal expansion. (FIG. 6A) GSEA of ‘highly functional’ TRM signature in the transcriptome of clonally expanded tumor TRM vs. that of non-expanded TRM cells: top, running enrichment score (RES) for the gene set, from most over-represented at left to most under-represented at right; middle, positions of gene set members (blue vertical lines) in the ranked list of genes; bottom, value of the ranking metric. Values above the plot represent the normalized enrichment score (NES) and FDR-corrected significance. (FIG. 6B) Left, percentage of cells that were clonally expanded in TIM3+ (HAVCR2>10 TPM) TRM cells, remaining TRMs and non-TRM; clonal expansion was determined for cells from 4 and 2 patients for TRM and non-TRM, respectively. Right, clonotype network graphs of cells from a representative donor. TIM3+ (HAVCR2>10 TPM) TRM cells are marked with a circle; cells with greater than 10 TRM expression of either MKI67 or TOP2A were considered cycling and denoted with an 6 asterisk. (FIG. 6C) Violin plot of expression of indicated transcripts; Shape represents the distribution of expression among cells and color represents average expression, calculated from the TPM. (FIG. 6D) Correlation of PDCD1 and IFNG expression in TIM3+ TRM and non-TRM cells; each dot represents a cell. Percentages indicate the percentage of cells inside each of the graph sections (r indicates Spearman correlation value; ** P≤0.01, ns=no significance). (FIG. 6E) Spearman co-expression analysis of genes whose expression is enriched in the ‘hyper functional’ TRM cluster (FIG. 5A) in tumor TRM and non-TRM populations, respectively; matrix is clustered according to gene linkage. (FIG. 6F) tSNE visualization of flow cytometry data from 3,000 randomly selected live and singlet-gated CD19CD20CD14CD56CD4CD45+CD3+CD8+ cells isolated from 8 paired tumor and lung samples; each cell is represented by a dot colored as TRM or non-TRM (left), tumor or lung (second left), and according to Z-score expression value of the protein indicated above the plot (remaining panels). (FIG. 6G) Applicants' plots show expression of TIM3 versus IL7R in the cell type and tissue indicated above the plot; percentage of TIM3+ cells in the indicated populations is shown (right), each symbol represents an individual sample; the small line indicates the s.e.m, bars are mean and colored as indicated (*P≤0.05; n=8). (FIG. 6H) Right, geometric mean fluorescent intensity (GMFI) of CD39, PD1 and 41BB for each tumor TRM subset; bars represent the mean, t-line the s.e.m., and symbol represents data from individual samples (**P≤0.01; n=8); representative histograms shown (left). (FIG. 6I) Co-expression analysis of flow cytometry data (FIG. 6F), as per Spearman correlation value, matrix is clustered by complete linkage. (FIG. 6J) Spearman correlation of HACVR2 (TIM3) expression with ITGAE (CD103) expression in bulk transcriptomic profiles of CTLs isolated from lung cancer and head and neck squamous cell carcinoma.



FIG. 7: Cell sorting strategy. Plots describe the sorting strategy used for isolating immune cell types from tissue samples.



FIG. 8: Validation of lung TRM phenotype. Flow-cytometry analysis of the expression of KLRG1 and CD49A versus that of CD103 in live, singlet CD19CD20CD14CD45+CD3+CD8+ cells obtained from lung samples (n=6).



FIG. 9: Validation of PD1 expression. Flow-cytometry analysis of the expression of PD-1 versus that of CD103 in live, singlet CD19CD20CD14CD4CD56CD45+CD3+CD8+ cells obtained from lung and tumor samples (n=8).



FIGS. 10A-10D: TRM cluster into 4 major subtypes. (FIG. 10A) Principle component analysis of the single cell transcriptomes, each point represents a cell which are colored as per the cluster assignment in FIG. 5; numbers along perimeter indicate principal components (PC1-PC3). (FIG. 10B) tSNE visualization of single cell transcriptomes, shown per donor (as per FIG. 4a), obtained from 12 tumors and 6 matched normal lung samples. Each symbol represents a cell; color indicates Seurat clustering of cells, as per FIG. 4b, identifying 9 clusters. (FIG. 10C) Breakdown of cells assigned to each cluster in each donor, separated by tissue type of origin (colored as per FIG. 4B). (FIG. 10D) The distance between a cell assigned to cluster 1 compared to the mean of cells assigned into the other clusters (colored as per b). The difference was calculated with the raw (left) and z-score normalized (right) distances, bars represent the mean distance to each of the other clusters, t-line the s.e.m., and symbols represent individual cells in cluster 1 (**** P≤0.0001; Wilcoxon matched-pairs signed rank test, n=135 cells).



FIGS. 11A-11B: ‘Highly-functional’ TRM cells are enriched for transcripts associated with enhanced anti-tumor features. (FIG. 11A) Violin plot of expression of indicated transcripts; shape represents the distribution of expression among cells and color represents average expression, calculated from the Seurat-normalized counts. (FIG. 11B) SAVER-imputed spearman co-expression analysis of genes whose expression is enriched in the TIM-3+IL7R− TRM cluster (FIG. 5A) in tumor TRM and non-TRM clusters, respectively; matrix is clustered according to complete linkage.



FIG. 12: TIM3-expressing TRM cells are enriched for co-expression of PD1 and cytotoxicity-related transcripts. Single-cell RNA-Seq analysis of transcripts (one per row) differentially expressed by TIM3+TRM relative to non-TIM3+ (MAST analysis with an adjusted P value of <0.05), presented as row-wise z-scores of TPM; each column represents a single cell (n=89 and 411, respectively).



FIGS. 13A-13C: Tumor TRMS are enriched for TIM3+ cells. (FIG. 13A) Flow-cytometry analysis of the expression of TIM3 versus that of CD103 in live, singlet CD19CD20CD14CD4CD56CD45+CD3+CD8+ cells obtained from lung, lung tumor and HNSCC samples (n=8,8,3, respectively). (FIG. 13B) Flow-cytometry analysis of TIM3 compared to IL7R in CD103+ cells gated as in (FIG. 13A). (FIG. 13C) Quantification (geometric mean) of indicated marker (above) in HNSCC cells gated as in (FIG. 13B), bars represent the mean, t-line the s.e.m., and symbol represents data from individual samples (n=3).



FIG. 14: Analysis of AMICA1 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Middle) Percent of cells expressing a given transcript in each cluster. (Lower) Expression values according to the log2+1 transformed RNA-seq transcripts per million of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each symbol represents an individual sample, the bar represents the mean and colored as described in the legend, t-line the s.e.m.



FIG. 15: Analysis of SPRY1 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Middle) Percent of cells expressing a given transcript in each cluster. (Lower) Expression values according to the log2+1 transformed RNA-seq transcripts per million of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each symbol represents an individual sample, the bar represents the mean and colored as described in the legend, t-line the s.e.m.



FIG. 16: Analysis of CHN1 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 17: Analysis of PAG1 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 18: Analysis of PTPN22 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 19: Analysis of DUSP4 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 20: Analysis of ICOS expression. (Upper) tSNE visualization of ˜42,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 21: Analysis of TNFRSF18 (GITR) expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 22: Analysis of TMIGD2 (CD28H) expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3±CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Middle) Percent of cells expressing a given transcript in each cluster. (Lower) Expression values according to the log2+1 transformed RNA-seq transcripts per million of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each symbol represents an individual sample, the bar represents the mean and colored as described in the legend, t-line the s.e.m.



FIG. 23: Analysis of CD226 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Middle) Percent of cells expressing a given transcript in each cluster. (Lower) Expression values according to the log2+1 transformed RNA-seq transcripts per million of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each symbol represents an individual sample, the bar represents the mean and colored as described in the legend, t-line the s.e.m.



FIG. 24: Analysis of TIGIT expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 25: Analysis of KLRC1 (NKG2A) expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Middle) Percent of cells expressing a given transcript in each cluster. (Lower) Expression values according to the log2+1 transformed RNA-seq transcripts per million of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each symbol represents an individual sample, the bar represents the mean and colored as described in the legend, t-line the s.e.m.



FIG. 26: Analysis of KLRC2 (NKG2C) expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Middle) Percent of cells expressing a given transcript in each cluster. (Lower) Expression values according to the log2+1 transformed RNA-seq transcripts per million of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each symbol represents an individual sample, the bar represents the mean and colored as described in the legend, t-line the s.e.m.



FIG. 27: Analysis of CAPG expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Middle) Percent of cells expressing a given transcript in each cluster. (Lower) Expression values according to the log2+1 transformed RNA-seq transcripts per million of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each symbol represents an individual sample, the bar represents the mean and colored as described in the legend, t-line the s.e.m.



FIG. 28: Analysis of MYO1E expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 29: Analysis of CLEC2B expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 30: Analysis of CLECL1 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 31: Analysis of TNFRSF9 (4-1BB/CD137) expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 32: Analysis of TNFSF4 (CD134L/OX40L) expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 33: Analysis of NR3C1 (glucocorticoid receptor) expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 34: Analysis of CD7 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 35: Analysis of KLRD1 (CD94) expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 36: Analysis of CLEC2D expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 37: Analysis of ITM2A expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 38: Analysis of VCAM1 (CD106) expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 39: Analysis of KRT81 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 40: Analysis of KRT86 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 41: Analysis of CXCL13 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 42: Analysis of CBLB expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 43: Analysis of KLRC3 (NKG2-E) expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Middle) Percent of cells expressing a given transcript in each cluster. (Lower) Expression values according to the log2+1 transformed RNA-seq transcripts per million of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each symbol represents an individual sample, the bar represents the mean and colored as described in the legend, t-line the s.e.m.



FIG. 44: Analysis of KLRB1 (CD161) expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Middle) Percent of cells expressing a given transcript in each cluster. (Lower) Expression values according to the log2+1 transformed RNA-seq transcripts per million of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each symbol represents an individual sample, the bar represents the mean and colored as described in the legend, t-line the s.e.m.



FIG. 45: Analysis of CD101 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Middle) Percent of cells expressing a given transcript in each cluster. (Lower) Expression values according to the log2+1 transformed RNA-seq transcripts per million of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each symbol represents an individual sample, the bar represents the mean and colored as described in the legend, t-line the s.e.m.



FIG. 46: Analysis of CD101 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Middle) Percent of cells expressing a given transcript in each cluster. (Lower) Expression values according to the log2+1 transformed RNA-seq transcripts per million of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each symbol represents an individual sample, the bar represents the mean and colored as described in the legend, t-line the s.e.m.



FIG. 47: Analysis of CD200R1 expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Middle) Percent of cells expressing a given transcript in each cluster. (Lower) Expression values according to the log2+1 transformed RNA-seq transcripts per million of the indicated differentially expressed genes shared by lung and tumor TRM cells. Each symbol represents an individual sample, the bar represents the mean and colored as described in the legend, t-line the s.e.m.



FIG. 48: Analysis of SLA (SLAP) expression. (Upper) tSNE visualization of ˜12,000 live and singlet-gated CD14CD19CD20CD4CD56CD3+CD45+CD8+ single cell transcriptomes obtained from 12 tumors and 6 matched normal lung samples, the TIM3+IL7R TRM cluster is found in the bottom right. Expression is calculated using Seurat normalized counts. (Lower) Percent of cells expressing a given transcript in each cluster.



FIG. 49: CD103 density predicts survival in lung cancer. CD103 density (CD103high, CD103int, CD103low) in tumors pre-classified based on CD8 density (left); Kaplan-Meier curves for lung cancer mortality in CD8high tumors sub-classified according to density of CD103 (right).



FIGS. 50A-50B: (FIG. 50 A) Flow-cytometry analysis of the percentage of PD-1+TRM and PD-1+ non-TRM cells that express effector cytokines following 4 hours of ex-vivo stimulation. Gated on live and singlet-gated CD14−CD20−CD4−CD45+CD3+CD8+ cells obtained from lung cancer TILs, discriminated on CD103 expression (**≤0.01; Wilcoxon matched pairs signed rank test; n=11), each symbol represents a sample. Surface molecules (e.g., PD-1) were stained before stimulation. (FIG. 50 B) Analysis of Granzyme A and Granzyme B directly ex-vivo, gated and analyzed as per a) (*** P≤0.001).



FIG. 51: Left, quantification of the number of CD8A+CD103+TIM-3+ cells per region in biopsies defined as having a TILhigh/TRM high status versus. TILlow/TRM low status. Right, percent of CD8A+CD103+ CTLs expressing TIM-3 in each clinical subtype. Bars represent the mean, t-line the s.e.m., and symbols represent individual data points (* P≤0.05; **** P≤0.0001; n=21).



FIGS. 52A-52K: (FIG. 52A) Representative FACS plots to characterize tumor-infiltrating CD19+, CD4+ and CD8+ T cells from mice at d21 after inoculation with B16F10-OVA cells. (FIG. 52B, FIG. 52C) MFI of AMICA1 expression of CD19+, CD4+and CD8+ TILs as in (FIG. 52A). (FIG. 52D) Frequency of AMICA1 expressing CD19+, CD4+ and CD8+ TILs as in (FIG. 52A). (FIG. 52E, FIG. 52F) Representative FACS plots (FIG. 52E) depicting cell viability, electroporation efficiency, antigen specificity and knockdown efficiency (FIG. 52F) of purified, in vitro activated and electroporated OT-I CD8+ T cells at 96 h after electroporation. Cells were electroporated to introduce gRNAs targeting a control region (ctrl) or AMICA1. (FIG. 52G, FIG. 52H, FIG. 52I) Representative FACS plots from mice at d20 after inoculation with B16F10-OVA cells. CD45.2 OT-I control and AMICA-1−/− T cells were adoptively transferred at d6 after tumor inoculation. (FIG. 52J) Growth curves of B16F10-OVA tumors after adoptive transfer of OT-I and AMICA-1−/− T cells. (FIG. 52K) Growth curves of B16F10-OVA tumors after treatment at d10 and d13 with 200 ug anti-PD-1, anti-AMICA-1 or anti isotype control antibodies.



FIG. 53: Left, quantification of the number of CD8A+CD103+TIM-3+ cells per region in biopsies defined as having a TILhigh/TRM high status versus. TILlow/TRM low status. Right, percent of CD8A+CD103+ CTLs expressing TIM-3 in each clinical subtype. Bars represent the mean, t-line the s.e.m., and symbols represent individual data points (* P≤0.05; **** P≤0.0001; n=21).



FIGS. 54A-54H: Single-cell transcriptome analysis. Left, contour plots show the expression of TIM-3 and IL-7R in CD14−CD19−CD20−CD4−CD45+CD3+CD8+CD103+ cells isolated from patients receiving anti-PD-1 treatment, at the time point indicated above the plot (TP); number in bottom right indicates the percentage of tumor TRM cells (CD8+CD103+) with TIM-3+IL-7R− surface phenotype. Right, quantification of the percentage of tumor-infiltrating TIM-3+IL-7R− TRM cells, isolated from the anti-PD1 responding, non-responding and treatment naïve patients (FIG. 56G). Bars represent the mean, t-line the s.e.m., and symbols represent individual data points (* P≤0.05; ** P≤0.01; n=7, 8 and 12 biopsies for responders, treatment naïve and nonresponders, respectively). (FIG. 54B) Contour plots demonstrate the expression of TIM-3 and PD-1 in the TRM cells isolated from pre-immunotherapy biopsies (gated as per FIG. 54A). (FIG. 54C) Singlecell RNA-seq analysis of transcripts (one per row) differentially expressed between CTLs pre- and post-anti-PD-1 (MAST analysis), with an adjusted P value of <0.05), presented as row-wise z-scores of TPM counts; each column represents a single cell (n=127 and 151 cells, respectively). (FIG. 54D) Violin plot of expression of indicated transcripts differentially expressed between tumor-infiltrating CTLs isolated from pre- and post-anti-PD-1 treatment samples (as per FIG. 54C); shape represents the distribution of expression among cells and color represents average expression, calculated from the TPM counts. (FIG. 54E) GSEA of the bulk tumor CD103+ versus. CD103− transcriptional signature (FIG. 3a) and TIM-3+IL7R− TRM cell 29 signature (FIG) in tumor-infiltrating CTLs isolated from pre- and post-anti-PD-1 treatment samples: top, running enrichment score (RES) for the gene set, from most enriched at the left to most under-represented at the right; middle, positions of gene set members (blue vertical lines) in the ranked list of genes; bottom, value of the ranking metric. Values above the plot represent the normalized enrichment score (NES) and FDR-corrected significance. (FIG. 54F) Spearman co-expression analysis of transcripts enriched in tumor-infiltrating CTLs from post-anti-PD-1 treatment samples (c); matrix is clustered according to complete linkage. (FIG. 54G) Correlation analysis of all peaks identified in the OMNI-ATAC-seq libraries, pooled from 9 donors across two experiments, cells were sorted on CD14−CD19−CD20−CD4−CD45+CD3+CD8+CD103+TIM-3+IL-7R− and CD14−CD19−CD20−CD4−CD45+CD3+CD8+CD103−. Matrix is clustered according to complete linkage. (FIG. 54H) University of California Santa Cruz genome browser tracks for key TRM-associated gene loci as indicated above the tracks. RNA-seq tracks are merged from all purified bulk RNA-seq data, presented as Reads Per Kilobase Million (RPKM) (as per FIG. 2B; tumor non-TRM=25, tumor TRM=19; OMNI-ATACseq as per FIG. 54G).



FIGS. 55A-55C: Validation of TRM phenotype. (FIG. 55A) Flow-cytometry contour plots showing the expression of CD49A and KLRG1 versus. that of CD103 in live, singlet, CD14−CD19−CD20−CD4−CD45+CD3+CD8+ cells obtained from lung samples (n=6). (FIG. 55B) GSEA of the murine composite TRM signature in the transcriptome of TRM versus. non-TRM: top, running enrichment score (RES) for the gene set, from most enriched genes at left to most underrepresented at right; middle, positions of gene set members (blue vertical lines) in the ranked list of genes; bottom, value of the ranking metric. Values above the plot represent the normalized enrichment score (NES) and false discovery rate (FDR)-corrected significance value in CTLs isolated from lung and tumor samples. (FIG. 55C) GSEA of the lung TRM versus. non-TRM cells for non-preserved transcripts (in FIG. 1E, FIG. 1F; as per e; N/S=Not significant).



FIGS. 56A-56B: PD-1 is co-expressed with cytotoxicity associated molecules at the protein level ex-vivo. (FIG. 56A) Flow-cytometry analysis of PD-1+ TRM and non-TRM cells versus. a particular cytokine (as indicated below the plots) following 4 hours of ex-vivo stimulation. Gated on live and singlet-gated CD14−CD20−CD4−CD45+CD3+CD8+ cells obtained from lung cancer TILs (FIG. 56B) Analysis of Granzyme A and Granzyme B directly exvivo, Gated and analyzed, as per (FIG. 56A).



FIG. 57: TIM-3+IL7R− TRM cells are enriched in responders to anti-PD-1 therapy. Flow-cytometry analysis of the expression of TIM-3 versus. that of IL-7R in live, singlet CD14CD20−CD4−CD45+CD3+CD8+CD103+ cells obtained from patients responding or not-responding to anti-PD-1 therapy (n=18).



FIGS. 58A-58D: Single-cell transcriptome analysis of CTLs from anti-PD-1 responders. (FIG. 58A) Schematic representation of clinical details and cells sorted for the patients selected for study (time point—TP). (FIG. 58B) Example of in-silico removal of CD4+ cells, highlighting the transcriptomic drop outs. The dashed line corresponds to the CD4+ cells removed. (FIG. 58C) A clonotype network graph of cells from (FIG. 58A), highlighting the time point from which the cells were isolated. Cells highlighted through a dashed line correspond to shared clonotypes across time points. (FIG. 58D) A clonotype network graph (as per c), highlighting the TRM cells and non-TRM cells, marked respectively. Cells were assigned based on protein expression of CD103, alternatively if cell-specific protein expression was not available, cells with greater than 10 TPM counts expression of either ITGAE (CD103), RBPJ or ZNF683 (HOBIT) considered a TRM.





TABLES

Table 1. List of prioritized genes


Table 2. Expanded list of prioritized genes


Table 3. List of differentially expressed genes in Lung TRM from non-TRM


Table 4. List of differentially expressed genes in tumor TRM from tumor non-TRM


Table 5. List of uniquely expressed genes in tumor TRM


Table 6. TCR-seq library and clonality information


Table 7. List of uniquely expressed genes in tumor TRM subtypes


DETAILED DESCRIPTION

It is to be understood that the present disclosure is not limited to particular aspects described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.


A number of embodiments of the disclosure have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, the following examples are intended to illustrate but not limit the scope of disclosure described in the claims.


It is to be inferred without explicit recitation and unless otherwise intended, that when the present technology relates to a polypeptide, protein, polynucleotide or antibody, an equivalent or a biologically equivalent of such is intended within the scope of the present technology.


Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The full bibliographic information for the citations is found immediately preceding the claims. All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety, to the same extent as if each were incorporated by reference individually. In case of conflict, the present specification, including definitions, will control.


The entirety of each patent, patent application, publication or any other reference or document cited herein hereby is incorporated by reference. In case of conflict, the specification, including definitions, will control.


Citation of any patent, patent application, publication or any other document is not an admission that any of the foregoing is pertinent prior art, nor does it constitute any admission as to the contents or date of these publications or documents.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described herein.


All of the features disclosed herein may be combined in any combination. Each feature disclosed in the specification may be replaced by an alternative feature serving a same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, disclosed features (e.g., antibodies) are an example of a genus of equivalent or similar features.


As used herein, all numerical values or numerical ranges include integers within such ranges and fractions of the values or the integers within ranges unless the context clearly indicates otherwise. Further, when a listing of values is described herein (e.g., about 50%, 60%, 70%, 80%, 85% or 86%) the listing includes all intermediate and fractional values thereof (e.g., 54%, 85.4%). Thus, to illustrate, reference to 80% or more identity, includes 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% etc., as well as 81.1%, 81.2%, 81.3%, 81.4%, 81.5%, etc., 82.1%, 82.2%, 82.3%, 82.4%, 82.5%, etc., and so forth.


Reference to an integer with more (greater) or less than includes any number greater or less than the reference number, respectively. Thus, for example, a reference to less than 100, includes 99, 98, 97, etc. all the way down to the number one (1); and less than 10, includes 9, 8, 7, etc. all the way down to the number one (1).


As used herein, all numerical values or ranges include fractions of the values and integers within such ranges and fractions of the integers within such ranges unless the context clearly indicates otherwise. Thus, to illustrate, reference to a numerical range, such as 1-10 includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, as well as 1.1, 1.2, 1.3, 1.4, 1.5, etc., and so forth. Reference to a range of 1-50 therefore includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, etc., up to and including 50, as well as 1.1, 1.2, 1.3, 1.4, 1.5, etc., 2.1, 2.2, 2.3, 2.4, 2.5, etc., and so forth.


Reference to a series of ranges includes ranges which combine the values of the boundaries of different ranges within the series. Thus, to illustrate reference to a series of ranges, for example, of 1-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-75, 75-100, 100-150, 150-200, 200-250, 250-300, 300-400, 400-500, 500-750, 750-1,000, 1,000-1,500, 1,500-2,000, 2,000-2,500, 2,500-3,000, 3,000-3,500, 3,500-4,000, 4,000-4,500, 4,500-5,000, 5,500-6,000, 6,000-7,000, 7,000-8,000, or 8,000-9,000, includes ranges of 10-50, 50-100, 100-1,000, 1,000-3,000, 2,000-4,000, etc.


Modifications can be made to the foregoing without departing from the basic aspects of the technology. Although the technology has been described in substantial detail with reference to one or more specific embodiments, those of ordinary skill in the art will recognize that changes can be made to the embodiments specifically disclosed in this application, yet these modifications and improvements are within the scope and spirit of the technology.


The disclosure is generally disclosed herein using affirmative language to describe the numerous embodiments and aspects. The disclosure also specifically includes embodiments in which particular subject matter is excluded, in full or in part, such as substances or materials, method steps and conditions, protocols, or procedures. For example, in certain embodiments or aspects of the disclosure, materials and/or method steps are excluded. Thus, even though the disclosure is generally not expressed herein in terms of what the disclosure does not include aspects that are not expressly excluded in the disclosure are nevertheless disclosed herein.


The technology illustratively described herein suitably can be practiced in the absence of any element(s) not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising,” “consisting essentially of,” and “consisting of” can be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation and use of such terms and expressions do not exclude any equivalents of the features shown and described or segments thereof, and various modifications are possible within the scope of the technology claimed. The term “a” or “an” can refer to one of or a plurality of the elements it modifies (e.g., “a reagent” can mean one or more reagents) unless it is contextually clear either one of the elements or more than one of the elements is described. The term “about” as used herein refers to a value within 10% of the underlying parameter (i.e., plus or minus 10%), and use of the term “about” at the beginning of a string of values modifies each of the values (i.e., “about 1, 2 and 3” refers to about 1, about 2 and about 3). For example, a weight of “about 100 grams” can include weights between 90 grams and 110 grams. The term “substantially” as used herein refers to a value modifier meaning “at least 95%”, “at least 96%”, “at least 97%”, “at least 98%”, or “at least 99%” and may include 100%. For example, a composition that is substantially free of X, may include less than 5%, less than 4%, less than 3%, less than 2%, or less than 1% of X, and/or X may be absent or undetectable in the composition.


Thus, it should be understood that although the present technology has been specifically disclosed by representative embodiments and optional features, modification and variation of the concepts herein disclosed can be resorted to by those skilled in the art, and such modifications and variations are considered within the scope of this technology.


Definitions

As used in the specification and claims, the singular form “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a cell” includes a plurality of cells, including mixtures thereof.


As used herein, the term “comprising” is intended to mean that the compositions or methods include the recited steps or elements, but do not exclude others. “Consisting essentially of” shall mean rendering the claims open only for the inclusion of steps or elements, which do not materially affect the basic and novel characteristics of the claimed compositions and methods. “Consisting of” shall mean excluding any element or step not specified in the claim. Embodiments defined by each of these transition terms are within the scope of this disclosure.


As used herein, the term “about” is used to indicate that a value includes the standard deviation of error for the device or method being employed to determine the value. The term “about” when used before a numerical designation, e.g., temperature, time, amount, and concentration, including range, indicates approximations which may vary by (+) or (−) 15%, 10%, 5%, 3%, 2%, or 1%.


As used herein, the term “animal” refers to living multi-cellular vertebrate organisms, a category that includes, for example, mammals and birds. The term “mammal” includes both human and non-human mammals, e.g., bovines, canines, felines, rat, murines, simians, equines and humans. Additional examples include adults, juveniles and infants


The term “subject,” “host,” “individual,” and “patient” are as used interchangeably herein to refer to animals, typically mammalian animals. Any suitable mammal can be treated by a method, cell or composition described herein. Non-limiting examples of mammals include humans, non-human primates (e.g., apes, gibbons, chimpanzees, orangutans, monkeys, macaques, and the like), domestic animals (e.g., dogs and cats), farm animals (e.g., horses, cows, goats, sheep, pigs) and experimental animals (e.g., mouse, rat, rabbit, guinea pig). In some embodiments a mammal is a human. A mammal can be any age or at any stage of development (e.g., an adult, teen, child, infant, or a mammal in utero). A mammal can be male or female. A mammal can be a pregnant female. In some embodiments a subject is a human. In some embodiments, a subject has or is suspected of having a cancer or neoplastic disorder.


“Eukaryotic cells” comprise all of the life kingdoms except monera. They can be easily distinguished through a membrane-bound nucleus. Animals, plants, fungi, and protists are eukaryotes or organisms whose cells are organized into complex structures by internal membranes and a cytoskeleton. The most characteristic membrane-bound structure is the nucleus. Unless specifically recited, the term “host” includes a eukaryotic host, including, for example, yeast, higher plant, insect and mammalian cells. Non-limiting examples of eukaryotic cells or hosts include simian, bovine, porcine, murine, rat, avian, reptilian and human.


“Prokaryotic cells” usually lack a nucleus or any other membrane-bound organelles and are divided into two domains, bacteria and archaea. In addition to chromosomal DNA, these cells can also contain genetic information in a circular loop called on episome. Bacterial cells are very small, roughly the size of an animal mitochondrion (about 1-2 μm in diameter and 10 μm long). Prokaryotic cells feature three major shapes: rod shaped, spherical, and spiral. Instead of going through elaborate replication processes like eukaryotes, bacterial cells divide by binary fission. Examples include but are not limited to Bacillus bacteria, E. coli bacterium, and Salmonella bacterium.


As used herein “a population of cells” intends a collection of more than one cell that is identical (clonal) or non-identical in phenotype and/or genotype.


As used herein, “substantially homogenous” population of cells is a population having at least 70%, or alternatively at least 75%, or alternatively at least 80%, or alternatively at least 85%, or alternatively at least 90%, or alternatively at least 95%, or alternatively at least 98% identical phenotype, as measured by pre-selected markers, phenotypic or genomic traits. In one aspect, the population is a clonal population.


As used herein, “heterogeneous” population of cells is a population having up to 69%, or alternatively up to 60%, or alternatively up to 50%, or alternatively up to 40%, or alternatively up to 30%, or alternatively up to 20%, or alternatively up to 10%, or alternatively up to 5%, or alternatively up to 4%, or alternatively up to 3%, or alternatively up to 2%, or alternatively up to 61%, or alternatively up to 0.5% identical phenotype, as measured by pre-selected markers, phenotypic or genomic traits.


A “composition” typically intends a combination of the active agent, e.g., an engineered immune cell, e.g. T-cell, a modified T-cell, a NK cell, a chimeric antigen cell, a cell comprising an engineered immune cell, e.g. a T-cell, a NK cell, a CART cell or a CAR NK cell, an antibody, a cytokine, IL-12, a compound or composition, and a naturally-occurring or non-naturally-occurring carrier, inert (for example, a detectable agent or label) or active, such as an adjuvant, diluent, binder, stabilizer, buffers, salts, lipophilic solvents, preservative, adjuvant or the like and include pharmaceutically acceptable carriers. Carriers also include pharmaceutical excipients and additives proteins, peptides, amino acids, lipids, and carbohydrates (e.g., sugars, including monosaccharides, di-, tri, tetra-oligosaccharides, and oligosaccharides; derivatized sugars such as alditols, aldonic acids, esterified sugars and the like; and polysaccharides or sugar polymers), which can be present singly or in combination, comprising alone or in combination 1-99.99% by weight or volume. Exemplary protein excipients include serum albumin such as human serum albumin (HSA), recombinant human albumin (rHA), gelatin, casein, and the like. Representative amino acid components, which can also function in a buffering capacity, include alanine, arginine, glycine, arginine, betaine, histidine, glutamic acid, aspartic acid, cysteine, lysine, leucine, isoleucine, valine, methionine, phenylalanine, aspartame, and the like. Carbohydrate excipients are also intended within the scope of this technology, examples of which include but are not limited to monosaccharides such as fructose, maltose, galactose, glucose, D-mannose, sorbose, and the like; disaccharides, such as lactose, sucrose, trehalose, cellobiose, and the like; polysaccharides, such as raffinose, melezitose, maltodextrins, dextrans, starches, and the like; and alditols, such as mannitol, xylitol, maltitol, lactitol, xylitol sorbitol (glucitol) and myoinositol.


The compositions used in accordance with the disclosure, including cells, treatments, therapies, agents, drugs and pharmaceutical formulations can be packaged in dosage unit form for ease of administration and uniformity of dosage. The term “unit dose” or “dosage” refers to physically discrete units suitable for use in a subject, each unit containing a predetermined quantity of the composition calculated to produce the desired responses in association with its administration, i.e., the appropriate route and regimen. The quantity to be administered, both according to number of treatments and unit dose, depends on the result and/or protection desired. Precise amounts of the composition also depend on the judgment of the practitioner and are peculiar to each individual. Factors affecting dose include physical and clinical state of the subject, route of administration, intended goal of treatment (alleviation of symptoms versus cure), and potency, stability, and toxicity of the particular composition. Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically or prophylactically effective. The formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described herein.


As used herein, the terms “nucleic acid sequence” and “polynucleotide” are used interchangeably to refer to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. Thus, this term includes, but is not limited to, single-, double-, or multi-stranded DNA or RNA, genomic DNA, cDNA, DNA-RNA hybrids, or a polymer comprising purine and pyrimidine bases or other natural, chemically or biochemically modified, non-natural, or derivatized nucleotide bases.


The term siRNA intends short hairpin RNAs (shRNAs). shRNAs comprise a single strand of RNA that forms a stem-loop structure, where the stem consists of the complementary sense and antisense strands that comprise a double-stranded siRNA, and the loop is a linker of varying size. The stem structure of shRNAs generally is from about 10 to about 30 nucleotides long.


The term microRNAs (miRNAs) intends a class of small noncoding RNAs of about 22 nucleotide in length which are involved in the regulation of gene expression at the posttranscriptional level by degrading their target mRNAs and/or inhibiting their translation.


The term “encode” as it is applied to nucleic acid sequences refers to a polynucleotide which is said to “encode” a polypeptide if, in its native state or when manipulated by methods well known to those skilled in the art, can be transcribed and/or translated to produce the mRNA for the polypeptide and/or a fragment thereof. The antisense strand is the complement of such a nucleic acid, and the encoding sequence can be deduced therefrom.


As used herein, the term “isolated cell” generally refers to a cell that is substantially separated from other cells of a tissue. The term includes prokaryotic and eukaryotic cells.


“Immune cells” includes, e.g., white blood cells (leukocytes) which are derived from hematopoietic stem cells (HSC) produced in the bone marrow, lymphocytes (T cells, B cells, natural killer (NK) cells) and myeloid-derived cells (neutrophil, eosinophil, basophil, monocyte, macrophage, dendritic cells). “T cell” includes all types of immune cells expressing CD3 including T-helper cells (CD4+ cells), cytotoxic T-cells (CD8+ cells), natural killer T-cells, T-regulatory cells (Treg) and gamma-delta T cells. A “cytotoxic cell” includes CD8+ T cells, natural-killer (NK) cells, and neutrophils, which cells are capable of mediating cytotoxicity responses. Cytokines are small secreted proteins released by immune cells that have a specific effect on the interactions and communications between the immune cells. Cytokines can be pro-inflammatory or anti-inflammatory. Non-limiting example of a cytokine is Granulocyte-macrophage colony-stimulating factor (GM-CSF), which stimulates stem cells to produce granulocytes (neutrophils, eosinophils, and basophils) and monocytes.


As used herein, the phrase “immune response” or its equivalent “immunological response” or “anti-tumor response” refers to the development of a cell-mediated response (e.g. mediated by antigen-specific T cells or their secretion products). A cellular immune response is elicited by the presentation of polypeptide epitopes in association with Class I or Class II MHC molecules, to treat or prevent a viral infection, expand antigen-specific B-reg cells, TC1, CD4+T helper cells and/or CD8+ cytotoxic T cells and/or disease generated, autoregulatory T cell and B cell “memory” cells. The response may also involve activation of other components. In some aspect, the term “immune response” may be used to encompass the formation of a regulatory network of immune cells. Thus, the term “regulatory network formation” may refer to an immune response elicited such that an immune cell, preferably a T cell, more preferably a T regulatory cell, triggers further differentiation of other immune cells, such as but not limited to, B cells or antigen-presenting cells—non-limiting examples of which include dendritic cells, monocytes, and macrophages. In certain embodiments, regulatory network formation involves B cells being differentiated into regulatory B cells; in certain embodiments, regulatory network formation involves the formation of tolerogenic antigen-presenting cells.


The term “transduce” or “transduction” as it is applied to the production of chimeric antigen receptor cells refers to the process whereby a foreign nucleotide sequence is introduced into a cell. In some embodiments, this transduction is done via a vector.


As used herein, the term “vector” refers to a nucleic acid construct deigned for transfer between different hosts, including but not limited to a plasmid, a virus, a cosmid, a phage, a BAC, a YAC, etc. A “viral vector” is defined as a recombinantly produced virus or viral particle that comprises a polynucleotide to be delivered into a host cell, either in vivo, ex vivo or in vitro. In some embodiments, plasmid vectors may be prepared from commercially available vectors. In other embodiments, viral vectors may be produced from baculoviruses, retroviruses, adenoviruses, AAVs, etc. according to techniques known in the art. In one embodiment, the viral vector is a lentiviral vector. Examples of viral vectors include retroviral vectors, adenovirus vectors, adeno-associated virus vectors, alphavirus vectors and the like. Infectious tobacco mosaic virus (TMV)-based vectors can be used to manufacturer proteins and have been reported to express Griffithsin in tobacco leaves (O'Keefe et al. (2009) Proc. Nat. Acad. Sci. USA 106(15):6099-6104). Alphavirus vectors, such as Semliki Forest virus-based vectors and Sindbis virus-based vectors, have also been developed for use in gene therapy and immunotherapy. See, Schlesinger & Dubensky (1999) Curr. Opin. Biotechnol. 5:434-439 and Ying et al. (1999) Nat. Med. 5(7):823-827. Further details as to modern methods of vectors for use in gene transfer may be found in, for example, Kotterman et al. (2015) Viral Vectors for Gene Therapy: Translational and Clinical Outlook Annual Review of Biomedical Engineering 17. Vectors that contain both a promoter and a cloning site into which a polynucleotide can be operatively linked are well known in the art. Such vectors are capable of transcribing RNA in vitro or in vivo and are commercially available from sources such as Agilent Technologies (Santa Clara, Calif.) and Promega Biotech (Madison, Wis.).


An “an effective amount” or “efficacious amount” is an amount sufficient to achieve the intended purpose, non-limiting examples of such include: initiation of the immune response, modulation of the immune response, suppression of an inflammatory response and modulation of T cell activity or T cell populations. In one aspect, the effective amount is one that functions to achieve a stated therapeutic purpose, e.g., a therapeutically effective amount. As described herein in detail, the effective amount, or dosage, depends on the purpose and the composition, and can be determined according to the present disclosure.


As used herein, the term “T cell,” refers to a type of lymphocyte that matures in the thymus. T cells play an important role in cell-mediated immunity and are distinguished from other lymphocytes, such as B cells, by the presence of a T-cell receptor on the cell surface. T-cells may either be isolated or obtained from a commercially available source. “T cell” includes all types of immune cells expressing CD3 including T-helper cells (CD4+ cells), cytotoxic T-cells (CD8+ cells), natural killer T-cells, T-regulatory cells (Treg), Tissue-resident memory T cells (Tim cells) and gamma-delta T cells. A “cytotoxic cell” includes CD8+ T cells, natural-killer (NK) cells, and neutrophils, which cells are capable of mediating cytotoxicity responses. Non-limiting examples of commercially available T-cell lines include lines BCL2 (AAA) Jurkat (ATCC® CRL-2902™), BCL2 (S70A) Jurkat (ATCC® CRL-2900™), BCL2 (S87A) Jurkat (ATCC® CRL-2901™), BCL2 Jurkat (ATCC® CRL-2899™), Neo Jurkat (ATCC® CRL-2898™), TALL-104 cytotoxic human T cell line (ATCC #CRL-11386). Further examples include but are not limited to mature T-cell lines, e.g., such as Deglis, EBT-8, HPB-MLp-W, HUT 78, HUT 102, Karpas 384, Ki 225, My-La, Se-Ax, SKW-3, SMZ-1 and T34; and immature T-cell lines, e.g., ALL-SIL, Be13, CCRF-CEM, CML-T1, DND-41, DU.528, EU-9, HD-Mar, HPB-ALL, H-SB2, HT-1, JK-T1, Jurkat, Karpas 45, KE-37, KOPT-K1, K-T1, L-KAW, Loucy, MAT, MOLT-1, MOLT 3, MOLT-4, MOLT 13, MOLT-16, MT-1, MT-ALL, P12/Ichikawa, Peer, PER0117, PER-255, PF-382, PFI-285, RPMI-8402, ST-4, SUP-T1 to T14, TALL-1, TALL-101, TALL-103/2, TALL-104, TALL-105, TALL-106, TALL-107, TALL-197, TK-6, TLBR-1, -2, -3, and -4, CCRF-HSB-2 (CCL-120.1), J.RT3-T3.5 (ATCC TIB-153), J45.01 (ATCC CRL-1990), J.CaM1.6 (ATCC CRL-2063), RS4;11 (ATCC CRL-1873), CCRF-CEM (ATCC CRM-CCL-119); and cutaneous T-cell lymphoma lines, e.g., HuT78 (ATCC CRM-TIB-161), MJ[G11] (ATCC CRL-8294), HuT102 (ATCC TIB-162). Null leukemia cell lines, including but not limited to REH, NALL-1, KM-3, L92-221, are a another commercially available source of immune cells, as are cell lines derived from other leukemias and lymphomas, such as K562 erythroleukemia, THP-1 monocytic leukemia, U937 lymphoma, HEL erythroleukemia, HL60 leukemia, HMC-1 leukemia, KG-1 leukemia, U266 myeloma. Non-limiting exemplary sources for such commercially available cell lines include the American Type Culture Collection, or ATCC, (http://www.atcc.org/) and the German Collection of Microorganisms and Cell Cultures (https://www.dsmz.de/).


As used herein, the term “engineered T-cell receptor” refers to a molecule comprising the elements of (a) an extracellular antigen binding domain, (b) a transmembrane domain, and (c) an intracellular signaling domain. In some aspect, an engineered T-cell receptor is a genetically modified TCR, a modified TCR, a recombinant TCR, a transgenic TCR, a partial TCR, a chimeric fusion protein, a CAR, a first generation CAR, a second generation CAR, a third generation CAR, or a fourth generation TRUCK. In some aspect, the engineered T-cell receptor comprises an antibody or a fragment of an antibody. In particular aspects, the engineered T-cell receptor is a genetically modified TCR or a CAR.


As used herein, the term “receptor” or “T-cell receptor” or “TCR” refers to a cell surface molecule found on T-cells that functions to recognize and bind antigens presented by antigen presenting molecules. Generally, a TCR is a heterodimer of an alpha chain (TRA) and a beta chain (TRB). Some TCRs are comprised of alternative gamma (TRG) and delta (TRD) chains. T-cells expressing this version of a TCR are known as γδ T-cells. TCRs are part of the immunoglobulin superfamily. Accordingly, like an antibody, the TCR comprises three hypervariable CDR regions per chain There is also an additional area of hypervariability on the beta-chain (HV4). The TCR heterodimer is generally present in an octomeric complex that further comprises three dimeric signaling modules CD3γ/ε, CD3δ/ε, and CD247 ζ/ζ or ζ/η. Non-limiting exemplary amino acid sequence of the human TCR-alpha chain: METLLGVSLVILWLQLARVNSQQGEEDPQALSIQEGENATMNCS YKTSINNLQWYRQNSGRGLVHLILIRSNEREKHSGRLRVTLDTSKKSSSLLITASRA A DTASYFCAPVLSGGGADGLTFGKGTHLIIQPYIQNPDPAVYQLRDSKSSDKSVCLFT D FDSQTNVSQSKDSDVYITDKTVLDMRSMDFKSNSAVAWSNKSDFACANAFNNSIIP EDTFFPSPESSCDVKLVEKSFETDTNLNFQNLSVIGFRILLLKVAGFNLLMTLRLWSS


Non-limiting exemplary amino acid sequence of the human TCR-beta chain:









DSAVYLCASSLLRVYEQYFGPGTRLTVTEDLKNVFPPEVAVFEPPEAEI





SHTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVSTDPQPLKEQP.






The term “modified TCR” refers to a TCR that has been genetically engineered, and/or a transgenic TCR, and/or a recombinant TCR. Non-limiting examples of modified TCRs include single-chain VαVβ TCRs (scTv), full-length TCRs produced through use of a T cell display system, and TCRs wherein the CDR regions have been engineered to recognize a specific antigen, peptide, fragment, and/or MHC molecule. Methods of developing and engineering modified TCRs are known in the art. For example, see Stone, J. D. et al. Methods in Enzymology 503: 189-222 (2012), PCT Application WO2014018863 A1.


As used herein, the term “antibody” (“Ab”) collectively refers to immunoglobulins (or “Ig”) or immunoglobulin-like molecules including but not limited to antibodies of the following isotypes: IgM, IgA, IgD, IgE, IgG, and combinations thereof. Immunoglobulin-like molecules include but are not limited to similar molecules produced during an immune response in a vertebrate, for example, in mammals such as humans, rats, goats, rabbits and mice, as well as non-mammalian species, such as shark immunoglobulins (see Feige, M. et al. Proc. Nat. Ac. Sci. 41(22): 8155-60 (2014)). Unless specifically noted otherwise, the term “antibody” includes intact immunoglobulins and “antibody fragments” or “antigen binding fragments” that specifically bind to a molecule of interest (or a group of highly similar molecules of interest) to the substantial exclusion of binding to other molecules (for example, antibodies and antibody fragments that have a binding constant for the molecule of interest that is at least 103 M−1 greater, at least 104 M−1 greater or at least 105 M−1 greater than a binding constant for other molecules in a biological sample). The term “antibody” also includes genetically engineered forms such as chimeric antibodies (for example, humanized murine antibodies), heteroconjugate antibodies (such as, bispecific antibodies). See also, Pierce Catalog and Handbook, 1994-1995 (Pierce Chemical Co., Rockford, Ill.); Kuby, J., Immunology, 3rd Ed., W.H. Freeman & Co., New York, 1997.


As used herein, the term “monoclonal antibody” refers to an antibody produced by a cell into which the light and heavy chain genes of a single antibody have been transfected or, more traditionally, by a single clone of B-lymphocytes. Monoclonal antibodies generally have affinity for a single epitope (i.e. they are monovalent) but may be engineered to be specific for two or more epitopes (e.g. bispecific). Methods of producing monoclonal antibodies are known to those of skill in the art, for example by creating a hybridoma through fusion of myeloma cells with immune spleen cells, phage display, single cell amplification from B-cell populations, single plasma cell interrogation technologies, and single B-cell culture. Monoclonal antibodies include recombinant antibodies, chimeric antibodies, humanized antibodies, and human antibodies.


The general structure of an antibody is comprised of heavy (H) chains and light (L) chains connected by disulfide bonds. The structure can also comprise glycans attached at conserved amino acid residues. Each heavy and light chain contains a constant region and a variable region (also known as “domains”). There are two types of light chain, lambda (2) and kappa (κ). There are five primary types of heavy chains which determine the isotype (or class) of an antibody molecule: gamma (γ), delta (δ), alpha (α), mu (μ) and epsilon (ε). The constant regions of the heavy chain also contribute to the effector function of the antibody molecule. Antibodies comprising the heavy chains μ, δ, γ3, γ1, α1, γ2, γ4, ε, and α2 result in the following isotypes: IgM, IgD, IgG3, IgG1, IgA1, IgG2, IgG4, IgE, and IgA2, respectively. An IgY isotype, related to mammalian IgG, is found in reptiles and birds. An IgW isotype, related to mammalian IgD, is found in cartilaginous fish. Class switching is the process by which the constant region of an immunoglobulin heavy chain is replaced with a different immunoglobulin heavy chain through recombination of the heavy chain locus of a B-cell to produce an antibody of a different isotype. Antibodies may exist as monomers (e.g. IgG), dimers (e.g. IgA), tetramers (e.g. fish IgM), pentamers (e.g. mammalian IgM), and/or in complexes with other molecules. In some embodiments, antibodies can be bound to the surface of a cell or secreted by a cell.


The variable regions of the immunoglobulin heavy and the light chains specifically bind the antigen. The “framework” region is a portion of the Fab that acts as a scaffold for three hypervariable regions called “complementarity-determining regions” (CDRs). A set of CDRs is known as a paratope. The framework regions of different light or heavy chains are relatively conserved within a species. The combined framework region of an antibody (comprising regions from both light and heavy chains), largely adopts a β-sheet conformation and the CDRs form loops which connect, and in some cases form part of, the β-sheet structure. Thus, framework regions act to position the CDRs in correct orientation by inter-chain, non-covalent interactions. The framework region and CDRs for numerous antibodies have been defined and are available in a database maintained online (Kabat et al., Sequences of Proteins of Immunological Interest, U.S. Department of Health and Human Services, 1991).


The CDRs of the variable regions of heavy and light chains (VH and VL) are responsible for binding to an epitope of an antigen. A limited number of amino acid positions within the CDRs are directly involved in antigen binding. These positions within the CDRs are called specificity determining residues (SDRs). The CDRs of a heavy or light chain are numbered sequentially starting from the N-terminal end (i.e. CDR1, CDR2, and CDR3). For example, a VL CDR3 is the middle CDR located in the variable domain of the light chain of an antibody. A VH CDR1 is the first CDR in the variable domain of a heavy chain of an antibody. An antibody that binds a specific antigen will have specific VH and VL region sequences, and thus specific CDR sequences. Antibodies with different specificities (i.e. different combining sites for different antigens) have different CDRs.


The term “humanized” when used in reference to an antibody, means that the amino acid sequence of the antibody has non-human amino acid residues (e.g., mouse, rat, goat, rabbit, etc.) of one or more complementarity determining regions (CDRs) that specifically bind to the desired antigen in an acceptor human immunoglobulin molecule, and one or more human amino acid residues in the Fv framework region (FR), which are amino acid residues that flank the CDRs. Such antibodies typically have reduced immunogenicity and therefore a longer half-life in humans as compared to the non-human parent antibody from which one or more CDRs were obtained or are based upon.


An “antigen-binding fragment” (Fab) refers to the regions of an antibody corresponding to two of the three fragments produced by papain digestion. The Fab fragment comprises the region that binds to an antigen and is composed of one variable region and one constant region from both a heavy chain and a light chain. An F(ab′)2 fragment refers to a fragment of an antibody digested by pepsin or the enzyme IdeS (immunoglobulin degrading enzyme from S. pyogenes) comprising two Fab regions connected by disulfide bonds. A single chain variable fragment (“scFv”) refers to a fusion protein comprising at least one VH and at least one VL region connected by a linker of between 5 to 30 amino acids. Methods and techniques of developing scFv that bind to specific antigens are known in the art (see, e.g. Ahmad, Z. A. et al., Clinical and Developmental Immunology, 2012: 980250 (2012)).


As used herein, the term “antigen” refers to a compound, composition, or substance that may be specifically bound and/or recognized by the products of specific humoral or cellular immunity and antigen recognition molecules, including but not limited to an antibody molecule, single-chain variable fragment (scFv), cell surface immunoglobulin receptor, B-cell receptor (BCR), T-cell receptor (TCR), engineered TCR, modified TCR, or CAR. The term “epitope” refers to an antigen or a fragment, region, site, or domain of an antigen that is recognized by an antigen recognition molecule. Antigens can be any type of molecule including but not limited to peptides, proteins, lipids, phospholipids haptens, simple intermediary metabolites, sugars (e.g., monosaccharides or oligosaccharides), hormones, and macromolecules such as complex carbo-hydrates (e.g., polysaccharides). Some non-limiting examples of antigens include antigens involved in autoimmune disease (including autoantigens), allergy, and graft rejection, tumor antigens, toxins, and other miscellaneous antigens. Non-limiting examples of tumor antigens include mesothelin, ROR1 and EGFRvIII, ephrin type-A receptor 2 (EphA2), interleukin (IL)-13r alpha 2, an EGFR VIII, a PSMA, an EpCAM, a GD3, a fucosyl GM1, a PSCA, a PLAC1, a sarcoma breakpoint, a Wilms Tumor 1, a hematologic differentiation antigen, a surface glycoprotein, a gangliosides (GM2), a growth factor receptor, a stromal antigen, a vascular antigen, or a combination thereof. Antigens expressed by pathogens include, but are not limited to microbial antigens such as viral antigens, bacterial antigens, fungal antigens, protozoa, and other parasitic antigens.


As used herein, the term “target cell population” refers to a population of cells that present antigens, which can be targeted by engineered T cells. Non-limiting examples of target cell populations include tumor cells, cancer cells and pathogen infected cells. Non-limiting examples of pathogens include viral and bacterial pathogens.


As used herein, the term “antigen binding domain” refers to any protein or polypeptide domain that can specifically bind to an antigen target (including target complexes of antigens and MHC molecules).


As used herein, the term “autologous,” in reference to cells, tissue, and/or grafts refers to cells, tissue, and/or grafts that are isolated from and then and administered back into the same subject, patient, recipient, and/or host. “Allogeneic” refers to non-autologous cells, tissue, and/or grafts.


As used herein, the term “B cell,” refers to a type of lymphocyte in the humoral immunity of the adaptive immune system. B cells principally function to make antibodies, serve as antigen presenting cells, release cytokines, and develop memory B cells after activation by antigen interaction. B cells are distinguished from other lymphocytes, such as T cells, by the presence of a B-cell receptor on the cell surface. B cells may either be isolated or obtained from a commercially available source. Non-limiting examples of commercially available B cell lines include lines AHH-1 (ATCC® CRL-8146™), BC-1 (ATCC® CRL-2230™), BC-2 (ATCC® CRL-2231™), BC-3 (ATCC® CRL-2277™), CA46 (ATCC® CRL-1648™), DG-75 [D.G.-75] (ATCC® CRL-2625™), DS-1 (ATCC® CRL-11102™), EB-3 [EB3] (ATCC® CCL-85™), Z-138 (ATCC #CRL-3001), DB (ATCC CRL-2289), Toledo (ATCC CRL-2631), Pfiffer (ATCC CRL-2632), SR (ATCC CRL-2262), JM-1 (ATCC CRL-10421), NFS-5 C-1 (ATCC CRL-1693); NFS-70 C10 (ATCC CRL-1694), NFS-25 C-3 (ATCC CRL-1695), AND SUP-B15 (ATCC CRL-1929). Further examples include but are not limited to cell lines derived from anaplastic and large cell lymphomas, e.g., DEL, DL-40, FE-PD, JB6, Karpas 299, Ki-JK, Mac-2A Ply1, SR-786, SU-DHL-1, -2, -4, -5, -6, -7, -8, -9, -10, and -16, DOHH-2, NU-DHL-1, U-937, Granda 519, USC-DHL-1, RL; Hodgkin's lymphomas, e.g., DEV, HDLM-2, HD-MyZ, KM-H2, L 428, L 540, L1236, SBH-1, SUP-HD1, SU/RH-HD-1. Non-limiting exemplary sources for such commercially available cell lines include the American Type Culture Collection, or ATCC, (www.atcc.org/) and the German Collection of Microorganisms and Cell Cultures (https://www.dsmz.de/).


As used herein, the term “major histocompatibility complex” (MHC) refers to an antigen presentation molecule that functions as part of the immune system to bind antigens and other peptide fragments and display them on the cell surface for recognition by antigen recognition molecules such as TCR. MHC may be used interchangeably with the term “human leukocyte antigen” (HLA) when used in reference to human MHC; thus, MHC refers to all HLA subtypes including, but not limited to, the classical MHC genes disclosed herein: HLA-A, HLA-E, HLA-DM, HLA-DO, HLA-DP, HLA-DQ, and HLA-DR, in addition to all variants, isoforms, isotypes, and other biological equivalents thereof. MHC class I (MHC-I) and MHC class II (MHC-II) molecules utilize distinct antigen processing pathways. In general, peptides derived from intracellular antigens are presented to CD8+ T cells by MHC class I molecules, which are expressed on virtually all cells, while extracellular antigen-derived peptides are presented to CD4+ T cells by MHC-II molecules. However, several exceptions to this dichotomy have been observed. In certain embodiments disclosed herein, a particular antigen, peptide, and/or epitope is identified and presented in an antigen-MHC complex in the context of an appropriate MHC class I or II protein. The genetic makeup of a subject may be assessed to determine which MHC allele is suitable for a particular patient, disease, or condition with a particular set of antigens. In mice, the MHC genes are known as the histocompatibility 2 (H-2) genes. Murine classical MHC class I subtypes include H-2D, H-2K, and H-2L. Murine non-classical MHC class I subtypes include H-2Q, H-2M, and H-2T. Murine classical MHC class II subtypes include H-2A (I-A), and H-2E (1-E). Non-classical murine MHC class II subtypes include H-2M and H-20. Canine MHC molecules are known as Dog Leukocyte Antigens (DLA). Feline MHC molecules are known as Feline Leukocyte Antigens (FLA). In some embodiments, an orthologous or homologous MHC molecule is selected to transition a therapy or treatment involving a specific antigen-MHC complex from one species to a different species.


As used herein, a “target cell” is any cell that expresses the antigen target to which the engineered T cells can bind.


As used herein, a “cancer” is a disease state characterized by the presence in a subject of cells demonstrating abnormal uncontrolled replication and may be used interchangeably with the term “tumor.” In some embodiments, the cancer is a leukemia or a lymphoma. “Cell associated with the cancer” refers to those subject cells that demonstrate abnormal uncontrolled replication. In certain embodiments, the cancer is acute myeloid leukemia or acute lymphoblastic leukemia. As used herein a “leukemia” is a cancer of the blood or bone marrow characterized by an abnormal increase of immature white blood cells. The specific condition of acute myeloid leukemia (AML)—also referred to as acute myelogenous leukemia or acute myeloblastic leukemia—is a cancer of the myeloid origin blood cells, characterized by the rapid growth of abnormal myeloid cells that accumulate in the bone marrow and interfere with the production of normal blood cells. The specific condition of acute lymphoblastic leukemia (ALL)—also referred to as acute lymphocytic leukemia or acute lymphoid leukemia—is a cancer of the white blood cells, characterized by the overproduction and accumulation of malignant, immature leukocytes (lymphoblasts) resulting a lack of normal, healthy blood cells. As used herein a “lymphoma” is a cancer of the blood characterized by the development of blood cell tumors and symptoms of enlarged lymph nodes, fever, drenching sweats, unintended weight loss, itching, and constantly feeling tired.


A “solid tumor” is an abnormal mass of tissue that usually does not contain cysts or liquid areas. Solid tumors can be benign or malignant. Different types of solid tumors are named for the type of cells that form them. Examples of solid tumors include sarcomas, carcinomas, and lymphomas.


The term “B-cell lymphoma or leukemia” refers to a type of cancer that forms in issues of the lymphatic system or bone marrow and has undergone a malignant transformation that makes the cells within the cancer pathological to the host organism with the ability to invade or spread to other parts of the body.


One of skill in the art can monitor expression of genes using methods such as RNA-sequencing, DNA microarrays, Real-time PCR, or Chromatin immunoprecipitation (ChIP) etc. Protein expression can be monitored using methods such as flow cytometry, Western blotting, 2-D gel electrophoresis or immunoassays etc.


One of skill in the art can use methods such as RNA interference (RNAi), CRISPR, TALEN, ZFN or other methods that target specific sequences to reduce or eliminate expression and/or function of proteins. CRISPR, TALEN, ZFN or other genome editing tools can also be used to increase expression and/or function of genes.


As used herein, “RNAi” (RNA interference) refers to the method of reducing or eliminating gene expression in a cell by targeting specific mRNA sequences for degradation via introduction of short pieces of double stranded RNA (dsRNA) and small interfering RNA (such as siRNA, shRNA or miRNA etc.) (Agrawal, N. et al.; Microbiol Mol Biol Rev. 2003; 67:657-685, Arenz, C. et al.; Naturwissenschaften. 2003; 90:345-359, Hannon G J.; Nature. 2002; 418:244-251).


As used herein, the term “CRISPR” refers to a technique of sequence specific genetic manipulation relying on the clustered regularly interspaced short palindromic repeats pathway. CRISPR can be used to perform gene editing and/or gene regulation, as well as to simply target proteins to a specific genomic location. “Gene editing” refers to a type of genetic engineering in which the nucleotide sequence of a target polynucleotide is changed through introduction of deletions, insertions, single stranded or double stranded breaks, or base substitutions to the polynucleotide sequence. In some aspects, CRISPR-mediated gene editing utilizes the pathways of non-homologous end joining (NHEJ) or homologous recombination to perform the edits. Gene regulation refers to increasing or decreasing the production of specific gene products such as protein or RNA.


The term “gRNA” or “guide RNA” as used herein refers to guide RNA sequences used to target specific polynucleotide sequences for gene editing employing the CRISPR technique. Techniques of designing gRNAs and donor therapeutic polynucleotides for target specificity are well known in the art. For example, Doench, J., et al. Nature biotechnology 2014; 32(12):1262-7, Mohr, S. et al. (2016) FEBS Journal 283: 3232-38, and Graham, D., et al. Genome Biol. 2015; 16: 260. gRNA comprises or alternatively consists essentially of, or yet further consists of a fusion polynucleotide comprising CRISPR RNA (crRNA) and trans-activating CRIPSPR RNA (tracrRNA); or a polynucleotide comprising CRISPR RNA (crRNA) and trans-activating CRIPSPR RNA (tracrRNA). In some aspects, a gRNA is synthetic (Kelley, M. et al. (2016) J of Biotechnology 233 (2016) 74-83).


The term “Cas9” refers to a CRISPR associated endonuclease referred to by this name. Non-limiting exemplary Cas9s include Staphylococcus aureus Cas9, nuclease dead Cas9, and orthologs and biological equivalents each thereof. Orthologs include but are not limited to Streptococcus pyogenes Cas9 (“spCas9”), Cas 9 from Streptococcus thermophiles, Legionella pneumophilia, Neisseria lactamica, Neisseria meningitides, Francisella novicida; and Cpfl (which performs cutting functions analogous to Cas9) from various bacterial species including Acidaminococcus spp. and Francisella novicida U112.


As used herein, “TALEN” (transcription activator-like effector nucleases) refers to engineered nucleases that comprise a non-specific DNA-cleaving nuclease fused to a TALE DNA-binding domain, which can target DNA sequences and be used for genome editing. Boch (2011) Nature Biotech. 29: 135-6; and Boch et al. (2009) Science 326: 1509-12; Moscou et al. (2009) Science 326: 3501. TALEs are proteins secreted by Xanthomonas bacteria. The DNA binding domain contains a repeated, highly conserved 33-34 amino acid sequence, with the exception of the 12th and 13th amino acids. These two positions are highly variable, showing a strong correlation with specific nucleotide recognition. They can thus be engineered to bind to a desired DNA sequence. To produce a TALEN, a TALE protein is fused to a nuclease (N), which is a wild-type or mutated Fokl endonuclease. Several mutations to Fokl have been made for its use in TALENs; these, for example, improve cleavage specificity or activity. Cermak et al. (2011) Nucl. Acids Res. 39: e82; Miller et al. (2011) Nature Biotech. 29: 143-8; Hockemeyer et al. (2011) Nature Biotech. 29: 731-734; Wood et al. (2011) Science 333: 307; Doyon et al. (2010) Nature Methods 8: 74-79; Szczepek et al. (2007) Nature Biotech. 25: 786-793; and Guo et al. (2010) J. Mol. Bio. 200: 96. The Fokl domain functions as a dimer, requiring two constructs with unique DNA binding domains for sites in the target genome with proper orientation and spacing. Both the number of amino acid residues between the TALE DNA binding domain and the Fokl cleavage domain and the number of bases between the two individual TALEN binding sites appear to be important parameters for achieving high levels of activity. Miller et al. (2011) Nature Biotech. 29: 143-8. TALENs specific to sequences in immune cells can be constructed using any method known in the art, including various schemes using modular components. Zhang et al. (2011) Nature Biotech. 29: 149-53; Geibler et al. (2011) PLoS ONE 6: e 19509.


As used herein, “ZFN” (Zinc Finger Nuclease) refers to engineered nucleases that comprise a non-specific DNA-cleaving nuclease fused to a zinc finger DNA binding domain, which can target DNA sequences and be used for genome editing. Like a TALEN, a ZFN comprises a Fokl nuclease domain (or derivative thereof) fused to a DNA-binding domain. In the case of a ZFN, the DNA-binding domain comprises one or more zinc fingers. Carroll et al. (2011) Genetics Society of America 188: 773-782; and Kim et al. (1996) Proc. Natl. Acad. Sci. USA 93: 1156-1160. A zinc finger is a small protein structural motif stabilized by one or more zinc ions. A zinc finger can comprise, for example, Cys2His2, and can recognize an approximately 3-bp sequence. Various zinc fingers of known specificity can be combined to produce multi-finger polypeptides which recognize about 6, 9, 12, 15 or 18-bp sequences. Various selection and modular assembly techniques are available to generate zinc fingers (and combinations thereof) recognizing specific sequences, including phage display, yeast one-hybrid systems, bacterial one-hybrid and two-hybrid systems, and mammalian cells. Like a TALEN, a ZFN must dimerize to cleave DNA. Thus, a pair of ZFNs are required to target non-palindromic DNA sites. The two individual ZFNs must bind opposite strands of the DNA with their nucleases properly spaced apart. Bitinaite et al. (1998) Proc. Natl. Acad. Sci. USA 95: 10570-5. ZFNs specific to sequences in immune cells can be constructed using any method known in the art. See, e.g., Provasi (2011) Nature Med. 18: 807-815; Torikai (2013) Blood 122: 1341-1349; Cathomen et al. (2008) Mol. Ther. 16: 1200-7; Guo et al. (2010) J. Mol. Biol. 400: 96; U.S. Patent Publication 201110158957; and U.S. Patent Publication 2012/0060230.


A “cytotoxic cell” intends a cell that is capable of killing other cells or microbes. Examples of cytotoxic cells include but are not limited to CD8+ T cells, natural-killer (NK) cells, NKT cells, and neutrophils, which cells are capable of mediating cytotoxicity responses.


As used herein, the term “detectable marker” refers to at least one marker capable of directly or indirectly, producing a detectable signal. A non-exhaustive list of this marker includes enzymes which produce a detectable signal, for example by colorimetry, fluorescence, luminescence, such as horseradish peroxidase, alkaline phosphatase, (3-galactosidase, glucose-6-phosphate dehydrogenase, chromophores such as fluorescent, luminescent dyes, groups with electron density detected by electron microscopy or by their electrical property such as conductivity, amperometry, voltammetry, impedance, detectable groups, for example whose molecules are of sufficient size to induce detectable modifications in their physical and/or chemical properties, such detection may be accomplished by optical methods such as diffraction, surface plasmon resonance, surface variation, the contact angle change or physical methods such as atomic force spectroscopy, tunnel effect, or radioactive molecules such as 32P, 35S or 125I.


As used herein, the term “purification marker” or “reporter protein” refer to at least one marker useful for purification or identification. A non-exhaustive list of this marker includes His, lacZ, GST, maltose-binding protein, NusA, BCCP, c-myc, CaM, FLAG, GFP, YFP, cherry, thioredoxin, poly(NANP), V5, Snap, HA, chitin-binding protein, Softag 1, Softag 3, Strep, or S-protein. Suitable direct or indirect fluorescence marker comprise FLAG, GFP, YFP, RFP, dTomato, cherry, Cy3, Cy 5, Cy 5.5, Cy 7, DNP, AMCA, Biotin, Digoxigenin, Tamra, Texas Red, rhodamine, Alexa fluors, FITC, TRITC or any other fluorescent dye or hapten.


As used herein, “homology” or “identical”, percent “identity” or “similarity”, when used in the context of two or more nucleic acids or polypeptide sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of nucleotides or amino acid residues that are the same, e.g., at least 60% identity, preferably at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region (e.g., nucleotide sequence encoding the chimeric PVX described herein). Homology can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are homologous at that position. A degree of homology between sequences is a function of the number of matching or homologous positions shared by the sequences. The alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in Current Protocols in Molecular Biology (Ausubel et al., eds. 1987) Supplement 30, section 7.7.18, Table 7.7.1. Preferably, default parameters are used for alignment. A preferred alignment program is BLAST, using default parameters. In particular, preferred programs are BLASTN and BLASTP, using the following default parameters: Genetic code=standard; filter=none; strand=both; cutoff=60; expect=10; Matrix=BLOSUM62; Descriptions=50 sequences; sort by=HIGH SCORE; Databases=non-redundant, GenBank+EMBL+DDBJ+PDB+GenBank CDS translations+SwissProtein+SPupdate+PIR. Details of these programs can be found at the following Internet address: ncbi.nlm.nih.gov/cgi-bin/BLAST. The terms “homology” or “identical,” percent “identity” or “similarity” also refer to, or can be applied to, the complement of a test sequence. The terms also include sequences that have deletions and/or additions, as well as those that have substitutions. As described herein, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is at least 50-100 amino acids or nucleotides in length. An “unrelated” or “non-homologous” sequence shares less than 40% identity, or alternatively less than 25% identity, with one of the sequences disclosed herein.


The phrase “first line” or “second line” or “third line” refers to the order of treatment received by a patient. First line therapy regimens are treatments given first, whereas second or third line therapy are given after the first line therapy or after the second line therapy, respectively. The National Cancer Institute defines first line therapy as “the first treatment for a disease or condition. In patients with cancer, primary treatment can be surgery, chemotherapy, radiation therapy, or a combination of these therapies. First line therapy is also referred to those skilled in the art as “primary therapy and primary treatment.” See National Cancer Institute website at www.cancer.gov, last visited on May 1, 2008. Typically, a patient is given a subsequent chemotherapy regimen because the patient did not show a positive clinical or sub-clinical response to the first line therapy or the first line therapy has stopped.


It is to be inferred without explicit recitation and unless otherwise intended, that when the present disclosure relates to a polypeptide, protein, polynucleotide, an equivalent or a biologically equivalent of such is intended within the scope of this disclosure. As used herein, the term “biological equivalent thereof” is intended to be synonymous with “equivalent thereof” when referring to a reference protein, polypeptide or nucleic acid, intends those having minimal homology while still maintaining desired structure or functionality. Unless specifically recited herein, it is contemplated that any of the above also includes equivalents thereof. For example, an equivalent intends at least about 70% homology or identity, or at least 80% homology or identity and alternatively, or at least about 85%, or alternatively at least about 90%, or alternatively at least about 95%, or alternatively at least 98% percent homology or identity and/or exhibits substantially equivalent biological activity to the reference protein, polypeptide, or nucleic acid. Alternatively, when referring to polynucleotides, an equivalent thereof is a polynucleotide that hybridizes under stringent conditions to the reference polynucleotide or its complement.


The phrase “equivalent polypeptide” or “equivalent peptide fragment” refers to protein, polynucleotide, or peptide fragment encoded by a polynucleotide that hybridizes to a polynucleotide encoding the exemplified polypeptide or its complement of the polynucleotide encoding the exemplified polypeptide, under high stringency and/or which exhibit similar biological activity in vivo, e.g., approximately 100%, or alternatively, over 90% or alternatively over 85% or alternatively over 70%, as compared to the standard or control biological activity. Additional embodiments within the scope of this disclosure are identified by having more than 60%, or alternatively, more than 65%, or alternatively, more than 70%, or alternatively, more than 75%, or alternatively, more than 80%, or alternatively, more than 85%, or alternatively, more than 90%, or alternatively, more than 95%, or alternatively more than 97%, or alternatively, more than 98% or 99% sequence homology. Percentage homology can be determined by sequence comparison using programs such as BLAST run under appropriate conditions. In one aspect, the program is run under default parameters.


A polynucleotide or polynucleotide region (or a polypeptide or polypeptide region) having a certain percentage (for example, 80%, 85%, 90%, or 95%) of “sequence identity” to another sequence means that, when aligned, that percentage of bases (or amino acids) are the same in comparing the two sequences. The alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in Current Protocols in Molecular Biology (Ausubel et al., eds. 1987) Supplement 30, section 7.7.18, Table 7.7.1. Preferably, default parameters are used for alignment. A preferred alignment program is BLAST, using default parameters. In particular, preferred programs are BLASTN and BLASTP, using the following default parameters: Genetic code=standard; filter=none; strand=both; cutoff=60; expect=10; Matrix=BLOSUM62; Descriptions=50 sequences; sort by=HIGH SCORE; Databases=non-redundant, GenBank+EMBL+DDBJ+PDB+GenBank CDS translations+SwissProtein+SPupdate+PIR. Details of these programs can be found at the following Internet address: ncbi.nlm.nih.gov/cgi-bin/BLAST.


“Hybridization” refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. The hydrogen bonding may occur by Watson-Crick base pairing, Hoogstein binding, or in any other sequence-specific manner. The complex may comprise two strands forming a duplex structure, three or more strands forming a multi-stranded complex, a single self-hybridizing strand, or any combination of these. A hybridization reaction may constitute a step in a more extensive process, such as the initiation of a PCR reaction, or the enzymatic cleavage of a polynucleotide by a ribozyme.


Examples of stringent hybridization conditions include: incubation temperatures of about 25° C. to about 37° C.; hybridization buffer concentrations of about 6×SSC to about 10×SSC; formamide concentrations of about 0% to about 25%; and wash solutions from about 4×SSC to about 8×SSC. Examples of moderate hybridization conditions include: incubation temperatures of about 40° C. to about 50° C.; buffer concentrations of about 9×SSC to about 2×SSC; formamide concentrations of about 30% to about 50%; and wash solutions of about 5×SSC to about 2×SSC. Examples of high stringency conditions include: incubation temperatures of about 55° C. to about 68° C.; buffer concentrations of about 1×SSC to about 0.1×SSC; formamide concentrations of about 55% to about 75%; and wash solutions of about 1×SSC, 0.1×SSC, or deionized water. In general, hybridization incubation times are from 5 minutes to 24 hours, with 1, 2, or more washing steps, and wash incubation times are about 1, 2, or 15 minutes. SSC is 0.15 M NaCl and 15 mM citrate buffer. It is understood that equivalents of SSC using other buffer systems can be employed.


The term “isolated” as used herein refers to molecules or biologicals or cellular materials being substantially free from other materials. In one aspect, the term “isolated” refers to nucleic acid, such as DNA or RNA, or protein or polypeptide, or cell or cellular organelle, or tissue or organ, separated from other DNAs or RNAs, or proteins or polypeptides, or cells or cellular organelles, or tissues or organs, respectively, that are present in the natural source. The term “isolated” also refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. Moreover, an “isolated nucleic acid” is meant to include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state. The term “isolated” is also used herein to refer to polypeptides which are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides. The term “isolated” is also used herein to refer to cells or tissues that are isolated from other cells or tissues and is meant to encompass both cultured and engineered cells or tissues.


The term “protein”, “peptide” and “polypeptide” are used interchangeably and in their broadest sense to refer to a compound of two or more subunit amino acids, amino acid analogs or peptidomimetics. The subunits may be linked by peptide bonds. In another aspect, the subunit may be linked by other bonds, e.g., ester, ether, etc. A protein or peptide must contain at least two amino acids and no limitation is placed on the maximum number of amino acids which may comprise a protein's or peptide's sequence. As used herein the term “amino acid” refers to either natural and/or unnatural or synthetic amino acids, including glycine and both the D and L optical isomers, amino acid analogs and peptidomimetics.


The terms “polynucleotide” and “oligonucleotide” are used interchangeably and refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides or analogs thereof. Polynucleotides can have any three-dimensional structure and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: a gene or gene fragment (for example, a probe, primer, EST or SAGE tag), exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, RNAi, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes and primers. A polynucleotide can comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure can be imparted before or after assembly of the polynucleotide. The sequence of nucleotides can be interrupted by non-nucleotide components. A polynucleotide can be further modified after polymerization, such as by conjugation with a labeling component. The term also refers to both double- and single-stranded molecules. Unless otherwise specified or required, any aspect of this technology that is a polynucleotide encompasses both the double-stranded form and each of two complementary single-stranded forms known or predicted to make up the double-stranded form.


As used herein, the term “purified” does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a purified nucleic acid, peptide, protein, biological complexes or other active compound is one that is isolated in whole or in part from proteins or other contaminants. Generally, substantially purified peptides, proteins, biological complexes, or other active compounds for use within the disclosure comprise more than 80% of all macromolecular species present in a preparation prior to admixture or formulation of the peptide, protein, biological complex or other active compound with a pharmaceutical carrier, excipient, buffer, absorption enhancing agent, stabilizer, preservative, adjuvant or other co-ingredient in a complete pharmaceutical formulation for therapeutic administration. More typically, the peptide, protein, biological complex or other active compound is purified to represent greater than 90%, often greater than 95% of all macromolecular species present in a purified preparation prior to admixture with other formulation ingredients. In other cases, the purified preparation may be essentially homogeneous, wherein other macromolecular species are not detectable by conventional techniques.


As used herein, the term “recombinant protein” refers to a polypeptide which is produced by recombinant DNA techniques, wherein generally, DNA encoding the polypeptide is inserted into a suitable expression vector which is in turn used to transform a host cell to produce the heterologous protein.


As used herein, “treating” or “treatment” of a disease in a subject refers to (1) preventing the symptoms or disease from occurring in a subject that is predisposed or does not yet display symptoms of the disease; (2) inhibiting the disease or arresting its development; or (3) ameliorating or causing regression of the disease or the symptoms of the disease. As understood in the art, “treatment” is an approach for obtaining beneficial or desired results, including clinical results. For the purposes of the present technology, beneficial or desired results can include one or more, but are not limited to, alleviation or amelioration of one or more symptoms, diminishment of extent of a condition (including a disease), stabilized (i.e., not worsening) state of a condition (including disease), delay or slowing of condition (including disease), progression, amelioration or palliation of the condition (including disease), states and remission (whether partial or total), whether detectable or undetectable. When the disease is cancer, the following clinical end points are non-limiting examples of treatment: reduction in tumor burden, slowing of tumor growth, longer overall survival, longer time to tumor progression, inhibition of metastasis or a reduction in metastasis of the tumor. In one aspect, treatment excludes prophylaxis.


As used herein, “anti-tumor immunity” in a subject refers to reducing or preventing the symptoms or cancer from occurring in a subject that is predisposed or does not yet display symptoms of the cancer.


In some embodiments a subject is in need of a treatment, cell or composition described herein. In certain embodiments a subject has or is suspected of having a neoplastic disorder, neoplasia, tumor, malignancy or cancer. In some embodiments a subject in need of a treatment, cell or composition described herein has or is suspected of having a neoplastic disorder, neoplasia, tumor, malignancy or cancer. In certain embodiments an engineered T cell described herein is used to treat a subject having, or suspected of having, a neoplastic disorder, neoplasia, tumor, malignancy or cancer.


In some embodiments, presented herein is a method of treating a subject having or suspected of having, a neoplasia, neoplastic disorder, tumor, cancer, or malignancy. In certain embodiments, a method of treating a subject comprises administering a therapeutically effective amount of an engineered T cell to a subject. In certain embodiments, a method comprises reducing or inhibiting proliferation of a neoplastic cell, tumor, cancer or malignant cell, comprising contacting the cell, tumor, cancer or malignant cell, with the engineered T cell in an amount sufficient to reduce or inhibit proliferation of the neoplastic cell, tumor, cancer or malignant cell.


In some embodiments, a method of reducing or inhibiting metastasis of a neoplasia, tumor, cancer or malignancy to other sites, or formation or establishment of metastatic neoplasia, tumor, cancer or malignancy at other sites distal from a primary neoplasia, tumor, cancer or malignancy, comprises administering to a subject an amount of an engineered T cell sufficient to reduce or inhibit metastasis of the neoplasia, tumor, cancer or malignancy to other sites, or formation or establishment of metastatic neoplasia, tumor, cancer or malignancy at other sites distal from the primary neoplasia, tumor, cancer or malignancy.


Non-limiting examples of a neoplasia, neoplastic disorder, tumor, cancer or malignancy include a carcinoma, sarcoma, neuroblastoma, cervical cancer, hepatocellular cancer, mesothelioma, glioblastoma, myeloma, lymphoma, leukemia, adenoma, adenocarcinoma, glioma, glioblastoma, retinoblastoma, astrocytoma, oligodendrocytoma, meningioma, or melanoma. A neoplasia, neoplastic disorder, tumor, cancer or malignancy may comprise or involve hematopoietic cells. Non-limiting examples of a sarcoma include a lymphosarcoma, liposarcoma, osteosarcoma, chondrosarcoma, leiomyosarcoma, rhabdomyosarcoma or fibrosarcoma. In some embodiments, a neoplasia, neoplastic disorder, tumor, cancer or malignancy is a myeloma, lymphoma or leukemia. In some embodiments, a neoplasia, neoplastic disorder, tumor, cancer or malignancy comprises a lung, thyroid, head or neck, nasopharynx, throat, nose or sinuses, brain, spine, breast, adrenal gland, pituitary gland, thyroid, lymph, gastrointestinal (mouth, esophagus, stomach, duodenum, ileum, jejunum (small intestine), colon, rectum), genito-urinary tract (uterus, ovary, cervix, endometrial, bladder, testicle, penis, prostate), kidney, pancreas, liver, bone, bone marrow, lymph, blood, muscle, or skin neoplasia, tumor, or cancer. In some embodiments, a neoplasia, neoplastic disorder, tumor, cancer or malignancy comprises a small cell lung or non-small cell lung cancer. In some embodiments, a neoplasia, neoplastic disorder, tumor, cancer or malignancy comprises a stem cell neoplasia, tumor, cancer or malignancy. In some embodiments, a neoplasia, neoplastic disorder, tumor, cancer or malignancy.


In some embodiments, a method inhibits, or reduces relapse or progression of the neoplasia, neoplastic disorder, tumor, cancer or malignancy. In some embodiments, a method comprises administering an anti-cell proliferative, anti-neoplastic, anti-tumor, anti-cancer or immune-enhancing treatment or therapy. In some embodiments, a method of treatment results in partial or complete destruction of the neoplastic, tumor, cancer or malignant cell mass; a reduction in volume, size or numbers of cells of the neoplastic, tumor, cancer or malignant cell mass; stimulating, inducing or increasing neoplastic, tumor, cancer or malignant cell necrosis, lysis or apoptosis; reducing neoplasia, tumor, cancer or malignancy cell mass; inhibiting or preventing progression or an increase in neoplasia, tumor, cancer or malignancy volume, mass, size or cell numbers; or prolonging lifespan. In some embodiments, a method of treatment results in reducing or decreasing severity, duration or frequency of an adverse symptom or complication associated with or caused by the neoplasia, tumor, cancer or malignancy. In some embodiments, a method of treatment results in reducing or decreasing pain, discomfort, nausea, weakness or lethargy. In some embodiments, a method of treatment results in increased energy, appetite, improved mobility or psychological well-being.


As used herein, the term “administer” and “administering” are used to mean introducing the therapeutic agent (e.g. polynucleotide, vector, cell, modified cell, population) into a subject. The therapeutic administration of this substance serves to attenuate any symptom, or prevent additional symptoms from arising. When administration is for the purposes of preventing or reducing the likelihood of developing an autoimmune disease or disorder, the substance is provided in advance of any visible or detectable symptom. Routes of administration include, but are not limited to, oral (such as a tablet, capsule or suspension), topical, transdermal, intranasal, vaginal, rectal, subcutaneous intravenous, intraarterial, intramuscular, intraosseous, intraperitoneal, epidural and intrathecal.


As used herein, the term “expression” refers to the process by which polynucleotides are transcribed into mRNA and/or the process by which the transcribed mRNA is subsequently being translated into peptides, polypeptides, or proteins. If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell. The expression level of a gene may be determined by measuring the amount of mRNA or protein in a cell or tissue sample. In one aspect, the expression level of a gene from one sample may be directly compared to the expression level of that gene from a control or reference sample. In another aspect, the expression level of a gene from one sample may be directly compared to the expression level of that gene from the same sample following administration of a compound.


As used herein, the term “gene expression profile” refers to measuring the expression level of multiple genes to establish an expression profile for a particular sample.


As used herein, the term “lower than baseline expression” refers to reducing or eliminating the transcription of polynucleotides into mRNA, or alternatively reducing or eliminating the translation of mRNA into peptides, polypeptides, or proteins, or reducing or eliminating the functioning of peptides, polypeptides, or proteins. In a non-limiting example, the transcription of polynucleotides into mRNA is reduced to at least half of the normalized mean gene expression found in wild type cells.


As used herein, the term “higher than baseline expression” refers to increasing the transcription of polynucleotides into mRNA, or alternatively increasing the translation of mRNA into peptides, polypeptides, or proteins, or increasing the functioning of peptides, polypeptides, or proteins. In a non-limiting example, the transcription of polynucleotides into mRNA is increased to at least twice of the normalized mean gene expression found in wild type cells.


As used herein, the term “reduce or eliminate expression and/or function of” refers to reducing or eliminating the transcription of the polynucleotides into mRNA, or alternatively reducing or eliminating the translation of the mRNA into peptides, polypeptides, or proteins, or reducing or eliminating the functioning of the peptides, polypeptides, or proteins. In a non-limiting example, the transcription of polynucleotides into mRNA is reduced to at least half of its normal level found in wild type cells.


As used herein, the term “increase expression of” refers to increasing the transcription of the polynucleotides into mRNA, or alternatively increasing the translation of the mRNA into peptides, polypeptides, or proteins, or increasing the functioning of the peptides, polypeptides, or proteins. In a non-limiting example, the transcription of polynucleotides into mRNA is increased to at least twice of its normal level found in wild type cells.


As used herein, the term “overexpress” with respect to a cell, a tissue, or an organ expresses a protein to an amount that is greater than the amount that is produced in a control cell, a control issue, or an organ. A protein that is overexpressed may be endogenous to the host cell or exogenous to the host cell.


As used herein, the term “enhancer”, denotes sequence elements that augment, improve or ameliorate transcription of a nucleic acid sequence irrespective of its location and orientation in relation to the nucleic acid sequence to be expressed. An enhancer may enhance transcription from a single promoter or simultaneously from more than one promoter. As long as this functionality of improving transcription is retained or substantially retained (e.g., at least 70%, at least 80%, at least 90% or at least 95% of wild-type activity, that is, activity of a full-length sequence), any truncated, mutated or otherwise modified variants of a wild-type enhancer sequence are also within the above definition.


The term “promoter” as used herein refers to any sequence that regulates the expression of a coding sequence, such as a gene. Promoters may be constitutive, inducible, repressible, or tissue-specific, for example. A “promoter” is a control sequence that is a region of a polynucleotide sequence at which initiation and rate of transcription are controlled. It may contain genetic elements at which regulatory proteins and molecules may bind such as RNA polymerase and other transcription factors.


The term “contacting” means direct or indirect binding or interaction between two or more. A particular example of direct interaction is binding. A particular example of an indirect interaction is where one entity acts upon an intermediary molecule, which in turn acts upon the second referenced entity. Contacting as used herein includes in solution, in solid phase, in vitro, ex vivo, in a cell and in vivo. Contacting in vivo can be referred to as administering, or administration.


As used herein, the term “binds” or “antibody binding” or “specific binding” means the contact between the antigen binding domain of an antibody, antibody fragment, CAR, TCR, engineered TCR, BCR, MHC, immunoglobulin-like molecule, scFv, CDR or other antigen presentation molecule and an antigen, epitope, or peptide with a binding affinity (KD) of less than 10−5 M. In some aspects, an antigen binding domain binds to both a complex of both an antigen and an MHC molecule. In some aspects, antigen binding domains bind with affinities of less than about 10−6 M, 10−7M, and preferably 10−8 M, 10−9 M, 10−10 M, 10−11M, or 10−12 M. In a particular aspect, specific binding refers to the binding of an antigen to an MHC molecule, or the binding of an antigen binding domain of an engineered T-cell receptor to an antigen or antigen-MHC complex.


The term “introduce” as applied to methods of producing modified cells such as chimeric antigen receptor cells refers to the process whereby a foreign (i.e. extrinsic or extracellular) agent is introduced into a host cell thereby producing a cell comprising the foreign agent. Methods of introducing nucleic acids include but are not limited to transduction, retroviral gene transfer, transfection, electroporation, transformation, viral infection, and other recombinant DNA techniques known in the art. In some embodiments, transduction is done via a vector (e.g., a viral vector). In some embodiments, transfection is done via a chemical carrier, DNA/liposome complex, or micelle (e.g., Lipofectamine (Invitrogen)). In some embodiments, viral infection is done via infecting the cells with a viral particle comprising the polynucleotide of interest (e.g., AAV). In some embodiments, introduction further comprises CRISPR mediated gene editing or Transcription activator-like effector nuclease (TALEN) mediated gene editing. Methods of introducing non-nucleic acid foreign agents (e.g., soluble factors, cytokines, proteins, peptides, enzymes, growth factors, signaling molecules, small molecule inhibitors) include but are not limited to culturing the cells in the presence of the foreign agent, contacting the cells with the agent, contacting the cells with a composition comprising the agent and an excipient, and contacting the cells with vesicles or viral particles comprising the agent.


In the context of a nucleic acid or amino acid sequence, the term “chimeric” intends that the sequence contains is comprised of at least one substituent unit (e.g. fragment, region, portion, domain, polynucleotide, or polypeptide) that is derived from, obtained or isolated from, or based upon other distinct physical or chemical entities. For example, a chimera of two or more different proteins may comprise the sequence of a variable region domain from an antibody fused to the transmembrane domain of a cell signaling molecule. In some aspect, a chimera intends that the sequence is comprised of sequences from at least two distinct species.


The term “chimeric antigen receptor” (CAR), as used herein, refers to a fused protein comprising an extracellular domain capable of binding to an antigen, a transmembrane domain derived from a polypeptide different from a polypeptide from which the extracellular domain is derived, and at least one intracellular domain. The “chimeric antigen receptor (CAR)” is sometimes called a “chimeric receptor”, a “T-body”, or a “chimeric immune receptor (CIR).” The “extracellular domain capable of binding to an antigen” means any oligopeptide or polypeptide that can bind to a certain antigen. The “intracellular domain” or “intracellular signaling domain” means any oligopeptide or polypeptide known to function as a domain that transmits a signal to cause activation or inhibition of a biological process in a cell. In certain embodiments, the intracellular domain may comprise, alternatively consist essentially of, or yet further comprise one or more costimulatory signaling domains in addition to the primary signaling domain. The “transmembrane domain” means any oligopeptide or polypeptide known to span the cell membrane and that can function to link the extracellular and signaling domains. A chimeric antigen receptor may optionally comprise a “hinge domain” which serves as a linker between the extracellular and transmembrane domains. Non-limiting exemplary polynucleotide sequences that encode for components of each domain are disclosed herein, e.g.:


Hinge domain: IgG1 heavy chain hinge polynucleotide sequence:









CTCGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCG,







and optionally an equivalent thereof.


Transmembrane domain: CD28 transmembrane region polynucleotide sequence:


TTTTGGGTGCTGGTGGTGGTTGGTGGAGTCCTGGCTTGCTATAGCTTGCT AGTAACAGTGGCCTTTATTATTTTCTGGGTG, and optionally an equivalent thereof.


Intracellular domain: 4-1BB co-stimulatory signaling region polynucleotide sequence:


AAACGGGGCAGAAAGAAACTCCTGTATATATTCAAACAACCATTTATGA GACCAGTACAAACTACTCAAGAGGAAGATGGCTGTAGCTGCCGATTTCCAGAA GAAGAAGAAGGAGGATGTGAACTG, and optionally an equivalent thereof.


Intracellular domain: CD28 co-stimulatory signaling region polynucleotide sequence:


AGGAGTAAGAGGAGCAGGCTCCTGCACAGTGACTACATGAACATGACTC CCCGCCGCCCCGGGCCCACCCGCAAGCATTACCAGCCCTATGCCCCACCACGCG ACTTCGCAGCCTATCGCTCC, and optionally an equivalent thereof.


Intracellular domain: CD3 zeta signaling region polynucleotide sequence:


AGAGTGAAGTTCAGCAGGAGCGCAGACGCCCCCGCGTACCAGCAGGGC CAGAACCAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGT TTTGGACAAGAGACGTGGCCGGGACCCTGAGATGGGGGGAAAGCCGAGAAGG AAGAACCCTCAGGAAGGCCTGTACAATGAACTGCAGAAAGATAAGATGGCGGA GGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGGGCAC GATGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTT CACATGCAGGCCCTGCCCCCTCGCTAA, and optionally an equivalent thereof.


Non-limiting examples of CAR extracellular domains capable of binding to antigens are the anti-CD19 binding domain sequences that specifically bind CD19 antigen as disclosed in the US20140271635 application.


Further embodiments of each exemplary domain component include other proteins that have analogous biological function that share at least 70%, or alternatively at least 80% amino acid sequence identity, preferably 90% sequence identity, more preferably at least 95% sequence identity with the proteins encoded by the above disclosed nucleic acid sequences. Further, non-limiting examples of such domains are provided herein.


As used herein, the term “CD8α hinge domain” refers to a specific protein fragment associated with this name and any other molecules that have analogous biological function that share at least 70%, or alternatively at least 80% amino acid sequence identity, preferably 90% sequence identity, more preferably at least 95% sequence identity with the CD8 α hinge domain sequence as shown herein. The example sequences of CD8 α hinge domain for human, mouse, and other species are provided in Pinto, R. D. et al. (2006) Vet. Immunol. Immunopathol. 110:169-177. The sequences associated with the CD8 α hinge domain are provided in Pinto, R. D. et al. (2006) Vet. Immunol. Immunopathol. 110:169-177. Non-limiting examples of such include:


Human CD8 alpha hinge domain amino acid sequence: PAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIY, and optionally an equivalent thereof.


Mouse CD8 alpha hinge domain amino acid sequence: KVNSTTTKPVLRTPSPVHPTGTSQPQRPEDCRPRGSVKGTGLDFACDIY, and optionally an equivalent thereof.


Cat CD8 alpha hinge domain amino acid sequence: PVKPTTTPAPRPPTQAPITTSQRVSLRPGTCQPSAGSTVEASGLDLSCDIY, and optionally an equivalent thereof.


As used herein, the term “CD8 α transmembrane domain” refers to a specific protein fragment associated with this name and any other molecules that have analogous biological function that share at least 70%, or alternatively at least 80% amino acid sequence identity, preferably 90% sequence identity, more preferably at least 95% sequence identity with the CD8 α transmembrane domain sequence as shown herein. The fragment sequences associated with the amino acid positions 183 to 203 of the human T-cell surface glycoprotein CD8 alpha chain (GenBank Accession No: NP_001759.3), or the amino acid positions 197 to 217 of the mouse T-cell surface glycoprotein CD8 alpha chain (GenBank Accession No: NP_001074579.1), and the amino acid positions 190 to 210 of the rat T-cell surface glycoprotein CD8 alpha chain (GenBank Accession No: NP_113726.1) provide additional example sequences of the CD8 α transmembrane domain. The sequences associated with each of the listed accession numbers are provided as follows:


Human CD8 alpha transmembrane domain amino acid sequence: IYIWAPLAGTCGVLLLSLVIT, and optionally an equivalent thereof.


Mouse CD8 alpha transmembrane domain amino acid sequence: IWAPLAGICVALLLSLIITLI, and optionally an equivalent thereof.


Rat CD8 alpha transmembrane domain amino acid sequence: IWAPLAGICAVLLLSLVITLI, and optionally an equivalent thereof.


As used herein, the term “CD28 transmembrane domain” refers to a specific protein fragment associated with this name and any other molecules that have analogous biological function that share at least 70%, or alternatively at least 80% amino acid sequence identity, at least 90% sequence identity, or alternatively at least 95% sequence identity with the CD28 transmembrane domain sequence as shown herein. The fragment sequences associated with the GenBank Accession Nos: XM_006712862.2 and XM_009444056.1 provide additional, non-limiting, example sequences of the CD28 transmembrane domain.


As used herein, the term “4-1BB costimulatory signaling region” refers to a specific protein fragment associated with this name and any other molecules that have analogous biological function that share at least 70%, or alternatively at least 80% amino acid sequence identity, preferably 90% sequence identity, more preferably at least 95% sequence identity with the 4-1BB costimulatory signaling region sequence as shown herein. Non-limiting example sequences of the 4-1BB costimulatory signaling region are provided in U.S. Publication 20130266551A1 (filed as U.S. application Ser. No. 13/826,258), such as the exemplary sequence provided below and the sequence encoded by 4-1BB costimulatory signaling region amino acid sequence: KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL, and optionally an equivalent thereof.


As used herein, the term “ICOS costimulatory signaling region” refers to a specific protein fragment associated with this name and any other molecules that have analogous biological function that share at least 70%, or alternatively at least 80% amino acid sequence identity, preferably 90% sequence identity, more preferably at least 95% sequence identity with the ICOS costimulatory signaling region sequence as shown herein. Non-limiting example sequences of the ICOS costimulatory signaling region are provided in U.S. Patent Application Publication No. 2015/0017141A1 the exemplary polynucleotide sequence provided below.


ICOS costimulatory signaling region polynucleotide sequence: ACAAAAAAGA AGTATTCATC CAGTGTGCAC GACCCTAACG GTGAATACAT GTTCATGAGA GCAGTGAACA CAGCCAAAAA ATCCAGACTC ACAGATGTGA CCCTA, and optionally an equivalent thereof.


As used herein, the term “OX40 costimulatory signaling region” refers to a specific protein fragment associated with this name and any other molecules that have analogous biological function that share at least 70%, or alternatively at least 80% amino acid sequence identity, or alternatively 90% sequence identity, or alternatively at least 95% sequence identity with the OX40 costimulatory signaling region sequence as shown herein. Non-limiting example sequences of the OX40 costimulatory signaling region are disclosed in U.S. Patent Application Publication No. 2012/20148552A1, and include the exemplary sequence provided below.


OX40 costimulatory signaling region polynucleotide sequence:


AGGGACCAG AGGCTGCCCC CCGATGCCCA CAAGCCCCCT GGGGGAGGCA GTTTCCGGAC CCCCATCCAA GAGGAGCAGG CCGACGCCCA CTCCACCCTG GCCAAGATC, and optionally an equivalent thereof.


As used herein, the term “CD28 costimulatory signaling region” refers to a specific protein fragment associated with this name and any other molecules that have analogous biological function that share at least 70%, or alternatively at least 80% amino acid sequence identity, or alternatively 90% sequence identity, or alternatively at least 95% sequence identity with the CD28 costimulatory signaling region sequence shown herein. The example sequences CD28 costimulatory signaling domain are provided in U.S. Pat. No. 5,686,281; Geiger, T. L. et al. (2001) Blood 98: 2364-2371; Hombach, A. et al. (2001) J Immunol 167: 6123-6131; Maher, J. et al. (2002) Nat Biotechnol 20: 70-75; Haynes, N. M. et al. (2002) J Immunol. 169: 5780-5786 (2002); Haynes, N. M. et al. (2002) Blood 100: 3155-3163. A non-limiting example include the sequence encoded by:


CD28 amino acid sequence: MLRLLLALNL FPSIQVTGNK ILVKQSPMLV AYDNAVNLSC KYSYNLFSRE FRASLHKGLDSAVEVCVVYG NYSQQLQVYS KTGFNCDGKL GNESVTFYLQ NLYVNQTDIY FCKIEVMYPPPYLDNEKSNG TIIHVKGKHL CPSPLFPGPS KPFWVLVVVG GVLACYSLLVTVAFIIFWVR SKRSRLLHSD YMNMTPRRPG PTRKHYQPYA PPRDFAAYRS, and equivalents thereof.


As used herein, the term “CD3 zeta signaling domain” refers to a specific protein fragment associated with this name and any other molecules that have analogous biological function that share at least 70%, or alternatively at least 80% amino acid sequence identity, or alternatively 90% sequence identity, or alternatively at least 95% sequence identity with the CD3 zeta signaling domain sequence as shown herein. Non-limiting example sequences of the CD3 zeta signaling domain amino acid sequence are provided in U.S. application Ser. No. 13/826,258, e.g.:









RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP





RRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK





DTYDALHMQALPPR.






As used herein, a “first generation CAR” refers to a CAR comprising an extracellular domain capable of binding to an antigen, a transmembrane domain derived from a polypeptide different from a polypeptide from which the extracellular domain is derived, and at least one intracellular domain. A “second generation CAR” refers to a first generation CAR further comprising one costimulation domain (e.g. 4-1BB or CD28). A “third generation CAR” refers to a first generation CAR further comprising two costimulation domains (e.g. CD27, CD28, ICOS, 4-1BB, or OX40). A “fourth generation CAR” (also known as a “TRUCK”) refers to a CAR T-cell further engineered to secrete an additional factor (e.g. proinflammatory cytokine IL-12). A review of these CAR technologies and cell therapy is found in Maus, M. et al. Clin. Cancer Res. 22(3): 1875-84 (2016).


As used herein, the term “suicide gene” is a gene capable of inducing cell apoptosis; non-limiting examples include HSV-TK (Herpes simplex virus thymidine kinase), cytosine deaminase, nitroreductase, carboxylesterase, cytochrome P450 or PNP (Purine nucleoside phosphorylase), truncated EGFR, or inducible caspase (“iCasp”). Suicide genes may function along a variety of pathways, and, in some cases, may be inducible by an inducing agent such as a small molecule. For example, the iCasp suicide gene comprises portion of a caspase protein operatively linked to a protein optimized to bind to an inducing agent; introduction of the inducing agent into a cell comprising the suicide gene results in the activation of caspase and the subsequent apoptosis of the cell.


The term “transduce” or “transduction” as it is applied to the production of chimeric antigen receptor cells refers to the process whereby a foreign nucleotide sequence is introduced into a cell. In some embodiments, this transduction is done via a vector.


As used herein, the term “vector” refers to a nucleic acid construct deigned for transfer between different hosts, including but not limited to a plasmid, a virus, a cosmid, a phage, a BAC, a YAC, etc. A “viral vector” is defined as a recombinantly produced virus or viral particle that comprises a polynucleotide to be delivered into a host cell, either in vivo, ex vivo or in vitro. In some embodiments, plasmid vectors may be prepared from commercially available vectors. In other embodiments, viral vectors may be produced from baculoviruses, retroviruses, adenoviruses, AAVs, etc. according to techniques known in the art. In one embodiment, the viral vector is a lentiviral vector. Examples of viral vectors include retroviral vectors, adenovirus vectors, adeno-associated virus vectors, alphavirus vectors and the like. Infectious tobacco mosaic virus (TMV)-based vectors can be used to manufacturer proteins and have been reported to express Griffithsin in tobacco leaves (O'Keefe et al. (2009) Proc. Nat. Acad. Sci. USA 106(15):6099-6104). Alphavirus vectors, such as Semliki Forest virus-based vectors and Sindbis virus-based vectors, have also been developed for use in gene therapy and immunotherapy. See, Schlesinger & Dubensky (1999) Curr. Opin. Biotechnol. 5:434-439 and Ying et al. (1999) Nat. Med. 5(7):823-827. In aspects where gene transfer is mediated by a retroviral vector, a vector construct refers to the polynucleotide comprising the retroviral genome or part thereof, and a gene of interest such as a polynucleotide encoding a CAR. Further details as to modern methods of vectors for use in gene transfer may be found in, for example, Kotterman et al. (2015) Viral Vectors for Gene Therapy: Translational and Clinical Outlook Annual Review of Biomedical Engineering 17. Vectors that contain both a promoter and a cloning site into which a polynucleotide can be operatively linked are well known in the art. Such vectors are capable of transcribing RNA in vitro or in vivo, and are commercially available from sources such as Agilent Technologies (Santa Clara, Calif.) and Promega Biotech (Madison, Wis.).


As used herein, the terms “T2A” and “2A peptide” are used interchangeably to refer to any 2A peptide or fragment thereof, any 2A-like peptide or fragment thereof, or an artificial peptide comprising the requisite amino acids in a relatively short peptide sequence (on the order of 20 amino acids long depending on the virus of origin) containing the consensus polypeptide motif D-V/I-E-X-N-P-G-P, wherein X refers to any amino acid generally thought to be self-cleaving.


As used herein, the term “recombinant protein” refers to a polypeptide which is produced by recombinant DNA techniques, wherein generally, DNA encoding the polypeptide is inserted into a suitable expression vector which is in turn used to transform a host cell to produce the heterologous protein.


As used herein, the term “signal peptide” or “signal polypeptide” intends an amino acid sequence usually present at the N-terminal end of newly synthesized secretory or membrane polypeptides or proteins. It acts to direct the polypeptide across or into a cell membrane and is then subsequently removed. Examples of such are well known in the art. Non-limiting examples are those described in U.S. Pat. Nos. 8,853,381 and 5,958,736.


As used herein in reference to a regulatory polynucleotide, the term “operatively linked” refers to an association between the regulatory polynucleotide and the polynucleotide sequence to which it is linked such that, when a specific protein binds to the regulatory polynucleotide, the linked polynucleotide is transcribed.


The term “culturing” refers to growing cells in a culture medium under conditions that favor expansion and proliferation of the cell. The term “culture medium” or “medium” is recognized in the art and refers generally to any substance or preparation used for the cultivation of living cells. The term “medium”, as used in reference to a cell culture, includes the components of the environment surrounding the cells. Media may be solid, liquid, gaseous or a mixture of phases and materials. Media include liquid growth media as well as liquid media that do not sustain cell growth. Media also include gelatinous media such as agar, agarose, gelatin and collagen matrices. Exemplary gaseous media include the gaseous phase to which cells growing on a petri dish or other solid or semisolid support are exposed. The term “medium” also refers to material that is intended for use in a cell culture, even if it has not yet been contacted with cells. In other words, a nutrient rich liquid prepared for culture is a medium. Similarly, a powder mixture that when mixed with water or other liquid becomes suitable for cell culture may be termed a “powdered medium.” “Defined medium” refers to media that are made of chemically defined (usually purified) components. “Defined media” do not contain poorly characterized biological extracts such as yeast extract and beef broth. “Rich medium” includes media that are designed to support growth of most or all viable forms of a particular species. Rich media often include complex biological extracts. A “medium suitable for growth of a high-density culture” is any medium that allows a cell culture to reach an OD600 of 3 or greater when other conditions (such as temperature and oxygen transfer rate) permit such growth. The term “basal medium” refers to a medium which promotes the growth of many types of microorganisms which do not require any special nutrient supplements. Most basal media generally comprise of four basic chemical groups: amino acids, carbohydrates, inorganic salts, and vitamins. A basal medium generally serves as the basis for a more complex medium, to which supplements such as serum, buffers, growth factors, lipids, and the like are added. In one aspect, the growth medium may be a complex medium with the necessary growth factors to support the growth and expansion of the cells of the disclosure while maintaining their self-renewal capability. Examples of basal media include, but are not limited to, Eagles Basal Medium, Minimum Essential Medium, Dulbecco's Modified Eagle's Medium, Medium 199, Nutrient Mixtures Ham's F-10 and Ham's F-12, McCoy's 5A, Dulbecco's MEM/F-I 2, RPMI 1640, and Iscove's Modified Dulbecco's Medium (IMDM).


“Cryoprotectants” are known in the art and include without limitation, e.g., sucrose, trehalose, and glycerol. A cryoprotectant exhibiting low toxicity in biological systems is generally used.


Modes of Carrying Out the Disclosure
Modified T-Cells and Methods of Producing the Same

Disclosed herein are modified T-cells modified to exhibit higher than or lower than baseline expression of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7, or to express a T-cell receptor comprising, or consisting essentially of, or yet further consisting of at least one of the amino acid sequences set forth in Table 6. The one or more gene may be selected from the group of 4-1BB, PD-1, CD103 or TIM3. In one aspect, the baseline expression is normalized mean gene expression. In another aspect, the higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression. Expression can be reduced or increased by at least about 2 or more, or about 3, or about 4, or about 5, or about 6, or about 7, or about 8, or about 9, or about 10, or about 11, or about 12, or about 13, or about 14, or about 15 fold as compared to a comparative wild-type cell. One of skill in the art can monitor expression of the genes using methods such as RNA-sequencing, DNA microarrays, Real-time PCR, or Chromatin immunoprecipitation (ChIP) etc. Protein expression can be monitored using methods such as flow cytometry, Western blotting, 2-D gel electrophoresis or immunoassays etc.


In a further aspect, the T-cells are tissue-resident memory cells (TRM), CD8+ T-cells or tumor-infiltrating lymphocytes (TILs). In certain other aspects, the T-cells and/or TRMs are CD19−CD20−CD14−CD56−CD4−CD45+CD3+CD8 cells. In certain aspects, the T-cells and/or TRMs are TRMs expressing high levels of TIM3, CXCL13 and CD39. In one particular embodiment, the T-cells are autologous to the subject being treated.


The modified T-cell may be genetically modified, optionally using gene editing technologies, e.g., recombinant methods, CRISPR/Cas system, ZFN, and/or TALEN. Aspects of the present disclosure relate to an isolated cell comprising, or alternatively consisting essentially of, or yet further consisting of a CAR of this disclosure and methods of producing such cells. The T-cell or NK cell can be from any preferred species, e.g., an animal cell, a mammalian cell such as a human, a feline or a canine cell.


In some aspect of the present disclosure, the population of isolated cells transduced with the nucleic acid sequence encoding the CAR as described herein is a population of NK precursor cells and/or T-cell precursor cells. Transduction of precursor cells results in a long-lived population of cells capable of differentiating into CAR T-cells and/or CAR NK cells. T-cell precursors include but are not limited to HSCs; long term HSCs; MPPs; CLPs; LMPPs/ELPs; DN1s; DN2s; DN3s; DN4s; DPs. NK precursors include but are not limited to HSCs, long term HSCs, MPPs, CMPs, GMPs, pro-NK, pre-NK, and iNK cells. In a specific aspect, the population of isolated cells includes both mature T-cells and T-cell precursors to provide both short lived effector CAR T-cells and long-lived CAR T-cell precursors for transplant into the subject. In another aspect, the population of isolated cells includes both mature NK cells and NK precursors to provide both short lived effector CAR NK cells and long-lived CAR NK precursors for transplant into the subject.


In specific embodiments, the isolated cell comprises, or alternatively consists essentially of, or yet further consists of an exogenous CAR comprising, or alternatively consisting essentially of, or yet further consisting of, an antigen binding domain of the antibody provided herein, a CD8 α hinge domain, a CD8 α transmembrane domain, a CD28 costimulatory signaling region and/or a 4-1BB costimulatory signaling region, and a CD3 zeta signaling domain. In certain embodiments, the isolated cell is a T-cell, e.g., an animal T-cell, a mammalian T-cell, a feline T-cell, a canine T-cell or a human T-cell. In certain embodiments, the isolated cell is an NK-cell, e.g., an animal NK-cell, a mammalian NK-cell, a feline NK-cell, a canine NK-cell or a human NK-cell.


In some embodiments, T-cells expressing the disclosed CARs may be further modified to reduce or eliminate expression of endogenous TCRs. Reduction or elimination of endogenous TCRs can reduce off-target effects and increase the effectiveness of the T cells. T cells stably lacking expression of a functional TCR may be produced using a variety of approaches. T cells internalize, sort, and degrade the entire T cell receptor as a complex, with a half-life of about 10 hours in resting T cells and 3 hours in stimulated T cells (von Essen, M. et al. 2004. J. Immunol. 173:384-393). Proper functioning of the TCR complex requires the proper stoichiometric ratio of the proteins that compose the TCR complex. TCR function also requires two functioning TCR zeta proteins with ITAM motifs. The activation of the TCR upon engagement of its MHC-peptide ligand requires the engagement of several TCRs on the same T cell, which all must signal properly. Thus, if a TCR complex is destabilized with proteins that do not associate properly or cannot signal optimally, the T cell will not become activated sufficiently to begin a cellular response.


Accordingly, in some embodiments, TCR expression may eliminated using RNA interference (e.g., shRNA, siRNA, miRNA, etc.), CRISPR, or other methods that target the nucleic acids encoding specific TCRs (e.g., TCR-α and TCR-β) and/or CD3 chains in primary T cells. By blocking expression of one or more of these proteins, the T cell will no longer produce one or more of the key components of the TCR complex, thereby destabilizing the TCR complex and preventing cell surface expression of a functional TCR. Even though some TCR complexes can be recycled to the cell surface when RNA interference is used, the RNA (e.g., shRNA, siRNA, miRNA, etc.) will prevent new production of TCR proteins resulting in degradation and removal of the entire TCR complex, resulting in the production of a T cell having a stable deficiency in functional TCR expression.


Expression of inhibitory RNAs (e.g., shRNA, siRNA, miRNA, etc.) in primary T cells can be achieved using any conventional expression system, e.g., a lentiviral expression system. Although lentiviruses are useful for targeting resting primary T cells, not all T cells will express the shRNAs. Some of these T cells may not express sufficient amounts of the RNAs to allow enough inhibition of TCR expression to alter the functional activity of the T cell. Thus, T cells that retain moderate to high TCR expression after viral transduction can be removed, e.g., by cell sorting or separation techniques, so that the remaining T cells are deficient in cell surface TCR or CD3, enabling the expansion of an isolated population of T cells deficient in expression of functional TCR or CD3.


Expression of CRISPR in primary T cells can be achieved using conventional CRISPR/Cas systems and guide RNAs specific to the target TCRs. Suitable expression systems, e.g. lentiviral or adenoviral expression systems are known in the art. Similar to the delivery of inhibitor RNAs, the CRISPR system can be used to specifically target resting primary T cells or other suitable immune cells for CAR cell therapy. Further, to the extent that CRISPR editing is unsuccessful, cells can be selected for success according to the methods disclosed above. For example, as noted above, T cells that retain moderate to high TCR expression after viral transduction can be removed, e.g., by cell sorting or separation techniques, so that the remaining T cells are deficient in cell surface TCR or CD3, enabling the expansion of an isolated population of T cells deficient in expression of functional TCR or CD3. It is further appreciated that a CRISPR editing construct may be useful in both knocking out the endogenous TCR and knocking in the CAR constructs disclosed herein. Accordingly, it is appreciated that a CRISPR system can be designed for to accomplish one or both of these purposes.


Sources of Isolated Cells: Prior to expansion and genetic modification of the cells disclosed herein, cells may be obtained from a subject—for instance, in embodiments involving autologous therapy—or a commercially available culture, that are available from the American Type Culture Collection (ATCC), for example.


Cells can be obtained from a number of sources in a subject, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors.


Methods of isolating relevant cells are well known in the art and can be readily adapted to the present application; an exemplary method is described in the examples below. Isolation methods for use in relation to this disclosure include but are not limited to Life Technologies Dynabeads® system; STEMcell Technologies EasySep™, RoboSep™ RosetteSep™, SepMate™; Miltenyi Biotec MACS™ cell separation kits, and other commercially available cell separation and isolation kits. Particular subpopulations of immune cells and precursors may be isolated through the use of fluorescence-activated cell sorting (FACS), beads, or other binding agents available in such kits specific to unique cell surface markers. For example, MACS™ CD4+ and CD8+ MicroBeads may be used to isolate CD4+ and CD8+ T-cells.


Alternatively, cells may be obtained through commercially available cell cultures, including but not limited to, for T-cells, lines BCL2 (AAA) Jurkat (ATCC® CRL-2902™), BCL2 (S70A) Jurkat (ATCC® CRL-2900™), BCL2 (S87A) Jurkat (ATCC® CRL-2901™), BCL2 Jurkat (ATCC® CRL-2899™), Neo Jurkat (ATCC® CRL-2898™); and, for NK cells, lines NK-92 (ATCC® CRL-2407™), NK-92MI (ATCC® CRL-2408™).


In some aspect, the subject may be administered a conditioning regimen to induce precursor cell mobilization into the peripheral blood prior to obtaining the cells from the subject. For example, a subject may be administered an effective amount of at least one of granulocyte colony-stimulating factor (G-CSF), filgrastim (Neupogen), sargramostim (Leukine), pegfilgrastim (Neulasta), and mozobil (Plerixafor) up to two weeks prior to or concurrently with isolation of cells from the subject. Mobilized precursor cells can be obtained from the subject by any method known in the art, including, for example, leukapheresis 1-14 days following administration of the conditioning regimen.


Activation and Expansion of T Cells: Whether prior to or after genetic modification of the T cells to express a desirable CAR, the cells can be activated and expanded using generally known methods such as those described in U.S. Pat. Nos. 6,352,694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041. Methods of activating relevant cells are well known in the art and can be readily adapted to the present application; an exemplary method is described in the examples below. Isolation methods for use in relation to this disclosure include but are not limited to Life Technologies Dynabeads® system activation and expansion kits; BD Biosciences Phosflow™ activation kits, Miltenyi Biotec MACS™ activation/expansion kits, and other commercially available cell kits specific to activation moieties of the relevant cell. Particular subpopulations of immune cells may be activated or expanded through the use of beads or other agents available in such kits. For example, α-CD3/α-CD28 Dynabeads® may be used to activate and expand a population of isolated T-cells.


Also disclosed herein is an isolated cell comprising, or alternatively consisting essentially of, or yet further consisting of the CAR of this disclosure.


The modified T-cell disclosed herein can also be further modified to express a protein that binds to a cytokine, chemokine, lymphokine, or a receptor each thereof. In one aspect, the protein comprises, or consists essentially of, or yet further consists of an antibody or an antigen binding fragment thereof.


In another aspect, the antibody is an IgG, IgA, IgM, IgE or IgD, or a subclass thereof. The antibody can also be an IgG selected from the group of IgG1, IgG2, IgG3 or IgG4. Furthermore, the antigen binding fragment can be selected from the group of a Fab, Fab′, F(ab′)2, Fv, Fd, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv) or VL or VH.


In one aspect, the modified T-cell of this disclosure comprises, or consists essentially of, or yet further consists of a chimeric antigen receptor (CAR). In one embodiment, the chimeric antigen receptor (CAR) comprises, or consists essentially of, or yet further consists of: (a) an antigen binding domain; (b) a hinge domain; (c) a transmembrane domain; (d) and an intracellular domain.


Spacer Domain: The CARs may optionally further comprise, or alternatively consist essentially of, or yet further consist of a spacer domain of up to 300 amino acids, preferably 10 to 100 amino acids, more preferably 25 to 50 amino acids. For example, the spacer may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids. A spacer domain may comprise, for example, a portion of a human Fc domain, a CH3 domain, or the hinge region of any immunoglobulin, such as IgA, IgD, IgE, IgG, or IgM, or variants thereof. For example, some embodiments may comprise an IgG4 hinge with or without a S228P, L235E, and/or N297Q mutation (according to Kabat numbering). Additional spacers include, but are not limited to, CD4, CD8, and CD28 hinge regions.


Transmembrane Domain. The transmembrane domain may be derived either from a natural or from a synthetic source. Where the source is natural, the domain may be derived from any membrane-bound or transmembrane protein. Transmembrane regions of particular use in this disclosure may be derived from CD8, CD28, CD3, CD45, CD4, CD5, CDS, CD9, CD 16, CD22, CD33, CD37, CD64, CD80, CD86, CD 134, CD137, CD 154, TCR. Alternatively, the transmembrane domain may be synthetic, in which case it will comprise predominantly hydrophobic residues such as leucine and valine. Preferably a triplet of phenylalanine, tryptophan and valine will be found at each end of a synthetic transmembrane domain. Optionally, a short oligo- or polypeptide linker, preferably between 2 and 10 amino acids in length may form the linkage between the transmembrane domain and the cytoplasmic signaling domain of the CAR. A glycine-serine doublet provides a particularly suitable linker.


Cytoplasmic Domain. The cytoplasmic domain or intracellular signaling domain of the CAR is responsible for activation of at least one of the traditional effector functions of an immune cell in which a CAR has been placed. The intracellular signaling domain refers to a portion of a protein which transduces the effector function signal and directs the immune cell to perform its specific function. An entire signaling domain or a truncated portion thereof may be used so long as the truncated portion is sufficient to transduce the effector function signal. Cytoplasmic sequences of the T-cell receptor (TCR) and co-receptors, as well as derivatives or variants thereof, can function as intracellular signaling domains for use in a CAR. Intracellular signaling domains of particular use in this disclosure may be derived from FcR, TCR, CD3, CDS, CD22, CD79a, CD79b, CD66d. In some embodiments, the signaling domain of the CAR comprises, or consists essentially thereof, or consists of a CD3 ζ signaling domain.


Co-stimulatory Domains. Since signals generated through the TCR are alone insufficient for full activation of a T cell, a secondary or co-stimulatory signal may also be required. Thus, the intracellular region of at least one co-stimulatory signaling molecule, including but not limited to CD27, CD28, 4-1BB (CD 137), OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, or a ligand that specifically binds with CD83, may also be included in the cytoplasmic domain of the CAR. CARs of the present disclosure can comprise, or consist essentially thereof, or consist of one or more co-stimulatory domain. For instance, a CAR may comprise, or consist essentially thereof, or consist of one, two, or more co-stimulatory domains, in addition to a signaling domain (e.g., a CD3 signaling domain).


In some embodiments, the cell activation moiety of the chimeric antigen receptor is a T-cell signaling domain comprising, or alternatively consisting essentially of, or yet further consisting of, one or more proteins or fragments thereof selected from the group consisting of CD8 protein, CD28 protein, 4-1BB protein, OX40, CD30, CD40, PD-1, ICOS, LFA-1, CD2, CD7, CD27, LIGHT, NKG2C, B7-H3 and CD3-zeta protein.


In specific embodiments, the CAR comprises, or alternatively consists essentially thereof, or yet consists of an antigen binding domain of an any of the antibodies of this disclosure or fragment (e.g., scFv) thereof, a CD8 α or an IgG1 hinge domain, a CD8 α transmembrane domain, at least one costimulatory signaling region, and a CD3 zeta signaling domain. In further embodiments, the costimulatory signaling region comprises, or alternatively consists essentially thereof, or yet consists of either or both a CD28 costimulatory signaling region and a 4-1BB costimulatory signaling region.


In one embodiment, the antigen binding domain comprises, or consists essentially of, or yet further consists of an anti-CD19 antigen binding domain, the transmembrane domain comprises, or consists essentially of, or yet further consists of a CD28, CD28H (TMIGD2), AMICA1 or a CD8 α transmembrane domain and the one or more costimulatory regions selected from a CD28 costimulatory signaling region, a 4-1BB costimulatory signaling region, an ICOS costimulatory signaling region, an AMICA1 costimulatory signaling region, a CD28H (TMIGD2) costimulatory signaling region, and an OX40 costimulatory region or a CD3 zeta signaling domain. In a further embodiment, the anti-CD19 binding domain comprises, or consists essentially of, or yet further consists of a single-chain variable fragment (scFv) that specifically recognizes a humanized anti-CD19 binding domain. The anti-CD19 binding domain scFv of the CAR may comprise, or consist essentially of, or yet further consist of a heavy chain variable region and a light chain variable region.


In one aspect, the anti-CD19 binding domain of the CAR further comprises, or consists essentially of, or yet further consists of a linker polypeptide located between the anti-CD19 binding domain scFv heavy chain variable region and the anti-CD19 binding domain scFv light chain variable region. The linker polypeptide of the CAR may comprise, or consist essentially of, or yet further consist of a polypeptide of the sequence (GGGGS)n wherein n is an integer from 1 to 6. The linker peptide may be from 1 to 50 amino acids, for instance, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids. In some embodiments, the linker is glycine rich, although it may also contain serine or threonine. In another aspect, the CAR can further comprise, or consist essentially of, or yet further consist of a detectable marker attached to the CAR. In a separate aspect, the CAR can further comprise, or consist essentially of, or yet further consist of a purification marker attached to the CAR.


Switch Mechanisms. In some embodiments, the CAR may also comprise, or consist essentially thereof, or consist of a switch mechanism for controlling expression and/or activation of the CAR. For example, a CAR may comprise, consist, or consist essentially of an extracellular, transmembrane, and intracellular domain, in which the extracellular domain comprises a target-specific binding element that comprises a label, binding domain, or tag that is specific for a molecule other than the target antigen that is expressed on or by a target cell. In such embodiments, the specificity of the CAR is provided by a second construct that comprises, consists, or consists essentially of a target antigen binding domain and a domain that is recognized by or binds to the label, binding domain, or tag on the CAR. See, e.g., WO 2013/044225, WO 2016/000304, WO 2015/057834, WO 2015/057852, WO 2016/070061, U.S. Pat. No. 9,233,125, US 2016/0129109. In this way, a T-cell that expresses the CAR can be administered to a subject, but it cannot bind its target antigen until the second composition comprising a specific binding domain is administered.


CARs of the present disclosure may likewise require multimerization in order to activate their signaling function (see, e.g., US 2015/0368342, US 2016/0175359, US 2015/0368360) and/or an exogenous signal, such as a small molecule drug (US 2016/0166613, Yung et al., Science, 2015) in order to elicit a T-cell response.


Furthermore, the disclosed CARs can comprise, or consist essentially thereof, or consist of a “suicide switch” to induce cell death of the CAR T-cells following treatment (Buddee et al., PLoS One, 2013) or to downregulate expression of the CAR following binding to the target antigen (WO 2016/011210).


Also provided herein are modified T-cells prepared by any of the methods disclosed below. Further provided herein is a substantially homogenous population of cells of any of the modified T-cells of this disclosure. Also provided herein is a heterogeneous population of cells of any of the modified T-cells of this disclosure.


In one aspect, the method of producing the modified T-cells comprises, or alternatively consists essentially of, or yet further consists of isolating the T-cells and culturing the cells under conditions that favor expansion and proliferation of the cells. The modified T-cell may be genetically modified, optionally using recombinant methods, CRISPR/Cas system, ZFN, and/or TALEN.


CARs may be prepared using vectors. Aspects of the present disclosure relate to an isolated nucleic acid sequence encoding the CARs disclosed herein and vectors comprising, or alternatively consisting essentially of, or yet further consisting of an isolated nucleic acid sequence encoding the CAR and its complement and equivalents of each thereof.


The CAR cells of this disclosure can be generated by inserting into the modified T-cell a polynucleotide encoding the CAR and then expressing the CAR in the cell, Thus, in one aspect, the engineered T cell of this disclosure comprises, or alternatively consists essentially of, or yet further consists of a polynucleotide encoding the CAR, wherein the polynucleotide further comprises, or alternatively consists essentially of, or yet further consists of a promoter operatively linked to the polynucleotide to express the polynucleotide in the cell. Non-limiting examples of promoters include constitutive, inducible, repressible, or tissue-specific. The promoter is “operatively linked” in a manner to transcribe the linked polynucleotide.


Further provided herein is a modified T-cell comprising, or consisting essentially of, or yet further consisting of a polynucleotide encoding the CAR, and optionally, wherein the polynucleotide encodes and anti-CD19 binding domain. In one aspect, the polynucleotide may further comprise, or consist essentially of, or yet further consist of a promoter operatively linked to the polynucleotide to express the polynucleotide in the modified T-cell. In another aspect, the polynucleotide may further comprise, or consist essentially of, or yet further consist of a 2A self-cleaving peptide (T2A) encoding polynucleotide sequence located upstream of a polynucleotide encoding the anti-CD19 binding domain. “T2A” and “2A peptide” are used interchangeably to refer to any 2A peptide or fragment thereof, any 2A-like peptide or fragment thereof, or an artificial peptide comprising the requisite amino acids in a relatively short peptide sequence (on the order of 20 amino acids long depending on the virus of origin) containing the consensus polypeptide motif D-V/I-E-X-N-P-G-P, wherein X refers to any amino acid generally thought to be self-cleaving.


In yet a further aspect, the polynucleotide may further comprise, or consist essentially of, or yet further consist of a polynucleotide encoding a signal peptide located upstream of a polynucleotide encoding the anti-CD19 binding domain. In some embodiments, the polynucleotide comprises, or alternatively consists essentially thereof, or yet further consists of, a Kozak consensus sequence upstream of the polynucleotide sequence encoding the antigen binding domain or an enhancer. In some embodiments, the polynucleotide comprises, or alternatively consists essentially thereof, or yet further consists of a polynucleotide conferring antibiotic resistance. In one particular embodiment, the isolated nucleic acid encoding the CAR further comprises, or alternatively consists essentially thereof, or yet further consists of a switch mechanism for controlling expression and/or activation of the CAR.


The preparation of exemplary vectors and the generation of CAR expressing cells using the vectors is discussed in detail in the examples below. In summary, the expression of natural or synthetic nucleic acids encoding CARs is typically achieved by operably linking a nucleic acid encoding the CAR polypeptide or portions thereof to a promoter and incorporating the construct into an expression vector. The vectors can be suitable for replication and integration eukaryotes. Methods for producing cells comprising vectors and/or exogenous nucleic acids are well-known in the art. See, for example, Sambrook et al. (2001, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, New York).


In several aspects, the vector is derived from or based on a wild-type virus. In further aspects, the vector is derived from or based on a wild-type lentivirus. Examples of such, include without limitation, human immunodeficiency virus (HIV), equine infectious anemia virus (EIAV), simian immunodeficiency virus (SW) and feline immunodeficiency virus (FIV). Alternatively, it is contemplated that other retrovirus can be used as a basis for a vector backbone such murine leukemia virus (MLV). It will be evident that a viral vector according to the disclosure need not be confined to the components of a particular virus. The viral vector may comprise components derived from two or more different viruses and may also comprise synthetic components. Vector components can be manipulated to obtain desired characteristics, such as target cell specificity.


The recombinant vectors of this disclosure may be derived from primates and non-primates. Examples of primate lentiviruses include the human immunodeficiency virus (HIV), the causative agent of human acquired immunodeficiency syndrome (AIDS), and the simian immunodeficiency virus (SIV). The non-primate lentiviral group includes the prototype “slow virus” visna/maedi virus (VMV), as well as the related caprine arthritis-encephalitis virus (CAEV), equine infectious anemia virus (EIAV) and the more recently described feline immunodeficiency virus (FIV) and bovine immunodeficiency virus (BIV). Prior art recombinant lentiviral vectors are known in the art, e.g., see U.S. Pat. Nos. 6,924,123; 7,056,699; 7,07,993; 7,419,829 and 7,442,551, incorporated herein by reference.


U.S. Pat. No. 6,924,123 discloses that certain retroviral sequence facilitate integration into the target cell genome. This patent teaches that each retroviral genome comprises genes called gag, pol and env which code for virion proteins and enzymes. These genes are flanked at both ends by regions called long terminal repeats (LTRs). The LTRs are responsible for proviral integration, and transcription. They also serve as enhancer-promoter sequences. In other words, the LTRs can control the expression of the viral genes. Encapsidation of the retroviral RNAs occurs by virtue of a psi sequence located at the 5′ end of the viral genome. The LTRs themselves are identical sequences that can be divided into three elements, which are called U3, R and U5. U3 is derived from the sequence unique to the 3′ end of the RNA. R is derived from a sequence repeated at both ends of the RNA, and U5 is derived from the sequence unique to the 5′end of the RNA. The sizes of the three elements can vary considerably among different retroviruses. For the viral genome. and the site of poly (A) addition (termination) is at the boundary between R and U5 in the right-hand side LTR. U3 contains most of the transcriptional control elements of the provirus, which include the promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins.


With regard to the structural genes gag, pol and env themselves, gag encodes the internal structural protein of the virus. Gag protein is proteolytically processed into the mature proteins MA (matrix), CA (capsid) and NC (nucleocapsid). The pol gene encodes the reverse transcriptase (RT), which contains DNA polymerase, associated RNase H and integrase (IN), which mediate replication of the genome.


For the production of viral vector particles, the vector RNA genome is expressed from a DNA construct encoding it, in a host cell. The components of the particles not encoded by the vector genome are provided in trans by additional nucleic acid sequences (the “packaging system”, which usually includes either or both of the gag/pol and env genes) expressed in the host cell. The set of sequences required for the production of the viral vector particles may be introduced into the host cell by transient transfection, or they may be integrated into the host cell genome, or they may be provided in a mixture of ways. The techniques involved are known to those skilled in the art.


Retroviral vectors for use in this disclosure include but are not limited to Invitrogen's pLenti series versions 4, 6, and 6.2 “ViraPower” system. Manufactured by Lentigen Corp.; pHIV-7-GFP, lab generated and used by the City of Hope Research Institute; “Lenti-X” lentiviral vector, pLVX, manufactured by Clontech; pLKO.1-puro, manufactured by Sigma-Aldrich; pLemiR, manufactured by Open Biosystems; and pLV, lab generated and used by Charité Medical School, Institute of Virology (CBF), Berlin, Germany.


Regardless of the method used to introduce exogenous nucleic acids into a host cell or otherwise expose a cell to the inhibitor of the present disclosure, in order to confirm the presence of the recombinant DNA sequence in the host cell, a variety of assays may be performed. Such assays include, for example, “molecular biological” assays well known to those of skill in the art, such as Southern and Northern blotting, RT-PCR and PCR; “biochemical” assays, such as detecting the presence or absence of a particular peptide, e.g., by immunological means (ELISAs and Western blots) or by assays described herein to identify agents falling within the scope of the disclosure.


Packaging vector and cell lines: CARs can be packaged into a lentiviral or retroviral packaging system by using a packaging vector and cell lines. The packaging plasmid includes, but is not limited to retroviral vector, lentiviral vector, adenoviral vector, and adeno-associated viral vector. The packaging vector contains elements and sequences that facilitate the delivery of genetic materials into cells. For example, the retroviral constructs are packaging plasmids comprising at least one retroviral helper DNA sequence derived from a replication-incompetent retroviral genome encoding in trans all virion proteins required to package a replication incompetent retroviral vector, and for producing virion proteins capable of packaging the replication-incompetent retroviral vector at high titer, without the production of replication-competent helper virus. The retroviral DNA sequence lacks the region encoding the native enhancer and/or promoter of the viral 5′ LTR of the virus, and lacks both the psi function sequence responsible for packaging helper genome and the 3′ LTR, but encodes a foreign polyadenylation site, for example the SV40 polyadenylation site, and a foreign enhancer and/or promoter which directs efficient transcription in a cell type where virus production is desired. The retrovirus is a leukemia virus such as a Moloney Murine Leukemia Virus (MMLV), the Human Immunodeficiency Virus (HIV), or the Gibbon Ape Leukemia virus (GALV). The foreign enhancer and promoter may be the human cytomegalovirus (HCMV) immediate early (IE) enhancer and promoter, the enhancer and promoter (U3 region) of the Moloney Murine Sarcoma Virus (MMSV), the U3 region of Rous Sarcoma Virus (RSV), the U3 region of Spleen Focus Forming Virus (SFFV), or the HCMV IE enhancer joined to the native Moloney Murine Leukemia Virus (MMLV) promoter. The retroviral packaging plasmid may consist of two retroviral helper DNA sequences encoded by plasmid-based expression vectors, for example where a first helper sequence contains a cDNA encoding the gag and pol proteins of ecotropic MMLV or GALV and a second helper sequence contains a cDNA encoding the env protein. The Env gene, which determines the host range, may be derived from the genes encoding xenotropic, amphotropic, ecotropic, polytropic (mink focus forming) or 10A1 murine leukemia virus env proteins, or the Gibbon Ape Leukemia Virus (GALV env protein, the Human Immunodeficiency Virus env (gp160) protein, the Vesicular Stomatitus Virus (VSV) G protein, the Human T cell leukemia (HTLV) type I and II env gene products, chimeric envelope gene derived from combinations of one or more of the aforementioned env genes or chimeric envelope genes encoding the cytoplasmic and transmembrane of the aforementioned env gene products and a monoclonal antibody directed against a specific surface molecule on a desired target cell.


In the packaging process, the packaging plasmids and retroviral vectors are transiently co-transfected into a first population of mammalian cells that are capable of producing virus, such as human embryonic kidney cells, for example 293 cells (ATCC No. CRL1573, ATCC, Rockville, Md.), to produce high titer recombinant retrovirus-containing supernatants. In another method of the disclosure this transiently transfected first population of cells is then co-cultivated with mammalian target cells, for example human lymphocytes, to transduce the target cells with the foreign gene at high efficiencies. In yet another method of the disclosure the supernatants from the above described transiently transfected first population of cells are incubated with mammalian target cells, for example human lymphocytes or hematopoietic stem cells, to transduce the target cells with the foreign gene at high efficiencies.


In another aspect, the packaging plasmids are stably expressed in a first population of mammalian cells that are capable of producing virus, such as human embryonic kidney cells, for example 293 cells. Retroviral or lentiviral vectors are introduced into cells by either co-transfection with a selectable marker or infection with pseudotyped virus. In both cases, the vectors integrate. Alternatively, vectors can be introduced in an episomally maintained plasmid. High titer recombinant retrovirus-containing supernatants are produced.


In one embodiment, the polynucleotide further comprises, or consists essentially of, or yet further consists of a vector. In one particular embodiment, the vector is a plasmid. In another embodiment, the vector is a viral vector selected from the group of a retroviral vector, a lentiviral vector, an adenoviral vector, and an adeno-associated viral vector.


In some embodiments, the T cell of this disclosure has been isolated from a subject. In a particular embodiment, the T cell of this disclosure has been isolated from a subject, wherein the subject has cancer. In one aspect, the cancer or tumor is an epithelial, a head, neck, lung, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, brain, or comprises a lymphoma, breast, endometrium, uterus, ovary, testes, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland and/or brain cancer or tumor, a metastasis or recurring tumor, cancer or neoplasia, a non-small cell lung cancer (NSCLC) and/or head and neck squamous cell cancer (HNSCC). In another aspect the subject is The term “subject,” “host,” “individual,” and “patient” are as used interchangeably herein to refer to animals, typically mammalian animals. Any suitable mammal can be treated by a method, cell or composition described herein. Non-limiting examples of mammals include humans, non-human primates (e.g., apes, gibbons, chimpanzees, orangutans, monkeys, macaques, and the like), domestic animals (e.g., dogs and cats), farm animals (e.g., horses, cows, goats, sheep, pigs) and experimental animals (e.g., mouse, rat, rabbit, guinea pig). In some embodiments a mammal is a human. A mammal can be any age or at any stage of development (e.g., an adult, teen, child, infant, or a mammal in utero). A mammal can be male or female. A mammal can be a pregnant female. In some embodiments a subject is a human. In some embodiments, a subject has or is suspected of having a cancer or neoplastic disorder.


Compositions, Methods of Treatment, Diagnosis and Prognosis

Also disclosed herein is a composition comprising, or consisting essentially of, or yet further consisting of a population of modified T-cells described above. Further provided herein is a composition comprising, or alternatively consisting essentially of, or yet further consisting of a carrier and one or more of: the modified T cell of this disclosure and/or the population of modified T-cells of this disclosure. In one aspect, the population is a substantially homogenous cell population. In another aspect, the population is a heterogeneous population. The composition of the present disclosure also can be bound to many different carriers. Examples of well-known carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, agaroses and magnetite. The nature of the carrier can be either soluble or insoluble for purposes of the disclosure. Those skilled in the art will know of other suitable carriers, or will be able to ascertain such, using routine experimentation.


Further provided herein are methods to identify the antigens or antigen receptors associated with the isolated and/or purified cell populations disclosed herein. In some aspect, the receptors are T-cell receptors (TCRs). In particular embodiments, the TCRs comprise the sequences listed in Table 6. In certain embodiments, the identified antigens or antigen receptors can be used for example to vaccinate a subject against cancer or an immune response. In other aspects, the identified antigens or antigen receptors can be used to engineer cells, for example a chimeric-antigen receptor T-cell (CAR-T cell). In still other aspects, the engineered CAR-T cell can be used to provide immunotherapy to a subject such as for example, a human patient. Also provided herein are methods to induce an immune response and treat conditions requiring selective immunotherapy, comprising, or consisting essentially of, or yet further consisting of, contacting a target cell with the cells or compositions as described herein. The contacting can be performed in vitro, or alternatively in vivo, thereby providing immunotherapy to a subject such as for example, a human patient.


Provided herein are methods to identify the antigens or antigen receptors associated with the isolated and/or purified cell populations disclosed herein. In some aspect, the receptors are T-cell receptors (TCRs). In particular embodiments, the TCRs comprise the sequences listed in Table 6. In certain embodiments, the identified antigens or antigen receptors can be used for example to vaccinate a subject against cancer or an immune response. In other aspects, the identified antigens or antigen receptors can be used to engineer cells, for example a chimeric-antigen receptor T-cell (CAR-T cell). In still other aspects, the engineered CAR-T cell can be used to provide immunotherapy to a subject such as for example, a human patient.


Also provided herein are methods to induce an immune response and treat conditions requiring selective immunotherapy, comprising, or consisting essentially of, or yet further consisting of, contacting a target cell with the cells or compositions as described herein.


Provided herein is a method of treating cancer, providing anti-tumor immunity, preventing relapse of cancer, and/or eliciting an anti-tumor response in a subject comprising, or consisting essentially of, or yet further consisting of administering to the subject an effective amount of a population of T-cells that exhibit higher than or lower than baseline expression of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7, or that express a T-cell receptor comprising at least one of the amino acid sequences set forth in Table 6. Providing anti-tumor immunity refers to preventing the symptoms or cancer from occurring in a subject that is predisposed or does not yet display symptoms of the cancer. In another aspect, it is to inhibit relapse or progression of cancer in a subject in need thereof.


In one aspect, the method comprises, or consists essentially of, or yet further consists of administering to the subject an effective amount of an agent that induces higher than or lower than baseline expression of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 in T-cells, or a T-cell receptor comprising at least one of the amino acid sequences set forth in Table 6. In another aspect, the method comprises, or consists essentially of, or yet further consists of administering an effective amount of one or more an agent that induces or inhibits in T-cells activity of one or more proteins encoded by genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 to the subject or sample. The active agent can be an antibody, a small molecule, a protein, a peptide, a ligand mimetic or a nucleic acid. The one or more gene may be selected from the group of 4-1BB, PD-1, CD103 or TIM3. In one aspect, the baseline expression is normalized mean gene expression. In another aspect, the higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression. Expression can be reduced or increased by at least about 2 or more, or about 3, or about 4, or about 5, or about 6, or about 7, or about 8, or about 9, or about 10, or about 11, or about 12, or about 13, or about 14, or about 15 fold as compared to a comparative wild-type cell. One of skill in the art can monitor expression of the genes using methods such as RNA-sequencing, DNA microarrays, Real-time PCR, or Chromatin immunoprecipitation (ChIP) etc. Protein expression can be monitored using methods such as flow cytometry, Western blotting, 2-D gel electrophoresis or immunoassays etc.


In a further aspect, the T-cells are tissue-resident memory cells (TRM) or CD8+ T-cells. In one particular embodiment, the T-cells are autologous to the subject being treated. The methods of treating cancer, providing anti-tumor immunity, preventing relapse of cancer, and/or eliciting an anti-tumor response disclosed herein may further comprise, or consist essentially of, or yet further consist of administering to the subject an effective amount of a cytoreductive therapy. The cytoreductive therapy can be one or more of chemotherapy, immunotherapy, or radiation therapy.


Further provided herein is a method of treating cancer in a subject and/or eliciting an anti-tumor response comprising, or consisting essentially of, or yet further consisting of administering to the subject or contacting the tumor with an effective amount of the modified T-cells disclosed herein and/or the composition of this disclosure. The contacting can be performed in vitro, or alternatively in vivo, thereby providing immunotherapy to a subject such as for example, a human patient. A particular example of direct interaction is binding. A particular example of an indirect interaction is where one entity acts upon an intermediary molecule, which in turn acts upon the second referenced entity. Contacting as used herein includes in solution, in solid phase, in vitro, ex vivo, in a cell and in vivo. Contacting in vivo can be referred to as administering, or administration.


In one aspect, for the methods of treatments, the subject has, has had or is in need of treatment for cancer. In another aspect, the cancer is characterized as being hyporesponsive. In certain embodiments a subject has or is suspected of having a neoplastic disorder, neoplasia, tumor, malignancy or cancer. In some embodiments a subject in need of a treatment, cell or composition described herein has or is suspected of having a neoplastic disorder, neoplasia, tumor, malignancy or cancer.


The T-cells, population of T-cells, active agent and/or compositions provided herein may be administered either alone or in combination with diluents, known anti-cancer therapeutics, and/or with other components such as cytokines or other cell populations that are immunostimulatory. They may be administered as a first line therapy, a second line therapy, a third line therapy, or further therapy. Non-limiting examples of additional therapies include chemotherapeutics or biologics. Appropriate treatment regimens will be determined by the treating physician or veterinarian.


In one embodiment, the tumor is a solid tumor. The solid tumor could be a melanoma, a colon carcinoma, a breast carcinoma and/or a brain tumor. In one aspect, the cancer to be treated is a carcinoma, sarcoma, neuroblastoma, cervical cancer, hepatocellular cancer, mesothelioma, glioblastoma, myeloma, lymphoma, leukemia, adenoma, adenocarcinoma, glioma, glioblastoma, retinoblastoma, astrocytoma, oligodendrocytoma, meningioma, or melanoma.


The methods are useful to treat subjects such as humans, non-human primates (e.g., apes, gibbons, chimpanzees, orangutans, monkeys, macaques, and the like), domestic animals (e.g., dogs and cats), farm animals (e.g., horses, cows, goats, sheep, pigs) and experimental animals (e.g., mouse, rat, rabbit, guinea pig). A mammal can be any age or at any stage of development (e.g., an adult, teen, child, infant, or a mammal in utero). A mammal can be male or female. In certain embodiments the subject has or is suspected of having a neoplastic disorder, neoplasia, tumor, malignancy or cancer. In one aspect, the animal is treated as an animal model for a particular patient or tumor type, or can be used to assay combination therapies.


The methods disclosed herein may further comprise or alternatively consist essentially of, or yet further consists of administering to the subject an anti-tumor therapy other than the CAR therapy or T-cell therapy as disclosed herein. Accordingly, method aspects of the present disclosure relate to methods for inhibiting the growth of a tumor in a subject in need thereof and/or for treating a cancer patient in need thereof.


Further provided herein is a method of diagnosing a subject that may optionally be suspected of having cancer, comprising, or consisting essentially of, or yet further consisting of contacting a sample isolated from the subject with an agent that detects the presence of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 in the sample isolated from the subject, wherein the presence of the one or more genes at higher or lower than baseline expression levels is diagnostic of cancer. In one aspect, the method of diagnosing cancer in a subject comprises, or consists essentially of, or yet further consists of contacting tissue-resident memory cells (TRMs) of the cancer or a sample thereof with an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds CD28H (TMIGD2), and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of CD8+PD1+, CD8+TIM3+, CD8+LAG3+, CD8+AMICA1+, CD8+CD28H+, CD8+CTLA4+, CD8+PD1+TIM3+, CD8+PD1+LAG3+, CD8+PD1+AMICA1+, CD8+PD1+CD28H+, CD8+PD1+CTLA4+, CD8+TIM3+LAG3+, CD8+TIM3+AMICA1+, CD8+TIM3+CD28H+, CD8+TIM3+CTLA4+, CD8+LAG3+CTLA4+, CD8+LAG3+AMICA1+, CD8+LAG3+CD28H+, CD8+PD1+TIM3+LAG3+, CD8+LAG3+PD1+AMICA1+, CD8+LAG3+PD1+CD28H+, CD8+PD1+LAG3+CTLA4+, CD8+PD1+TIM3+CTLA4+, CD8+PD1+TIM3+CTLA4+AMICA1+′, CD8+PD1+TIM3+CTLA4+CD28H+′ or CD8+PD1+TIM3+CTLA4+AMICA+CD28H+′ TRMs, wherein a high frequency of one or more of these TRMs is diagnostic of cancer.


In another aspect, the method of diagnosing cancer in a subject comprises, or consists essentially of, or yet further consists of contacting tissue-resident memory cells (TRMs) isolated from the subject or cancer sample isolated from the subject, with an antibody or agent that recognizes and binds one or more proteins encoded by a gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 and, optionally, an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds CD28H (TMIGD2), an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds KLF3, an antibody or agent that recognizes and binds S1PR5, an antibody or agent that recognizes and binds S1PR1, an antibody or agent that recognizes and binds KLF2 and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of TRMs expressing these proteins, wherein a high frequency of TRMs expressing these proteins is diagnostic of cancer. The contacting can be performed in vitro, or alternatively in vivo. The subject can be any mammal, e.g., a human patient. A particular example of direct interaction is binding. A particular example of an indirect interaction is where one entity acts upon an intermediary molecule, which in turn acts upon the second referenced entity. Contacting as used herein includes in solution, in solid phase, in vitro, ex vivo, in a cell and in vivo. Contacting in vivo can be referred to as administering, or administration. Expression can be reduced or increased by at least about 2 or more, or about 3, or about 4, or about 5, or about 6, or about 7, or about 8, or about 9, or about 10, or about 11, or about 12, or about 13, or about 14, or about 15 fold as compared to a comparative wild-type cell. One of skill in the art can monitor expression of the genes using methods such as RNA-sequencing, DNA microarrays, Real-time PCR, or Chromatin immunoprecipitation (ChIP) etc. Protein expression can be monitored using methods such as flow cytometry, Western blotting, 2-D gel electrophoresis or immunoassays etc.


Additionally, disclosed herein is a method of determining the density of tissue-resident memory cells (TRMs) in a subject or sample isolated from the subject, e.g., a cancer, tumor, or sample thereof, the method comprising, or consisting essentially of, or yet further consisting of measuring expression of one or more gene selected from the group of 4-1BB, PD-1, CD103 or TIM3 or genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 in the sample, (e.g., cancer, tumor, or sample thereof), wherein higher or lower than baseline expression indicates higher density of TRMs in the sample (e.g., cancer, tumor, or sample thereof). Expression can be reduced or increased by at least about 2 or more, or about 3, or about 4, or about 5, or about 6, or about 7, or about 8, or about 9, or about 10, or about 11, or about 12, or about 13, or about 14, or about 15 fold as compared to a comparative wild-type cell. One of skill in the art can monitor expression of the genes using methods such as RNA-sequencing, DNA microarrays, Real-time PCR, or Chromatin immunoprecipitation (ChIP) etc. Protein expression can be monitored using methods such as flow cytometry, Western blotting, 2-D gel electrophoresis or immunoassays etc.


Further provided herein is a method of determining prognosis of a subject having cancer comprising, or consisting essentially of, or yet further consisting of measuring the density of tissue-resident memory cells (TRM) in a sample isolated from the subject, (e.g., the cancer, tumor or a sample thereof), wherein a high density of TRM indicates a more positive prognosis, e.g., an increased probability and/or duration of survival. In one aspect, the method of prognosis of a subject having cancer comprises, or consists essentially of, or yet further consists of contacting tissue-resident memory cells (TRMs) isolated from the subject with an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds CD28H (TMIGD2), and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of CD8+PD1+, CD8+TIM3+, CD8+LAG3+, CD8+AMICA1+, CD8+CD28H+, CD8+CTLA4+, CD8+PD1+TIM3+, CD8+PD1+LAG3+, CD8+PD1+AMICA1+, CD8+PD1+CD28H+, CD8+PD1+CTLA4+, CD8+TIM3+LAG3+, CD8+TIM3+AMICA1+, CD8+TIM3+CD28H+, CD8+TIM3+CTLA4+, CD8+LAG3+CTLA4+, CD8+LAG3+AMICA1+, CD8+LAG3−+CD28H+, CD8+PD1+TIM3+LAG3+, CD8+LAG3+PD1+AMICA1+, CD8+LAG3+PD1+CD28H+, CD8+PD1+LAG3+CTLA4+, CD8+PD1+TIM3+CTLA4+, CD8+PD1+TIM3+CTLA4+AMICA1+′, CD8+PD1.+TIM3+CTLA4+CD28H+′ or CD8+PD1+TIM3+CTLA4+AMICA+CD28H+′ TRMs, wherein a high frequency of one or more of these TRMs indicates a more positive prognosis, e.g., an increased probability and/or duration of survival. In another aspect, the method of prognosis of a subject having cancer comprises, or consists essentially of, or yet further consists of contacting tissue-resident memory cells (TRMs) isolated from the subject, (e.g., of the cancer or a sample thereof) with an antibody or agent that recognizes and binds one or more proteins encoded by a gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 and, optionally, an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds CD28H (TMIGD2), an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds KLF3, an antibody or agent that recognizes and binds S1PR5, an antibody or agent that recognizes and binds S1PR1, an antibody or agent that recognizes and binds KLF2 and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of TRMs expressing these proteins, wherein a high frequency of TRMs expressing these proteins indicates a more positive prognosis, e.g., an increased probability and/or duration of survival.


In yet a further aspect, the method of determining prognosis of a subject having cancer comprises, or consists essentially of, or yet further consists of contacting tissue-resident memory cells (TRMs) isolated from the subject, e.g., of the cancer or a sample thereof; with an antibody or agent that recognizes and binds CD103 to determine the frequency of CD103+ TRMs or an antibody that recognizes and binds a protein encoded by a gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 to determine the frequency of TRMs expressing the protein, wherein a high or low frequency of TRMs expressing the protein indicates a more positive prognosis, e.g., an increased probability and/or duration of survival. The contacting can be performed in vitro, or alternatively in vivo. The subject can be a mammal, e.g., a human patient. A particular example of direct interaction is binding. A particular example of an indirect interaction is where one entity acts upon an intermediary molecule, which in turn acts upon the second referenced entity. Contacting as used herein includes in solution, in solid phase, in vitro, ex vivo, in a cell and in vivo. Contacting in vivo can be referred to as administering, or administration. In a separate aspect, the method of determining prognosis of a subject having cancer comprises, or consists essentially of, or yet further consists of measuring the density of CD103 or proteins encoded by one or more gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 in the sample, (e.g., a cancer or a sample thereof), wherein a high or low density of proteins indicates a more positive prognosis, and an increased probability and/or duration of survival.


For the above methods, an effective amount is administered, and administration of the cell or population serves to attenuate any symptom or prevent additional symptoms from arising. When administration is for the purposes of preventing, delaying or reducing the likelihood of cancer recurrence or metastasis or pathogen infection, the cell or compositions can be administered in advance of any visible or detectable symptom. Routes of administration include, but are not limited to, oral (such as a tablet, capsule or suspension), topical, transdermal, intranasal, vaginal, rectal, subcutaneous intravenous, intraarterial, intramuscular, intraosseous, intraperitoneal, epidural and intrathecal. In some embodiments, an effective amount may be delivered or administered into a cavity formed by the resection of tumor tissue (i.e. intracavity delivery) or directly into a tumor prior to resection (i.e. intratumoral delivery). In some embodiments, administration can be intravenously, intrathecally, intraperitoneally, intramuscularly, subcutaneously, or by other suitable means of administration.


Pharmaceutical compositions of the present disclosure may be administered in a manner appropriate to the disease to be treated or prevented. The quantity and frequency of administration will be determined by such factors as the condition of the patient, and the type and severity of the patient's disease, although appropriate dosages may be determined by clinical trials.


For the above methods, an effective amount is administered, and administration of the cell or population serves to attenuate any symptom or prevent additional symptoms from arising. When administration is for the purposes of preventing or reducing the likelihood of cancer recurrence or metastasis, the cell or compositions can be administered in advance of any visible or detectable symptom. Routes of administration include, but are not limited to, oral (such as a tablet, capsule or suspension), topical, transdermal, intranasal, vaginal, rectal, subcutaneous intravenous, intraarterial, intramuscular, intraosseous, intraperitoneal, epidural and intrathecal.


The methods provide one or more of: (1) preventing the symptoms or disease from occurring in a subject that is predisposed or does not yet display symptoms of the disease; (2) inhibiting the disease or arresting its development; or (3) ameliorating or causing regression or relapse of the disease or the symptoms of the disease. As understood in the art, “treatment” is an approach for obtaining beneficial or desired results, including clinical results. For the purposes of the present technology, beneficial or desired results can include one or more, but are not limited to, alleviation or amelioration of one or more symptoms, diminishment of extent of a condition (including a disease), stabilized (i.e., not worsening) state of a condition (including disease), delay or slowing of condition (including disease), progression, amelioration or palliation of the condition (including disease), states and remission (whether partial or total), whether detectable or undetectable. Treatments containing the disclosed compositions and methods can be first line, second line, third line, fourth line, fifth line therapy and are intended to be used as a sole therapy or in combination with other appropriate therapies e.g., surgical recession, chemotherapy, radiation. In one aspect, treatment excludes prophylaxis.


Also described herein is a method of determining the responsiveness of a subject having cancer to immunotherapy comprising, or consisting essentially of, or yet further consisting of contacting tissue-resident memory cells (TRMs) isolated from the subject, e.g., of the cancer or a sample thereof, with an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds CD28H (TMIGD2), and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of CD8+PD1+, CD8+TIM3+, CD8+LAG3+, CD8+AMICA1+, CD8+CD28H+, CD8+CTLA4+, CD8+PD1+TIM3+, CD8+PD1+LAG3+, CD8+PD1+AMICA1+, CD8+PD1+CD28H+, CD8+PD1+CTLA4+, CD8+TIM3+LAG3+, CD8+TIM3+AMICA1+, CD8+TIM3+CD28H+, CD8+TIM3+CTLA4+, CD8+LAG3+CTLA4+, CD8+LAG3+AMICA1+, CD8+LAG3+CD28H+, CD8+PD1+TIM3+LAG3+, CD8+LAG3+PD1+AMICA1+, CD8+LAG3+PD1+CD28H+, CD8+PD1+LAG3+CTLA4+, CD8+PD1+TIM3+CTLA4+, CD8+PD1+TIM3+CTLA4+AMICA1+′, CD8+PD1+TIM3+CTLA4+CD28H+′ or CD8+PD1+TIM3−+CTLA4+AMICA+CD28H+′TRMs, wherein a high frequency of one or more of these TRMs indicates responsiveness to immunotherapy. In one aspect, the method of determining the responsiveness of a subject having cancer to immunotherapy comprises, or consists essentially of, or yet further consists of contacting tissue-resident memory cells (TRMs) isolated from the subject, e.g., of the cancer or a sample thereof, with an antibody or agent that recognizes and binds one or more proteins encoded by a gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 and, optionally, an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds CD28H (TMIGD2), an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds KLF3, an antibody or agent that recognizes and binds S1PR5, an


antibody or agent that recognizes and binds S1PR1, an antibody or agent that recognizes and binds KLF2 and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of TRMs expressing these proteins, wherein a high frequency of TRMs expressing these proteins indicates responsiveness to immunotherapy. For any of the methods disclosed herein, the TRMs may comprise, or consist essentially of, or yet further consist of CD19−CD20−CD14−CD56−CD4−CD45+CD3+CD8+ T-cells.


Further disclosed are methods of identifying a subject that will or is likely to respond to a cancer therapy, comprising, or consisting essentially of, or yet further consisting of contacting a sample isolated from the subject with an agent that detects the presence of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 in the sample, (e.g., cancer or a sample thereof), wherein the presence of the one or more genes at higher or lower than baseline expression levels indicates that the subject is likely to respond to cancer therapy. In one aspect, the baseline expression is normalized mean gene expression. In another aspect, the higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression. Expression can be reduced or increased by at least about 2 or more, or about 3, or about 4, or about 5, or about 6, or about 7, or about 8, or about 9, or about 10, or about 11, or about 12, or about 13, or about 14, or about 15 fold as compared to a comparative wild-type cell. One of skill in the art can monitor expression of the genes using methods such as RNA-sequencing, DNA microarrays, Real-time PCR, or Chromatin immunoprecipitation (ChIP) etc. Protein expression can be monitored using methods such as flow cytometry, Western blotting, 2-D gel electrophoresis or immunoassays etc. The method may further comprise, or consist essentially of, or yet further consist of administering a cancer therapy to the subject. The cancer therapy or cytoreductive therapy can be chemotherapy, immunotherapy, radiation therapy, and/or administering to the subject or contacting the tumor with an effective amount of the modified T-cells and/or the composition of this disclosure.


The cancer, tumor, or sample can be contacted with an agent, optionally including a detectable label or tag. In one aspect, the detectable label or tag can comprise, or consist essentially of, or yet further consist of a radioisotope, a metal, horseradish peroxidase, alkaline phosphatase, avidin or biotin. In another aspect, the agent can comprise, or consist essentially of, or yet further consist of a polypeptide that binds to an expression product encoded by the gene, or a polynucleotide that hybridizes to a nucleic acid sequence encoding all or a portion of the gene. The polypeptide may comprise, or consist essentially of, or yet further consist of an antibody, an antigen binding fragment thereof, or a receptor that binds to the gene. In one aspect, the antibody is an IgG, IgA, IgM, IgE or IgD, or a subclass thereof. In another aspect, the IgG antibody is an IgG1, IgG2, IgG3 or IgG4. The antigen binding fragment can be a Fab, Fab′, F(ab′)2, Fv, Fd, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv) or VL or VH. In one aspect, the agent is contacted with the cancer, tumor, or sample in conditions under which it can bind to the gene it targets. The contacting can be performed in vitro, or alternatively in vivo. A particular example of direct interaction is binding. A particular example of an indirect interaction is where one entity acts upon an intermediary molecule, which in turn acts upon the second referenced entity. Contacting as used herein includes in solution, in solid phase, in vitro, ex vivo, in a cell and in vivo. Contacting in vivo can be referred to as administering, or administration.


The methods of this disclosure the method comprise, or consist essentially of, or yet further consist of detection by immunohistochemistry (IHC), in-situ hybridization (ISH), ELISA, immunoprecipitation, immunofluorescence, chemiluminescence, radioactivity, X-ray, nucleic acid hybridization, protein-protein interaction, immunoprecipitation, flow cytometry, Western blotting, polymerase chain reaction, DNA transcription, Northern blotting and/or Southern blotting. The sample may comprise, or consist essentially of, or yet further consist of cells, tissue, an organ biopsy, an epithelial tissue, a lung, respiratory or airway tissue or organ, a circulatory tissue or organ, a skin tissue, bone tissue, muscle tissue, head, neck, brain, skin, bone and/or blood sample. In another aspect, the sample comprises one or more of sputum, serum, plasma, lymph, cystic fluid, urine, stool, cerebrospinal fluid, ascite fluid, blood, or a tissue. While the cancer or tumor described herein can be an epithelial, a head, neck, lung, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, brain, or comprises a lymphoma, breast, endometrium, uterus, ovary, testes, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland and/or brain cancer or tumor, a metastasis or recurring tumor, cancer or neoplasia, a non-small cell lung cancer (NSCLC) and/or head and neck squamous cell cancer (HNSCC). In a further aspect, the methods of this disclosure may comprise, or consist essentially of, or yet further consist of detecting in the subject, the cells or the sample the number or density of Trm cells that are CD19−CD20−CD14−CD56−CD4−CD45+CD3+CD8+ T-cells.


Kits

Finally, provided herein is a kit comprising, or consisting essentially of, or yet further consisting of one or more of the modified T-cells and/or the composition of this disclosure and instructions for use. In one particular aspect, the present disclosure provides kits for performing the methods of this disclosure as well as instructions for carrying out the methods of the present disclosure.


The kits are useful for detecting the presence of cancer such as B-cell lymphoma in a biological sample e.g., any bodily fluid including, but not limited to, e.g., sputum, serum, plasma, lymph, cystic fluid, urine, stool, cerebrospinal fluid, acitic fluid or blood and including biopsy samples of body tissue. The test samples may also be a tumor cell, a normal cell adjacent to a tumor, a normal cell corresponding to the tumor tissue type, a blood cell, a peripheral blood lymphocyte, or combinations thereof. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are known in the art and can be readily adapted in order to obtain a sample which is compatible with the system utilized.


The kit components, (e.g., reagents) can be packaged in a suitable container. The kit can also comprise, or alternatively consist essentially of, or yet further consist of, e.g., a buffering agent, a preservative or a protein-stabilizing agent. The kit can further comprise, or alternatively consist essentially of, or yet further consist of components necessary for detecting the detectable-label, e.g., an enzyme or a substrate. The kit can also contain a control sample or a series of control samples, which can be assayed and compared to the test sample. Each component of the kit can be enclosed within an individual container and all of the various containers can be within a single package, along with instructions for interpreting the results of the assays performed using the kit. The kits of the present disclosure may contain a written product on or in the kit container. The written product describes how to use the reagents contained in the kit.


As amenable, these suggested kit components may be packaged in a manner customary for use by those of skill in the art. For example, these suggested kit components may be provided in solution or as a liquid dispersion or the like.


Modes for Carrying Out the Disclosure

Using single-cell and bulk transcriptomic analysis of purified populations of TRM and non-TRM cells present in tumor and normal lung tissue from patients with lung cancer, Applicants identified a distinct population of highly functional TRM cells present exclusively in the tumors. These TRM cells proliferate, display clonal expansion and express high levels of TIM3, CXCL13 and CD39. They also expressed high levels of PD-1 but show no features of exhaustion. Rather, these ‘highly functional’ TRM cells are the key cell types contributing to the robust anti-tumor responses induced by PD-1 inhibitors in some cancer patients. Because PD-1 expression was also observed in TRM cells in the normal lung, without being bound by theory, Applicant believes that PD1 inhibitors may have the potential to non-specifically reactivate quiescent TRM cells present in normal lung and presumably other tissues and cause the clinically recognised immune-related toxicities. These findings have implications for the design of therapies that preferentially activate “highly functional” TRM cells in tumors while minimizing toxicity.


In lung cancer and many other solid tumors, the presence of an adaptive anti-tumor immune response is positively correlated with patient survival.′ This response is mediated primarily by CD8+cytotoxic T lymphocytes (CTLs). Because CTLs in tumors are chronically activated, they can become “exhausted,” a hyporesponsive state, that prevents inflammatory damage to healthy tissue in the setting of infection.2 Exhaustion involves up-regulation of surface inhibitory molecules, such as PD-1 and TIM3.3 PD-1 inhibitors have revolutionized cancer treatment by inducing durable responses in some patients.4 Given the association of PD-1 with exhaustion and the description of CTLs expressing PD-1 in human cancers, exhausted CTLs are generally assumed to be the cells reactivated by anti-PD-1 therapy, though definitive evidence for this is lacking in humans.5


Though PD-1 inhibitors can eradicate tumors in some cancer patients, they also lead to serious adverse immune-mediated reactions,6 calling for research to identify features unique to tumor-reactive CTLs. One subset of CTLs that may harbor such distinctive properties are tissue-resident memory T cells (TRM), which mediate the response to anti-tumor vaccines' and facilitate rejection of tumors in animal models.8 TRM responses have also recently been shown by Applicant9 and others10 to associate with better survival in human solid tumors. The molecular features of TRM cells' response has been characterized in the setting of infection and involves rapid clonal expansion and upregulation of molecules aiding recruitment and activation of additional immune cells, alongside the traditional effector functions of CTL.11 However, the molecular features that drive the anti-tumor functions of human TRM cells was previously unknown. To address this question, the Applicants compared the transcriptome of TRM and non-TRM CTLs present in tumor and normal lung tissue samples.


CD103 Expressing CTLs in Human Lungs are Enriched for Core Tissue Residency Features

CTLs were isolated from lung tumor and adjacent uninvolved lung tissue samples provided by patients (n=30) with treatment-naïve early-stage non-small cell lung cancer (NSCLC), then sorted according to CD103 expression to separate TRM from non-TRM cells (FIG. 7). The transcriptomes of each population were determined by RNA sequencing (RNA-Seq). Unbiased visualization of RNA-seq data of CTLs from normal lung using 2D t-stochastic neighbor embedding (tSNE) revealed the distinct nature of CD103+and CD103 CTLs (FIG. 1A); nearly 700 transcripts were differentially expressed between the two populations (FIG. 1B and Table 3). Transcripts expressed at higher levels in CD103+ CTLs included several previously linked to TRM phenotype, such as S1PR1, S1PR5, ITGA1, RBPJ12,13. Gene set enrichment analysis (GSEA) of lung CD103+ CTLs showed that the pattern of these transcripts' expression correlated with a core tissue residency signature14, previously defined by integration of transcriptomic datasets generated from murine CD8+ TRM cells isolated from several organs (FIG. 1C). The Applicants confirmed that lung CD103+ CTLs express CD49A13, an established TRM molecule, and do not express KLRG1, linked to effector cells13, at the protein level (FIG. 1D and FIG. 8). Together, these data confirm that CD103+ CTLs in human lungs are highly enriched for TRM cells; for simplicity, hereafter CD103+ CTLs are referred to as TRM cells and CD103 CTLs as non-TRM cells.


TRM Cells in Human Lungs are Transcriptionally Distinct from Previously Characterized TRM Cells


Differentially expressed transcripts between lung CD103+and CD103 CTLs were compared with those reported for other TRM cells. The comparison with human skin TRM cells15 revealed limited overlap; the majority of transcripts differentially expressed in skin TRM cells relative to other CTLs were not differentially expressed between lung TRM and non-TRM cells (FIG. 1E). Similarly, comparisons with gene signatures of murine TRM cells isolated from multiple organs14 revealed limited overlap (FIG. 1E, FIG. 1F), although core tissue-residency features were well preserved. However, those differentially expressed transcripts that were not preserved across organs, or species, were not significantly enriched (FIG. 55). Thus, the transcriptional program, outside of a core tissue residency program of human lung TRM cells is quite distinct from that of human skin TRM cells and murine TRM cells present in several organs, and importantly, many of the features observed in human lung TRM cells have not been previously reported (Table 3)13.


TRM Cells in Normal Lung and Lung Tumors Share Tissue Residency Features, but are Otherwise Distinct

The Applicants analyzed whether TRM cells in lung tumors share tissue residency features with TRM cells in adjacent normal lung tissue. Gene set enrichment analysis (GSEA) of lung tumor-infiltrating CD103+ CTLs showed that their transcript expression correlated with the core murine tissue residency signature14, implying that even in tumors, CD103 expression defines TRM cells (FIG. 2A). Furthermore, over 300 transcripts were differentially expressed between CD103+and CD103 CTLs present in lung tumors, and these included several transcripts previously linked to TRM cells (Table 4). However, CD103+and CD103 CTLs from normal lung and tumor clustered separately (as 4 subpopulations) on tSNE plots (FIG. 2B). Nearly two-thirds of the TRM properties, i.e., transcripts differentially expressed between CD103+and CD103 CTLs, in tumors were different from those of normal lung TRM cells (FIG. 2C and Table 4).


Standard and weighted co-expression analysis (Methods) of the 89 ‘shared tissue residency’ transcripts (FIG. 2D) revealed a number of novel genes whose expression was highly correlated with known tissue residency (TRM) genes, showing that their products play important roles in the development, trafficking or function of lung tumor-infiltrating TRM cells (FIG. 2E, FIG. 2F). Notable examples encoding products functioning in tumor TRM migration or retention include GPR25, SRGAP3, AMICA1, CAPG, ADAM19, and NUAK2 (FIG. 2E-2F).


Another ‘shared tissue residency’ transcript was PDCD1, encoding PD-1 (FIG. 2E-2F). The Applicants confirmed at the protein level that PD-1 is expressed at higher levels in both tumor and lung TRM cells compared to non-TRM cells (FIG. 2G and FIG. 9). Although PD-1 expression is considered typical of exhausted T cells3, recent reports have suggested that high PD-1 expression is a tissue residency feature of brain TRM cells independent of antigen stimulation16,17, and of murine TRM cells from multiple organ systems14. In support of the conclusion that high expression of PD-1 reflects tissue residency rather than exhaustion, ex vivo stimulation of TRM and non-TRM cells isolated from both lung and tumor tissue resulted in robust up-regulation of TCR-activation-induced genes (NR4A1, CD69, TNFRSF9 (4-1BB), EGR2) and cytokines (TNF, IFNG) (FIG. 2H). In addition to PDCD1, ‘shared tissue-residency’ transcripts included several (SPRY118, CD22619, TMIGD220, CLNK21, KLRC122) that encode products reported to play a regulatory role in other immune cell types (FIG. 2F lower panel). The expression of these inhibitory molecules restrains the functional activity of tumor TRM cells.


Tumor TRM Cells Proliferate, Express the Inhibitory Checkpoint TIM3 and Markers of Enhanced Function

To identify features unique to tumor TRM cells, the Applicants compared their transcriptome to those of lung TRM cells and non-TRM cells in both normal lung and tumors and detected 93 differentially expressed transcripts (FIG. 3A and Table 5). Reactome pathway analysis of ‘tumor TRM-enriched’ transcripts showed significant enrichment for transcripts encoding components of the canonical cell cycle, mitosis and DNA replication machinery (FIG. 3B). The tumor TRM subset thus appears to be highly enriched for proliferating CTLs, presumably responding to tumor-associated antigens (TAA). Unique molecular identifier (UMI)-based T cell receptor (TCR) sequencing assays revealed a more restricted TCR repertoire in TRM cells compared to non-TRM cells in tumors, as shown by significantly lower Shannon-Wiener and Inverse Simpson diversity indices (FIG. 3C and Table 6). Furthermore, the tumor TRM population contained a higher percentage of expanded clonotypes (73% vs. 52% in tumor TRM vs. non-TRM populations) (FIG. 3D). The top expanded clonotype in each patient comprised, on average, 19% of all the clonotypes detected in TRM cells (FIG. 3D and Table 6), showing marked expansion of a single TAA-specific T cell clone in the tumor TRM population. In most patients, some expanded TCR clonotypes detected in the tumor TRM population were shared with cells in the non-TRM population present in same tumor samples (Table 6), reflecting either derivation from common precursors or conversion of tumor TRM cells to effector non-TRM cells.


‘Tumor TRM-enriched’ transcripts that were highly correlated with cell cycle genes encode products with important functions and reflect the molecular features of TRM cells that are actively expanding in response to TAA. HAVCR2, encoding the co-inhibitory checkpoint molecule TIM3, was most correlated and connected with cell cycle genes (FIG. 3E-3F). TIM3 expression is a unique feature of lung tumor TRM cells that is not necessarily linked to exhaustion, as the other transcripts that correlated with expression of TIM3 and cell cycle genes encode molecules that could confer superior functionality such as CD39 (encoded by ENTPD1)23, LAYN24, CXCL1325, CCL326, TNFSF427 (OX-40 ligand), as well as a marker of antigen-specific engagement (4-1BB, encoded by TNFRSF9) (FIG. 3E-3F)28. Robust expression of this set of molecules was observed in neither human lung TRM cells nor in the mouse TRM signature, indicating that the tumor TRM population contains novel cell subsets.


Single-Cell Transcriptomic Analysis Reveals Previously Uncharacterized TRM Subsets

To determine whether ‘tumor TRM-enriched’ transcripts are expressed in all or only a subset of the tumor TRM population, the Applicants performed single-cell RNA-Seq assays in CD103+ and CD103 CTLs isolated from tumor and adjacent normal lung tissue from 12 patients with early-stage lung cancer. Analysis of the ˜12,000 single-cell transcriptomes revealed 5 clusters of TRM cells and 4 clusters of non-TRM cells (FIG. 4A, FIG. 4B). Among the 5 TRM clusters, a greater proportion of cells in the tumor TRM population compared with the lung TRM population was observed in clusters 1-3, while clusters 4 and 5 contained more lung TRM cells (FIG. 4B-4C). Most strikingly, clusters 1-3 contained very few lung TRM cells (FIG. 4C). The ‘tumor TRM-enriched’ transcripts detected in Applicants' analysis of bulk populations (FIG. 3A) were contributed by cells in these subsets.


In agreement with that conclusion, cells in cluster 1 expressed high levels of the 25 cell cycle-related ‘tumor TRM-enriched’ transcripts (FIG. 4D)29, indicating that the enrichment of cell cycle transcripts in the bulk tumor TRM population was contributed by this relatively small subset. Because these cells are actively proliferating, they represent TAA-specific cells. The majority of cells in this cycling cluster were from the tumor TRM population (FIG. 4E). These cells, along with those in the larger cluster 2, were highly enriched for other prominent ‘tumor TRM-enriched’ transcripts like HAVCR2 (TIM3), including those encoding products that could confer superior functionality (e.g., CD39, LAYN, CXCL13, CCL3; FIG. 4F). This shared expression pattern shows that the cycling cluster simply represent cells in cluster 2 that are entering the cell cycle. Confirming this idea, cell-state hierarchy maps of all tumor TRM cells, constructed using Monocle230, revealed that cells in cluster 2 were most similar to the cycling TRM cells (cluster 1) (FIG. 4G and FIG. 10). Additionally, the Applicants found that when performing hierarchical clustering of these cells, the proliferating cluster 1 clustered more with cells assigned to cluster 2 than the other TRM clusters (FIG. 4F). This finding was corroborated when Applicants calculated the average distance in principle component space between each cell in cluster 1 to the other TRM clusters (FIG. 10D). Overall, the single-cell transcriptome analysis uncovered additional distinct subsets of tumor TRM cells that have not previously been described and play an important role in anti-tumor immune responses.


A Subset of Tumor TRM Cells has a Transcriptional Program Indicative of Superior Functional Properties

To dissect the molecular properties unique to tumor-infiltrating TRM cells in each of the 4 larger clusters, the Applicants performed multiple pair-wise single-cell differential gene expression analyses (Methods). Over 250 differentially expressed genes showed higher expression in any one of the Applicants' clusters (FIG. 5A and Table 7), indicating that cells in different clusters had divergent gene expression programs. For example, cells in cluster 3 were highly enriched for transcripts encoding heat shock proteins (e.g., HSPA1A, HSPA1B and HSP90AA1), whereas cells in cluster 5, comprising TRM cells from normal lung and tumor tissue, expressed high levels of IL7R, which encodes the IL-7 receptor, a marker of memory precursor cells31, and transcripts such as GPR18332, MYADM33, VIM34 and ANKRD2835, which encode proteins involved in cell migration and tissue homing (FIG. 5A, FIG. 5B).


Because of their close relationship with cycling TRM cells (FIG. 4D, FIG. 4G), the Applicants' analysis focused on TRM cells in cluster 2. The 91 transcripts expressed more highly by these cells than other TRM clusters (FIG. 5A) included several with encoded products linked to cytotoxic activity such as PRF1, GZMB, GZMA, CTSW31, RAB27A36, ITGAE37 and CRTAM31 (FIG. 5C and FIG. 11), as well as a number encoding effector cytokines and chemokines, such as IFN-γ, CCL3, CXCL13, IL17A and IL26. Cluster 2 also expressed high levels of transcripts encoding transcription factors known to promote the survival of memory or effector CTLs (ID238, STAT339, ZEB24° and ETS-141) or that are involved in establishing and maintaining tissue residency (RBPJ, a key player in Notch signaling13, and BLIMP142, encoded by PRDM1) (FIG. 5C and FIG. 11). TRM cells in cluster 2 also highly expressed ENTPD1 (FIG. 5B, FIG. 5C), which encodes CD39, an ectonucleotidase that cleaves ATP, which may protect this TRM subset from ATP-induced cell death in the ATP-rich tumor microenvironment23. This expression pattern confers highly effective and sustained anti-tumor immune function; in combination with earlier results, it was determined that this ‘highly functional’ TRM subset represents TAA-specific cells that proliferate in tumors.


TRM cells in cluster 2 expressed the highest levels of PDCD1 transcripts (FIG. 5A) and were enriched for transcripts encoding other molecules linked to exhaustion such as TIM3, TIGIT19, and CTLA43, and inhibitors of TCR-induced signaling and activation like CBLB, SLAP, DUSP4, PTPN22 and NR3C1 (glucocorticoid receptor) (FIG. 5A-5C) and FIG. 11)43-46. Nonetheless, these TRM cells exhibited a transcriptional program suggestive of superior effector properties and cell proliferation, and expressed high transcript levels for several co-stimulatory molecules such as 4-1BB, ICOS and GITR (TNFRSF18) (FIG. 5C and FIG. 11)3. More specifically, PDCD1-expressing TRM cells in cluster 2 expressed relatively higher levels of IFNG, CCL3, and CXCL13 transcripts compared with cells not expressing PDCD1 in that cluster and other tumor-infiltrating TRM and non-TRM cells (FIG. 5D). This co-expression program appeared to be specific to the tumor TRM compartment, given it was also reflected in a SAVER-imputed co-expression profiled being identified specifically in the TRM subsets, but not the non-TRM subsets (FIG. 11B). Overall, these findings agree with the bulk RNA-Seq analysis, indicating that inside this specific subset of CTLs expression of inhibitory molecules, like PD-1, does not reflect exhaustion. Instead, it prevents TCR-activation-induced cell death to sustain robust anti-tumor CTL responses23,47.


PD-1- and TIM3-Expressing Tumor-Infiltrating TRM Cells are not Exhausted

To further address whether PDCD1-expressing TRM cells in cluster 2 (highly functional ‘TRM cells’) were exhausted or functionally active, the Applicants performed single-cell RNA-seq in tumor-infiltrating TRM and non-TRM cells, using SMART-seq2 for paired transcriptomic and TCR clonotype analysis31. The TCRβ chains (Methods) in 81% of single cells, the TCRα chain in 77%, and both chains in 70% of cells were reconstructed. As expected, clonally expanded tumor-infiltrating TRM cells, which are reactive to TAA, were significantly enriched for genes specific to ‘highly functional’ TRM cells (FIG. 6A). Among tumor-infiltrating CTLs, a greater proportion of TIM3-expressing (Methods) TRM cells were clonally expanded compared with other TRM and non-TRM cells (FIG. 6B). As expected, TIM3-expressing TRM cells were significantly enriched for key effector cytokines and cytotoxicity transcripts, despite expressing higher levels of PDCD1 (FIG. 6C and FIG. 12). Importantly, it was discovered that a greater proportion of IFNG-expressing cells co-expressed PDCD1 among TIM3-expressing TRM cells compared with non-TRM cells (FIG. 6D).


The higher sensitivity of the SMART-seq2 assay compared to the high-throughput 10× genomics platform also allowed better co-expression analysis due to lower dropout rates31. Co-expression analysis showed that expression of PDCD1 and HAVCR2 (TIM3) correlated with that of activation markers (TNFRSF9 and CD74), IFNG and cytotoxicity-related transcripts more strongly in TRM cells compared with non-TRM cells (FIG. 6E). Specifically, IFNG and PDCD1 expression levels were better correlated in TIM3-expressing TRM cells compared with non-TRM cells (FIG. 6D-FIG. 6E), and the proportion of cells strongly co-expressing these transcripts was notably higher (30% vs. 1%). Overall, these results strongly support that PD1 and TIM3 expressing tumor-infiltrating TRM are not exhausted, but instead are highly functional and are enriched for transcripts (IFNG, PRF1, GZMA) encoding for molecules linked to effector functions.


In keeping with the transcriptomic assays performed by Applicants, it was found that tumor-infiltrating TRM cells that co-expressed PD-1, when stimulated ex-vivo, had significantly higher percentage of cells expressing effector cytokines when compared to the non-TRM CTLs that co-expressed PD-1 (FIG. 50, FIG. 56A). Analysis directly ex-vivo demonstrated there was also greater expression of cytotoxic-associated proteins, granzyme A and granzyme B, in the PD-1+ TRM cells when compared to the PD-1+non-TRM CTLs in the tumor (FIG. 50, FIG. 56B). These data verify that PD-1 expression in the TRM subset of tumor-infiltrating CTLs does not reflect dysfunctional properties.


The Applicants evaluated the protein expression of selected molecules to better discern the tumor-infiltrating TRM subsets. Multi-parameter protein analysis of CTLs present in tumors and adjacent normal lung revealed a subset of TRM (CD103+) cells localized distinctly when the data was visualized in 2D space (FIG. 6F, left). This subset consisted of cells only from tumor tissue (circle, FIG. 6F), and uniquely expressed high levels of TIM3 and lacked IL-7R, indicating that this cluster is the same as the ‘highly functional’ TIM3-expressing TRM cluster (cluster 2) identified by single-cell RNA analysis (FIG. 6F, FIG. 6G and FIG. 13A). Consistent with the single-cell transcriptome analysis, the TIM3-expressing TRM cluster expressed higher levels of CD39, PD-1 and 4-1BB (FIG. 6F, FIG. 6H and FIG. 13B). PD-1 and TIM3 expression levels were also positively correlated with expression of 4-1BB, which is expressed following TCR engagement by antigen (FIG. 6I), indicating that these cells are highly enriched for TAA-specific cells. TIM3-expressing CTLs were detected among tumor-infiltrating TRM cells isolated from both lung cancer and head and neck squamous cell carcinoma (HNSCC) samples (FIG. 6G, right and FIG. 13B, FIG. 13C), but not among non-TRM cells in these treatment naïve tumors or TRM cells in lung. Multi-color immunohistochemistry was used to confirm the presence of TIM-3-expressing TRM cells in lung tumor samples, which also showed enrichment of this subset in TILhiTRMhi “immune hot” tumors (FIG. 53 and Table 7). These findings confirm, at the protein level, the specificity of this ‘highly functional’ TRM subset to tumors.


Given the highly specific expression of TIM3 in the subset of ‘highly functional’ tumor-infiltrating TRM cells, the TIM3 expression levels in the Applicants previous bulk CD8+ TIL transcriptome data9 was used as a surrogate to assess the relative magnitude of this ‘highly functional’ TRM subset in tumors, and thus relate this variable to features linked to better survival outcomes such as TRM density in tumors. The Applicants found a strong positive correlation between transcript levels of TIM3 and CD103 (ITGAE) in tumor-infiltrating CTLs (FIG. 6K), showing that tumors with high TRM density (high ITGAE levels) harbor more ‘highly functional’ TIM3-expressing TRM cells.


Discussion

The disclosed bulk and single-cell transcriptomic analysis of lung and tumor-infiltrating TRM cells reveal that human TRM cells include at least 4 distinct subsets. Although human tumor-infiltrating TRM cells shared some core tissue residency features with those previously described from mouse models of infection and tumors, the vast majority of their molecular features were quite distinct. The most striking discovery was the identification of a ‘highly functional’ TIM3-expressing TRM subset present exclusively in tumors. This subset, although expressing high levels of PD-1 and other molecules previously thought to reflect exhaustion, exhibited a transcriptional program indicative of superior effector, survival and tissue residency properties and proliferated in the tumor milieu.


The Applicants defined a core set of genes commonly expressed in both lung and tumor TRM cells, including a number of novel genes whose expression was highly correlated with known tissue residency (TRM) genes. Any one of these genes may also be important for the development, trafficking or function of lung or lung tumor-infiltrating TRM cells. Some notable examples known or likely to have such functions are GPR25, whose closest homolog, GPR1548, enables homing of T cell subsets to and retention in the colon; AMICA49, encoding JAML (junctional adhesion molecule-like), which contributes to the proliferation and cytokine release of skin-resident γδT cells; and SRGAP, whose product functions in neuronal migration50.


PDCD1 was a prominent hit in the ‘shared lung tissue residency’ gene list, and its expression was confirmed at the protein level in both lung and tumor TRM cells. The fact that PD-1 was expressed in TRM cells isolated from normal lung tissue of subjects with no active infection shows that PD-1 is constitutively expressed by human lung TRM cells, as has been recently described for brain TRM cells16. As PD-1 is expressed most highly by ‘highly functional’ TIM3-expressing tumor-infiltrating TRM cells, they may be the major cellular targets of anti-PD-1 therapy. Differences in the magnitude of this population of TRMs could thus be an explanation for the variation in the clinical response to PD-1 inhibitors, and non-responders may have defects in the de-novo generation of highly functional TIM3-expressing TRM cells. The constitutive expression of PD-1 by TRM cells in the normal lung and presumably other organs (skin, gut and pituitary gland) raises the possibility that anti-PD-1 therapy may non-specifically activate potentially self-reactive TRM cells to cause adverse immune reactions such as pneumonitis, dermatitis, colitis and hypophysitis6.


These findings raise the question of which molecular players are essential for the generation and maintenance of this novel ‘highly functional’ TIM3-expressing subset of TRM cells. This analysis identified a number of potential transcription factors (e.g., STAT3, ID2, ZEB2, ETS-1) and other molecules (e.g., PTPN22, DUSP4, LAYN, KRT86, CD39) that are uniquely expressed in this subset and could thus be key players in their development.


The results herein also provide a rationale for assessing tumor TRM subsets in both early and late phase studies of novel immunotherapies and cancer vaccines to provide early proof for efficacy as well as potential response biomarkers. The ‘highly functional’ TIM3-expressing TRM subset can be readily isolated from tumor samples using the surface markers identified herein and expanded in vitro to screen and test Tom-targeted adoptive T cell therapies. The highly functional TIM3-expressing TRM subset can be enriched for TAA-specific cells, and specifically expanding this TRM subset will improve the efficacy of adoptive T cell therapies.


It is to be understood that the present disclosure is not limited to particular aspects described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.


A number of embodiments of the disclosure have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, the following examples are intended to illustrate but not limit the scope of disclosure described in the claims.


It is to be inferred without explicit recitation and unless otherwise intended, that when the present technology relates to a polypeptide, protein, polynucleotide or antibody, an equivalent or a biologically equivalent of such is intended within the scope of the present technology.


Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety, to the same extent as if each were incorporated by reference individually. In case of conflict, the present specification, including definitions, will control.


The entirety of each patent, patent application, publication or any other reference or document cited herein hereby is incorporated by reference. In case of conflict, the specification, including definitions, will control.


Citation of any patent, patent application, publication or any other document is not an admission that any of the foregoing is pertinent prior art, nor does it constitute any admission as to the contents or date of these publications or documents.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described herein.


All of the features disclosed herein may be combined in any combination. Each feature disclosed in the specification may be replaced by an alternative feature serving a same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, disclosed features (e.g., antibodies) are an example of a genus of equivalent or similar features.


As used herein, all numerical values or numerical ranges include integers within such ranges and fractions of the values or the integers within ranges unless the context clearly indicates otherwise. Further, when a listing of values is described herein (e.g., about 50%, 60%, 70%, 80%, 85% or 86%) the listing includes all intermediate and fractional values thereof (e.g., 54%, 85.4%). Thus, to illustrate, reference to 80% or more identity, includes 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% etc., as well as 81.1%, 81.2%, 81.3%, 81.4%, 81.5%, etc., 82.1%, 82.2%, 82.3%, 82.4%, 82.5%, etc., and so forth.


Reference to an integer with more (greater) or less than includes any number greater or less than the reference number, respectively. Thus, for example, a reference to less than 100, includes 99, 98, 97, etc. all the way down to the number one (1); and less than 10, includes 9, 8, 7, etc. all the way down to the number one (1).


As used herein, all numerical values or ranges include fractions of the values and integers within such ranges and fractions of the integers within such ranges unless the context clearly indicates otherwise. Thus, to illustrate, reference to a numerical range, such as 1-10 includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, as well as 1.1, 1.2, 1.3, 1.4, 1.5, etc., and so forth. Reference to a range of 1-50 therefore includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, etc., up to and including 50, as well as 1.1, 1.2, 1.3, 1.4, 1.5, etc., 2.1, 2.2, 2.3, 2.4, 2.5, etc., and so forth.


Reference to a series of ranges includes ranges which combine the values of the boundaries of different ranges within the series. Thus, to illustrate reference to a series of ranges, for example, of 1-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-75, 75-100, 100-150, 150-200, 200-250, 250-300, 300-400, 400-500, 500-750, 750-1,000, 1,000-1,500, 1,500-2,000, 2,000-2,500, 2,500-3,000, 3,000-3,500, 3,500-4,000, 4,000-4,500, 4,500-5,000, 5,500-6,000, 6,000-7,000, 7,000-8,000, or 8,000-9,000, includes ranges of 10-50, 50-100, 100-1,000, 1,000-3,000, 2,000-4,000, etc.


Modifications can be made to the foregoing without departing from the basic aspects of the technology. Although the technology has been described in substantial detail with reference to one or more specific embodiments, those of ordinary skill in the art will recognize that changes can be made to the embodiments specifically disclosed in this application, yet these modifications and improvements are within the scope and spirit of the technology.


The disclosure is generally disclosed herein using affirmative language to describe the numerous embodiments and aspects. The disclosure also specifically includes embodiments in which particular subject matter is excluded, in full or in part, such as substances or materials, method steps and conditions, protocols, or procedures. For example, in certain embodiments or aspects of the disclosure, materials and/or method steps are excluded. Thus, even though the disclosure is generally not expressed herein in terms of what the disclosure does not include aspects that are not expressly excluded in the disclosure are nevertheless disclosed herein.


The technology illustratively described herein suitably can be practiced in the absence of any element(s) not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising,” “consisting essentially of,” and “consisting of” can be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation and use of such terms and expressions do not exclude any equivalents of the features shown and described or segments thereof, and various modifications are possible within the scope of the technology claimed. The term “a” or “an” can refer to one of or a plurality of the elements it modifies (e.g., “a reagent” can mean one or more reagents) unless it is contextually clear either one of the elements or more than one of the elements is described. The term “about” as used herein refers to a value within 10% of the underlying parameter (i.e., plus or minus 10%), and use of the term “about” at the beginning of a string of values modifies each of the values (i.e., “about 1, 2 and 3” refers to about 1, about 2 and about 3). For example, a weight of “about 100 grams” can include weights between 90 grams and 110 grams. The term “substantially” as used herein refers to a value modifier meaning “at least 95%”, “at least 96%”, “at least 97%”, “at least 98%”, or “at least 99%” and may include 100%. For example, a composition that is substantially free of X, may include less than 5%, less than 4%, less than 3%, less than 2%, or less than 1% of X, and/or X may be absent or undetectable in the composition.


Thus, it should be understood that although the present technology has been specifically disclosed by representative embodiments and optional features, modification and variation of the concepts herein disclosed can be resorted to by those skilled in the art, and such modifications and variations are considered within the scope of this technology.


Methods
Ethics, Sample Processing and Flow Cytometry

The Southampton and South West Hampshire Research Ethics approved the study, and written informed consent was obtained from all subjects. Newly diagnosed, untreated patients with respiratory malignancies or HNSCC were prospectively recruited once referred. Freshly resected tumor tissue and, where available, matched adjacent non-tumor tissue was obtained from lung cancer patients following surgical resection. Samples were processed as described previously70,72. For sorting of CTLs, cells were first incubated with 4° C. FcR block (Miltenyi Biotec) for 10 min, then stained with a mixture of the following antibodies: anti-CD45-FITC (HI30; BioLegend), anti-CD4-PE (RPA-T4; BD Biosciences), anti-CD3-APC-Cy7 (SK7; BioLegend), anti-CD8A-PerCP-Cy5.5 (cSK1; BD Biosciences), and anti-CD103-APC (Ber-ACT8; Biolegend) for 30 min at 4° C. Live/dead discrimination was by DAPI staining CTLS were sorted based on CD103 expression using a BD FACSAria (BD Biosciences) into ice-cold TRIzol LS reagent (Ambion). HNSCC tumors were macroscopically dissected and slowly frozen in 90% FBS and 10% DMSO (Sigma) for storage until samples could be prepared.


For single-cell transcriptomic, stimulation assays, and phenotypic characterization, tumor and lung samples were first dispersed and cryopreserved in freezing media (50% complete RMPI (Gibco), 40% human decomplemented AB serum, 10% DMSO (both Sigma). Cryopreserved samples were thawed prior to staining with a combination of anti-CD45-AlexaFluor700 (HI30; BioLegend); anti-CD3-APC-Cy7 (SK7; Biolegend); anti-CD8A-PerCP-Cy5.5 (SK1; Biolegend); anti-CD103-Pe-Cy7 (Ber-ACT8; Biolegend); CD19/20 (HIB19/2H7; Biolegend); CD14 (HCD14; Biolegend); CD56 (HCD56; Biolegend) and CD4 (OKT4; Biolegend) for flow cytometric analysis and sorting. Live and dead cells were discriminated using propidium iodide (PI). For 10× single-cell transcriptomic analysis (10× Genomics), 1500 cells each of CD103+and CD103 CTLs from tumor and lung samples were sorted and mixed into 50% ice cold PBS, 50% FBS (Sigma) on a BD Aria III or Fusion cell sorter. CTLs for assessments of the bulk transcriptome following stimulation, was collected by sorting 200 cells into 8 μL lysis buffer on an Aria Fusion (BD); for Smart-seq2-based single-cell analysis, CTLs were sorted as above using single cell purity into 4 μL lysis buffer on a BD Aria III as described.


For tumor TRM phenotyping, samples were analyzed on a FACS fusion (BD) following staining with anti-CD45-AlexaFluor700 (HI30; BioLegend); anti-CD3-APC-Cy7 (SK7; Biolegend); anti-CD8A-PerCP-Cy5.5 (SK1; Biolegend); anti-CD103-Pe-Cy7 (Ber-ACT8; Biolegend); CD127-APC (eBioRDR5; eBioscience); anti-CD39-BB515 (TU66; BD); anti-41BB-PE (4B4-1; Biolegend), anti-PD1-BV421 (EH12.1; BD); anti-TIM3-BV605 (F38-2E2; Biolegend). Cells were counter stained with CD19/20 (HIB19/2H7; Biolegend), CD14 (HCD14; Biolegend), CD56 (HCD56; Biolegend) and CD4 (OKT4; Biolegend). Dead cells were discriminated using PI. Phenotypic characterization of lung TRM was completed using the antibodies above with anti-CD49A-PE (SR84; BD) and anti-KLRG1-APC (2F1/KLRG; Biolegend) on a BD LSRII. Data was analyzed in Flowjo 10.4.1, and geometric-mean florescence intensity and population percentage data were exported and visualized in Graphpad Prism (7.0a; Treestar). For tSNE and co-expression analysis of flow cytometry data, each sample was down-sampled to exactly 3,000 randomly selected live and singlet-gated, CD19CD20CD14CD4CD56CD45+CD3+CD8+ CTLs using the gating strategy described above, and 24,000 cells each from the lung and tumor samples were merged to yield 48,000 total cells. A tSNE plot was constructed using 1,000 permutations and default settings in Flowjo 10.4.1, z-score expression was mean centered. Flow cytometry data was exported from FlowJo (using the channel values) and these data were imported into R for co-expression analysis (described below).


Bulk-RNA Sequencing and TCR-Seq

Total RNA was purified using a miRNAeasy kit (Qiagen) from CD103+and CD103 CTLs and was quantified as described previously70,72. For assessment of the stimulated transcriptome, RNA from ˜100 sorted cells was used. Total RNA was amplified according to the Smart-seq2 protocol. cDNA was purified using AMPure XP beads (0.9:1 ratio, Beckman Coulter). From this step, 1 ng of cDNA was used to prepare a standard Nextera XT sequencing library (Nextera XT DNA sample preparation and index kits, Illumina). Samples were sequenced using an Illumina HiSeq2500 to obtain 50-bp single-end reads. For quality control, steps were included to determine total RNA quality and quantity, the optimal number of PCR pre-amplification cycles, and cDNA fragment size. Samples that failed quality control or had a low number of starting cells were eliminated from further sequencing and analysis. TCR-seq was performed as previously described31, using Tru-seq single indexes (Illumina). Sequencing data was mapped and analyzed using MIGEC software with default settings, followed by V(D)J tools with default settings. Mapping QC matrices are included in (Table 6).


10× Single-Cell RNA Sequencing

Samples were processed using 10×v2 chemistry as per manufacturer's recommendations; 11 and 12 cycles were used for cDNA amplification and library preparation respectively. Barcoded RNA was collected and processed following manufacturer recommendations, as described previously. Libraries were sequenced on a HiSeq4000 (Illumina) to obtain 100- and 32-bp paired-end reads using the following read length: read 1, 26 cycles; read 2, 98 cycles; and i7 index, 8 cycles. Samples were pooled together DNA samples from whole blood were extracted using a High salt method and were quantified using the Qubit 2.0 (Thermo). Genotyping was completed through the Infinium Multi-Ethnic Global-8 Kit (Illumina), following the manufacturer's instructions. Raw data from the genotyping analysis was exported using Genotyping module and Plug-in PLINK Input Report Plug-in (v2.1.4) from GenomeStudio v2.0.4 (Illumina). The data quality was assessed using the snpQC package with R and low-quality SNPs were detected: SNPs failing in more than 5% of the samples and SNPs with Illumina's GC scores less than 0.2 in more than 10% of the samples were flagged. Subjects' sex was matched with the genotype data and flagged SNPs were removed for downstream analysis using PLINK (v1.90b3w). Genetic multiplexing of barcoded single-cell RNA-seq was completed using Demuxlet and matched with the Seurat output. Cells with ambiguous or doublet identification were removed from analysis of cluster and/or donor proportions.


Bulk-RNA-Seq Analysis

Bulk RNA-Seq data were mapped against the hg19 reference using TopHat (v2.0.9 (--library-type fr-unstranded --no-coverage-search) and htseq-count -m union -s no -t exon gene_name (part of the HTSeq framework, version 0.7.1)). Trimmomatic (0.36) was used to remove adapters. Values throughout are displayed as log2 TPM (transcripts per million); a value of 1 was added prior to log transformation. To identify genes expressed differentially by various cell types, negative binomial tests for paired comparisons by employing the Bioconductor package DESeq2 (1.14.1) were performed, disabling the default options for independent filtering and Cooks cutoff. The Applicants considered genes to be expressed differentially by any comparison when the DESeq2 analysis resulted in a Benjamini-Hochberg-adjusted P value of <0.05 and a fold change of at least 2. Union gene signatures were calculated using the online tool jVenn, of which genes must have common directionality. GSEA, correlations, and heatmaps were generated as previously described31,72 For the preservation of complementary signatures, data from Cheuk, et al 2017 was downloaded from code GSE83637 and differential expressed was completed as above, for the murine composite signature, orthologues between human and murine signatures were compared using Biomart. Reactome pathways were generated using the online tool for tumor TRM-specific genes, a pathway was considered significantly different if the FDR (q) values was <0.05 (Table 5). Visualizations were generated in ggplot2 using custom scripts, while expression values were calculated using Graphpad Prism? (7.0a). For tSNE analysis, the data frame was filtered to genes with >1 TPM expression in at least one condition and visualizations created using the top 2000 most variable genes, as calculated in DESeq2 (1.18.1); this allowed for unbiased visualization of the Log2 (TPM+1) data, using package Rtsne (0.13). Co-expression networks were generated in gplots (3.0.1) using the heatmap2 function, while weighted correlation analysis was completed using WGCNA (1.61) from the Log2 (TPM+1) data matrix and the function exportNetworkToCytoscape at Beta=5, weighted=true, threshold=0.05. Networks were generated in Gephi (0.92) using Fruchterman Reingold and Noverlap functions. The size and color were scaled according to the Average Degree as calculated in Gephi, while the edge width was scaled according to the WGCNA edge weight value. The statistical analysis of the overlap between gene sets was calculated in R (v3.5.0) using the fisher.test function (Stats—v3.5.0) using the number of total quantified genes used for DESeq2, as the total value, with alternative=“greater”.


Single-cell RNA-Seq analysis Raw 10× data was processed as previously described31, merging multiple sequencing runs using cellranger count function in cell ranger, then merging multiple cell types with cell ranger aggr. The merged data was transferred to the R statistical environment for analysis using the package Seurat (v2.2.1). Only cells expressing more than 200 genes and genes expressed in at least 3 cells were included in the analysis. The data was then log-normalized and scaled per cell and variable genes were detected. Transcriptomic data from each cell was then further normalized by the number of UMI-detected and mitochondrial genes. A principal component analysis was then run on variable genes, and the first 8 principal components (PCs) were selected for further analyses based on the standard deviation of PCs, as determined by an elbow plot in Seurat. Cells were clustered using the FindClusters function in Seurat with default settings, resolution=0.6 and 8 PCs. Differential expression between clusters was determined by converting the data to CPM and analyzing cluster specific differences using MAST (q<0.01). A gene was considered significantly different, only if the gene was commonly positively enriched in every comparison for a singular cluster31. Further visualizations of exported normalized data were generated using the Seurat package and custom R scripts. Cell-state hierarchy maps were generated using Monocle version 2.6.130 and default settings, including the most variable genes identified in Seurat for consistency. Average expression across a cell cluster was calculated using the AverageExpression function, and downsampling was achieved using the SubsetData function (both in Seurat). Distance between clusters was calculated by calculating a particular cells location in PCA space (Principle component 1:3) using the function GetCellembeddings (in Seurat), the values for each cell were then scaled per column (Scale function, core R) where described, and finally a distance matrix was calculated (dist function, core R, method=euclidean). This matrix was filtered to the cells assigned to cluster 1, and the mean distance of each cell in cluster 1 to all cells in each of the remaining TRM clusters (2,3,4,5) was calculated. The clustering analysis was completed using the hclust function in R (stats, R v3.5.0) with average linkage and generated from the spearman correlation analysis of each cell's location in PCA space (as above). SAVER co-expression analysis was completed on the raw-UMI counts of the TRM cells (clusters 1-5) and the non-TRM cells (remaining cells) using the function saver (v1.1.1) with pred.genes.only=TRUE, estimates.only=FALSE on transcripts assigned as uniquely enriched in cluster 2, removing genes not expressed in any cells in the non-TRM compartment. Correlation values were isolated using the cor.genes function in SAVER and co-expression plots generated as described above. Smart-seq2 single cell analysis was completed as previously described using TraCer and custom scripts to identify αβ chains and to remove cells with low QC values as previously described. Here, cells with fewer than 200,000 reads and lesser than 30% of sequenced bases assigned to mRNA were removed. Samples were mapped as described for the bulk population analysis, and the data was log transformed and displayed as normalized TPM counts; a value of 1 was added to low or zero values prior to log transformation. Visualizations were completed in ggplot2, Prism v7 (as above) and custom scripts in TraCer. A cell was considered expanded when both the most highly expressed α and β TCR chain sequences matched other cells with the same criteria. Cells were considered not expanded when neither a or 13 TCR chain sequences matched those of any other cells. A cell was considered TIM3+when the expression of HAVCR2 was greater than 10 TPM, while a cell was considered cycling if expression of cell cycle genes TOP2A and/or MKI67 was greater than 10 TPM. Differential expression profiling was completed using MAST (q<0.05) as previously described31.


Matched flow cytometry data was analyzed using FlowJo v10.4.1, values and gates were exported into ggplot and “in-silico gates” were applied using custom scripts in R. Given ˜85% of the CD103+ cells were TIM-3+ from the flow cytometry data, cells were broadly classified into TRM or non-TRM based on an individual cell's protein expression (FACS gating). Where there was no available cell-specific associated protein data, CD3+ T cells were classified based on the lack of expression of CD4 and FOXP3, to remove CD4+ cells. Next, the single cell transcriptomes were stratified into TRM or non-TRM cells when expression of TRM associated genes, ITGAE (CD103), RBPJ and/or ZNF683 (HOBIT) were greater than 10 TRM counts. Differential gene expression analysis was completed as above.


Multiplex Immunohistochemistry

Patients included in this cohort had a known diagnosis of lung cancer. 23 patients were selected in total, categorizing the donors using criteria previously reported9. A multiplexed IHC method was utilized for repeated staining of a single paraffin-embedded tissue slide. Deparaffinisation, rehydration, antigen retrieval and IHC staining was carried out using a Dako PT Link Autostainer. Antigen retrieval was performed using the EnVision FLEX Target Retrieval Solution, High pH (Agilent Dako) for all antibodies. The slide was first stained with a standard primary antibody followed by an appropriate biotin-linked secondary antibody and horseradish peroxidase (HRP)-conjugated streptavidin to amplify the signal. Peroxidase labelled compounds were revealed using 3-amino-9-ethylcarbazole (AEC), an aqueous substrate that results in red staining, or DAB that results in brown staining, and counter stained using hematoxylin (blue).


The slides were stained initially with Cytokeratin (pre-diluted, Clone AE1/AE3; Agilent Dako) then sequentially with anti-CD8a (pre-diluted Kit IR62361-2; clone C8/144B; Agilent Dako), anti-CD103 (1:500; EPR4166(2); abcam) and anti-TIM-3 (1:50; D5D5R; Cell Signaling Technology). The slides were scanned at high resolution using a Zeiss Axio Scan.Z1 with a 20× air immersion objective. Between each staining iteration, antigen retrieval was performed along with removal of the labile AEC staining and denaturation of the preceding antibodies using a set of organic solvent based de-staining buffers; 50% ethanol for 2 minutes; 100% ethanol for 2 minutes; 100% xylene for 2 minutes; 100% ethanol for 2 minutes; 50% ethanol for 2 minutes. This process did not affect DAB staining. The process was repeated for each of the antibodies.


Bright field images were separated into color channels in imaging processing software ImageJ FIJI81 (ImageJ Windows 64-bit final version). For the TILhighTRMhigh and TILlowTRMlow tumors the number of CD8+CD103+TIM3+ cells were quantified manually. Two samples with ≤3 CD8+CD103+ CTLs quantified were removed, to prevent calculating percentages of single events, resulting in a final number of 21 samples. These images were processed and combined to create pseudo-color multiplexed images. The raw counts for each protein, individually and together are presented in Table 7, as the number of cells per 0.15 mm2.


OMNI-ATAC-Seq

CTLs were FACS sorted from cryopreserved lung cancer samples as described above, using the following antibody cocktail: anti-CD45-AlexaFluor700 (HI30; BioLegend); anti-CD3-APC-Cy7 (SK7; BioLegend); anti-CD8A-PerCP-Cy5.5 (SK1; BioLegend); anti-CD103-Pe-Cy7 (Ber-ACT8; BioLegend); anti-CD127-APC (eBioRDR5; ThermoFisher); anti-TIM-3-BV605 (F38-2E2; BioLegend). Cells were counter stained with anti-CD19/20-PEDazzle (HIB19/2H7; BioLegend); anti-CD14-PE-Dazzle (HCD14; BioLegend); and anti-CD4-BV510 (OKT4; BioLegend). Dead cells were discriminated using PI. Samples were sorted into low retention 1.5 ml eppendorfs containing 250 μL FBS and 250 μL PBS. Three to six donors were pooled together to guarantee sufficient cell numbers. For each pool of cells, two or three technical replicates of 15,000-25,000 CTLs were generated for each library.


OMNI-ATAC-seq was performed as described in Corces, et al., with minor modifications. Isolated nuclei were incubated with tagmentation mix (2×TD buffer, 2.5 μL transposase enzyme from Nextera kit, Illuminia) at 37° C. for 30 minutes in a thermomixer, shaking at 1000 RPM. Following tagmentation, the product was eluted in 0.1× Tris-EDTA buffer using DNA Clean and Concentrator-5 kit (Zymo). The Purified product was preamplified for 5 cycles using Kappa 2× enzyme along with Nextera indexes (Illumina) and based on qPCR amplification, an additional 7 cycles of amplification was performed for 20,000 cells. The PCR amplified product was purified using DNA Clean and Concentrator-5 kit (Zymo), and size selection was done using AMPure XP beads (Beckman Coulter). Finally, concentration and quality of libraries were determined by picogreen and bioAnalyzer assays. Equimolar libraries were sequenced as above, or on a NovaSeq 6000 for sequencing.


Next, technical replicates were randomly down sampled to between 25,000,000 to 40,000,000 total reads and merged using Bash scripts, resulting in two TIM-3+IL-7R-TRM pools and two non-TRM pools. These reads were mapped to hg19 with bowtie2 (v2.3.3.1). Chromosomes 1-22, and X were retained, chrY, chrM, and other arbitrary chromosome information based reads were removed. Samtools (v1.9) was used to get the uniquely mappable reads, only reads MAPQ≥30 were considered. Duplicate reads are removed by “MarkDuplicates” utility of Picard tool (v 2.18.14). Before peak calling, tag align files were created, by shifting forward strands by 4 bases, and reverse strands by 5 bases (TN5 shift). Peaks were identified with MACS2 (v 2.1.1.20160309) using the function. -f BED -g ‘hs’-q 0.01 --nomodel --nolambda --keep-dup all --shift -100 --extsize 200. BamCoverage (v2.4.2) was used for converting bam files into bigwig, and further UCSC track generation (same normalization across all ATACseq and RNAseq samples), as per the following example: bamCoverage -b TIL_103 pos.bam -o TIL_103 pos_NormCov.bw -of bigwig -bs 10 --normalizeTo1x 2864785220 --normalizeUsingRPKM -e 200. The R package DiffBind (v2.2.12) was used to highlight differentially accessible peaks (based on DEseq2). R packages of org.Hs.eg.db (v3.4.0 and TxDb.Hsapiens.UCSC.hg19.knownGene (v3.2.2) were used to annotate peaks. Following differential expression peaks were filtered to those within 5 kb of a transcription start site to focus directly on promoter accessibility. The correlation plot (spearman) was completed as described above, using all identified peaks. The plot was clustered according to complete linkage.


Statistical Analysis

The significance of differences among matched samples were determined by Wilcoxon matched-pairs signed rank test unless otherwise stated. Statistical analyses were performed using Graphpad Prism? (7.0a). Spearman correlation coefficient (r value) was used to access significance of correlations between the levels of any two components of interest.


Data Availability

Sequencing data was deposited into the Gene Expression Omnibus.


Immunotherapy is rapidly becoming a mainstream treatment of solid cancers[51,52]; nonetheless, less than 30% of patients benefit from this approach[53]. Thus, there is an urgent need to develop novel immunotherapeutic agents for the patients who do not respond to currently available immunotherapies. Applicants' goal is to identify such novel targets by systematically investigating the molecular mechanisms that drive the development and function of a novel class of cytotoxic T lymphocytes (CTLs) in the tumor immune microenvironment (TIME)—tissue-resident memory cells (TRM), which Applicants have recently shown to be key players in driving effective anti-tumor immune responses in lung cancer[54]. This breakthrough finding (Nature Immunology 2017) was possible because of the ongoing collaboration between the Applicants.


Tissue-resident memory (Tam) CTLs in cancer: Applicants were the first to conclusively show that higher density of TRM cells in tumor tissue (defined here as ‘immune hot’ tumors) predicted better survival outcomes in human cancers, and that this effect was independent of that conferred by the density of the global CD8+ T cell population in tumors[101] (FIG. 49). To understand the molecular features that drive efficient TRM immune responses in the TIME, Applicants performed single-cell and bulk RNA-Seq analysis of purified populations of TRM and non-TRM cells present in tumor and normal lung tissue from lung cancer patients. The key results were: (i) The identification of a novel TIM-3 expressing TRM subset present exclusively in tumors. This subset also expressed high levels of PD-1. Surprisingly, however, they proliferated in the tumor milieu, released effector cytokines when stimulated ex-vivo and exhibited a transcriptional program indicative of superior effector, survival and tissue residency properties (FIG. 2-FIG. 4). This ‘highly functional’ PD-1+TIM-3+TRM subset was validated by functional assays ex-vivo and reflected in the chromatin accessibility profile of this subset. This TIM-3+IL-7R-TRM subset was enriched in responders to PD-1 inhibitors and in tumors with a greater magnitude of CTL responses. These data highlights that not all CTLs expressing PD-1+ are dysfunctional, in particular, TRM cells with the highest PD-1 expression are enriched for features of superior functionality. (ii) Definition of a core set of genes that were enriched in the ‘highly functional’ PD-1+TIM-3+ TRM subset in tumors, which included a number of novel genes (e.g., AMICA, SIPRG, KIR2DL4) whose expression was highly correlated with known tissue residency (TRM) genes. Any of these genes are likely to be critically important for the development, trafficking or function of tumor-infiltrating TRM cells. (iii) M1hot myeloid cells in the TIME were associated with robust TRM anti-tumor responses. This finding was revealed by Applicants' novel integrated weighted gene correlation network analysis (iWGCNA) analysis of matched CTLs and myeloid cells.


Applicants hypothesize, without being limited to a particular theory: (i) ‘Highly functional’ PD-1+TIM-3+ TRM subset are increased in numbers and qualitatively superior in patients with ‘immune hot’ tumors and in ‘responders’ to anti-PD1 therapy. (ii) Expansion of this TRM subset in ‘immune hot’ tumors is positively correlated with expansion of myeloid subsets (M1hot) that promote anti-tumor immunity. (iii) ‘Candidate molecules’ (AMICA, SIRPG, CD38 etc.,) whose expression is enriched in ‘highly functional’ TRM cells are promising immunotherapy targets to boost anti-tumor TRM responses.


Results

The identification of molecular players and pathways that lead to the generation of effective anti-tumor TRM immune responses will inform the discovery of new drug targets for treating cancer. Current knowledge of these players is vastly incomplete, as investigative studies are mainly focused on genes and molecules identified based on a priori concepts in immunology and cell biology and have thus far neglected the study of tumor-infiltrating TRM cells. Applicants' team performed the first and largest unbiased survey of bulk and single-cell transcriptomes from purified TRM CTLs isolated from tumors of patients with cancer.


TRM CTL responses have also recently been shown by Applicants9 and others10 to be associated with better survival in patients with solid tumors. The molecular features of TRM cells' responses have been characterized in infection models, and involve rapid clonal expansion and upregulation of molecules aiding recruitment and activation of additional immune cells alongside the conventional effector functions of CTLs11. To date, the properties of TRM cells found in the background lung, compared to those in the tumor are not fully elucidated. Furthermore, the properties of these cell subsets in the context of immunotherapy are still poorly understood. To address this question, Applicants compared the transcriptome of TRM and non-TRM CTLs present in tumor and normal lung tissue samples from treatment naïve patients with lung cancer. Furthermore, Applicants investigated the same tissue resident populations in head and neck squamous cell carcinoma and during immunotherapy regimes. Key results are summarized below:


Shared Features of TRM Cells in Human Lungs and Tumor.

Applicants compared the transcriptome of CTLs isolated from lung tumor and adjacent uninvolved lung tissue samples obtained from patients (n=30) with treatment-naïve lung cancer, sorted according to CD103 expression to separate TRM from non-TRM cells. Lung CD103+ and CD103 CTLs clustered separately and showed differential expression of nearly 700 transcripts including several previously linked to TRM phenotypes (FIG. 2). These data confirm that CD103+ CTLs in human lungs and tumors are highly enriched for TRM cells; hereafter Applicants refer to CD103+ CTLs as TRM cells and CD103 CTLs as non-TRM cells. Applicants next asked if TRM cells in lung tumors share tissue residency features with TRM cells in adjacent normal lung tissue. Nearly one-third (89/306) of the TRM properties, i.e., transcripts differentially expressed between CD103+and CD103 CTLs in tumors that were shared with those of normal lung TRM cells (FIG. 2C, venn diagram). Weighted gene co-expression network analysis (WGCNA) of the 89 ‘shared tissue residency’ transcripts revealed a number of novel genes whose expression was highly correlated with known tissue residency genes (S1PR1, S1PR5, ITGA1, HOBIT, RBPJ12,13), suggesting that their products may also play important roles in the development, trafficking or function of TRM cells (FIG. 2E). Notable examples encoding products likely to be involved in TRM functionality, migration or retention include SRGAP317, AMICA118, CAPG19, ADAM1920, and NUAK221 (FIG. 2E).


PD-1 Expression is a Feature of Tumor and Lung TRM Cells.

Another important ‘shared tissue residency’ transcript was PDCD1, encoding PD-1 (FIG. 2E). Although PD-1 expression is considered typical of exhausted T cells as well as activated cells3, recent reports have suggested that high PD-1 expression is a tissue residency feature of brain TRM cells independent of antigen stimulation22,23, and of murine TRM cells from multiple organ systems14. In support of the conclusion that high expression of PD-1 reflects tissue residency, rather than exhaustion, Applicants found that when TRM and non-TRM cells isolated from both lung and tumor tissue were stimulated ex vivo, they showed robust up-regulation of TCR-activation-induced genes and cytokines (TNF, IFNG) (data not shown). In addition to PDCD1, ‘shared tissue-residency’ transcripts included several (SPRY124, TMIGD225, CLNK26) that encode products reported to play a regulatory role in other immune cell types (FIG. 2E). Applicants speculate that the expression of these inhibitory molecules may restrain the functional activity of tumor TRM cells and may represent targets for future immunotherapies.


Tumor TRM Cells were Clonally Expanded, Proliferate and Express Markers of Enhanced Function.


To identify features unique to tumor TRM cells, Applicants compared the transcriptome of TRM cells and non-TRM cells from both normal lung and tumors and detected 93 differentially expressed transcripts (FIG. 3A) specifically in this subset, hence termed ‘tumor TRM-enriched’ transcripts. Reactome pathway analysis of these ‘tumor TRM-enriched’ transcripts showed significant enrichment for transcripts encoding components of the canonical cell cycle, mitosis and DNA replication machinery (FIG. 3B). The tumor TRM subset thus appears to be highly enriched for proliferating CTLs, presumably responding to tumor-associated antigens (TAA), despite PD-1 expression. Unique molecular identifier (UMI)-based T cell receptor (TCR) sequencing assays revealed that TRM cells in tumors expressed a significantly more restricted TCR repertoire than non-TRM cells in tumors. Furthermore, the tumor TRM population contained a higher mean percentage of expanded clonotypes (73% versus. 52%, in tumor TRM versus. non-TRM populations, data not shown).


‘Tumor TRM-enriched’ transcripts that were highly correlated with cell cycle genes may encode products with important functions, as they are likely to reflect the molecular features of TRM cells that are actively expanding in response to TAA. HAVCR2, encoding the co-inhibitory checkpoint molecule TIM-3, was most correlated and connected with cell cycle genes (FIG. 3E). Thus, TIM-3 expression may be a feature of lung tumor TRM cells that is not linked to exhaustion, but rather reflects a state of ‘high functionality, as the other transcripts that correlated with expression of TIM-3 and cell cycle genes encode molecules that likely confer superior functionality, such as CD39 (encoded by ENTPD1)30, CXCL1331, CCL332, TNFSF433 (OX-40 ligand), as well as a marker of antigen-specific engagement (4-1BB)34 (FIG. 3E). Robust expression of this set of molecules was not observed in either human lung TRM cells or in the mouse TRM signatures13,14,35, indicating that the tumor TRM population contains novel cell subsets.


Single-Cell Transcriptomic Analysis Reveals Previously Uncharacterized TRM Subsets.

To determine whether ‘tumor TRM-enriched’ transcripts are expressed in all or only a subset of the tumor TRM population, Applicants performed low resolution (10× platform) single-cell RNA-seq assays in CD103+and CD103 CTLs isolated from tumor and matched adjacent normal lung tissue from 12 patients with early-stage lung cancer. Analysis of the ˜12,000 single-cell transcriptomes revealed 5 clusters of TRM cells and 4 clusters of non-TRM cells (FIG. 4A, FIG. 4B). Among the 5 TRM clusters, clusters 1-3 contained a greater proportion of the tumor TRM population while clusters 4 and 5 contained more lung TRM cells (FIG. 4C). Most strikingly, clusters 1-3 contained very few lung TRM cells (FIG. 4C). Applicants infer that the ‘tumor TRM-enriched’ transcripts detected in Applicants' analysis of bulk populations were likely to be contributed by cells in these subsets. In agreement with that conclusion, cells in cluster 1 expressed high levels of the 25 cell cycle-related ‘tumor TRM-enriched’ transcripts36, indicating that the enrichment of cell cycle transcripts in the bulk tumor TRM population was contributed by this relatively small subset. Because these cells are actively proliferating, they likely represent TAA-specific cells. The majority of cells in this cycling cluster were from the tumor TRM population. These cells, as well as those in the larger cluster 2, were highly enriched for other prominent ‘tumor Tom-enriched’ transcripts like HAVCR2 (TIM-3), including those encoding products that could confer superior functionality (e.g., CD399, CXCL1331, CCL332), consistent with recent reports28,29. This shared expression pattern suggests that the cycling cluster (cluster 1) may simply represent cells in cluster 2 that are entering the cell cycle. Confirming this idea, cell-state hierarchy maps of all TRM cells, constructed using Monocle237, revealed that cells in cluster 2 were most similar to the cycling TRM cells (cluster 1, data not shown). Overall, Applicants' single-cell transcriptome uncovered additional phenotypically distinct subsets of tumor TRM cells that have not previously been described and are likely to play an important role in anti-tumor immune responses.


TIM-3+IL7R TRM Subset has a Transcriptional Program Indicative of Superior Functional Properties.


Because of their close relationship with cycling TRM cells, Applicants focused Applicants' analysis on the TRM cells in cluster 2. The 91 transcripts enriched in cluster 2 compared to the other TRM clusters included several which encoded products linked to cytotoxic activity such as PRF1, GZMB, GZMA, CTSW38, and CRTAM38, as well as transcripts encoding effector cytokines and chemokines such as IFNG, CCL3, CXCL13, IL17A and IL26 (FIG. 5C and data not shown). Cluster 2 also expressed high levels of transcripts encoding transcription factors known to promote the survival of memory or effector CTLs (ID245, STAT346, ZEB247) or those that are involved in establishing and maintaining tissue residency (RBPJ, a key player in Notch signaling13, and BLIMP135, encoded by PRDM1). TRM cells in cluster 2 also strongly expressed ENTPD1, which encodes CD39, an ectonucleotidase that cleaves ATP, which may protect this TRM subset from ATP-induced cell death in the ATP-rich tumor microenvironment30 and has recently been shown to be enriched for tumor neo-antigen specific CTLs49,50. This expression pattern likely confers highly effective anti-tumor immune function; in combination with earlier results, Applicants conclude that this ‘highly functional TIM-3+IL7RTRM subset’ likely represents TAA-specific cells that were enriched for transcripts linked to cytotoxicity.


Intriguingly, TRM cells in cluster 2 (TIM-3+IL7R subset) expressed the highest levels of PDCD1 transcripts and were enriched for transcripts encoding other molecules linked to inhibitory functions such as TIM-3, TIGIT51, and CTLA452-54. Nonetheless, these TRM cells exhibited a transcriptional program suggestive of superior effector properties and cell proliferation expressed high transcript levels for cytotoxicity molecules (Perforin, Granzyme A and Granzyme B) and several co-stimulatory molecules such as 4-1BB, ICOS and GITR (TNFRSF18) (FIG. 5C and data not shown).3 More specifically, PDCD1-expressing TRM cells in cluster 2 expressed relatively higher levels of IFNG, CCL3, and CXCL13 transcripts compared with cells not expressing PDCD1 in that cluster and other tumor-infiltrating TRM and non-TRM cells (FIG. 5D. Overall, these findings agree with the bulk RNA-seq analysis, indicating that expression of inhibitory molecules, like PD-1, does not reflect exhaustion. Instead, it may prevent TCR-activation-induced cell death to sustain robust anti-tumor CTL responses.


PD-1- and TIM-3-Expressing Tumor-Infiltrating TRM Cells are not Exhausted.

To further support the case that PDCD1-expressing TRM cells in cluster 2 (TIM-3+IL7R ‘highly functional’ TRM cells) are not exhausted, but instead highly functional, Applicants performed single-cell RNA-seq in tumor-infiltrating TRM and non-TRM cells, using the more sensitive Smart-seq2 assay for paired transcriptomic and TCR clonotype analysis38. As expected, clonally expanded tumor-infiltrating TRM cells, which are likely to be reactive to TAA, were significantly enriched for genes specific to ‘highly functional’ TIM-3+IL7R TRM cells. Among tumor-infiltrating CTLs, a greater proportion of TIM-3-expressing TRM cells were clonally expanded compared with other TRM and non-TRM cells (FIG. 6A, FIG. 6B). Furthermore, TIM-3-expressing TRM cells were significantly enriched for key effector cytokines and cytotoxicity transcripts, despite expressing significantly higher levels of PDCD1 (data not shown). The higher sensitivity of the SMART-seq2 assay compared to the 10× genomics platform also allowed better co-expression analysis38. Specifically, IFNG and PDCD1 expression levels were better correlated in TIM-3-expressing TRM cells compared with non-TRM cells (FIG. 6D), and the proportion of cells strongly co-expressing these transcripts was notably higher (30% versus. 1%). Overall, these results strongly support that PD-1 and TIM-3 expressing tumor-infiltrating TRM cells were not exhausted, but instead were enriched for transcripts (IFNG, PRF1, GZMA) encoding for molecules linked to effector functions are “highly functional.”


Functional and Protein Validations.

In keeping with Applicants' transcriptomic assays, when stimulated ex-vivo, tumor-infiltrating TRM cells that co-expressed PD-1 (stained before stimulation) had significantly higher percentage of cells expressing effector cytokines, when compared to the non-TRM CTLs that co-expressed PD-1 (FIG. 50). Analysis directly ex-vivo demonstrated there was also greater expression of cytotoxic-associated proteins, granzyme A and granzyme B, in the PD-1+ TRM cells when compared to the PD-1+non-TRM CTLs in the tumor (FIG. 50). These data verify that PD-1 expression in the TRM subset of tumor-infiltrating CTLs does not reflect dysfunctional properties.


Tumor Specificity the Highly Functional Tumor TRM Cells.

TIM-3-expressing CTLs were also detected among tumor-infiltrating TRM cells isolated from both treatment naïve lung cancer and head and neck squamous cell carcinoma (HNSCC) samples, but not among non-TRM cells in these treatment naïve tumors or TRM cells in lung. These finding confirmed, at the protein level, the specificity of the TIM-3+IL-7R TRM subset to tumors from two cancer types studied.


Applicants' bulk and single-cell transcriptomic analysis of purified population of TRM cells showed that the molecular program of tumor-infiltrating TRM cells is substantially distinct from that observed in the human background lung tissue or in murine models. The most striking discovery was the identification of a ‘highly functional’ TIM-3-expressing TRM subset present exclusively in tumors. This subset expressed high levels of PD-1 and other molecules previously thought to reflect exhaustion. Surprisingly however, they proliferated in the tumor milieu, were capable of robust up-regulation of TCR-activation-induced genes and protein expression of cytokines when stimulated ex vivo and exhibited a transcriptional program indicative of superior effector, survival and tissue residency properties. TRM subsets and their molecular properties that associate with response to anti-PD1 therapy.


Analysis of CTLs from anti-PD-1 responders Applicants analysed tumor-infiltrating T cells from 19 biopsies (FIG. 54) with known divergent responses to anti-PD-1 therapy. Flow cytometry analysis of tumor TRM cells isolated from responding patients pre-, during-, and post-treatment samples showed an increased proportion of TIM-3+IL-7RTRM cells when compared to the tumor TRM cells from Applicants' cohort of treatment naïve lung cancer patients and those not responding to anti-PD-1 (˜70% versus. ˜24% and ˜9%, respectively; (FIG. 54, FIG. 56B, FIG. 57). Pre-anti-PD-1 therapy that was diminished post-treatment is likely reflective of the clinical antibody blocking flow cytometric analysis (FIG. 54B) Since this population also expressed high levels of PD-1 (FIG. 6F, FIG. 54B) Applicants show that these TRM cells may be the key responder cells to anti-PD-1 therapy. To comprehensively evaluate the molecular features and clonality of the CTLs (FIG. 58A, FIG. 58B) responding to anti-PD-1 therapy, Applicants performed paired single-cell transcriptomic and TCR analysis of CTLs isolated from biopsies both pre- and post-therapy from two donors. Differential expression analysis of all CD8+ tumor-infiltrating CTLs revealed a significant enrichment of markers linked to cytotoxic function (PRF1, GZMB and GZMH) and activation (CD38) in post-treatment compared to pre-treatment samples (FIG. 54C, FIG. 54D). Furthermore, Applicants found sharing of TCR clonotypes (FIG. 58C, FIG. 58D) between CTLs from post and pre-treatment samples (not shown), which suggested that tumor-infiltrating CTLs with the same specificity displayed enhanced cytotoxic properties following anti-PD-1 treatment. Notably, Applicants found increased expression of ITGAE, a marker of TRM cells, in CTLs from post-treatment samples (FIG. 54C, FIG. 54D). GSEA analysis also showed that tumor-infiltrating T cells from post-treatment samples were enriched for TRM features as well as those linked to TIM3+IL7R TRM subset (FIG. 54E, Table 4). Unbiased co-expression analysis of transcripts from post-treatment CTLs demonstrated that that transcripts linked to cytotoxicity (GZMH) and activation (CD38) clustered together with the TRM marker gene (ITGAE; FIG. 54F). Together, these results indicated that anti-PD-1 treatment enhanced the cytotoxic properties of tumor-infiltrating CTLs and that TRM cells largely contributed to this feature.


To provide a further line of evidence for the functional potential of TIM-3+IL-7R-TRM cells and to further characterize their epigenetic profile, Applicants performed OMNI-ATAC-seq on purified populations of tumor-infiltrating TIM3+IL7R-TRM and non-TRM subsets pooled from lung cancer patients (n=9, FIG. 7, FIG. 13). These subsets clustered separately, highlighting the distinct chromatin accessibility profiles of these populations (FIG. 54G). In keeping with transcriptomic analyses (FIG. 2D), Applicants identified greater chromatin accessibility within 5 kb of the transcriptional start site of the CD103 (ITGAE) and KLF3 loci, in the TRM and non-TRM compartment, respectively. Furthermore, consistent with single-cell transcriptional data, the TIM3+IL7R-TRM cells when compared to non-TRM cells showed increased chromatin accessibility of genes encoding effector molecules such as granzyme B and IFN-γ, despite showing increased accessibility at the PDCD1 (PD-1) and TIM-3 (HAVCR2) loci (FIG. 54H). Taken together, these epigenetic and transcriptomic data, combined with protein validation highlighted the potential functionality of the TIM-3+IL-7R-TRM cells, which positively correlated with expression of PD-1 specifically in this subset.


Based on the above findings, Applicants hypothesize, without being limited to a particular theory, that the highly functional ‘PD-1+TIM-3+ TRM subset is one of the key responder cell types to anti-PD1 therapy.


Functional Analysis of Novel Molecules Linked to TRM CTL Development and/or Function.


New molecules linked to TRM immune response: In Applicants' transcriptomic study of total CD8+ TILs, transcripts for molecules that have been shown to be effective immunotherapy targets such as PD-1 and TIM-3 were among the most enriched in tumors with CD8high and CD103high TIL status, which were both independently linked to better anti-tumor immunity and survival outcome. Therefore, Applicants reasoned that other molecules in the list of genes upregulated in tumors with CD8high and CD103high TIL status might also play an important functional role in modulating the magnitude and specificity of anti-tumor immune responses (FIG. 50), such as:


(i) CD38, an ectonucleotidase with various functions including regulation of adenosine signaling, adhesion, and transduction of activation and proliferation signals[162, 163]. Given that purinergic receptors can be therapeutically targeted, it will be pertinent to test how CD39 and CD38 modulate ATP and purinergic signaling to influence the development and function of anti-tumor TRM cells (CD103+CD8+ TILs). Applicants will test functions of these targets.


(ii) KIR2DL4, upregulated in TRM-high tumors, encodes the killer cell immunoglobulin-like receptor KIR2DL4, which has activating and inhibitory functions[164] HLA-G, a non-classical MHC class I molecule, has been shown to engage KIR2DL4 and increase cytokine production by NK cells[165]. Though the expression of HLA-G is highly restricted, several reports have shown its increased expression in tumor tissue, especially in lung cancer[166], so Applicants speculate that HLA-G in tumors may activate CTLs via the KIR2DL4 receptor to enhance their anti-tumor activities.


(iii) SIRPG encodes a member of the immunoglobulin superfamily of signal-regulatory proteins (SIRPs) that interact with the ubiquitously expressed CD47 molecule[167]. Interestingly, SIRPG is the only member of the SIRP family that is expressed on T cells, and its interaction with CD47 expressed on APCs was shown to enhance T cell proliferation and IFN-γ production[168]. Based on the increased expression of SIRPG transcripts in CD103highCD8+ TILs, Applicants speculate that SIRPG may also serve as an important co-stimulatory molecule and its function could be exploited to enhance the anti-tumor function of CTLs.


More recently, Applicants performed additional studies in purified populations of TRM cells in lung and tumor tissue (FIG. 2-FIG. 5). These analyses defined a core set of genes commonly expressed in both lung and tumor TRM cells, including a number of novel genes whose expression was highly correlated with known tissue residency (TRM) genes. Any of these genes may also be critically important for the development, trafficking or function of lung or lung tumor-infiltrating TRM cells. Some notable examples known or likely to have such functions are AMICA168, encoding JAML (junctional adhesion molecule-like), which contributes to the proliferation and cytokine release of skin-resident γδT cells; and SRGAP3, whose product functions in neuronal migration67. Additional TRM candidate molecules that are associated with ‘immune hot’ tumors, M1hot myeloid program, interferon-response signature in tumor cells, and finally responsiveness to anti-PD1 therapy will be tested.


Additionally, Applicants have validated high protein expression of AMICA1 and found heightened expression in tumor infiltrating CD8 T cells, not only substantiating the RNA-seq data, but also highlighting CD8+ TILs as cellular targets of potential immunotherapy intervention. (FIG. 52) Applicants have also validated a knockout system specifically depleting AMICA1 in tumor antigen-specific CD8 T cells. By adoptively transferring these cells into tumor-bearing recipient mice, the Applicants discovered that although AMICA-1−/−CD8 cells efficiently migrate into the tumor micro environment, they fail to facilitate efficient anti-tumor effects compared with control CD8 T cells. These data indicate that a lack of AMICA1 expression specifically in CD8+ TILs ensues loss of functionality. Additionally, B16F10-OVA tumor-bearing mice were treated with either anti-PD-1, anti-AMICA-1 or isotype control antibodies. These data, shown in FIG. 52K further corroborate the previous results by illustrating that treatment with an agonistic anti-AMICA1 antibody significantly impedes tumor growth. The combination of this finding and previous data discussed herein suggests that this effect is mediated via stimulation of tumor infiltrating CD8+ T cells.


EQUIVALENTS

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this technology belongs.


The present technology illustratively described herein may suitably be practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. Thus, for example, the terms “comprising,” “including,” “containing,” etc. shall be read expansively and without limitation. Additionally, the terms and expressions employed herein have been used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the present technology claimed.


Thus, it should be understood that the materials, methods, and examples provided here are representative of preferred aspects, are exemplary, and are not intended as limitations on the scope of the present technology.


The present technology has been described broadly and generically herein. Each of the narrower species and sub-generic groupings falling within the generic disclosure also form part of the present technology. This includes the generic description of the present technology with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein.


In addition, where features or aspects of the present technology are described in terms of Markush groups, those skilled in the art will recognize that the present technology is also thereby described in terms of any individual member or subgroup of members of the Markush group.


All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety, to the same extent as if each were incorporated by reference individually. In case of conflict, the present specification, including definitions, will control.


Other aspects are set forth within the following claims.









TABLE 1





Gene

















AMICA1



CD28H



CHN1



SPRY1



CD226



PTPN22



DUSP4



CLEC2D



KRT86



CD101



CD200R1

















TABLE 2





Gene

















AMICA (JAML)



SPRY1



CHN1



PAG1



PTPN22



DUSP4



ICOS



TNFRSF18 (GITR)



CD28H (TMIGD2)



CD226



TIGIT



KLRC1 (NKG2A)



KLRC2 (NKG2C)



CAPG



MYO1E



CLEC2B (AICL - Activation-Induced C-Type



Lectin)



CLECL1



TNFRSF9 (4-1BB/CD137)



TNFSF4 (OX-40L)



NR3C1



CD7



KLRD1 (CD94)



CLEC2D



ITM2A



VCAM1 (CD106)



KRT81



KRT86



CXCL13



CBLB



KLRC3 (NKG2-E)



KLRB1 (CD161)



CD101



CD109



CD200R1



SLA (SLAP)

















TABLE 3







List of genes differentially expressed between Lung TRM compared to Lung non-TRM













log2FoldChange
pvalue
padj
Mean TPM Lung CD103neg
MeanTPM Lung CD103pos
















ITGAE
3.688320634
1.70E−59
1.97E−55
21.46150476
265.10205


S1PR5
−6.687936244
1.10E−42
6.36E−39
134.1027238
3.67714065


CX3CR1
−6.991370416
1.82E−36
7.04E−33
175.2148667
1.804877645


S1PR1
−3.641962229
1.06E−26
3.07E−23
239.1302906
19.1754866


PRSS23
−4.083087713
3.19E−26
7.40E−23
22.8481059
1.4572142


FCRL3
−5.450452146
3.69E−24
7.13E−21
56.6788171
8.42927178


FGFBP2
−5.23625676
2.83E−20
4.68E−17
287.5229123
7.5970008


LINC00987
−4.335283635
6.93E−20
1.00E−16
11.51608357
0.60433175


ADGRG1
−3.690227626
3.02E−19
3.90E−16
146.5809238
15.91066901


ZNF683
2.840701441
2.39E−18
2.77E−15
91.602989
777.8943737


LDLRAD4
2.720609868
4.83E−17
5.09E−14
4.93274
24.7280175


PLEK
−3.953518263
5.97E−17
5.77E−14
325.5233143
31.67810321


LIMD2
−1.161393759
1.27E−16
1.13E−13
182.1111619
85.68926


MIR4461
1.308404092
4.29E−16
3.55E−13
2173.675619
6586.9165


KLRAP1
−4.875420416
4.06E−15
3.14E−12
32.02053743
3.0425634


PDGFD
−4.717712955
6.21E−15
4.50E−12
29.30154943
1.53936536


C1orf21
−4.088843226
1.51E−14
1.03E−11
13.63393756
0.99581828


FCGR3A
−2.490323421
1.64E−14
1.06E−11
357.0966381
74.9510268


SPRY1
4.365932648
3.96E−14
2.42E−11
3.749139257
82.8237395


ABCC9
1.306250208
6.60E−14
3.83E−11
2.177677476
5.7461988


OPHN1
1.698830765
8.04E−14
4.44E−11
7.505019524
22.160505


LGR6
−4.134216295
3.75E−13
1.98E−10
27.19662095
2.625316415


SNTB2
2.065569735
4.19E−13
2.11E−10
3.784128857
13.9412381


PLAC8
−2.522266407
4.44E−13
2.15E−10
114.6815
26.4785965


LOC102724699
1.780016048
6.86E−13
3.18E−10
8.024455238
27.9874615


FEZ1
−2.934653107
1.47E−12
6.55E−10
22.35391219
3.54457915


KLRG1
−2.873819675
1.88E−12
8.09E−10
469.6674938
74.7741715


GPR155
2.047989691
3.24E−12
1.21E−09
7.462555429
24.60980145


RNF130
−2.989955573
3.08E−12
1.21E−09
110.1369376
19.8595257


SELL
−3.329331038
3.22E−12
1.21E−09
507.2940325
55.0757787


KLF3
−3.67725202
3.02E−12
1.21E−09
62.23310952
8.94888858


KLRC1
3.279902899
3.76E−12
1.36E−09
36.97543338
428.0637866


MTRNR2L2
1.563127479
4.80E−12
1.64E−09
1391.110667
5314.522


ZNF365
−3.395971331
4.80E−12
1.64E−09
6.917136971
1.11013625


PREX1
2.029428202
6.66E−12
2.21E−09
17.72572143
72.19956


MTRNR2L8
1.466995835
6.86E−12
2.21E−09
544.3467143
1855.34295


ARHGEF26-AS1
1.490358206
8.70E−12
2.66E−09
4.932213333
13.310475


JUNB
−1.252749633
8.64E−12
2.66E−09
1745.32781
638.31095


ITGA1
4.051013491
9.38E−12
2.78E−09
7.034438786
137.3742612


PHLDA1
1.983873635
9.82E−12
2.78E−09
25.87213667
89.10818075


RAP1GAP2
−4.254360181
9.60E−12
2.78E−09
12.79643925
0.769949395


A2M
−2.434435477
1.61E−11
4.44E−09
27.18622429
5.6312523


LGALS3
1.474559911
1.91E−11
5.17E−09
541.8120429
685.16675


PLP2
1.585554018
3.40E−11
8.96E−09
133.4817429
328.37947


CLDN11
1.49888062
3.90E−11
1.01E−08
7.071935714
20.91596


KIAA1551
1.53336279
5.04E−11
1.27E−08
136.1961962
372.187995


PLEKHG3
−3.801670968
5.17E−11
1.28E−08
16.75150993
1.15220756


ITGB2
−1.178163171
6.65E−11
1.61E−08
680.3715238
321.599435


ADAM19
2.136052341
7.96E−11
1.89E−08
21.82406658
82.6178222


MIR6723
1.364171561
1.27E−10
2.89E−08
5411.630952
15427.5075


FGR
−3.427375695
1.25E−10
2.89E−08
203.5495476
27.5633367


FAM169A
−3.933059942
3.05E−10
6.67E−08
9.554643095
1.556730675


FMNL3
1.886848299
3.25E−10
6.99E−08
4.030502919
14.83709891


MYO7A
4.503614597
4.04E−10
8.53E−08
0.038636476
13.82020979


LOC643406
1.080015874
4.92E−10
1.02E−07
8.94110381
21.4070425


LAIR2
−3.648996225
7.50E−10
1.53E−07
80.42070281
22.79628975


LINC00536
−2.30294596
1.18E−09
2.36E−07
4.489862762
1.01907325


AMICA1
1.778550701
1.75E−09
3.45E−07
119.9607238
344.4711


VIM
1.494086613
1.96E−09
3.80E−07
491.6159762
1106.35245


PRKDC
1.514072515
2.07E−09
3.93E−07
25.9920519
71.954705


PGK1
1.086986991
2.84E−09
5.22E−07
568.5674429
1142.7099


GNLY
−2.081880512
2.82E−09
5.22E−07
3093.530095
635.69869


VPS13C
1.567869275
3.37E−09
6.11E−07
8.968918914
25.817943


CLNK
4.288010598
5.51E−09
9.83E−07
0.025489571
37.81930265


IL12RB2
2.207617883
6.35E−09
1.12E−06
5.973771714
19.9212583


MTRNR2L10
1.288450447
6.52E−09
1.13E−06
92.07810952
274.15068


C5orf28
−2.365273529
6.65E−09
1.13E−06
28.15868324
10.8994104


KLRF1
−3.513812967
7.27E−09
1.22E−06
193.5823511
14.4933614


MTRNR2L6
1.362905237
8.10E−09
1.34E−06
9.190159048
29.3221775


TMEM200A
3.469977659
8.52E−09
1.39E−06
3.816969743
49.1354955


MTRNR2L1
1.212300682
9.07E−09
1.46E−06
226.1222238
634.7212


SH3BP5
−2.89346707
9.37E−09
1.49E−06
13.15606714
2.10172946


GSG2
3.128523686
1.02E−08
1.61E−06
0.161439895
8.00016295


ANKRD28
2.439836494
1.20E−08
1.83E−06
14.10839
73.65266634


DUSP2
−1.186515607
1.20E−08
1.83E−06
1253.61149
578.04335


MTRNR2L9
1.337497628
1.39E−08
2.10E−06
319.5508095
1052.6489


CADM1
−3.798923884
1.73E−08
2.58E−06
14.14056571
0.541758555


USP28
−2.800231732
1.87E−08
2.74E−06
46.590065
8.1924564


CXCR6
2.074928075
1.95E−08
2.83E−06
215.3580623
799.8171578


OXNAD1
1.165357916
2.04E−08
2.92E−06
51.84040952
126.460545


LOC100129434
1.186595285
2.20E−08
3.08E−06
20.46000667
45.882185


ICAM2
−2.222167739
2.20E−08
3.08E−06
76.36366667
18.5619424


PGLYRP2
3.318268163
2.67E−08
3.69E−06
1.056929062
7.5602649


DNAJB1
−1.413412514
2.70E−08
3.69E−06
802.5950476
348.781017


EZH2
2.541688868
2.83E−08
3.82E−06
7.69050929
28.55026275


CXCR2
−2.872882644
3.15E−08
4.19E−06
25.0598669
3.1510207


CMC1
−2.098618623
3.54E−08
4.67E−06
334.9550048
76.791481


KIR3DL2
−3.16784706
4.66E−08
6.07E−06
44.4269131
5.5029878


PELO
2.512227676
4.82E−08
6.19E−06
14.90672521
80.21213


RIPK2
−2.592150871
4.85E−08
6.19E−06
51.12927
12.00812765


LITAF
−1.186041133
5.17E−08
6.53E−06
489.3827143
224.55413


SRSF2
1.073461158
5.71E−08
7.05E−06
280.4715619
643.1785


ITGAM
−3.288179636
5.69E−08
7.05E−06
20.78114599
9.55108064


SPON2
−3.08944003
5.92E−08
7.23E−06
68.93419057
8.0418225


EOMES
−2.350328769
5.99E−08
7.24E−06
96.09277629
25.55344615


ELOVL5
1.194140558
6.30E−08
7.53E−06
77.90133333
188.919585


ABHD11
−2.246196046
8.68E−08
1.03E−05
28.72630952
8.1834175


RAB12
−1.056317965
8.94E−08
1.05E−05
315.4402381
159.223475


SH2D1B
−3.653555023
9.20E−08
1.07E−05
22.65793566
1.67038849


EGR1
1.328069038
1.11E−07
1.25E−05
90.65356333
180.64925


RCBTB2
−2.761362657
1.26E−07
1.40E−05
65.87080476
19.41631984


ATP8B4
3.615872085
1.31E−07
1.43E−05
0.344809071
10.5492769


RGS1
1.374030196
1.31E−07
1.43E−05
756.459619
1916.0517


ASCL2
−3.713952755
1.33E−07
1.44E−05
10.87647238
0.357964


GPR25
3.450094942
1.71E−07
1.84E−05
3.260915429
49.20251905


SMURF2
1.900071442
2.11E−07
2.22E−05
13.87433392
39.638273


LOC101927374
1.11281412
2.13E−07
2.22E−05
12.26230476
27.5276295


KIAA0825
1.793395112
2.26E−07
2.34E−05
9.062423619
28.9025909


LARP1
1.334004962
2.41E−07
2.45E−05
9.35280619
28.1623345


SNAP23
−1.228426954
2.47E−07
2.49E−05
137.3034905
72.05703075


CISH
1.627753438
2.82E−07
2.79E−05
80.86795833
285.2522457


ZNF559
−3.025142135
2.84E−07
2.79E−05
25.17488419
6.09491092


SLC35D2
2.110097143
2.94E−07
2.84E−05
5.033894524
21.18080975


FAM65B
−1.600964159
2.94E−07
2.84E−05
97.72626048
42.184457


LOC100130093
2.384781043
3.43E−07
3.23E−05
4.471636
23.500032


FAM129A
1.202394244
3.47E−07
3.24E−05
33.137718
72.1486845


ITM2C
1.911897049
3.58E−07
3.32E−05
67.57806086
250.0731207


ARHGAP25
−1.817060321
3.65E−07
3.36E−05
152.4628095
69.0699945


LOC100130872
−1.991189374
3.75E−07
3.43E−05
16.75408481
6.593254745


ZFAS1
1.199358326
3.85E−07
3.49E−05
83.68128333
177.09171


CYBB
−1.793527414
3.93E−07
3.53E−05
64.10834148
11.9938415


PZP
−2.888358053
4.16E−07
3.71E−05
8.12034131
3.009308975


HIST1H2BK
2.05603388
4.22E−07
3.73E−05
39.28850138
123.0758285


MALT1
2.349361739
4.71E−07
4.11E−05
12.3671099
42.27466225


RAPGEF6
1.241140351
4.89E−07
4.20E−05
28.62101667
67.59247


PRR5L
−2.720570835
4.88E−07
4.20E−05
28.4360878
8.383760905


TM9SF3
1.719606775
6.14E−07
5.24E−05
22.233558
74.4089565


LINC00612
−2.822238193
6.87E−07
5.82E−05
13.02071243
2.1673256


RASGRP2
−1.960339855
8.11E−07
6.82E−05
104.0838905
30.4704815


MCF2L2
1.77037345
8.17E−07
6.82E−05
1.075314152
3.41337215


ADD3
−1.398797561
8.31E−07
6.89E−05
159.9318571
75.43510185


XCL1
2.033544975
9.53E−07
7.79E−05
30.51550386
141.3891085


MIR155HG
2.718579249
1.20E−06
9.74E−05
8.770128333
68.19258875


TTC39B
−1.95836329
1.21E−06
9.74E−05
28.75757238
6.09487136


ZNF44
−2.534590645
1.29E−06
0.00010334
39.33668429
12.8156669


HNRNPD
1.22436894
1.34E−06
0.00010555
42.86327286
106.433995


TTC38
−1.605359191
1.34E−06
0.00010555
80.5307819
28.116408


FCMR
−1.777542843
1.36E−06
0.00010696
200.2598944
80.13699245


LINC00504
1.081582043
1.55E−06
0.00012107
26.64122286
62.159235


SHOX
1.380820768
1.67E−06
0.00012931
0.463633286
1.33043075


PDE4D
1.630857417
1.69E−06
0.00012979
10.41079262
30.78342656


MORC2-AS1
−1.720968756
1.89E−06
0.00014451
63.34037095
20.5457955


CCR7
−2.464404119
1.95E−06
0.00014814
239.9860878
49.3558936


DOK2
−1.470162395
2.02E−06
0.0001519
324.6862381
127.6544189


ORMDL2
1.069442343
2.06E−06
0.00015351
113.456781
226.26465


RIN2
−2.966123994
2.09E−06
0.00015443
9.440358186
0.199756825


LDHA
1.049322824
2.11E−06
0.00015527
570.599381
1162.148


SFMBT2
1.948897349
2.13E−06
0.00015533
2.63146119
9.8511154


UGDH-AS1
1.248838088
2.28E−06
0.00016539
19.08877381
48.18311


IVNS1ABP
1.275070942
2.36E−06
0.00017027
148.0731952
400.824054


RASA3
−1.915627975
2.40E−06
0.00017163
66.32533333
21.9665584


MPI
−2.353326054
2.43E−06
0.00017318
28.3699084
6.88767175


SIRT2
−1.499552785
2.62E−06
0.00018564
115.2741905
55.65131365


LILRB1
−2.073507487
2.81E−06
0.00019727
22.42856014
6.9053577


CDK6
1.800012015
2.84E−06
0.00019876
17.0048809
62.511125


CEP350
1.716329718
2.89E−06
0.00020049
10.43966743
38.48460117


CXCR3
1.429112179
3.21E−06
0.00022162
82.86109976
221.8926819


GPM6A
1.873719438
3.39E−06
0.00023287
0.336675162
2.202836


SWSAP1
−1.54571358
3.51E−06
0.00023827
14.06452133
4.7382231


NUPR1
−2.102624894
3.61E−06
0.00024356
110.0524586
23.0499858


SKIL
1.356725934
3.82E−06
0.00025447
36.2539719
73.784065


NUAK2
−1.977103288
3.84E−06
0.00025447
13.48667505
3.09541505


TANC2
3.089882387
4.04E−06
0.00026327
0.553212024
5.12779167


KLF7
−3.106136118
4.04E−06
0.00026327
6.978648795
0.610988815


CPNE7
2.987748945
4.14E−06
0.00026804
3.079236524
27.6457933


PCNX
1.679911819
4.23E−06
0.00027251
10.39656719
32.2845755


ACTN1
−2.74953546
4.27E−06
0.00027343
42.51342762
8.75996527


CUTC
−1.221976687
4.67E−06
0.00029475
129.3552048
69.6624427


GIMAP4
−1.414835705
4.65E−06
0.00029475
445.6157337
190.8786594


PHF14
1.553582494
4.75E−06
0.00029802
5.411563848
12.4822209


LPAR6
−1.548072876
4.78E−06
0.00029823
71.46590388
27.4985452


COTL1
1.219750696
5.12E−06
0.00031774
444.2532048
838.82325


LDLRAP1
−1.734939687
5.18E−06
0.00031968
81.61549524
28.7617736


RNF44
1.68910313
5.26E−06
0.00032294
16.61935648
59.77938


OTUD5
1.846177309
5.54E−06
0.00033832
19.55586529
71.178468


FAM49A
−2.526705269
5.63E−06
0.00034185
29.38951762
6.759340495


KIF5C
2.442095274
5.76E−06
0.00034817
1.484135657
9.82658695


PCBP1
1.474990375
6.32E−06
0.00037993
449.108119
964.3716


B4GALT5
1.766414298
6.54E−06
0.00039088
3.2958552
7.8889765


PERP
1.746555154
6.89E−06
0.00040982
20.26485792
93.237233


ILF3-AS1
−1.401809132
6.97E−06
0.00041245
48.10910714
23.90241965


CCDC144B
1.520739947
7.58E−06
0.0004459
4.185302905
12.8182025


RAC1
1.105059877
7.61E−06
0.0004459
139.2755238
233.57116


RPS6KA3
1.595115819
8.30E−06
0.0004838
12.37155557
34.417014


GIMAP7
−1.4037857
8.41E−06
0.00048791
764.0689048
367.0225432


DUSP4
2.262161797
8.48E−06
0.00048941
12.86056076
46.99192715


RPL5
1.176379227
9.00E−06
0.00051411
1708.037571
3358.533


DEGS1
1.103804675
9.31E−06
0.00052667
146.0186857
277.532665


LRP1
2.494030823
9.43E−06
0.00053103
1.215511952
4.593950775


FRMD4B
1.967481113
9.81E−06
0.00054713
17.27852171
39.86186793


DDX60
1.740019415
1.02E−05
0.00056735
14.20610748
59.79492642


ARHGEF1
−1.291779535
1.05E−05
0.00058041
212.2836
109.3370274


TMPRSS3
2.104017045
1.09E−05
0.0005971
0.990603448
7.09934565


ARHGAP35
2.020567437
1.13E−05
0.00061628
7.980023814
32.97274923


SPATS2L
1.568699983
1.15E−05
0.00061923
7.175204857
18.4375802


ZNF100
1.727488104
1.16E−05
0.00062335
1.838728252
14.04667465


CTSO
−2.394862763
1.18E−05
0.00063276
87.34779524
28.05486479


SRGAP3
3.083987351
1.21E−05
0.00064522
0.327200095
6.54159999


CHN1
3.016328106
1.29E−05
0.00068228
3.889638771
26.56366172


ASB6
−1.409994218
1.29E−05
0.00068228
24.44135762
10.9425055


NT5E
−2.612624338
1.49E−05
0.00077849
14.35977676
3.21892007


PUS3
−3.022511352
1.49E−05
0.00077849
14.78100877
0.55856775


CHMP6
−1.65237349
1.58E−05
0.0008245
90.8889381
32.4718011


LOC102723824
2.220309075
1.61E−05
0.00083527
8.376731619
17.913781


SRSF8
−1.272937322
1.64E−05
0.00084665
71.34348429
57.41924175


BIN2
−1.259196899
1.67E−05
0.00085116
491.3041429
219.0422681


ZFYVE28
2.300538964
1.70E−05
0.00086536
4.428132524
19.4064535


EHBP1L1
1.996718023
1.73E−05
0.00087228
7.180443862
25.8848635


PTRH1
−2.291611353
1.72E−05
0.00087228
71.97044286
18.2559359


ASCC3
1.525897011
1.80E−05
0.00090279
8.081438562
24.3278745


VDAC1
1.019841564
1.81E−05
0.00090279
141.0238476
235.935545


ZNF18
−2.631248872
1.81E−05
0.00090279
28.62923619
7.869980955


KIF21B
2.166012602
1.83E−05
0.00090745
4.438138
20.382474


LAG3
1.22701912
1.88E−05
0.00092214
87.38349743
217.4806655


ARHGAP11A
1.444394843
1.89E−05
0.00092638
2.611797762
6.46693175


PARP3
−2.89694382
2.07E−05
0.00100857
19.20667543
2.15505298


C16orf89
−2.402216829
2.23E−05
0.00107835
16.13956348
0.8268643


MTPAP
−1.257160683
2.24E−05
0.00107991
28.74861643
13.57233135


TSPAN32
−1.711545059
2.28E−05
0.0010934
99.66786667
46.714372


RASSF4
−2.712424641
2.36E−05
0.00112716
38.27995619
7.67994325


HUWE1
1.478732178
2.38E−05
0.00113113
8.3189656
27.50419295


DOCK5
2.625035961
2.45E−05
0.00115108
1.4117016
6.88680025


TNF
1.537622653
2.43E−05
0.00115108
8.510453143
19.906433


ATP2B1
1.232541924
2.45E−05
0.00115108
53.28257048
120.203785


LZTS1
1.89060308
2.48E−05
0.00116116
1.530348495
6.11112885


CCL28
1.515771195
2.53E−05
0.00117224
6.587727714
13.8866925


POLH
1.362294764
2.52E−05
0.00117224
4.764934857
10.2461875


PLXDC1
1.910398886
2.56E−05
0.00117916
7.218845452
22.21014939


SLC38A2
1.119051382
2.56E−05
0.00117916
53.13309048
117.44348


ADCY3
2.560946699
2.64E−05
0.00120959
0.627494476
5.456133665


MTX3
1.669116918
2.69E−05
0.0012236
3.042661571
14.24616695


ZNRF1
2.828733845
3.09E−05
0.00139642
0.810231405
6.82966755


AKR1C3
−2.587366759
3.30E−05
0.00147422
35.08770348
11.6727318


KIR3DL1
−2.774117252
3.30E−05
0.00147422
39.17617897
4.93104205


KMT2D
2.0488088
3.44E−05
0.00152285
1.4962252
7.7576795


IFNG
1.783908689
3.48E−05
0.00153289
82.55949667
362.1978226


UBE2F
−1.718368644
3.49E−05
0.00153289
55.71082381
21.82958125


BLOC1S3
−1.737490695
3.69E−05
0.0016159
37.0366489
12.4104362


ZNF350
−2.20269071
3.77E−05
0.00164559
39.55514852
17.20023995


KIR2DL3
−2.735915385
3.88E−05
0.0016848
29.8276564
2.69000165


CD14
−2.112206031
3.91E−05
0.00169426
74.05469481
16.6984343


SLC1A5
1.534783918
3.98E−05
0.0017162
33.13000886
96.9581249


RBMS1
1.704885397
4.26E−05
0.00180177
42.58026438
148.25084


NKTR
1.080979938
4.25E−05
0.00180177
34.011989
82.13539


PEX16
−1.01884714
4.27E−05
0.00180177
61.71854743
36.40784535


RAP2B
−1.273692809
4.25E−05
0.00180177
80.36729524
34.5275585


TCOF1
−1.940096541
4.24E−05
0.00180177
20.13614476
8.973999545


HIVEP3
−2.001507989
4.39E−05
0.00184472
7.941141333
3.032539515


KEAP1
−1.22615691
4.45E−05
0.00186341
64.71328551
31.5632675


ARRDC3
−1.17054195
4.54E−05
0.00189564
211.8614238
112.5465397


MXRA7
1.658912627
4.91E−05
0.00204173
3.266608619
15.1301335


ESYT2
1.514083794
5.16E−05
0.00212136
12.05781967
47.540445


NMUR1
−1.773761089
5.15E−05
0.00212136
16.83415457
5.56423905


LINC00892
2.424521999
5.18E−05
0.0021239
24.90726819
170.14904


EIF2B3
−1.937296892
5.22E−05
0.00213377
62.28575714
26.8829665


UBA7
−1.274777668
5.25E−05
0.00213647
89.77450238
52.6846935


OGFRL1
2.379697737
5.32E−05
0.00215872
3.896613762
30.0878519


NOSIP
−1.206988658
5.58E−05
0.00224595
172.3891771
90.073862


APOL1
−1.660848056
5.69E−05
0.00228344
14.78162748
5.5118258


NKX3-1
−2.804697893
5.79E−05
0.00231464
5.651472695
0.701179405


ZNF441
−2.454868826
5.97E−05
0.00236312
8.393922424
2.879041465


YBX3
1.716666696
6.04E−05
0.00238334
24.78591295
61.299884


PARD6G
1.312295036
6.07E−05
0.00238688
4.132179238
12.0712125


LYSMD1
−2.924027783
6.10E−05
0.00239096
6.796088933
0.4503092


KPNA4
1.45711023
6.13E−05
0.00239269
11.01992676
29.1450691


TMEM212
1.058248599
6.45E−05
0.00250388
13.60060286
32.280461


CTLA4
1.435048574
6.53E−05
0.00252477
19.54678733
68.7486734


MYADM
1.060424765
6.59E−05
0.00253937
53.35683857
123.7034305


KLHL5
1.772588118
6.64E−05
0.00254182
2.376725143
9.9981583


PIP4K2A
−1.288193495
6.63E−05
0.00254182
967.4229524
424.5596301


KLHL6
1.598790907
6.70E−05
0.00255588
5.091936467
12.3455271


C15orf53
2.610180897
6.95E−05
0.00262468
2.301744476
24.90123835


DAPK2
1.912434282
6.92E−05
0.00262468
9.456853214
36.7584622


TPST2
−1.273052932
7.03E−05
0.00264731
263.7426048
125.121244


TMEM41A
−1.720382667
7.10E−05
0.00265702
28.74279305
15.40182055


PLAUR
−1.417464169
7.38E−05
0.002748
271.6738353
50.50656925


RBPJ
1.574107492
7.44E−05
0.00275597
65.66283667
211.5952325


LRRC37A3
2.074130192
7.55E−05
0.00279009
0.480966952
2.98394201


EPAS1
2.318444592
7.60E−05
0.00279574
6.038517781
26.05039855


YIPF6
−1.816114456
7.61E−05
0.00279574
12.21552449
5.799607305


TMED1
−1.817944234
7.80E−05
0.00285387
44.66887619
12.76184885


NCOA7
1.293829014
7.85E−05
0.00286513
11.85079605
33.3728845


TRNT1
−1.56957745
8.10E−05
0.00294561
41.74942476
21.60956825


PDCD1
1.960356621
8.23E−05
0.00298567
41.06805581
134.177045


KRT86
2.801705688
8.31E−05
0.00300334
0.77714719
21.05319575


CAPG
1.160396095
8.39E−05
0.0030223
604.9114381
570.63815


CYP51A1
1.217984916
8.92E−05
0.00318443
52.71879524
115.478695


SQLE
1.651331611
9.30E−05
0.00330959
23.50773952
69.026012


EPB41
−1.085276175
9.69E−05
0.00343927
35.59453905
24.4307317


SNRNP35
−1.380326304
9.96E−05
0.00352319
32.07545762
15.3377564


PLEKHO1
2.101609708
0.00010076
0.00355319
10.75456533
34.77226


TFDP2
−1.074732513
0.00010209
0.00358918
13.8775519
7.722759


SLC34A2
−2.614315405
0.00010472
0.00365947
12.70014439
1.766653745


MYC
−1.570814137
0.00010637
0.00370606
58.92450929
22.44566625


TMED5
1.08124454
0.00010738
0.00372154
29.16007667
50.03997411


NTPCR
−2.395567938
0.00010746
0.00372154
64.32159367
21.7462204


WNK1
1.318502857
0.00010895
0.00376211
9.170893619
27.9849355


XIST
1.767227681
0.00010955
0.00377155
1.196562429
6.024847915


SPC25
1.170654762
0.00011181
0.00383787
9.154391429
23.645568


DENR
−1.22922827
0.00011379
0.00389424
73.8563619
47.0460279


KIF11
1.821662005
0.00011551
0.00390267
2.443237967
9.257986


GOLIM4
1.777868817
0.00011534
0.00390267
30.93483438
62.605315


EPHA1-AS1
1.589736701
0.00011571
0.00390267
2.328378471
8.8394592


SORL1
−1.124650308
0.00011568
0.00390267
32.53818476
15.6531715


INIP
−1.222448299
0.00011929
0.00401168
91.57427238
52.308057


FAM228B
−2.041900144
0.00011983
0.00401813
13.19441343
5.38700615


UAP1L1
1.889609098
0.00012291
0.00410963
2.936810938
12.80484475


SMG9
−2.185540007
0.00012737
0.00423412
25.12799343
8.71863


TUBA1C
1.655052435
0.0001324
0.0043889
25.54587348
56.705964


LINC00341
1.789049608
0.00013297
0.00439536
12.578937
45.24209


CBFB
1.571033412
0.00013589
0.00445864
68.46266429
222.2403375


POLR2E
−1.2088594
0.00013715
0.00448244
101.8120714
47.35464315


ATL2
1.645098431
0.00013893
0.00452778
6.926690762
19.8609125


CD27
−1.282713519
0.00014204
0.00461599
149.9836976
69.1602188


KCNC4
2.525809224
0.00014404
0.00462919
2.09133519
9.068993435


KLF13
1.405276951
0.00014394
0.00462919
3.886962667
12.13907515


GUSB
−1.087842847
0.00014291
0.00462919
127.3000857
59.46871275


LPCAT1
−1.887466956
0.00014327
0.00462919
50.49580452
12.65491646


TBC1D25
−1.991487663
0.00014464
0.00463568
22.69922333
7.652385165


EFNA5
−1.780188118
0.00014796
0.00472898
8.80737419
2.9897214


LDB1
2.211714353
0.0001558
0.0049523
12.27335562
46.658046


GSN
−1.856153002
0.00015695
0.00497514
155.9601187
24.92560408


AGTPBP1
−1.190748054
0.00015767
0.0049843
28.04230333
17.07175222


CST7
−1.279211634
0.0001628
0.00510307
1822.877929
814.3378435


GZMK
−1.465391434
0.00016271
0.00510307
1090.510599
482.9047815


RAB3D
−1.646487305
0.00016243
0.00510307
12.54113167
5.76880282


FAM65A
−2.15466771
0.00016318
0.00510307
12.80896311
2.763608925


DENND6A
−1.156167299
0.00016556
0.00516338
20.3185
12.27502635


THOC3
−1.44634318
0.00016754
0.00519729
9.395982857
5.46055835


SLC7A5P2
1.461890782
0.00016864
0.00521747
14.76301557
41.072381


GNB1
1.595767092
0.00017132
0.00528383
23.07147667
81.62131885


CCDC65
−2.34098191
0.00017364
0.00532954
29.07540152
6.60117545


ZNF786
−1.977944939
0.00017677
0.00541118
14.74838324
4.00298737


TRIM24
2.423827168
0.00018028
0.00547555
3.644654986
26.3156509


CARS2
1.693420689
0.00018023
0.00547555
20.01825719
53.228753


CD226
2.11664127
0.00018211
0.0055145
20.47994643
94.98832335


PLEKHJ1
−1.42449896
0.00018252
0.0055145
111.3896667
45.58957835


ADRB2
−1.990923947
0.00018579
0.00559893
133.6191638
49.61041635


MINA
−1.917614858
0.00018639
0.00560232
10.84250714
3.72207806


IL11RA
−2.083504821
0.00018875
0.0056502
22.64916552
7.2149125


DPEP2
−2.205657439
0.00019126
0.00570442
43.10033762
17.71765105


LOC440434
1.839111218
0.00019544
0.00581394
2.232405714
8.04353135


C1RL-AS1
1.925490425
0.00020441
0.00604984
0.764437424
2.0629908


SLAMF1
1.97751179
0.00020791
0.00613785
34.87498443
131.8489772


PDE4A
1.514702226
0.00021021
0.0061774
8.788954519
22.24409349


TRAF3IP3
−1.023757033
0.00021031
0.0061774
175.9603465
110.8125055


SEL1L3
1.447604044
0.00022308
0.00651921
34.67522048
105.587455


DOCK10
1.025366504
0.00022731
0.00662638
22.75661862
55.525593


AGO2
1.913492388
0.0002291
0.00665622
6.69428181
29.835073


APOOL
−1.4599624
0.00022994
0.00665622
9.866991905
4.9035758


SLC4A1AP
−1.500967401
0.00023006
0.00665622
60.90765484
30.57019365


GLYR1
−1.493452199
0.00023127
0.00665804
50.69578571
23.97702565


TESK1
2.335172957
0.00023342
0.00667018
3.665402619
25.04709


SLC7A5
1.396734709
0.00023283
0.00667018
26.18238476
61.6948623


HMHA1
−1.095094418
0.00023328
0.00667018
153.4711905
82.52380625


NR2C2
1.98376907
0.00023918
0.00681814
2.334334629
8.99618895


AP4B1-AS1
1.303155865
0.00024286
0.00690603
3.367507905
10.55503925


UNKL
−1.80143226
0.00024644
0.00697362
3.032874143
1.82100178


ING3
−1.406744774
0.00024721
0.00697847
56.85451143
28.07718918


ANKRD32
1.443730347
0.00025762
0.00723698
33.46615714
104.99121


NPIPB5
1.526741654
0.00026067
0.00728736
2.765647476
6.606986


DOK6
2.513396625
0.00026462
0.00737965
0.146552833
2.537527625


SNX27
−1.40073971
0.00026524
0.00737965
37.33825619
15.8946053


BBS2
−1.950926604
0.00026753
0.0074255
74.32054286
26.4182932


RASA1
1.354757826
0.00027325
0.00756612
13.71942938
31.58191005


SLC39A11
−1.598648182
0.00029385
0.00809794
35.99148971
14.80168625


PITPNA
2.312434612
0.0002998
0.0082228
3.488508
21.7398403


RAD52
−1.50567048
0.00030556
0.00836103
9.932621324
4.26503812


HRSP12
−2.383100619
0.00032349
0.00881022
27.23581476
9.8728184


SMG1P3
1.200042025
0.00032556
0.00881529
1.363507952
2.71159545


RRP7A
−1.165768141
0.00032596
0.00881529
39.24837762
20.3423858


POLR3H
−1.67593178
0.00032576
0.00881529
13.8710933
6.146357295


DHFRL1
−2.359797868
0.00032712
0.00882622
5.099411576
0.47705205


TYMP
1.176092072
0.00033212
0.00894032
87.24913762
104.307335


LPCAT3
−1.27735195
0.00034009
0.0091335
79.39185714
48.14817045


C5AR1
−1.851391779
0.00034576
0.00926439
27.82386229
11.66871945


ATF3
2.056842456
0.00034687
0.00927285
10.44020133
37.6365183


CEP97
1.50396083
0.00035088
0.0093585
3.274631229
9.616456


KIAA0513
1.368258293
0.00035513
0.00940686
3.681573657
5.3122714


KIAA0020
−1.159965895
0.00035504
0.00940686
73.4876049
41.18979315


CCR6
1.511032115
0.00035676
0.0094153
14.34848795
23.36445165


CPSF2
1.241995889
0.00035947
0.0094423
10.72023305
27.40330205


METTL21A
1.094244219
0.00035972
0.0094423
14.63200143
35.4652285


NUPL2
−1.832195681
0.00036147
0.00946668
51.23907567
20.4746829


ASTN2
1.069590281
0.00036295
0.0094842
5.929357857
12.6587515


TBCK
−1.802592091
0.00036698
0.00956796
10.19409643
3.7038319


ARFGAP2
−1.05571895
0.00036939
0.00960914
99.27014286
55.69149165


VMA21
1.296350724
0.00038667
0.00999153
14.90407952
47.51696


BEX2
−1.953762446
0.0003889
0.01002659
42.92123476
16.633287


C20orf194
1.79920571
0.0003994
0.01027462
3.980905681
14.94492252


RAB29
−1.369925477
0.00040951
0.01048821
88.32204762
50.2578652


NASP
1.310206027
0.00041112
0.01050624
30.34420248
71.02776


C1QTNF6
1.673867441
0.00041528
0.01058907
5.089702905
18.4102024


PDE7A
1.250028815
0.00041853
0.01062531
13.26747514
34.9504633


SLC31A2
−1.775058927
0.00042405
0.01071861
216.1743924
43.5336665


KLHL2
2.248561156
0.00042573
0.01073759
4.456770238
16.28283281


FERMT3
−1.204568177
0.00042945
0.01080807
223.1386952
105.6600795


WRNIP1
2.312410653
0.00043286
0.01082584
4.016170619
36.14411837


PPP1R15B
1.531191906
0.00043296
0.01082584
13.55361243
41.80690205


DENND2D
−1.230933468
0.00043207
0.01082584
177.521881
107.0518394


PDS5A
1.494586311
0.00044007
0.01097996
14.22353581
43.45307149


SIGLEC9
−2.390836951
0.00044441
0.01106438
15.99866633
4.49902325


LOC101927482
2.304003046
0.00045298
0.0111772
8.79705
70.4761062


MBOAT2
1.345839205
0.00045237
0.0111772
2.96217119
9.6344485


ATF6B
−1.566818376
0.00045322
0.0111772
17.59367905
7.97181365


PATL2
−1.642281469
0.00045186
0.0111772
104.1426341
31.97329445


GRN
−1.063273506
0.00045971
0.01129978
791.2872381
264.725843


ERI1
−1.242477967
0.00046365
0.01134862
19.76817686
16.5382545


NCALD
−1.68205333
0.0004633
0.01134862
33.27944905
17.4302691


FCGR2B
−2.254062836
0.00046724
0.0114124
12.38491424
1.09008495


KIR2DS4
−2.340829735
0.00047309
0.01153119
26.8382171
3.872648


HAUS2
1.244208464
0.00048082
0.01169486
16.20686571
35.1828865


RALGAPB
1.085068861
0.00048941
0.01187895
8.581074286
19.9329055


MAP4
1.567107719
0.00049617
0.01201785
23.17886282
75.32267281


NPIPB4
1.612741663
0.00050141
0.01206927
1.314467681
3.3028621


ZBTB9
−2.327534581
0.00049936
0.01206927
9.2692554
4.62615606


CASS4
1.232728611
0.00050479
0.0121004
10.33679177
23.91917485


MED19
−1.434707891
0.00050469
0.0121004
44.44179571
28.0865765


IRF4
1.655714921
0.00050764
0.01212763
8.881926324
37.019321


MYO1F
−1.066903485
0.00051053
0.01216259
124.5430429
64.6513293


RRN3P2
−1.714465278
0.00051396
0.01221926
9.252999857
5.3255443


FAM134B
1.638213865
0.00052287
0.01238031
15.5642671
40.45138445


POLR2C
−1.501187058
0.00052867
0.01249202
101.9659667
54.6541517


CYTH1
−1.0767005
0.0005339
0.01258999
220.3660476
123.9829496


NFYC-AS1
−1.747707738
0.00053774
0.01265488
7.052072429
4.10523765


FAM101B
1.746294114
0.00054483
0.01279574
11.1097819
46.8396593


NFIA
−1.895142906
0.00054804
0.01282844
6.960684619
3.316372105


DTX3
−1.965784578
0.00054843
0.01282844
11.36799743
4.4052707


NCBP2-AS2
−1.27324026
0.0005636
0.01310398
125.8263524
62.2609764


C2orf74
−1.605791569
0.0005628
0.01310398
47.69721333
15.21258005


EXOC8
1.393473812
0.00057299
0.01323641
5.879713952
14.19818165


HIPK1
1.259329438
0.00057386
0.01323641
10.37371019
29.54598748


PTRHD1
−1.524952775
0.00059245
0.01361117
112.4339619
51.295813


SATB1
−1.450814725
0.00059441
0.01362909
29.0269319
14.87791935


PIGW
−1.70243522
0.00059856
0.01367036
22.70485962
9.56260825


ARMT1
−2.138001294
0.00059855
0.01367036
30.45736219
12.96236292


CD96
1.082135365
0.00060674
0.01382991
190.6091374
445.927872


FAM102A
1.645022975
0.00061089
0.01384277
15.8821847
44.713496


TESPA1
−1.224535174
0.0006107
0.01384277
34.09646505
15.9437695


HHLA3
−1.783287692
0.00061015
0.01384277
15.31946967
19.470709


PHACTR2
−1.249051197
0.00061944
0.01400934
20.96662857
9.260568


UBE2Q2P1
1.068947583
0.0006375
0.0143339
8.930663857
20.2732585


MDFIC
1.551874807
0.00064418
0.014445
14.88952865
55.02251445


EAF1
−1.299453137
0.00064493
0.014445
43.09910952
24.90341265


FAM102B
2.109586468
0.00064845
0.0144927
2.63702719
27.78515825


CDIPT
−1.217251575
0.00064956
0.0144927
91.82493667
48.5642925


PPP3R1
1.876147494
0.00065664
0.01462255
6.446798633
21.37249


SACS
2.076350394
0.00067552
0.01498534
2.101448033
12.0727165


TSC1
−1.54806369
0.00067936
0.0150419
12.64261554
5.67724477


PPME1
−1.827792346
0.00069454
0.01534862
39.13166571
21.647448


MAPKAPK2
1.96713612
0.00071533
0.01565905
0.816921471
4.38154145


PCMTD2
−1.425377237
0.00071735
0.01567368
54.46934619
27.86172965


LINC00116
−1.556841189
0.00072237
0.01575373
27.26614214
11.7182429


ACSL4
1.827216948
0.00072841
0.01585224
12.69324183
30.4276168


PI4KA
1.676670157
0.00073035
0.01585224
4.408701
18.24665


HOPX
1.210396178
0.00073396
0.01587589
204.3492705
494.9027762


LYAR
−1.051479502
0.00073619
0.01587589
162.0467619
92.5870975


ELMO2
−1.107488358
0.00073552
0.01587589
106.4386476
49.46063745


DENND1A
1.80462059
0.0007407
0.01594357
6.1231801
23.68573804


CYB561
−1.489223981
0.0007513
0.01611206
17.6988591
8.5005074


TMIGD2
1.252962855
0.00076016
0.01623275
14.96517143
31.062332


NQO2
−1.352493557
0.00076113
0.01623275
60.58205
25.7614949


SKI
1.947359558
0.00077423
0.01645171
0.392191043
3.10283384


RAB21
1.304362685
0.00079042
0.01673444
23.18509605
58.62239915


CSF3R
−1.944066722
0.00078996
0.01673444
23.72629945
5.661690165


PCNXL3
1.820209186
0.00079838
0.01687221
3.427240362
13.71444475


CARD8-AS1
−1.224524067
0.00080413
0.01696266
19.04523843
11.228074


MAT2A
1.005887405
0.0008242
0.01735462
89.89590476
154.450275


TADA2B
1.222867145
0.00083479
0.0175458
4.002363048
9.47839305


STX3
1.499915799
0.00084387
0.01767262
11.63656086
22.42890895


JMY
1.914684894
0.0008624
0.0178058
2.233548633
9.213031


BTBD7
1.723887579
0.00085229
0.0178058
3.343328867
11.70509428


RSBN1L
−1.459929578
0.00085752
0.0178058
8.030019667
3.9945429


CIAPIN1
−1.565209613
0.00085533
0.0178058
77.74407619
41.0017459


DOK1
−1.768374315
0.00085583
0.0178058
37.27138333
13.1786472


DCP1B
−2.073917448
0.00086078
0.0178058
37.24625476
12.0182602


MANBA
−1.808919441
0.00089272
0.01836417
18.8245423
7.538196335


MTSS1
−1.761070691
0.0008946
0.01837015
18.5287793
6.52629872


RPS2
1.110924704
0.00090508
0.01855263
1951.231333
3025.4425


ITGA5
−1.332979911
0.00091178
0.01865696
62.5509
26.01677665


ARID3B
1.475041207
0.00091604
0.01867827
13.15811477
46.9491545


CD300A
−1.832905746
0.00092368
0.01880092
113.4101663
39.52995785


POLR3F
−2.271732688
0.00093671
0.01899954
17.56640771
5.199307


MXD4
1.476173375
0.00095074
0.01918342
9.359247619
27.3796455


CPNE8
−1.877032265
0.00097453
0.01962939
15.75364538
5.43907834


NCF4
1.357098972
0.00097951
0.01966147
56.53410076
86.755054


DUS3L
−1.484396682
0.00097858
0.01966147
36.38678795
14.53410265


CDC26
−1.173174999
0.00100179
0.02007394
238.7674286
119.7321551


TGFBR3
−1.435187571
0.00100384
0.02008029
67.24751205
29.94398345


HDDC2
−1.268862316
0.00101088
0.02018626
123.8036667
67.9808733


SARDH
2.294096038
0.00102414
0.02034607
3.728724762
20.16373173


NMRAL1
−1.475564497
0.00102413
0.02034607
101.2016619
42.4074745


DDX49
−1.679761061
0.00102414
0.02034607
32.13191195
11.88200645


GOLGA8B
1.128453104
0.00103932
0.02061237
7.629956238
17.656008


APMAP
−1.026634309
0.00106369
0.02105967
533.4089048
258.1887565


SPSB3
−1.105088531
0.00106718
0.02109281
217.7387857
123.0655227


ETV1
2.434846563
0.00107798
0.02123713
0.310453333
9.36143927


TNFSF14
1.050001711
0.00108212
0.02123713
22.60123595
60.4481919


RANBP3
−1.327147463
0.00108128
0.02123713
38.6904619
14.96831215


ATP10D
1.855742812
0.00109212
0.02133783
4.340767567
19.78619264


LOC102606465
−2.447368854
0.00109246
0.02133783
14.16471976
0.27695965


TTN
1.460996679
0.00110171
0.0214824
0.51753301
1.68269195


TRAF3IP2
1.097128158
0.00111682
0.02170402
4.3813
10.520044


HEXA
−1.214689315
0.00112365
0.02176397
190.0591476
100.2384131


FRY
−2.380982116
0.00112832
0.02180454
1.7706065
0.08596388


BID
−1.335634005
0.00115289
0.02218219
80.79564286
33.02446055


AGAP2
1.25933984
0.00116449
0.02236824
12.47762385
25.56242397


SLAMF7
−1.097981708
0.00118377
0.02270106
154.3703411
97.756458


GPX3
−2.009859501
0.0011912
0.0228058
68.71822389
10.9501879


INPP5F
2.094388653
0.00119747
0.02285048
0.683434986
6.52550963


PTMS
1.527260067
0.00119677
0.02285048
14.55434505
39.8358905


ATF4
1.13820403
0.00126634
0.02400673
66.5021559
132.054105


RSU1
−1.034060739
0.00128444
0.02427042
113.3402333
76.4465641


ICAM1
1.307628761
0.00128715
0.02428207
45.27852671
106.998965


GNAI2
1.431878899
0.00129323
0.02431769
77.9547819
225.6534442


RFX7
1.493182438
0.00130679
0.02453303
9.145289048
19.7635245


AFAP1L2
2.217430641
0.00131729
0.02461261
0.917768462
5.888400985


STX11
−1.074261581
0.0013174
0.02461261
45.60824286
24.79838315


CEP78
−1.731280746
0.00131509
0.02461261
62.41426857
25.59219025


SERGEF
−1.628390874
0.00132889
0.02474767
51.05715719
27.04479875


KLHDC3
−1.485905935
0.00135796
0.02516789
105.7995905
44.6288617


MCU
−1.781678671
0.00135587
0.02516789
21.059248
7.2983622


ZNF43
1.365362673
0.00136523
0.02526219
5.320740857
19.68480875


STT3B
1.445687084
0.00137371
0.02528219
50.40380312
108.1294734


ZGPAT
−1.2667066
0.00136929
0.02528219
63.04500952
31.116643


BINI
−1.286241264
0.00137503
0.02528219
115.9730212
47.48353135


PRAF2
1.088429664
0.00139187
0.02547835
52.76120524
130.40493


FBXL15
−1.245548804
0.00139228
0.02547835
34.4780081
14.03420705


CMKLR1
−2.393657255
0.0013904
0.02547835
7.379469857
0.01679331


PROS1
−2.381361313
0.00140406
0.02561766
14.30501987
0.271954765


UBAP2L
−1.107731449
0.00142117
0.02584397
60.0890381
32.03060748


ILF2
−1.322111404
0.00144866
0.02626157
268.6788571
134.0617756


SOS1
1.916563335
0.00146636
0.02649961
3.472780429
14.67357545


CLU
1.445639436
0.00147363
0.02658954
33.64088286
70.5663326


DENND1B
1.31053697
0.00148785
0.02680441
8.868308262
27.4410549


CCDC137
−1.424536409
0.00149865
0.02695706
45.84479614
26.23133495


COMMD1
−1.163651607
0.00151914
0.02728341
155.913578
80.0766678


ECT2
1.625708892
0.00153602
0.02754382
1.838423486
6.2113756


TNFRSF4
−1.818299294
0.00154166
0.02760233
21.45005543
5.2371664


ERBB2
−2.074275535
0.00154754
0.02766499
4.287361633
0.655102315


PTGDS
−2.288741647
0.00155432
0.02770077
28.53224938
4.8148675


GZMM
−1.082018373
0.00155738
0.02771274
283.5499905
139.63146


UBE2E2
−2.05240565
0.00158064
0.02804073
20.36653043
15.0806748


RMDN1
−1.415147467
0.0015921
0.02820087
36.57705833
15.18240745


CTDNEP1
1.714000117
0.00160704
0.02842206
16.60610719
63.6246042


CDC42SE1
−1.188507354
0.00161548
0.0285278
224.792919
115.0242707


IPP
−1.320206248
0.00164409
0.02894493
18.17084054
11.66533725


CDKN2D
−1.36879016
0.00166031
0.02909798
96.05093448
58.9614505


ATP1B1
1.283027758
0.00167718
0.02914164
52.0284119
75.36316685


UBR4
1.08473922
0.00167246
0.02914164
4.653459695
11.783862


KIR3DX1
−1.049750649
0.00166595
0.02914164
4.466350167
1.73610435


OXLD1
−1.420013153
0.00167581
0.02914164
60.42109286
34.3730691


WDR37
−1.670567502
0.00167227
0.02914164
23.3282819
9.586654835


PPOX
−1.109942601
0.00169085
0.02932322
56.83536667
22.04271505


TGFB1
1.171557058
0.00169425
0.02933837
34.42022667
69.536372


ZNF557
−1.236244688
0.00170752
0.02952401
20.62738043
9.55651765


ULK2
1.325400012
0.00171981
0.02969224
1.888480762
4.9796416


CYP2U1
−2.049943251
0.00174364
0.03005893
11.44327268
5.70043324


NR3C1
1.031848789
0.00175779
0.0302579
38.35911238
94.7195966


SLC27A2
1.98883201
0.00181163
0.03090959
7.761453905
26.6987376


TFPT
−1.502632807
0.00182073
0.03101928
30.40861905
12.54043605


MKI67
2.213790722
0.00182667
0.03107475
0.396551648
2.29143949


CST3
−1.160291651
0.00184011
0.03125756
137.9140714
67.30464325


LSR
1.60329948
0.00187247
0.0316448
21.59478005
55.67163075


DPP4
1.299281837
0.00187217
0.0316448
30.0033817
77.8169133


CASP1
−1.156469494
0.00187381
0.0316448
205.0463841
99.98735945


AHSA2
1.382667831
0.00187723
0.03165638
14.3165809
35.795771


TARS2
−1.214923276
0.00191337
0.0322191
45.92252857
26.3175739


ZDHHC11
2.168394746
0.00192446
0.0323588
2.041777762
22.7649697


ZNF10
1.777188919
0.00192914
0.03239061
3.195804
10.83783919


IGSF6
−1.844095235
0.00195275
0.03269235
106.8541425
21.85815275


FAM208A
1.049249105
0.00195718
0.03271935
14.16893262
34.97957965


MTMR9
1.315310954
0.00196674
0.03281718
5.720141533
16.17714945


CSRP2BP
−1.82037327
0.00197683
0.0329056
16.6018126
8.3935547


PASK
−1.686985134
0.00198289
0.03295917
14.93246762
7.15466456


MKKS
−1.437049717
0.00200493
0.03327787
38.0899919
17.0888044


FAM46A
−1.81198712
0.00202033
0.03348561
11.81714486
5.579773015


ITFG3
−1.702008908
0.00202437
0.03350458
20.83019762
11.13164403


DLG5
−1.953834863
0.00203104
0.03356717
3.435019381
0.903906625


KIAA0101
1.444676814
0.00204015
0.03365834
6.675146857
25.12704715


SAAL1
−1.583018596
0.00204236
0.03365834
51.56066124
17.6734762


MMP25
1.459299708
0.00206447
0.03383054
2.632463762
7.9999775


TATDN3
−1.074764039
0.0020589
0.03383054
28.73702095
12.906969


LOC100996447
−1.156694083
0.00206329
0.03383054
42.42375095
23.50972975


NIFK-AS1
−2.019056074
0.00205963
0.03383054
11.83977338
3.4095151


XPR1
1.392572867
0.00207024
0.03387718
3.614010729
9.8424576


C11orf21
−1.545286707
0.00208323
0.03404167
43.01835476
16.9673255


ICOS
1.37194015
0.00213471
0.03468756
52.45500238
122.4600494


TULP4
−1.370180377
0.00213448
0.03468756
11.6970605
6.69757389


INPP4A
1.32469001
0.00214188
0.03475543
11.57118199
28.38812305


DFNB31
1.739227223
0.00216261
0.03499379
3.190885052
11.18772015


ANKDD1A
1.666867831
0.00216252
0.03499379
2.474719238
7.0630617


PTPRJ
1.045068081
0.00216996
0.03506395
7.210654619
22.43940385


DST
1.781307402
0.00218105
0.03519407
0.740807522
2.481083109


SMIM3
1.701657926
0.00219219
0.03522757
22.12527529
101.0869653


MARK2
1.627042544
0.00219035
0.03522757
3.95061229
13.006327


LPAR5
−1.432358065
0.00219223
0.03522757
37.58498552
22.93229028


PRMT5
−1.713226626
0.00220091
0.03531809
23.97953357
9.213471305


DMKN
−2.116833951
0.00220939
0.03540511
7.914099052
1.584939


PIGL
1.533178933
0.00222549
0.03561394
17.87966267
48.98544735


CXorf23
1.379998376
0.00224041
0.03580339
2.371735467
14.63350675


ERLIN1
−1.898071983
0.00225202
0.0358865
20.30472526
6.76962096


ZNF689
−2.141277674
0.00225575
0.0358865
9.676069048
2.30918672


UQCC3
−1.448663386
0.00227194
0.0360096
12.19188619
5.86697545


ZNF587B
−1.482821582
0.00228038
0.03609416
14.89556113
7.10224025


ENPP5
−1.963798982
0.00229414
0.03621307
19.36512957
9.023781


MRC1
−1.322294944
0.00233316
0.03662963
52.31267884
15.67313203


HDAC6
−1.449599247
0.00233315
0.03662963
28.30981905
11.9235349


CEP63
−1.646464036
0.00233294
0.03662963
12.22384563
5.27964766


CREM
1.063360811
0.00234737
0.03670373
42.30688857
71.516919


SYNE1
−1.009975398
0.00234287
0.03670373
16.10141843
10.3669361


SVIL
−1.361066127
0.00234573
0.03670373
9.580544286
4.22403719


NME4
−1.694305479
0.00235394
0.03675689
15.39367581
6.5277521


ZNF48
2.001817403
0.00235989
0.03680028
0.95379711
2.93424308


HIATL2
1.639605506
0.00237954
0.03691362
11.04763529
30.088932


TNFRSF10A
1.233874024
0.00237704
0.03691362
39.42923329
87.286662


PAG1
1.142151432
0.00237849
0.03691362
13.7221171
36.40958485


MELK
1.140922968
0.00237988
0.03691362
2.926656905
9.4487255


AGAP6
−1.615980385
0.0023937
0.03702892
4.65957
4.15214054


DDA1
−1.010469768
0.00241255
0.03727088
18.96847857
13.5441625


ARFRP1
−1.283380491
0.00243869
0.03762465
46.60115286
22.098322


RCOR1
1.944709033
0.00244246
0.03763275
0.534440586
4.51260244


PDK2
−1.664734422
0.00246036
0.03770812
29.69540175
11.07580269


FAM216A
−1.983848294
0.0024698
0.03780297
13.79144952
6.5779684


VAMP5
−1.136383361
0.00247878
0.03789039
158.8593286
84.24594405


HERC1
1.091641582
0.00253247
0.03866021
9.368462695
26.80007538


ZNF555
−1.181944735
0.00253582
0.03866035
3.489925914
1.97726846


UBE2S
1.605973396
0.00254412
0.03873612
52.33753024
129.0238405


CCDC28B
−2.032747097
0.00257249
0.03901441
13.39630476
2.8255758


TRA2B
1.071850101
0.00258234
0.03906167
34.72536619
75.910455


DERA
−1.577728539
0.00257957
0.03906167
43.97195548
20.5084549


TSPYL2
−1.053848144
0.00260025
0.03923037
91.85230476
58.63886275


PKIG
−2.077214187
0.002643
0.03977177
10.41545852
1.8342887


CCAT1
1.445071665
0.0026754
0.04006706
0.528602548
16.95488595


C1orf35
−1.378296383
0.0026703
0.04006706
39.94078238
24.80257585


CDKN1B
1.282793989
0.00272467
0.04068418
37.4884511
115.6148839


CISD3
−1.10729904
0.00274379
0.04091698
43.8215181
21.41737


CKS2
1.378226136
0.00275569
0.04092812
44.10446333
217.9010409


IL4R
1.173407546
0.00275832
0.04092812
20.8707369
44.223466


ANGPT2
1.090592385
0.0027657
0.04092812
1.214743286
4.68820725


SEC24C
−1.065187919
0.00275712
0.04092812
78.9841681
45.24677965


VIPR1
−2.245159841
0.00276548
0.04092812
7.878956714
0.078206365


MED14
1.56112954
0.00281212
0.04150917
4.157886333
12.40530445


AHI1
1.317518043
0.00281763
0.04153763
8.087297457
23.78564948


DPH6
−2.003375054
0.00282831
0.04164227
9.295661143
3.259904245


EHD1
−1.001672515
0.00283359
0.04166709
59.14083405
36.4075224


PSPH
−1.152155764
0.00284639
0.04180226
10.84557571
8.5721058


SH3GLB2
1.512043303
0.00285527
0.04187964
6.430948286
19.3427


ARHGAP26
1.202808995
0.00290391
0.04237881
4.392610524
14.80365015


HIF1A
1.052731671
0.00290373
0.04237881
38.03787619
90.85415895


MYO9B
1.008632072
0.00290113
0.04237881
8.362505238
25.050393


MUS81
−1.134364426
0.00289302
0.04237881
28.52751952
18.2275496


HKR1
−1.831633144
0.00292061
0.04250344
22.39177522
8.01066489


PTAR1
1.699146857
0.00294713
0.04268765
2.743866857
8.368398865


TMEM187
−1.825720333
0.00294715
0.04268765
22.12027881
7.65957825


CLK3
−1.001182295
0.00298754
0.04316491
116.5983771
64.7280973


EXOC6
1.462440669
0.00301764
0.0434915
18.62345299
52.863598


ETFA
−1.033853587
0.00308391
0.04439151
211.4412429
133.8260265


RDH13
−1.827515919
0.00310699
0.04466828
13.62577429
4.675346


MTERF1
−1.58817958
0.00311175
0.04468131
27.75623086
14.80039655


LOC101927027
1.573304325
0.00312364
0.04474127
4.211369714
26.13527023


CNP
−1.097403536
0.00313197
0.04480529
24.98781305
14.29346375


ARFGEF2
1.241620144
0.00313644
0.04481405
5.907125638
15.1121541


MCM3AP
1.160487177
0.00316806
0.04509921
18.98804667
42.63157293


SFPQ
1.206824864
0.00318158
0.04523452
47.61741619
88.602034


RAD9A
−1.374057685
0.00318536
0.04523452
8.711004286
4.91682275


DAXX
−1.06083514
0.00319593
0.04527372
30.36822905
19.98259299


LOC100996286
−1.83607122
0.00319235
0.04527372
60.76818519
17.25592475


TMEM237
−1.951065251
0.00328224
0.04630322
4.673383062
4.04188854


ARID1A
1.387569106
0.00331076
0.0463145
9.368136124
34.768239


CPT2
−1.139351315
0.00329723
0.0463145
30.83033438
21.19235005


ABT1
−1.19573184
0.00331435
0.0463145
132.1675667
74.13886765


TXK
−1.569311232
0.00331402
0.0463145
43.40230785
18.92011706


LRRC45
−1.891079088
0.00329804
0.0463145
8.30033181
3.13344467


ZNF280C
1.36949936
0.00332362
0.04634687
2.081992714
10.13766255


MAP2K4
1.31117468
0.00333665
0.04636151
26.25060724
72.47427745


TUBB
1.097554669
0.0033353
0.04636151
17.42295328
33.04663


PLEKHA1
−1.045263518
0.003329
0.04636151
54.94448481
32.1948511


BBS5
1.096834176
0.0033706
0.04666548
3.122230367
9.2493915


GDAP2
1.290313972
0.0034067
0.04705306
6.706050762
13.2542057


AHR
1.102241377
0.00342225
0.04715557
7.888413095
13.6936725


TNFRSF9
−1.198960983
0.00342212
0.04715557
13.75290395
7.85170705


MCOLN2
1.245703069
0.00346294
0.04760314
21.82523003
47.5998025


XYLT1
1.99585507
0.00348152
0.04780194
0.782486952
3.604668105


PLCG2
−1.227346251
0.00350186
0.04797513
11.47080835
4.67658275


PRKAB1
−1.348576658
0.00350273
0.04797513
58.58896667
38.1610866


TGFBR1
1.130381688
0.00353755
0.04825283
17.15331511
33.0276235


U2AF1L4
−1.053266078
0.00353573
0.04825283
72.834
42.5640561


SNHG7
1.243507546
0.00355025
0.04834502
4.981000238
18.98669895


PPIL4
1.13138956
0.00361378
0.04915252
53.22107343
109.675935


NEK8
−1.427122553
0.00362368
0.04917181
5.678052524
2.17769965


PIK3R2
−1.504052614
0.0036227
0.04917181
4.701518429
1.342299575


MRPS18B
−1.160658918
0.00364157
0.04934871
19.64079799
9.98160735


ABHD17B
−1.180701066
0.00365373
0.04934871
12.83117357
8.93513765


ZFAND1
−1.35854761
0.00365182
0.04934871
50.26811962
28.80094995


TNFAIP8L2
−1.853922479
0.00369231
0.049754
57.96041905
14.49336125
















TABLE 4







List of genes differentially expressed between Tumor TRM compared to Tumor non-TRM

















Mean TPM
Mean TPM
Common genes


Gene ID
log2FoldChange
pvalue
padj
Tumor non-TRM
Tumor TRM
with Lung
















ITGAE
3.740189693
3.12E−72
3.85E−68
33.0593668
407.095
Yes


S1PR5
−4.523578131
7.84E−34
4.84E−30
61.60472972
1.679153684
Yes


GSG2
3.635833487
2.36E−28
7.27E−25
0.43646014
10.79137868
Yes


GZMB
1.997567017
5.45E−28
1.34E−24
2123.78152
6599.232632


S1PR1
−3.027979011
9.21E−25
1.89E−21
191.05454
26.11258247
Yes


MYO7A
3.513567966
5.58E−18
8.61E−15
2.571285816
44.23771526
Yes


FOS
−1.067494599
5.56E−18
8.61E−15
2389.31976
1583.288684


GPR25
3.483981326
7.12E−17
9.38E−14
4.76494824
85.23201053
Yes


PLAC8
−2.474542579
7.61E−17
9.38E−14
55.3151272
10.19808989
Yes


LAYN
3.621535741
1.31E−16
1.47E−13
1.848024708
52.53625789


KRT86
3.381632722
4.46E−16
4.58E−13
3.71512388
90.02109042
Yes


STMN1
1.366049689
7.63E−16
6.72E−13
85.79118
171.0376579


PDCD1
1.57324167
1.08E−15
8.87E−13
86.55487464
225.5345789
Yes


RBPJ
1.633587013
1.51E−15
1.16E−12
68.462808
235.5415263
Yes


TCF7
−1.919812967
7.00E−15
4.80E−12
54.29527692
16.48907895


KLRG1
−2.072161115
6.62E−15
4.80E−12
487.1466948
115.8208
Yes


ENTPD1
2.51222904
1.22E−14
7.94E−12
9.068538
51.02960526


ZNF683
2.168329213
1.38E−14
8.50E−12
146.606496
728.6827368
Yes


SPRY1
3.136164239
2.23E−14
1.31E−11
4.932731568
55.74590526
Yes


CCR7
−2.22354341
2.48E−14
1.39E−11
227.195484
56.20075605
Yes


KLRC2
2.347036307
7.93E−14
4.08E−11
42.90052344
170.3632789


FCGR3A
−2.930611162
1.81E−13
8.59E−11
119.760642
14.86318363
Yes


ALOX5AP
1.211931191
3.98E−13
1.82E−10
709.35508
1504.629105


TOX
1.04690617
2.72E−12
1.20E−09
52.981492
111.2167158


TNS3
2.871610018
1.26E−11
5.17E−09
1.578477292
18.24837105


SRGAP3
2.957823113
1.36E−11
5.42E−09
1.467354292
21.03388737
Yes


CCDC109B
−1.149921845
1.41E−11
5.44E−09
373.868636
168.8402895


CLNK
2.981297463
1.56E−11
5.82E−09
3.97429732
48.79801947
Yes


AFAP1L2
2.730768148
2.03E−11
7.35E−09
10.19192002
48.02176947
Yes


SELL
−2.397423991
2.35E−11
8.05E−09
442.230628
72.96528086
Yes


GZMK
−1.337577522
2.50E−11
8.33E−09
3386.79804
1582.416847
Yes


IL7R
−1.39682464
2.89E−11
9.39E−09
377.3089102
176.2078421


KLRC1
2.528735
4.60E−11
1.42E−08
32.23271408
201.5704368
Yes


GOLIM4
2.325048002
5.07E−11
1.53E−08
22.3738512
81.66201579
Yes


CXCL13
2.786215532
7.81E−11
2.15E−08
200.4329206
1830.654842


AKAP5
2.119777167
7.69E−11
2.15E−08
3.498434
12.78739474


HAVCR2
2.115630958
8.47E−11
2.22E−08
71.16694344
334.6920737


RASSF3
−1.294121912
1.08E−10
2.77E−08
88.174812
37.24806632


KIR2DL4
2.739112566
1.92E−10
4.82E−08
6.891746048
90.73159421


CD63
1.060494213
2.91E−10
7.19E−08
305.35808
549.2277895


PHLDA1
1.92802647
3.62E−10
8.76E−08
20.7194988
72.30838947
Yes


CHRM3-AS2
2.773184838
4.89E−10
1.16E−07
2.12001284
45.31885842


ATP8B4
2.747605956
5.80E−10
1.30E−07
1.198385096
13.04629837
Yes


TNFRSF9
2.018972638
6.12E−10
1.35E−07
17.28012864
75.16161053


CSF1
2.169258026
1.45E−09
3.04E−07
18.68793199
83.02554737


FGR
−2.174444347
1.89E−09
3.88E−07
81.8702808
11.86666842
Yes


RAB27A
1.270864982
2.44E−09
4.85E−07
72.8336226
165.1855579


FLOT1
−1.198609437
2.42E−09
4.85E−07
19.8708108
9.655719


PLEK
−1.920067488
2.66E−09
5.21E−07
189.283604
41.99313458
Yes


KLF3
−2.373844864
2.87E−09
5.54E−07
25.2746158
4.824050537
Yes


DAPK2
2.020364656
3.05E−09
5.79E−07
15.41775706
64.87444211
Yes


FAM3C
1.645072966
3.50E−09
6.55E−07
33.074066
118.3906789


LINC00861
−1.200761735
3.95E−09
7.27E−07
131.4451524
53.62909526


ARHGAP11A
1.788648298
4.28E−09
7.77E−07
3.261430284
10.31301842
Yes


RRM2
2.032567257
4.49E−09
8.03E−07
24.39809328
51.55875105


ETV1
2.431245366
7.54E−09
1.31E−06
1.990125728
17.19050579
Yes


CD109
2.209733753
8.57E−09
1.47E−06
1.058001288
4.155530368


CD7
1.243952111
9.59E−09
1.62E−06
152.706784
335.0916316


DBH-AS1
2.446850699
1.11E−08
1.84E−06
1.18816808
9.190445


TMIGD2
1.755365521
1.23E−08
2.02E−06
12.8405268
46.83354474
Yes


SIRPG
1.173047291
1.38E−08
2.24E−06
185.4196008
477.9031579


SORL1
−1.620313508
1.63E−08
2.54E−06
29.9296156
11.53147181
Yes


DOCK5
2.249256949
1.83E−08
2.81E−06
1.279708636
3.712515426
Yes


CXCR6
1.209548172
2.19E−08
3.30E−06
639.847916
1379.978
Yes


CCL3
1.308047955
2.27E−08
3.37E−06
448.815904
879.4891053


FAM65B
−1.285468642
2.86E−08
4.21E−06
67.4624064
25.83885526
Yes


KIF2C
2.340084386
3.24E−08
4.65E−06
2.716626244
15.13782305


CD101
2.149991882
4.52E−08
6.27E−06
10.88423144
46.95427195


PZP
−1.943336483
5.16E−08
6.99E−06
11.83152352
3.274193368
Yes


PAQR4
2.35562189
6.71E−08
9.00E−06
1.689015624
10.24887293


KLRF1
−2.393123248
1.07E−07
1.41E−05
69.15205336
3.035728737
Yes


XCL1
1.366128861
1.27E−07
1.64E−05
39.7461872
96.09117895
Yes


CAPG
1.119966807
1.59E−07
2.03E−05
231.99522
437.7557895
Yes


WBP4
1.209997096
1.74E−07
2.17E−05
29.181684
35.85908947


IVNS1ABP
1.261438848
1.82E−07
2.25E−05
128.6844636
275.7747368
Yes


ADAM19
1.007948314
2.23E−07
2.70E−05
23.6940676
53.16917895
Yes


DHRS3
−1.538676923
2.94E−07
3.52E−05
150.522892
53.74266979


CTLA4
2.049857964
3.17E−07
3.76E−05
50.97031992
243.8928526
Yes


CLIC3
1.098704683
4.25E−07
4.77E−05
58.91024892
122.7453368


FCGR3B
−2.089580696
4.25E−07
4.77E−05
15.66373078
1.389735158


CX3CR1
−2.269155106
4.32E−07
4.80E−05
62.33696111
1.737185411
Yes


RASA3
−1.805687466
5.15E−07
5.62E−05
54.1342792
11.73182377
Yes


IFITM10
2.259689528
5.26E−07
5.64E−05
1.272724276
11.72409947


C1orf21
−1.891368092
7.09E−07
7.41E−05
11.4573743
2.148275695
Yes


ATM
−1.005296267
7.86E−07
8.15E−05
19.96884244
11.57904211


A2M
−1.606407971
9.37E−07
9.64E−05
46.2580028
18.43226479
Yes


GEM
2.209029285
1.15E−06
0.000114883
2.765744876
25.92595789


RASGRP2
−1.596008125
1.16E−06
0.000115288
51.92487504
14.19080942
Yes


RAD51AP1
2.184111701
1.17E−06
0.00011594
2.22739396
17.47792795


KIFC1
2.048040416
1.19E−06
0.000116485
1.139757476
2.437878232


PTMS
1.556394667
1.24E−06
0.000120768
19.1542684
50.72354737
Yes


UBASH3B
1.896874413
1.37E−06
0.000131202
3.828418912
14.88145069


NUSAP1
1.471883402
1.54E−06
0.000146458
50.15568704
89.48275263


CD300A
−1.793079022
1.74E−06
0.000162542
90.8459596
25.90228042
Yes


TPX2
1.99097788
1.92E−06
0.000178166
4.851452292
24.50750737


AURKA
1.660078116
2.03E−06
0.00018727
17.55234268
26.20345458


KIF5C
1.774252318
2.20E−06
0.000197891
2.414951648
7.161932421
Yes


VDR
1.916130686
2.32E−06
0.000204746
3.135480952
10.44611358


SYNJ2
1.952272272
2.36E−06
0.000206522
1.49190332
4.358019632


ATP10A
1.719330489
2.48E−06
0.000213579
1.708745156
6.061125495


ANKRD35
1.989093325
2.82E−06
0.00024034
2.90909116
12.88178263


KLRC3
1.732307354
3.39E−06
0.000282668
38.1205408
104.6819184


SCCPDH
1.267108566
4.37E−06
0.000357373
42.22486096
81.38209368


KIAA0101
1.705284926
5.92E−06
0.000467234
34.92798628
57.27524105
Yes


CHN1
1.976034237
5.99E−06
0.000467565
8.04594322
65.83489663
Yes


GTSE1
1.845443965
6.08E−06
0.000471895
2.67869814
5.922737205


ICAM2
−1.574882829
6.48E−06
0.000499591
51.860032
16.69807895
Yes


TTC24
1.676924085
7.49E−06
0.000570348
15.26772828
48.94895789


ZC3H12C
2.032896561
7.69E−06
0.000578224
0.060009268
1.357966053


DKK3
−1.679421385
8.50E−06
0.000631421
85.16482245
33.83001479


SARDH
1.907804454
1.06E−05
0.000768356
10.17270494
48.39059842
Yes


ZBED2
1.958522644
1.07E−05
0.000775184
8.41407728
44.29435947


DPF3
1.994370435
1.10E−05
0.00078556
0.155604456
4.017322021


ARHGEF12
1.884195097
1.15E−05
0.000815589
1.720978192
6.359689242


CHEK1
1.633053468
1.15E−05
0.000815589
1.72233128
6.573517947


SLC2A8
1.898875877
1.19E−05
0.000828911
5.26762768
32.67995121


PLAGL1
1.977412408
1.25E−05
0.00086325
0.678131668
8.558824895


IL15
−1.776336936
1.39E−05
0.000953245
8.955241728
1.929823932


CXCL16
−1.465177681
1.42E−05
0.000968842
33.54755604
13.30089653


LILRP2
1.929179014
1.72E−05
0.00115957
0.24319804
8.555959895


UAP1L1
1.635659609
2.06E−05
0.001350032
4.842522948
10.79838142
Yes


EOMES
−1.082992213
2.14E−05
0.001392357
216.4456344
112.0899995
Yes


XCL2
1.022838013
2.27E−05
0.001461407
117.1022852
217.8741316


FANCI
1.767956945
2.29E−05
0.001462592
5.771166696
18.30659889


CDT1
1.563740306
2.48E−05
0.00157686
2.84855772
6.826375684


CACNA2D2
−1.806533258
2.50E−05
0.001578903
1.939408892
0.800522095


TNFSF4
1.864855811
2.57E−05
0.001607152
8.7365456
41.49277777


ABAT
1.714711942
2.59E−05
0.001607152
1.998721984
5.892387211


AHI1
1.38245204
2.59E−05
0.001607152
12.14165304
27.49229789
Yes


ASB2
1.517671152
2.61E−05
0.00161221
13.9961398
43.76039474


DBN1
1.423942324
2.66E−05
0.001630949
8.21897794
19.68978158


LGMN
−1.534420984
2.72E−05
0.001663415
51.97189676
13.32886032


PTGIS
1.360710073
3.22E−05
0.001920191
1.0126632
4.015272263


DFNB31
1.751477613
3.52E−05
0.00204918
2.68782576
11.29693105
Yes


ABCB1
1.289757669
3.51E−05
0.00204918
17.53565533
46.09189158


ATP10D
1.408338045
3.94E−05
0.002261703
8.2785482
18.62304158
Yes


FCRL3
−1.634974976
3.94E−05
0.002261703
57.74915068
22.82451037
Yes


SPINT2
−1.670867169
4.03E−05
0.002304224
81.86661636
19.88341084


LYZ
−1.206783578
4.12E−05
0.0023407
533.8098288
197.5742774


GCNT1
1.590291886
4.33E−05
0.002452984
8.729126624
25.69184137


NUAK2
−1.164676934
4.57E−05
0.002563473
15.3906328
5.075766368
Yes


SPNS3
1.583706166
4.60E−05
0.002564261
9.59597132
25.19064737


PTGDR
−1.106484699
4.61E−05
0.002564261
47.7035032
22.43134053


SOCS3
−1.176968482
4.94E−05
0.00271839
130.4092708
54.63775147


KLRAP1
−1.668786132
4.93E−05
0.00271839
31.6027852
8.668786158
Yes


RUNX2
1.004705254
5.13E−05
0.002789748
21.72283
46.77662105


SVIL
−1.730549769
5.18E−05
0.002803752
6.2219778
0.869931489
Yes


KLRB1
1.243451233
5.22E−05
0.002809517
249.3302182
490.05


LINC00963
1.231289717
5.46E−05
0.002923658
15.691546
35.08958263


AMICA1
1.140277208
5.47E−05
0.002923658
158.6033022
366.6787895
Yes


CAMK1
1.691816551
5.89E−05
0.00313345
12.76232984
54.144063


ANKS1B
1.817118618
5.94E−05
0.003144996
0.373814604
2.183310789


TMEM200A
1.542695194
6.20E−05
0.003235193
10.90489994
25.15744737
Yes


PGLYRP2
1.516783203
6.17E−05
0.003235193
2.53230324
5.937835789
Yes


TTN-AS1
−1.265199771
6.26E−05
0.003235193
3.374815664
1.286795842


PRSS23
−1.409768113
6.38E−05
0.003281671
9.47118448
1.732799947
Yes


SUOX
1.791011507
6.48E−05
0.003317961
2.148762428
16.12955742


KCNK5
1.782686156
6.88E−05
0.003491967
3.473615356
20.51417421


DIXDC1
1.621869122
7.38E−05
0.003717195
0.632839116
3.195448053


CD28
−1.118957638
7.48E−05
0.003749953
77.15902102
30.25053684


KIF14
1.61077793
7.88E−05
0.003902254
0.70509062
3.265626621


SNAP47
1.087540861
8.59E−05
0.004188653
45.1029988
73.56212632


ABCA1
−1.727318199
9.08E−05
0.004411705
4.982207032
0.730471247


ITGA5
−1.378404403
9.24E−05
0.004468571
36.65399692
11.21532078
Yes


SYNGR3
1.663443022
0.000110901
0.005290731
10.13336744
42.42283158


RBBP9
1.35864834
0.000116888
0.0054847
3.0743766
7.297156368


SATB1
−1.222543971
0.000116923
0.0054847
21.52242938
10.02693033
Yes


C1orf106
1.654127927
0.000117558
0.005493609
0.429621136
2.195005284


DENND4A
−1.058190967
0.000120038
0.005546478
22.5608188
12.16038737


FASLG
1.059205283
0.000127409
0.00586509
149.7843665
263.5392211


RGS16
1.695730781
0.000132589
0.006058347
9.466770612
44.55431789


CCNA2
1.63474981
0.000137262
0.006225719
16.76836842
30.29312263


SLC16A6
1.705711712
0.000139293
0.006263427
1.215146864
7.487247474


BAZ2B
−1.004936545
0.000139515
0.006263427
22.017383
11.41999521


CCRL2
1.61789572
0.000142927
0.006388745
18.98001112
41.17150789


COL6A2
−1.68505588
0.000143773
0.006403357
5.798380532
0.906108884


PXN
−1.349346038
0.000144295
0.006403473
60.2272196
19.01642169


GINS1
1.561048491
0.000151389
0.006694195
2.35536462
9.327755947


ACP5
1.360154914
0.000160861
0.007023499
68.29268804
166.9910632


BCL2L11
1.353352837
0.000161682
0.007023499
6.783699552
20.68451776


USP14
1.141451467
0.000161566
0.007023499
37.82807232
60.20166842


MIR155HG
1.568103062
0.000171693
0.007354789
17.03474912
61.13262474
Yes


TK1
1.556990809
0.000172831
0.007377908
34.81022376
62.27577368


BIRC5
1.52789537
0.000175728
0.007475706
17.88640092
21.82443158


CRIP2
−1.682549856
0.000176976
0.007502923
10.84884325
1.230886568


TTYH3
1.550941892
0.000194697
0.00814229
1.855617216
6.575156084


CASC5
1.683852608
0.000202408
0.008379571
0.7152126
6.408608889


HELLS
1.194430839
0.000203562
0.008399136
6.51769844
11.66888526


NHS
1.677210619
0.000219388
0.008962238
0.385406112
3.465654453


CENPU
1.383262737
0.000221289
0.008983776
8.1349832
21.60639474


AMY2B
−1.142210726
0.000221372
0.008983776
10.3340532
4.278311474


BRCA1
1.317781531
0.000223203
0.009028397
1.784135444
4.474544053


PDLIM7
1.491977557
0.00022575
0.009101574
10.8833996
31.69171263


FAM84B
−1.321001087
0.000243726
0.009762507
9.7799954
3.669650684


C15orf53
1.602472447
0.000248983
0.009940784
3.78734548
11.796093
Yes


HHLA3
−1.453124988
0.000260044
0.010282577
26.8391892
7.859869105
Yes


INPP5F
1.557089828
0.00026203
0.010295127
4.56110998
14.65299721
Yes


APEX2
1.150826136
0.000317738
0.012326832
26.07538084
42.41617368


ADRB2
−1.371983994
0.000317481
0.012326832
116.3136846
40.39521814
Yes


THEM4
−1.136585144
0.000331488
0.012779916
22.07544464
9.964039


MCM2
1.417554569
0.000357578
0.013573646
12.7239374
34.84616211


PDLIM1
−1.20806686
0.000356537
0.013573646
60.56773384
26.39405689


HJURP
1.512082809
0.000361013
0.013662027
3.0432999
10.34542453


RDH10
1.392983915
0.000374495
0.014000421
4.7784252
13.67609332


FUT8
1.270544325
0.000388012
0.014375073
16.45712298
39.12060211


MKI67
1.482800913
0.000403173
0.01475575
3.740788684
9.95709
Yes


CDHR3
−1.220422843
0.000409235
0.014893018
4.32965516
1.594811011


RYBP
1.530157948
0.000426073
0.015369766
1.76679696
6.359807421


MYO1E
1.582425887
0.000450856
0.016029436
3.620583316
15.26436368


TOP2A
1.352846874
0.000459462
0.016288455
14.67442033
32.63963384


NDFIP2
1.116525313
0.000467494
0.016478506
40.7288212
91.40315263


MAD2L2
1.121501594
0.00048711
0.017121003
80.19018184
176.2801105


BRCA2
1.417780448
0.00049781
0.017436904
1.666127432
4.232477479


WDTC1
−1.383667482
0.000498958
0.017436904
7.652969292
3.021814247


ITGA1
1.132457545
0.000525477
0.018037457
53.19740808
109.6885368
Yes


PLEKHG3
−1.568835408
0.0005408
0.018481593
7.94662748
0.826099621
Yes


MAP3K6
1.405480363
0.000557245
0.018886615
2.83304806
7.054325263


AASS
−1.263208166
0.000575905
0.019306886
11.31210144
2.225013795


IL18BP
−1.194180888
0.000582721
0.019482467
54.67915012
21.38025753


RGS12
−1.099836473
0.000595214
0.019792869
3.29526236
0.982810789


CD14
−1.424675215
0.000606273
0.02010642
67.70359144
14.33756879
Yes


KRT81
1.555202248
0.000612805
0.020127568
2.24269256
18.08521053


GALNT2
1.207810735
0.000613436
0.020127568
21.1598464
43.74474211


MPST
1.049224887
0.000613323
0.020127568
22.35174136
37.2394


PATL2
−1.117057136
0.000612364
0.020127568
85.39035448
37.18099205
Yes


CEP41
1.008732155
0.000633389
0.020727119
3.8788086
8.499325737


ELK1
1.299109563
0.000643899
0.021015287
10.29477778
20.22793895


PPP1R21
1.01536727
0.000714978
0.022910882
21.55712479
36.39565316


DHFR
1.364150744
0.000717621
0.022935974
6.949739276
16.97895126


CCDC50
1.32032169
0.000721961
0.023015076
4.642402768
8.387248079


PDE7B
1.258502263
0.0007291
0.023019759
1.530637224
4.094892895


BMPR1B
−1.192565663
0.000729572
0.023019759
2.2447436
0.246532374


CCL18
−1.43447936
0.00074364
0.023344239
120.7602916
32.81444384


KIAA1524
1.421479171
0.000758263
0.023742862
4.381154288
13.40530519


ATL2
1.147738802
0.00079133
0.024345745
7.3282878
13.66836579
Yes


CARD6
1.29906251
0.000813151
0.024892909
1.37840932
6.053855789


ZNF514
−1.43484038
0.000832933
0.025372588
5.027664092
0.490173568


AGPS
1.217710921
0.000852721
0.025776769
7.239435836
16.10707737


C1QC
−1.289800192
0.000850368
0.025776769
122.636079
59.72089795


CDKN2C
1.303116031
0.000901495
0.026984604
11.7002326
27.63487263


CD200R1
1.029994841
0.000903351
0.026984604
45.1439298
88.27228947


SLC4A2
1.214325475
0.000956432
0.027894817
7.793165208
15.40505526


ACSL4
1.044437072
0.000960786
0.027955697
19.3627672
34.15788474
Yes


LOC101928988
1.400426941
0.000984987
0.028458522
5.24736404
13.66175105


CDC6
1.282112236
0.000983324
0.028458522
4.7555254
6.325555684


LOC100996286
−1.376533152
0.001018637
0.029157611
60.23214176
18.27346626
Yes


C1orf162
−1.321986663
0.001023341
0.029224437
149.498455
55.57553158


LRRN3
1.465688528
0.001065437
0.030286388
2.271649976
29.283488


TET2
1.119528008
0.001084458
0.030756213
6.91857828
11.33880421


ZWINT
1.400223352
0.001092088
0.030901593
19.685767
40.97230947


TNFRSF18
1.436215773
0.001123689
0.031578469
20.86098484
73.40014211


APOE
−1.254820747
0.001173695
0.032612345
125.2921753
55.44808074


RHOC
1.010556359
0.001187599
0.032850683
64.81549196
137.4523789


PTP4A3
−1.470184527
0.001202261
0.033181871
10.16620279
1.326568737


PALB2
1.441779748
0.001209152
0.033258812
3.711650348
11.35856868


RAP1GAP2
−1.46757526
0.001210441
0.033258812
3.335396492
0.336865295
Yes


PMM2
1.057768261
0.001233653
0.033789307
20.37359668
30.27954895


EPSTI1
1.148188972
0.001238521
0.033804499
20.8874532
45.41434368


WIPF3
1.394904839
0.001249282
0.033969958
4.911925736
18.05181664


PLAUR
−1.41499774
0.00125009
0.033969958
88.264021
20.07343137
Yes


LINC00539
1.398270111
0.00126082
0.034111277
12.49131944
34.69323995


LIMK1
1.300030117
0.00127323
0.034296578
9.1342948
23.865563


MAN1A1
1.085325998
0.00130679
0.034847713
10.56250701
21.17127137


SAC3D1
1.302130097
0.0013855
0.036523325
5.48930056
16.32300211


CKAP2L
1.321005047
0.001420909
0.036776193
3.42151756
7.193064868


NAIF1
1.139889907
0.001417708
0.036776193
1.77297092
4.622296579


AMZ1
1.401084929
0.001430853
0.036835065
0.757580336
4.697318947


ZDHHC18
1.322634784
0.001433155
0.036835065
3.679985244
8.532325263


CST3
−1.206589704
0.001485587
0.038024247
54.298094
30.77291768
Yes


SDHAP1
1.169568814
0.001490256
0.038064774
4.97298268
9.654161053


SSH1
1.136181425
0.001535372
0.03886269
4.366832536
8.201638421


GINS3
1.431414228
0.001595634
0.039929684
0.8409542
6.411405879


NAV1
−1.182098287
0.001601388
0.039940807
1.522865816
0.5266027


CASP9
1.19556286
0.001614154
0.040148821
9.795832856
11.05799316


SGK1
−1.003855752
0.001621156
0.040241856
59.85603994
29.82423195


ITGA2
1.216143898
0.001632734
0.04036681
3.19618754
5.027070905


MZB1
1.309894553
0.001693951
0.041547254
24.83474744
56.75498526


KLF2
−1.23514898
0.001707128
0.041626658
56.41764416
25.34566311


VCAM1
1.142380045
0.001725703
0.041909455
44.44741996
77.7627


TIAM2
1.421865316
0.001741213
0.042203047
0.52895268
3.874846842


SLC27A2
1.267279008
0.001756777
0.042334312
31.71734129
74.47079316
Yes


ST8SIA1
−1.004763422
0.001756924
0.042334312
6.43101508
3.163632211


PIAS2
−1.272095252
0.001754315
0.042334312
10.40526076
3.268512858


XYLT1
1.365509161
0.001779998
0.042806697
1.1606454
2.969577158
Yes


ADAMTS17
1.146044925
0.001798084
0.043073725
0.970106168
2.848200895


PLEKHA5
−1.028909852
0.001810506
0.043287231
8.6564934
3.563287947


IL18RAP
1.246342812
0.001856197
0.043892409
30.24285953
66.06705263


ACOT7
1.351789221
0.001882395
0.044403647
13.74920072
39.01015632


TYROBP
−1.130633801
0.001971061
0.046142286
286.6825624
111.0874333


SNX9
1.194321551
0.001980146
0.046267155
18.41411002
40.61670526


GPA33
1.400729896
0.001984058
0.046270937
4.352248768
17.61862789


UHRF1
1.171771134
0.002007933
0.046651354
4.08198472
9.493753579


GMNN
1.30781058
0.002014754
0.046721835
40.01412236
62.66041737


CDCA3
1.390821103
0.002025511
0.046883172
2.010761628
9.040348842


RMND1
1.120686463
0.002045247
0.047251337
14.60276136
22.08568263


PDE4A
1.129148503
0.002055599
0.047401735
3.8111694
7.638657368
Yes


TRIM16
−1.221863915
0.00210131
0.048185618
2.71523592
0.879359011


RIC1
1.123345605
0.002115833
0.048428633
4.893008408
9.940590942


CDKN3
1.30287349
0.002126804
0.048499774
33.00784028
71.41053842


KCTD9
1.333185286
0.002141187
0.048558511
6.9347676
29.03811263


EMC9
1.213045927
0.00213996
0.048558511
29.22870432
55.71777368


NUDT14
1.068661519
0.00215483
0.048778243
46.7673308
83.1857


SLC18A2
−1.346962778
0.002163723
0.048800448
16.25625348
1.404258258


CD226
1.147445623
0.00217143
0.048810471
23.20268566
55.71804068
Yes


AZIN2
1.373051169
0.002208751
0.049097951
3.109285076
13.45753084


CDK1
1.312177938
0.002227322
0.049332993
15.2390608
34.75512211
















TABLE 5







List of genes uniquely expressed in Tumor TRM










Gene ID









log2FoldChange-vs-
log2FoldChange-vs-
log2FoldChange-vs-



Lung-Non-TRM
Lung-TRM
Tumor-Non-TRM





GSG2
5.217896122
1.727403278
3.635833487


MYO7A
11.04811002
2.259998486
3.513567966


LAYN
7.695794138
4.310357629
3.621535741


KRT86
6.065996193
2.036854575
3.381632722


STMN1
1.440509864
1.315548427
1.366049689


ENTPD1
3.816873481
3.015149779
2.51222904


KLRC2
2.854407583
1.140028446
2.347036307


TOX
1.63476055
1.232637535
1.04690617


TNS3
3.760885198
3.497445411
2.871610018


SRGAP3
6.94255386
2.092844412
2.957823113


CLNK
8.145947295
1.421442605
2.981297463


AFAP1L2
6.701024419
3.220993336
2.730768148


AKAP5
3.365061373
2.50622053
2.119777167


CXCL13
5.905835106
6.008906489
2.786215532


HAVCR2
2.830747425
2.50361094
2.115630958


KIR2DL4
5.015048432
2.424076288
2.739112566


CHRM3-AS2
2.363451642
2.414451417
2.773184838


TNFRSF9
2.408977601
3.457216272
2.018972638


RRM2
3.354352762
2.459896628
2.032567257


CD109
2.569939564
1.712328303
2.209733753


DBH-AS1
3.363084813
2.112220802
2.446850699


SIRPG
1.906534643
2.9228103
1.173047291


CCL3
1.367188475
1.746678602
1.308047955


KIF2C
4.589213359
3.985938676
2.340084386


CTLA4
3.667516869
2.138134252
2.049857964


IFITM10
3.604262638
2.307516511
2.259689528


GEM
3.079089548
4.530445048
2.209029285


RAD51AP1
2.090366569
3.053062158
2.184111701


KIFC1
2.481368317
2.80215291
2.048040416


NUSAP1
2.851989004
1.698825624
1.471883402


AURKA
3.109026783
2.744353884
1.660078116


VDR
1.95356489
2.683453148
1.916130686


KIAA0101
3.295801712
1.951171749
1.705284926


ZC3H12C
3.7603296
3.563030404
2.032896561


ZBED2
5.239224614
4.760873221
1.958522644


LILRP2
4.430404492
3.045769331
1.929179014


FANCI
1.852185073
2.161761079
1.767956945


TNFSF4
3.517317663
2.849440698
1.864855811


ASB2
3.153886441
2.744017787
1.517671152


CAMK1
2.833585603
2.144045067
1.691816551


ANKS1B
2.773441919
3.802723742
1.817118618


SUOX
2.133564156
2.455137719
1.791011507


KCNK5
4.46330601
2.53092669
1.782686156


KIF14
2.380994181
2.894778174
1.61077793


SYNGR3
7.183233568
2.03673754
1.663443022


C1orf106
1.817676184
2.317507122
1.654127927


CCNA2
2.582220087
4.786563234
1.63474981


CCRL2
1.868021117
1.993576214
1.61789572


GINS1
2.672407184
2.308923834
1.561048491


TK1
2.003932836
2.116056331
1.556990809


BIRC5
2.035908601
2.086973635
1.52789537


CASC5
4.535303428
2.610124315
1.683852608


INPP5F
4.725026767
2.536080077
1.557089828


MCM2
2.195434017
1.931278407
1.417554569


HJURP
4.247955681
2.482548456
1.512082809


RDH10
1.465733095
1.575939474
1.392983915


FUT8
2.205316587
1.36327465
1.270544325


MKI67
5.540218705
2.619692627
1.482800913


MYO1E
5.860674228
3.123013282
1.582425887


TOP2A
2.592103178
2.29539434
1.352846874


NDFIP2
2.713458817
1.680758608
1.116525313


PDE7B
2.536531597
2.200650041
1.258502263


CDC6
2.141006594
1.532873841
1.282112236


LOC1019289
3.758323048
1.797657182
1.400426941


TNFRSF18
1.978937742
1.965403844
1.436215773


WIPF3
4.099033144
3.849918125
1.394904839


CKAP2L
2.704714791
1.999536687
1.321005047


AMZ1
4.135576107
2.360849448
1.401084929


ITGA2
3.554125945
2.137378038
1.216143898


MZB1
3.47569117
2.399099383
1.309894553


VCAM1
3.276880266
2.615175589
1.142380045


TIAM2
2.708362955
2.731877282
1.421865316


SLC27A2
3.492322458
1.81432632
1.267279008


UHRF1
2.369255423
2.106619252
1.171771134


RIC1
1.504751576
2.018930511
1.123345605


EMC9
1.162931851
2.837975396
1.213045927


CDK1
2.597647929
1.787691839
1.312177938


PLAC8
−3.317514759
−1.464685708
−2.474542579


FCGR3A
−5.118125315
−3.03735392
−2.930611162


KLRF1
−7.586330442
−2.531583712
−2.393123248


DHRS3
−1.984899007
−1.576886916
−1.538676923


FCGR3B
−4.595506208
−3.242872284
−2.089580696


CXCL16
−3.57727385
−2.899486306
−1.465177681


LYZ
−3.456823139
−2.949409285
−1.206783578


SVIL
−3.938867287
−2.316019064
−1.730549769


PXN
−2.85790707
−2.148037695
−1.349346038


CRIP2
−3.769688421
−4.197779904
−1.682549856


CCL18
−3.20866263
−2.603917856
−1.43447936


C1QC
−3.265559876
−2.572827616
−1.289800192


C1orf162
−2.648782815
−2.037386914
−1.321986663


PLAUR
−4.779211289
−2.670399998
−1.41499774


TYROBP
−2.281337445
−2.008092934
−1.130633801






pvalue-vs-
pvalue-vs-
pvalue-vs-



Lung-Non-TRM
Lung-TRM
Tumor-Non-TRM





GSG2
5.02E−26
0.000758938
2.36E−28


MYO7A
 3.47E−107
1.34E−05
5.58E−18


LAYN
8.56E−39
5.03E−13
1.31E−16


KRT86
7.30E−21
0.000900314
4.46E−16


STMN1
2.16E−08
0.000695078
7.63E−16


ENTPD1
2.22E−27
1.36E−18
1.22E−14


KLRC2
5.53E−10
0.002517694
7.93E−14


TOX
2.55E−10
1.09E−06
2.72E−12


TNS3
5.89E−09
2.77E−09
1.26E−11


SRGAP3
5.11E−32
0.000112977
1.36E−11


CLNK
7.74E−35
0.001945149
1.56E−11


AFAP1L2
5.37E−33
4.88E−08
2.03E−11


AKAP5
2.16E−22
1.17E−13
7.69E−11


CXCL13
1.94E−16
6.94E−23
7.81E−11


HAVCR2
2.47E−13
2.37E−10
8.47E−11


KIR2DL4
1.17E−17
9.34E−05
1.92E−10


CHRM3-AS2
0.000321447
3.49E−06
4.89E−10


TNFRSF9
4.92E−10
1.38E−17
6.12E−10


RRM2
2.59E−12
2.37E−08
4.49E−09


CD109
5.35E−09
0.000244747
8.57E−09


DBH-AS1
9.85E−05
0.002055901
1.11E−08


SIRPG
2.69E−07
6.57E−13
1.38E−08


CCL3
1.14E−05
1.34E−07
2.27E−08


KIF2C
1.15E−10
2.19E−10
3.24E−08


CTLA4
7.06E−17
1.34E−07
3.17E−07


IFITM10
2.56E−08
8.36E−05
5.26E−07


GEM
0.000154922
3.22E−10
1.15E−06


RAD51AP1
0.001952484
3.23E−05
1.17E−06


KIFC1
9.82E−05
6.16E−06
1.19E−06


NUSAP1
3.66E−07
5.28E−08
1.54E−06


AURKA
5.48E−14
1.75E−09
2.03E−06


VDR
0.000531623
5.48E−07
2.32E−06


KIAA0101
1.04E−16
2.33E−05
5.92E−06


ZC3H12C
6.05E−06
1.52E−06
7.69E−06


ZBED2
6.59E−13
1.64E−13
1.07E−05


LILRP2
4.75E−11
1.91E−06
1.72E−05


FANCI
1.65E−05
3.98E−05
2.29E−05


TNFSF4
6.96E−07
2.30E−07
2.57E−05


ASB2
1.09E−06
1.21E−08
2.61E−05


CAMK1
7.88E−07
0.000110133
5.89E−05


ANKS1B
0.00126077
1.57E−06
5.94E−05


SUOX
0.001029801
0.000762109
6.48E−05


KCNK5
4.16E−11
0.000251743
6.88E−05


KIF14
7.48E−07
2.19E−07
7.88E−05


SYNGR3
5.69E−33
0.001004625
0.000110901


C1orf106
0.001986359
0.000131969
0.000117558


CCNA2
7.12E−05
1.25E−13
0.000137262


CCRL2
0.005883769
0.002902786
0.000142927


GINS1
2.42E−10
1.62E−06
0.000151389


TK1
0.001539824
0.000225416
0.000172831


BIRC5
0.000671717
0.000761326
0.000175728


CASC5
7.91E−11
0.000117916
0.000202408


INPP5F
3.54E−14
7.06E−06
0.00026203


MCM2
8.88E−05
0.000448689
0.000357578


HJURP
2.82E−23
9.34E−07
0.000361013


RDH10
0.00736061
0.001570757
0.000374495


FUT8
4.52E−06
0.001561597
0.000388012


MKI67
5.85E−17
3.30E−05
0.000403173


MYO1E
1.73E−21
1.47E−06
0.000450856


TOP2A
9.06E−06
4.98E−05
0.000459462


NDFIP2
1.26E−08
0.000537766
0.000467494


PDE7B
1.36E−10
9.45E−06
0.0007291


CDC6
1.27E−06
0.000175457
0.000983324


LOC1019289
1.57E−08
0.001917135
0.000984987


TNFRSF18
0.001847341
0.000382211
0.001123689


WIPF3
2.68E−14
4.03E−14
0.001249282


CKAP2L
7.33E−06
0.000608346
0.001420909


AMZ1
2.88E−10
0.000875684
0.001430853


ITGA2
2.23E−16
0.000112489
0.001632734


MZB1
9.58E−10
3.77E−05
0.001693951


VCAM1
2.92E−08
2.67E−05
0.001725703


TIAM2
0.00031317
0.000187503
0.001741213


SLC27A2
1.53E−07
0.001644883
0.001756777


UHRF1
5.16E−09
3.57E−07
0.002007933


RIC1
0.008526297
0.001650318
0.002115833


EMC9
0.001576823
3.51E−07
0.00213996


CDK1
0.00030535
0.002941176
0.002227322


PLAC8
7.58E−15
0.002185141
7.61E−17


FCGR3A
1.41E−19
1.95E−07
1.81E−13


KLRF1
2.28E−44
0.001366298
1.07E−07


DHRS3
5.09E−12
0.000251292
2.94E−07


FCGR3B
1.28E−16
4.90E−08
4.25E−07


CXCL16
2.76E−21
2.41E−10
1.42E−05


LYZ
5.86E−25
3.71E−19
4.12E−05


SVIL
1.70E−17
1.93E−05
5.18E−05


PXN
5.41E−13
9.50E−07
0.000144295


CRIP2
6.48E−10
1.44E−15
0.000176976


CCL18
1.17E−07
0.000146058
0.00074364


C1QC
3.39E−13
1.62E−06
0.000850368


C1orf162
1.11E−09
3.06E−06
0.001023341


PLAUR
4.56E−19
2.63E−05
0.00125009


TYROBP
1.04E−06
1.71E−05
0.001971061






padj-vs-
padj-vs-
padj-vs-



Lung-Non-TRM
Lung-TRM
Tumor-Non-TRM





GSG2
3.35E−23
0.017682536
7.27E−25


MYO7A
 4.39E−103
0.000734598
8.61E−15


LAYN
1.36E−35
2.07E−10
1.47E−13


KRT86
2.25E−18
0.020077613
4.58E−13


STMN1
8.43E−07
0.016592582
6.72E−13


ENTPD1
1.65E−24
1.99E−15
7.94E−12


KLRC2
3.14E−08
0.040436251
4.08E−11


TOX
1.51E−08
9.50E−05
1.20E−09


TNS3
2.72E−07
5.22E−07
5.17E−09


SRGAP3
5.39E−29
0.004201487
5.42E−09


CLNK
1.09E−31
0.034357992
5.82E−09


AFAP1L2
6.55E−30
6.81E−06
7.35E−09


AKAP5
9.43E−20
5.93E−11
2.15E−08


CXCL13
3.19E−14
4.58E−19
2.15E−08


HAVCR2
2.58E−11
5.90E−08
2.22E−08


KIR2DL4
2.47E−15
0.003617679
4.82E−08


CHRM3-AS2
0.003597258
0.000248846
1.16E−07


TNFRSF9
2.83E−08
1.83E−14
1.35E−07


RRM2
2.22E−10
3.64E−06
8.03E−07


CD109
2.51E−07
0.00737706
1.47E−06


DBH-AS1
0.001337201
0.035666244
1.84E−06


SIRPG
8.23E−06
2.63E−10
2.24E−06


CCL3
0.000214864
1.59E−05
3.37E−06


KIF2C
7.30E−09
5.68E−08
4.65E−06


CTLA4
1.28E−14
1.59E−05
3.76E−05


IFITM10
9.82E−07
0.003365354
5.64E−05


GEM
0.001972409
7.73E−08
0.000114883


RAD51AP1
0.015324702
0.00153112
0.00011594


KIFC1
0.001334843
0.000383892
0.000116485


NUSAP1
1.09E−05
7.26E−06
0.000146458


AURKA
6.25E−12
3.45E−07
0.00018727


VDR
0.005413661
5.18E−05
0.000204746


KIAA0101
1.85E−14
0.001161096
0.000467234


ZC3H12C
0.000126191
0.000125603
0.000578224


ZBED2
6.28E−11
7.45E−11
0.000775184


LILRP2
3.27E−09
0.0001461
0.00115957


FANCI
0.000295897
0.001812139
0.001462592


TNFSF4
1.95E−05
2.48E−05
0.001607152


ASB2
2.88E−05
1.90E−06
0.00161221


CAMK1
2.16E−05
0.004142382
0.00313345


ANKS1B
0.010841195
0.000127578
0.003144996


SUOX
0.00923904
0.017682536
0.003317961


KCNK5
2.93E−09
0.007520596
0.003491967


KIF14
2.07E−05
2.41E−05
0.003902254


SYNGR3
6.55E−30
0.021651416
0.005290731


C1orf106
0.015542433
0.004671714
0.005493609


CCNA2
0.001016184
6.01E−11
0.006225719


CCRL2
0.035886174
0.044354845
0.006388745


GINS1
1.44E−08
0.000129199
0.006694195


TK1
0.012782761
0.00696941
0.007377908


BIRC5
0.006540595
0.017682536
0.007475706


CASC5
5.14E−09
0.004265019
0.008379571


INPP5F
4.15E−12
0.000431737
0.010295127


MCM2
0.001228037
0.011894768
0.013573646


HJURP
1.32E−20
8.50E−05
0.013662027


RDH10
0.042395964
0.029400015
0.014000421


FUT8
9.81E−05
0.029400015
0.014375073


MKI67
1.07E−14
0.001551665
0.01475575


MYO1E
6.64E−19
0.000121737
0.016029436


TOP2A
0.000178288
0.002190691
0.016288455


NDFIP2
5.27E−07
0.013620929
0.016478506


PDE7B
8.43E−09
0.000551192
0.023019759


CDC6
3.27E−05
0.005879161
0.028458522


LOC1019289
6.32E−07
0.033973184
0.028458522


TNFRSF18
0.014728033
0.01044711
0.031578469


WIPF3
3.17E−12
2.29E−11
0.033969958


CKAP2L
0.000147773
0.015040042
0.036776193


AMZ1
1.69E−08
0.019661184
0.036835065


ITGA2
3.62E−14
0.004195126
0.04036681


MZB1
5.14E−08
0.001740835
0.041547254


VCAM1
1.11E−06
0.001304561
0.041909455


TIAM2
0.003517055
0.006107399
0.042203047


SLC27A2
4.94E−06
0.030514706
0.042334312


UHRF1
2.43E−07
3.57E−05
0.046651354


RIC1
0.04745656
0.030514706
0.048428633


EMC9
0.01302164
3.57E−05
0.048558511


CDK1
0.003453732
0.044785941
0.049332993


PLAC8
9.79E−13
0.037207354
9.38E−14


FCGR3A
3.65E−17
2.20E−05
8.59E−11


KLRF1
4.80E−41
0.026882065
1.41E−05


DHRS3
4.10E−10
0.007520596
3.52E−05


FCGR3B
2.23E−14
6.81E−06
4.77E−05


CXCL16
9.77E−19
5.90E−08
0.000968842


LYZ
3.71E−22
6.99E−16
0.0023407


SVIL
3.54E−15
0.001007621
0.002803752


PXN
5.35E−11
8.53E−05
0.006403473


CRIP2
3.63E−08
1.18E−12
0.007502923


CCL18
3.93E−06
0.005101201
0.023344239


C1QC
3.49E−11
0.000129199
0.025776769


C1orf162
5.83E−08
0.000223456
0.029224437


PLAUR
1.13E−16
0.001290023
0.033969958


TYROBP
2.77E−05
0.000915616
0.046142286






MeanTPM-
MeanTPM_
MeanTPM_



Tumor-TRM
NIL_CD103neg
NIL_CD103pos





GSG2
10.79137868
0.161439895
8.00016295


MYO7A
44.23771526
0.038636476
13.82020979


LAYN
52.53625789
1.268013443
5.637401785


KRT86
90.02109042
0.77714719
21.05319575


STMN1
171.0376579
79.23568095
93.6313875


ENTPD1
51.02960526
4.813320905
8.00948545


KLRC2
170.3632789
27.43117567
71.7629798


TOX
111.2167158
40.17317381
48.47420821


TNS3
18.24837105
2.614606619
1.99195922


SRGAP3
21.03388737
0.327200095
6.54159999


CLNK
48.79801947
0.025489571
37.81930265


AFAP1L2
48.02176947
0.917768462
5.888400985


AKAP5
12.78739474
0.936769381
2.15521775


CXCL13
1830.654842
11.14535171
33.24851965


HAVCR2
334.6920737
43.65628381
59.708044


KIR2DL4
90.73159421
3.772644619
20.33869545


CHRM3-AS2
45.31885842
12.42002929
16.6765635


TNFRSF9
75.16161053
13.75290395
7.85170705


RRM2
51.55875105
5.512094643
12.54809355


CD109
4.155530368
1.260725819
2.672376735


DBH-AS1
9.190445
0
2.82368685


SIRPG
477.9031579
133.5109523
86.54938765


CCL3
879.4891053
379.4398524
308.7706215


KIF2C
15.13782305
0.463829524
1.61216448


CTLA4
243.8928526
19.54678733
68.7486734


IFITM10
11.72409947
2.392565238
3.45431005


GEM
25.92595789
2.124119605
1.49090195


RAD51AP1
17.47792795
6.90577151
4.517111


KIFC1
2.437878232
1.01071879
1.177614


NUSAP1
89.48275263
20.39847528
33.052021


AURKA
26.20345458
5.976808429
25.7213712


VDR
10.44611358
5.016252971
2.20061547


KIAA0101
57.27524105
6.675146857
25.12704715


ZC3H12C
1.357966053
0.011761848
0.03016842


ZBED2
44.29435947
0.845607048
3.18071175


LILRP2
8.555959895
0.179393571
2.0487929


FANCI
18.30659889
7.114525952
7.359242145


TNFSF4
41.49277777
2.741550938
6.68748513


ASB2
43.76039474
4.745831905
9.542647915


CAMK1
54.144063
7.5266972
21.17401165


ANKS1B
2.183310789
0.070079129
0.13357678


SUOX
16.12955742
4.120592919
2.128606905


KCNK5
20.51417421
1.4114012
5.010913685


KIF14
3.265626621
1.26698571
0.191578765


SYNGR3
42.42283158
0.91940919
13.9666646


C1orf106
2.195005284
1.078111543
0.415545935


CCNA2
30.29312263
5.956798548
3.153623335


CCRL2
41.17150789
17.92357785
15.53568475


GINS1
9.327755947
1.102519233
1.842860195


TK1
62.27577368
26.89102266
37.6692809


BIRC5
21.82443158
9.183895781
17.58911704


CASC5
6.408608889
0.954572352
1.822563205


INPP5F
14.65299721
0.683434986
6.52550963


MCM2
34.84616211
9.475945462
13.86870412


HJURP
10.34542453
1.195678052
2.683584425


RDH10
13.67609332
6.140745857
4.51163387


FUT8
39.12060211
14.37280957
18.70667616


MKI67
9.95709
0.396551648
2.29143949


MYO1E
15.26436368
1.932618633
2.655199115


TOP2A
32.63963384
6.18349561
16.73250851


NDFIP2
91.40315263
16.69332039
39.17467275


PDE7B
4.094892895
0.369573876
0.69439915


CDC6
6.325555684
0.878381595
1.80925055


LOC1019289
13.66175105
1.286569143
5.42855735


TNFRSF18
73.40014211
16.56000143
18.60834935


WIPF3
18.05181664
1.792744448
1.021894


CKAP2L
7.193064868
0.582763748
2.08007515


AMZ1
4.697318947
0.071634724
1.16409654


ITGA2
5.027070905
0.309187614
1.389590445


MZB1
56.75498526
9.430024524
16.1069718


VCAM1
77.7627
12.47772077
20.12920756


TIAM2
3.874846842
0.695292919
1.160521885


SLC27A2
74.47079316
7.761453905
26.6987376


UHRF1
9.493753579
2.803213095
2.78529736


RIC1
9.940590942
4.073464
2.943654765


EMC9
55.71777368
30.20844119
20.39791095


CDK1
34.75512211
7.678148262
40.57957299


PLAC8
10.19808989
114.6815
26.4785965


FCGR3A
14.86318363
357.0966381
74.9510268


KLRF1
3.035728737
193.5823511
14.4933614


DHRS3
53.74266979
222.4045952
143.5919088


FCGR3B
1.389735158
28.66079204
24.70543001


CXCL16
13.30089653
175.1718914
85.036884


LYZ
197.5742774
2101.34619
1035.50759


SVIL
0.869931489
9.580544286
4.22403719


PXN
19.01642169
126.245899
71.63926645


CRIP2
1.230886568
22.21384857
23.8480978


CCL18
32.81444384
265.5379826
200.3426554


C1QC
59.72089795
365.8164711
164.5710445


C1orf162
55.57553158
321.1258619
216.6321875


PLAUR
20.07343137
271.6738353
50.50656925


TYROBP
111.0874333
449.8064571
378.0819685






MeanTPM_





TIL_CD103neg
Min.log2FC
padj_Min





GSG2
0.43646014
1.727403278
0.017682536


MYO7A
2.571285816
2.259998486
0.000734598


LAYN
1.848024708
3.621535741
1.47E−13


KRT86
3.71512388
2.036854575
0.020077613


STMN1
85.79118
1.315548427
0.016592582


ENTPD1
9.068538
2.51222904
7.94E−12


KLRC2
42.90052344
1.140028446
0.040436251


TOX
52.981492
1.04690617
1.20E−09


TNS3
1.578477292
2.871610018
5.17E−09


SRGAP3
1.467354292
2.092844412
0.004201487


CLNK
3.97429732
1.421442605
0.034357992


AFAP1L2
10.19192002
2.730768148
7.35E−09


AKAP5
3.498434
2.119777167
2.15E−08


CXCL13
200.4329206
2.786215532
2.15E−08


HAVCR2
71.16694344
2.115630958
2.22E−08


KIR2DL4
6.891746048
2.424076288
0.003617679


CHRM3-AS2
2.12001284
2.363451642
0.003597258


TNFRSF9
17.28012864
2.018972638
1.35E−07


RRM2
24.39809328
2.032567257
8.03E−07


CD109
1.058001288
1.712328303
0.00737706


DBH-AS1
1.18816808
2.112220802
0.035666244


SIRPG
185.4196008
1.173047291
2.24E−06


CCL3
448.815904
1.308047955
3.37E−06


KIF2C
2.716626244
2.340084386
4.65E−06


CTLA4
50.97031992
2.049857964
3.76E−05


IFITM10
1.272724276
2.259689528
5.64E−05


GEM
2.765744876
2.209029285
0.000114883


RAD51AP1
2.22739396
2.090366569
0.015324702


KIFC1
1.139757476
2.048040416
0.000116485


NUSAP1
50.15568704
1.471883402
0.000146458


AURKA
17.55234268
1.660078116
0.00018727


VDR
3.135480952
1.916130686
0.000204746


KIAA0101
34.92798628
1.705284926
0.000467234


ZC3H12C
0.060009268
2.032896561
0.000578224


ZBED2
8.41407728
1.958522644
0.000775184


LILRP2
0.24319804
1.929179014
0.00115957


FANCI
5.771166696
1.767956945
0.001462592


TNFSF4
8.7365456
1.864855811
0.001607152


ASB2
13.9961398
1.517671152
0.00161221


CAMK1
12.76232984
1.691816551
0.00313345


ANKS1B
0.373814604
1.817118618
0.003144996


SUOX
2.148762428
1.791011507
0.003317961


KCNK5
3.473615356
1.782686156
0.003491967


KIF14
0.70509062
1.61077793
0.003902254


SYNGR3
10.13336744
1.663443022
0.005290731


C1orf106
0.429621136
1.654127927
0.005493609


CCNA2
16.76836842
1.63474981
0.006225719


CCRL2
18.98001112
1.61789572
0.006388745


GINS1
2.35536462
1.561048491
0.006694195


TK1
34.81022376
1.556990809
0.007377908


BIRC5
17.88640092
1.52789537
0.007475706


CASC5
0.7152126
1.683852608
0.008379571


INPP5F
4.56110998
1.557089828
0.010295127


MCM2
12.7239374
1.417554569
0.013573646


HJURP
3.0432999
1.512082809
0.013662027


RDH10
4.7784252
1.392983915
0.014000421


FUT8
16.45712298
1.270544325
0.014375073


MKI67
3.740788684
1.482800913
0.01475575


MYO1E
3.620583316
1.582425887
0.016029436


TOP2A
14.67442033
1.352846874
0.016288455


NDFIP2
40.7288212
1.116525313
0.016478506


PDE7B
1.530637224
1.258502263
0.023019759


CDC6
4.7555254
1.282112236
0.028458522


LOC1019289
5.24736404
1.400426941
0.028458522


TNFRSF18
20.86098484
1.436215773
0.031578469


WIPF3
4.911925736
1.394904839
0.033969958


CKAP2L
3.42151756
1.321005047
0.036776193


AMZ1
0.757580336
1.401084929
0.036835065


ITGA2
3.19618754
1.216143898
0.04036681


MZB1
24.83474744
1.309894553
0.041547254


VCAM1
44.44741996
1.142380045
0.041909455


TIAM2
0.52895268
1.421865316
0.042203047


SLC27A2
31.71734129
1.267279008
0.042334312


UHRF1
4.08198472
1.171771134
0.046651354


RIC1
4.893008408
1.123345605
0.048428633


EMC9
29.22870432
1.162931851
0.01302164


CDK1
15.2390608
1.312177938
0.049332993


PLAC8
55.3151272
−1.464685708
0.037207354


FCGR3A
119.760642
−2.930611162
8.59E−11


KLRF1
69.15205336
−2.393123248
1.41E−05


DHRS3
150.522892
−1.538676923
3.52E−05


FCGR3B
15.66373078
−2.089580696
4.77E−05


CXCL16
33.54755604
−1.465177681
0.000968842


LYZ
533.8098288
−1.206783578
0.0023407


SVIL
6.2219778
−1.730549769
0.002803752


PXN
60.2272196
−1.349346038
0.006403473


CRIP2
10.84884325
−1.682549856
0.007502923


CCL18
120.7602916
−1.43447936
0.023344239


C1QC
122.636079
−1.289800192
0.025776769


C1orf162
149.498455
−1.321986663
0.029224437


PLAUR
88.264021
−1.41499774
0.033969958


TYROBP
286.6825624
−1.130633801
0.046142286
















TABLE 6





Mapping metics obtained from MIGIC analysis



























Estimate








SAMPLE



Name
Number
Sample
Class
Marker
TYPE





1
12-TL647-TIL-CD8+_CD103+
12
TL647
TIL
CD8+_CD103+
paired


2
13-TL647-TIL-CD8+_CD103−
13
TL647
TIL
CD8+_CD103−
paired


3
139-TL706-TIL-CD8+_CD103+
139
TL706
TIL
CD8+_CD103+
paired


4
140-TL706-TIL-CD8+_CD103−
140
TL706
TIL
CD8+_CD103−
paired


5
151-TL722-TIL-CD8+_CD103+
151
TL722
TIL
CD8+_CD103+
paired


6
152-TL722-TIL-CD8+_CD103−
152
TL722
TIL
CD8+_CD103−
paired


7
157-TL704-TIL-CD8+_CD103+
157
TL704
TIL
CD8+_CD103+
paired


8
158-TL704-TIL-CD8+_CD103−
158
TL704
TIL
CD8+_CD103−
paired


9
172-TL720-TIL-CD8+_CD103+
172
TL720
TIL
CD8+_CD103+
paired


10
173-TL720-TIL-CD8+_CD103−
173
TL720
TIL
CD8+_CD103−
paired


11
18-TL615-TIL-CD8+_CD103+
18
TL615
TIL
CD8+_CD103+
paired


12
19-TL615-TIL-CD8+_CD103−
19
TL615
TIL
CD8+_CD103−
paired


13
55-TL661-TIL-CD8+_CD103+
55
TL661
TIL
CD8+_CD103+
paired


14
56-TL661-TIL-CD8+_CD103−
56
TL661
TIL
CD8+_CD103−
paired


15
63-TL663-TIL-CD8+_CD103+
63
TL663
TIL
CD8+_CD103+
paired


16
64-TL663-TIL-CD8+_CD103−
64
TL663
TIL
CD8+_CD103−
paired


17
90-TL101-TIL-CD8+_CD103+
90
TL101
TIL
CD8+_CD103+
paired


18
91-TL101-TIL-CD8+_CD103−
91
TL101
TIL
CD8+_CD103−
paired


19
95-TL684-TIL-CD8+_CD103+
95
TL684
TIL
CD8+_CD103+
paired


20
96-TL684-TIL-CD8+_CD103−
96
TL684
TIL
CD8+_CD103−
paired


















Estimate
Estimate
Estimate
Estimate
Estimate




TOTAL
TOTAL
OVERSEQ
COLLISION
UMI QUAL



Name
READS
MIGS
THRESHOLD
THRESHOLD
THRESHOLD





1
12-TL647-TIL-CD8+_CD103+
256397
3483
16
16
15


2
13-TL647-TIL-CD8+_CD103−
105892
1787
16
16
15


3
139-TL706-TIL-CD8+_CD103+
157923
3661
11
11
15


4
140-TL706-TIL-CD8+_CD103−
414797
4264
23
23
15


5
151-TL722-TIL-CD8+_CD103+
144130
3141
11
11
15


6
152-TL722-TIL-CD8+_CD103−
193457
1743
32
32
15


7
157-TL704-TIL-CD8+_CD103+
242088
3713
11
11
15


8
158-TL704-TIL-CD8+_CD103−
228663
3040
16
16
15


9
172-TL720-TIL-CD8+_CD103+
185525
1773
32
32
15


10
173-TL720-TIL-CD8+_CD103−
158541
1973
16
16
15


11
18-TL615-TIL-CD8+_CD103+
230107
4147
11
11
15


12
19-TL615-TIL-CD8+_CD103−
294826
3764
16
16
15


13
55-TL661-TIL-CD8+_CD103+
179352
2788
16
16
15


14
56-TL661-TIL-CD8+_CD103−
62968
1385
11
11
15


15
63-TL663-TIL-CD8+_CD103+
262129
4085
16
16
15


16
64-TL663-TIL-CD8+_CD103−
261288
3438
23
23
15


17
90-TL101-TIL-CD8+_CD103+
125051
1037
32
32
15


18
91-TL101-TIL-CD8+_CD103−
65514
2602
6
6
15


19
95-TL684-TIL-CD8+_CD103+
290295
2234
32
32
15


20
96-TL684-TIL-CD8+_CD103−
167628
1297
32
32
15



















Assemble
Assemble
Assemble
Assemble




Estimate
MIG COUNT
MIGS GOOD
MIGS GOOD
MIGS GOOD



Name
UMI LEN
THRESHOLD
FASTQ1
FASTQ2
TOTAL





1
12-TL647-TIL-CD8+_CD103+
12
16
881
886
874


2
13-TL647-TIL-CD8+_CD103−
12
16
317
317
313


3
139-TL706-TIL-CD8+_CD103+
12
11
1548
1555
1540


4
140-TL706-TIL-CD8+_CD103−
12
23
743
745
741


5
151-TL722-TIL-CD8+_CD103+
12
11
1346
1344
1329


6
152-TL722-TIL-CD8+_CD103−
12
32
152
155
150


7
157-TL704-TIL-CD8+_CD103+
12
11
1489
1491
1483


8
158-TL704-TIL-CD8+_CD103−
12
16
728
727
716


9
172-TL720-TIL-CD8+_CD103+
12
32
219
215
214


10
173-TL720-TIL-CD8+_CD103−
12
16
524
526
523


11
18-TL615-TIL-CD8+_CD103+
12
11
1488
1470
1458


12
19-TL615-TIL-CD8+_CD103−
12
16
906
905
895


13
55-TL661-TIL-CD8+_CD103+
12
16
578
581
573


14
56-TL661-TIL-CD8+_CD103−
12
11
310
310
308


15
63-TL663-TIL-CD8+_CD103+
12
16
720
724
717


16
64-TL663-TIL-CD8+_CD103−
12
23
511
518
510


17
90-TL101-TIL-CD8+_CD103+
12
32
187
188
186


18
91-TL101-TIL-CD8+_CD103−
12
6
1704
1705
1682


19
95-TL684-TIL-CD8+_CD103+
12
32
276
275
275


20
96-TL684-TIL-CD8+_CD103−
12
32
180
180
180



















Assemble
Assemble
Assemble





Assemble
READS
READS
READS
Assemble




MIGS
GOOD
GOOD
GOOD
READS



Name
TOTAL
FASTQ1
FASTQ2
TOTAL
TOTAL





1
12-TL647-TIL-CD8+_CD103+
3483
215978
224093
235916
242518


2
13-TL647-TIL-CD8+_CD103−
1787
90486
93526
94556
99609


3
139-TL706-TIL-CD8+_CD103+
3661
137863
140542
144314
148820


4
140-TL706-TIL-CD8+_CD103−
4264
361751
373821
382965
389088


5
151-TL722-TIL-CD8+_CD103+
3141
125468
129630
131603
136224


6
152-TL722-TIL-CD8+_CD103−
1743
170625
174451
176010
181048


7
157-TL704-TIL-CD8+_CD103+
3713
213284
216903
224884
229289


8
158-TL704-TIL-CD8+_CD103−
3040
196480
205688
209293
215321


9
172-TL720-TIL-CD8+_CD103+
1773
163398
169622
171133
175191


10
173-TL720-TIL-CD8+_CD103−
1973
141013
145563
146520
148966


11
18-TL615-TIL-CD8+_CD103+
4147
200782
205033
210574
216662


12
19-TL615-TIL-CD8+_CD103−
3764
256428
265348
269313
277718


13
55-TL661-TIL-CD8+_CD103+
2788
154888
158301
161188
167841


14
56-TL661-TIL-CD8+_CD103−
1385
53932
55422
55888
58920


15
63-TL663-TIL-CD8+_CD103+
4085
225440
234365
236938
246198


16
64-TL663-TIL-CD8+_CD103−
3438
221547
233768
235752
245422


17
90-TL101-TIL-CD8+_CD103+
1037
108119
114592
115402
117838


18
91-TL101-TIL-CD8+_CD103−
2602
56311
57744
59538
61447


19
95-TL684-TIL-CD8+_CD103+
2234
255442
265674
268247
271670


20
96-TL684-TIL-CD8+_CD103−
1297
145259
154277
156186
158039


















Assemble








READS




DROPPED
CDRBlast
CDRBlast
CDRBlast
CDRBlast




WITHIN
DATA
EVENTS
EVENTS
EVENTS



Name
MIG
TYPE
GOOD
MAPPED
TOTAL





1
12-TL647-TIL-CD8+_CD103+
32002
asm
699
741
1748


2
13-TL647-TIL-CD8+_CD103−
6573
asm
259
263
626


3
139-TL706-TIL-CD8+_CD103+
10968
asm
1068
1183
3080


4
140-TL706-TIL-CD8+_CD103−
30862
asm
494
519
1482


5
151-TL722-TIL-CD8+_CD103+
9686
asm
929
1054
2658


6
152-TL722-TIL-CD8+_CD103−
6825
asm
90
95
300


7
157-TL704-TIL-CD8+_CD103+
20961
asm
1054
1161
2966


8
158-TL704-TIL-CD8+_CD103−
17696
asm
592
652
1432


9
172-TL720-TIL-CD8+_CD103+
8793
asm
150
164
428


10
173-TL720-TIL-CD8+_CD103−
6904
asm
407
429
1046


11
18-TL615-TIL-CD8+_CD103+
16414
asm
1139
1277
2916


12
19-TL615-TIL-CD8+_CD103−
19363
asm
731
780
1790


13
55-TL661-TIL-CD8+_CD103+
10405
asm
412
422
1146


14
56-TL661-TIL-CD8+_CD103−
2553
asm
236
244
616


15
63-TL663-TIL-CD8+_CD103+
15508
asm
572
582
1434


16
64-TL663-TIL-CD8+_CD103−
17675
asm
374
377
1020


17
90-TL101-TIL-CD8+_CD103+
9472
asm
123
123
372


18
91-TL101-TIL-CD8+_CD103−
5835
asm
1167
1455
3364


19
95-TL684-TIL-CD8+_CD103+
14558
asm
202
203
550


20
96-TL684-TIL-CD8+_CD103−
10653
asm
136
136
360


















CDRBlast
CDRBlast
CDRBlast
Number
Number




READS
READS
READS
TCR
Clonotypes



Name
GOOD
MAPPED
TOTAL
molecules
Found





1
12-TL647-TIL-CD8+_CD103+
175402
177879
439744
654
99


2
13-TL647-TIL-CD8+_CD103−
77762
77873
183383
237
67


3
139-TL706-TIL-CD8+_CD103+
87825
93692
278009
974
157


4
140-TL706-TIL-CD8+_CD103−
212346
231002
734848
472
175


5
151-TL722-TIL-CD8+_CD103+
83161
92665
254326
878
117


6
152-TL722-TIL-CD8+_CD103−
104254
104440
344846
85
60


7
157-TL704-TIL-CD8+_CD103+
119636
128407
428990
998
68


8
158-TL704-TIL-CD8+_CD103−
154956
162679
401324
558
224


9
172-TL720-TIL-CD8+_CD103+
119858
120386
332822
143
85


10
173-TL720-TIL-CD8+_CD103−
114808
115925
286238
380
146


11
18-TL615-TIL-CD8+_CD103+
160660
168339
405084
1053
137


12
19-TL615-TIL-CD8+_CD103−
226581
228568
520271
674
192


13
55-TL661-TIL-CD8+_CD103+
122895
124004
312583
387
108


14
56-TL661-TIL-CD8+_CD103−
43713
43813
109221
216
111


15
63-TL663-TIL-CD8+_CD103+
178541
182139
458777
550
163


16
64-TL663-TIL-CD8+_CD103−
166911
168724
453958
350
171


17
90-TL101-TIL-CD8+_CD103+
53875
53875
222323
118
47


18
91-TL101-TIL-CD8+_CD103−
40252
46213
113574
1047
653


19
95-TL684-TIL-CD8+_CD103+
202918
202966
520997
190
103


20
96-TL684-TIL-CD8+_CD103−
104038
104038
299536
129
92
















Sample ID
Sample
Class
Marker
Filter







12-TL647-TIL-CD8+_CD103+
TL647
TIL
CD8+_CD103+
conv:MiGec



13-TL647-TIL-CD8+_CD103−
TL647
TIL
CD8+_CD103−
conv:MiGec



139-TL706-TIL-CD8+_CD103+
TL706
TIL
CD8+_CD103+
conv:MiGec



140-TL706-TIL-CD8+_CD103−
TL706
TIL
CD8+_CD103−
conv:MiGec



151-TL722-TIL-CD8+_CD103+
TL722
TIL
CD8+_CD103+
conv:MiGec



152-TL722-TIL-CD8+_CD103−
TL722
TIL
CD8+_CD103−
conv:MiGec



157-TL704-TIL-CD8+_CD103+
TL704
TIL
CD8+_CD103+
conv:MiGec



158-TL704-TIL-CD8+_CD103−
TL704
TIL
CD8+_CD103−
conv:MiGec



172-TL720-TIL-CD8+_CD103+
TL720
TIL
CD8+_CD103+
conv:MiGec



173-TL720-TIL-CD8+_CD103−
TL720
TIL
CD8+_CD103−
conv:MiGec



18-TL615-TIL-CD8+_CD103+
TL615
TIL
CD8+_CD103+
conv:MiGec



19-TL615-TIL-CD8+_CD103−
TL615
TIL
CD8+_CD103−
conv:MiGec



55-TL661-TIL-CD8+_CD103+
TL661
TIL
CD8+_CD103+
conv:MiGec



56-TL661-TIL-CD8+_CD103−
TL661
TIL
CD8+_CD103−
conv:MiGec



63-TL663-TIL-CD8+_CD103+
TL663
TIL
CD8+_CD103+
conv:MiGec



64-TL663-TIL-CD8+_CD103−
TL663
TIL
CD8+_CD103−
conv:MiGec



90-TL101-TIL-CD8+_CD103+
TL101
TIL
CD8+_CD103+
conv:MiGec



91-TL101-TIL-CD8+_CD103−
TL101
TIL
CD8+_CD103−
conv:MiGec



95-TL684-TIL-CD8+_CD103+
TL684
TIL
CD8+_CD103+
conv:MiGec



96-TL684-TIL-CD8+_CD103−
TL684
TIL
CD8+_CD103−
conv:MiGec




















Extrapolate
Chao1



Sample ID
Read
Diversity
reads
mean







12-TL647-TIL-CD8+_CD103+
654
99
1053
235



13-TL647-TIL-CD8+_CD103−
237
67
1053
166



139-TL706-TIL-CD8+_CD103+
974
157
1053
265



140-TL706-TIL-CD8+_CD103−
472
175
1053
451



151-TL722-TIL-CD8+_CD103+
878
117
1053
203



152-TL722-TIL-CD8+ CD103−
85
60
1053
163



157-TL704-TIL-CD8+_CD103+
998
68
1053
103



158-TL704-TIL-CD8+_CD103−
558
224
1053
750



172-TL720-TIL-CD8+_CD103+
143
85
1053
269



173-TL720-TIL-CD8+_CD103−
380
146
1053
344



18-TL615-TIL-CD8+_CD103+
1053
137
1053
252



19-TL615-TIL-CD8+_CD103−
674
192
1053
446



55-TL661-TIL-CD8+_CD103+
387
108
1053
165



56-TL661-TIL-CD8+_CD103−
216
111
1053
274



63-TL663-TIL-CD8+_CD103+
550
163
1053
326



64-TL663-TIL-CD8+_CD103−
350
171
1053
473



90-TL101-TIL-CD8+_CD103+
118
47
1053
152



91-TL101-TIL-CD8+_CD103−
1047
653
1053
1848



95-TL684-TIL-CD8+_CD103+
190
103
1053
259



96-TL684-TIL-CD8+_CD103−
129
92
1053
262

















ObservedDiversity
ChaoE
ChaoE
EfronThisted
EfronThisted


Sample ID
mean
mean
std
mean
std





12-TL647-TIL-CD8+_CD103+
99
131
8
207
15


13-TL647-TIL-CD8+_CD103−
67
145
23
112
6


139-TL706-TIL-CD8+_CD103+
157
163
8
295
19


140-TL706-TIL-CD8+_CD103−
175
287
16
387
22


151-TL722-TIL-CD8+_CD103+
117
129
7
224
16


152-TL722-TIL-CD8+_CD103−
60
162
41
106
6


157-TL704-TIL-CD8+_CD103+
68
69
4
95
5


158-TL704-TIL-CD8+_CD103−
224
352
16
654
41


172-TL720-TIL-CD8+_CD103+
85
251
48
152
8


173-TL720-TIL-CD8+_CD103−
146
261
19
319
20


18-TL615-TIL-CD8+_CD103+
137
137
7
268
18


19-TL615-TIL-CD8+_CD103−
192
252
11
408
22


55-TL661-TIL-CD8+_CD103+
108
154
12
194
15


56-TL661-TIL-CD8+_CD103−
111
246
32
245
17


63-TL663-TIL-CD8+_CD103+
163
232
12
331
20


64-TL663-TIL-CD8+_CD103−
171
338
24
390
22


90-TL101-TIL-CD8+_CD103+
47
145
41
83
6


91-TL101-TIL-CD8+_CD103−
653
655
20
2075
108


95-TL684-TIL-CD8+_CD103+
103
238
35
227
17


96-TL684-TIL-CD8+_CD103−
92
254
48
164
8



















normalized




Chao1
d50Index
shannonWienerIndex
ShannonWienerIndex
inverseSimpsonIndex


Sample ID
std
mean
mean
mean
mean





12-TL647-TIL-CD8+_CD103+
52
0.95959596
20.53006238
0.6576303
10.35732274


13-TL647-TIL-CD8+_CD103−
43
0.955223881
17.98794136
0.6872563
5.595079191


139-TL706-TIL-CD8+_CD103+
31
0.961783439
36.38352009
0.710827
16.06999356


140-TL706-TIL-CD8+_CD103−
76
0.92
68.48994371
0.8183663
19.89142857


151-TL722-TIL-CD8+_CD103+
29
0.965811966
24.32970049
0.6702187
10.55629502


152-TL722-TIL-CD8+_CD103−
44
0.9
51.00535901
0.9603321
40.81920904


157-TL704-TIL-CD8+_CD103+
18
0.911764706
21.09133591
0.7225635
11.21575605


158-TL704-TIL-CD8+_CD103−
132
0.9375
93.37867751
0.8383148
33.0675446


172-TL720-TIL-CD8+_CD103+
69
0.929411765
53.57509948
0.8961055
25.72201258


173-TL720-TIL-CD8+_CD103−
58
0.904109589
70.32517191
0.8534241
31.58355206


18-TL615-TIL-CD8+_CD103+
36
0.97080292
24.05847811
0.646443
9.060895786


19-TL615-TIL-CD8+_CD103−
67
0.942708333
68.829179
0.8048752
29.23645257


55-TL661-TIL-CD8+_CD103+
20
0.944444444
37.173325
0.7722106
13.21296868


56-TL661-TIL-CD8+_CD103−
55
0.90990991
77.24672227
0.923023
50.06008584


63-TL663-TIL-CD8+_CD103+
46
0.895705521
64.85979256
0.8190877
24.16520211


64-TL663-TIL-CD8+_CD103−
83
0.941520468
98.46364678
0.8926464
43.01264045


90-TL101-TIL-CD8+_CD103+
53
0.936170213
19.01294967
0.764937
8.307875895


91-TL101-TIL-CD8+_CD103−
165
0.977029096
485.3991287
0.9542387
299.920383


95-TL684-TIL-CD8+_CD103+
55
0.912621359
77.11035818
0.9375387
55.53846154


96-TL684-TIL-CD8+_CD103−
60
0.923913043
76.75366646
0.9599301
57.9825784
















Name
Number
Sample
Class
Marker







12-TL647-TIL-CD8+_CD103+
12
TL647
TIL
CD8+_CD103+



13-TL647-TIL-CD8+_CD103−
13
TL647
TIL
CD8+_CD103−



139-TL706-TIL-CD8+_CD103+
139
TL706
TIL
CD8+_CD103+



140-TL706-TIL-CD8+_CD103−
140
TL706
TIL
CD8+_CD103−



151-TL722-TIL-CD8+_CD103+
151
TL722
TIL
CD8+_CD103+



152-TL722-TIL-CD8+_CD103−
152
TL722
TIL
CD8+_CD103−



157-TL704-TIL-CD8+_CD103+
157
TL704
TIL
CD8+_CD103+



158-TL704-TIL-CD8+_CD103−
158
TL704
TIL
CD8+_CD103−



172-TL720-TIL-CD8+_CD103+
172
TL720
TIL
CD8+_CD103+



173-TL720-TIL-CD8+_CD103−
173
TL720
TIL
CD8+_CD103−



18-TL615-TIL-CD8+_CD103+
18
TL615
TIL
CD8+_CD103+



19-TL615-TIL-CD8+_CD103−
19
TL615
TIL
CD8+_CD103−



55-TL661-TIL-CD8+_CD103+
55
TL661
TIL
CD8+_CD103+



56-TL661-TIL-CD8+_CD103−
56
TL661
TIL
CD8+_CD103−



63-TL663-TIL-CD8+_CD103+
63
TL663
TIL
CD8+_CD103+



64-TL663-TIL-CD8+_CD103−
64
TL663
TIL
CD8+_CD103−



90-TL101-TIL-CD8+_CD103+
90
TL101
TIL
CD8+_CD103+



91-TL101-TIL-CD8+_CD103−
91
TL101
TIL
CD8+_CD103−



95-TL684-TIL-CD8+_CD103+
95
TL684
TIL
CD8+_CD103+



96-TL684-TIL-CD8+_CD103−
96
TL684
TIL
CD8+_CD103−

















Percent top
Percent sec
Percent rem
Percent all
Percent non


Name
exp clone
exp clones
exp clones
exp clones
exp clones





12-TL647-TIL-CD8+_CD103+
17
15
55
87
13


13-TL647-TIL-CD8+_CD103−
41
8
25
73
27


139-TL706-TIL-CD8+_CD103+
16
10
59
85
15


140-TL706-TIL-CD8+_CD103−
19
7
39
65
35


151-TL722-TIL-CD8+_CD103+
22
15
51
87
13


152-TL722-TIL-CD8+ CD103−
7
6
12
25
75


157-TL704-TIL-CD8+_CD103+
24
9
63
95
5


158-TL704-TIL-CD8+_CD103−
13
5
43
61
39


172-TL720-TIL-CD8+_CD103+
15
8
15
38
62


173-TL720-TIL-CD8+_CD103−
11
8
43
62
38


18-TL615-TIL-CD8+_CD103+
27
11
49
88
12


19-TL615-TIL-CD8+_CD103−
9
9
55
74
26


55-TL661-TIL-CD8+_CD103+
22
12
39
72
28


56-TL661-TIL-CD8+_CD103−
7
6
38
50
50


63-TL663-TIL-CD8+_CD103+
16
6
49
72
28


64-TL663-TIL-CD8+_CD103−
11
7
35
52
48


90-TL101-TIL-CD8+_CD103+
26
20
14
61
39


91-TL101-TIL-CD8+_CD103−
2
2
31
35
65


95-TL684-TIL-CD8+_CD103+
5
8
35
49
51


96-TL684-TIL-CD8+_CD103−
6
5
12
22
78



















TCRβ chain reconstruction in subjects from TCR-seq analysis











Number
Name
Class
Marker
CDR3 nucleotide sequence














1
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAAGGAGGGCGACTAGAGGCAGATACGCAGTATTTT





2
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCCTCATCCCTTGGACAGGACAATCAGCCCCAGCATTTT





3
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGGTCAGGGGAGTACATTCAGTACTTC





4
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCAGGGACTAGCTACATTCAGTTCTTC





5
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTAGCTAGCGGGACAGATACGCAGTATTTT





6
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATCAAGGAGCCAGTCCTCTAAAGCTTTCTTT





7
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCGACAGGGTACTATGGCTACACCTTC





8
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTCCGGACAGGGGGCCACTGAAGCTTTCTTT





9
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGGATAGCAATCAGCCCCAGCATTTT





10
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGAGGGGGCTTATACGAGCAGTACTTC





11
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGACAGGGGGTGATGGCTACACCTTC





12
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCATAGCGGGGAGCTCCTACAATGAGCAGTTCTTC





13
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATAGGGCAGCAAGAGCAGTTCTTC





14
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGTAGGACAGGCAATGAGCAGTTCTTC





15
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCCAGACTGGTTCCAGGTCTACGAGCAGTACTTC





16
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGGGGACTACATGGACGCAGTATTTT





17
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGAAAGAGGACTCACTGAAGCTTTCTTT





18
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGGAACCAGTAGGACCTTACAATGAGCAGTTCTTC





19
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGGCGGAGGGAGGTTAACGCAGTATTTT





20
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCTCTTGGGGACCCTAGCTCCGGGGAGCTGTTTTTT





21
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCCCCGATGGGGCGAATCAGTACTTC





22
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCATTACCGGGACAGGGAAACCCTACGAGCAGTACTTC





23
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTCATGCGGCCGGGACAGGGGGCGGTGGGGGATTCA






CCCCTCCACTTT





24
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTCGTGGGCTTGGAGCTTTCTTT





25
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCCGACTAGCGGGGCTCTACGAGCAGTACTTC





26
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGCGGCTAGCGGGCGCCTCCCTTTACAATGAG






CAGTTCTTC





27
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCTACAGGCCAAGAGACCCAGTACTTC





28
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAAGGGGGTCGGGGGCGGGGGGATACGCAGTATTTT





29
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATGACCTTAAACCTGCCGAGCAGTACTTC





30
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGGGCTTTACTCAGATACGCAGTATTTT





31
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGCCGGGACGTCCCATCAGCCCCAGCATTTT





32
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTACTACTCGACAGGGGGGTGTAAGAAATCAGCCCCAGCATTTT





33
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGAGGGAACTAGCGCGACCTACGAGCAGTACTTC





34
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGTGGTTGGGACAGTAAATTCAATGAGCAGTTCTTC





35
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGTAGCAGGATCGGGGAGCTGTTTTTT





36
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGGGACAGTCTGTGGACACCGGGGAGCTGTTTTTT





37
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCGGAGGCAGGGGGAACTACGAGCAGTACTTC





38
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCCCCGGACAAAGCTAACTATGGCTACACCTTC





39
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTAGATCCCGGGGTCTATGGCTACACCTTC





40
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGGAGGTGACAGCCACCTCAGATACGCAGTATTTT





41
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCTCTAGCGGGAGATGGCGAGCAGTACTTC





42
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTACTTAAGACAACCTGGAACACTGAAGCTTTCTTT





43
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGTCCCAAGACCGGACTACGAGCAGTACTTC





44
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCGCCGGGACAGGAAAAAAAGACCCAGTACTTC





45
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAAGCAAGGGACGGAAGCTCCTACGAGCAGTACTTC





46
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTAGGAAATAGAGGGGGCACAGATACGCAGTATTTT





47
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGCGGTAGCGGGAGTGGGAGAGACCCAGTACTTC





48
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCAACGGGTTATCCTACGAGCAGTACTTC





49
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGTGGGGACGGTATGAACACTGAAGCTTTCTTT





50
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGAAAACACTCACTACGAGCAGTACTTC





51
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGTGGAGGCTCCCACTGAAGCTTTCTTT





52
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCGCCGGGACAGGGAAAAAAGACCCAGTACTTC





53
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCATCTGGACGGAGGTCTCAATCAGCCCCAGCATTTT





54
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGAGTCAGGGCCAGGGAACATTCAGTACTTC





55
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGTTCGTAGGTTCGGGGAGCTGTTTTTT





56
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCGGGCGGGTGGGGGGAGACCCAGTACTTC





57
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGGGCGGGTATGAAACAGATACGCAGTATTTT





58
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGCAACTATGGCTGGCTCCTACAATGAGCAGTTCTTC





59
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCCTCATCCCTTGGACAGGACAATCAGCCCCAGCATTTT





60
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATTAACAGGGGGATGAACACTGAAGCTTTCTTT





61
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGGTCAGGGGAGTACATTCAGTACTTC





62
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGATGCGACAGGGATCTACGAGCAGTACTTC





63
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGATGCTAGCGGGACCACAGATACGCAGTATTTT





64
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCTCCGGGACTAGGTACAGATACGCAGTATTTT





65
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGACAGCGGGAGACTGAACACCGGGGAGCTGTTTTTT





66
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAAACCGGGACAGGGGCGCACATGGCTACACCTTC





67
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGAAGGCAGGGAGGGGGAGACCCAGTACTTC





68
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCTCCTGGAGGCGGGTCAGCCCCAGCATTTT





69
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTACTAGCGGGAGGGTTATACAATGAGCAGTTCTTC





70
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACCGGACTAGCGGACTCAATGAGCAGTTCTTC





71
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTTTCGACACGAACTGGGGCCAACGTCCTGACTTTC





72
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCCGGCGGACACCACTCCTACGAGCAGTACTTC





73
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCAACGGGGGGTCGGGACGAGCAGTACTTC





74
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGCTAGCGGGGGGTCCACAGATACGCAGTATTTT





75
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCAGGAATAGACAACTATGGCTACACCTTC





76
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTGGGGAGTAACTACAATGAGCAGTTCTTC





77
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTATCCAGAAGCTTTCTTT





78
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACAGGGACAGGGGGGCAGATACGCAGTATTTT





79
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGAACTTATGGGGACATGAACACTGAAGCTTTCTTT





80
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGGGACAGGGTGGTAATTCACCCCTCCACTTT





81
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAAGGAGGGGGGGCACAGATACGCAGTATTTT





82
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTATTTCCCGGGGAGCTGTTTTTT





83
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGAGTCGTACAATGAGCAGTTCTTC





84
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCCGGACAGAACACCGGGGAGCTGTTTTTT





85
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGAGGAGGACAGGGTGGACGAGCAGTACTTC





86
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGAGTGGACAGTGAACGGGGAGCTGTTTTTT





87
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGGGTGGTGGACAGACTATGGCTACACCTTC





88
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCTAGCAGCTTGTGGGGGAGGCCTTCCGATGAGCAGTTCTTC





89
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATCAAATTCGGGCACTGAAGCTTTCTTT





90
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTGGGCCCGGACTGACGAGCAGTACTTC





91
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAATCTACCCAGGGGTATTCACCCCTCCACTTT





92
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCGGGGGGGGGCACTGAAGCTTTCTTT





93
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGACGGGGGGTACACTGAAGCTTTCTTT





94
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGATCCCCTAGGCCCCTACTCTGGGGCC






AACGTCCTGACTTTC





95
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTCGCCCCGAATAACTATGGCTACACCTTC





96
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCCTAGCGGGAGGGCCAGGCGAGCAGTACTTC





97
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCGGACAGGGAGGAAATTCACCCCTCCACTTT





98
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTGCCGGGACCACAAAAGAGGACGAGCAGTACTTC





99
12-TL647-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCCGGCGGCGCGGGGGTGGAGGAAAAACTGTTTTTT





100
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGTCAGGGCCAGGGAACATTCAGTACTTC





101
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTAGACTAGCCCAAGAGACCCAGTACTTC





102
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGAGAGCGGCGGCCCTTACAATGAGCAGTTCTTC





103
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGCGGCCTAGCGGGAGACGACGAGCAGTACTTC





104
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGTCGTGGGGAGTCACTATGGCTACACCTTC





105
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATGGCAGGGGTCTAATGAAAAACTGTTTTTT





106
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATCGGAGGGTAATGAGCAGTTCTTC





107
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCAACAATGAGCAGTTCTTC





108
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTTCAGGGGGCCGGACAGATACGCAGTATTTT





109
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTACCCCGGCTTACTTGAACACCGGGGAGCTGTTTTTT





110
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACCAAACCGGGACAGGGGTCTATGGCTACACCTTC





111
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGTCAAGGGGGGGCTTGGGGCTACACCTTC





112
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGGGGCAGCTCTCGACCMGAACACTGAAGCTTTCTTT





113
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAACGGGGGGTCGGGACGAGCAGTACTTC





114
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTTACGGGCAGGGAGCCCCTCAATGGAGACCCAGTACTTC





115
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTTCCGGGACAGGGGTATACAATGAGCAGTTCTTC





116
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCAAGGGGGCGCCCTAGGCTACACCTTC





117
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCAACCTGGAGGGGACGGGGAGACTAGCCAAAAACATT






CAGTACTTC





118
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGCGACGGAGGCACAGATACGCAGTATTTT





119
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCCGGGACAGGGGGCGGGAGCAGTACTTC





120
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGTAGGACAGGCAATGAGCAGTTCTTC





121
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGCACCTAAGCGGGGACTACAATGAGCAGTTCTTC





122
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTGCAGGGGCCTGACCCTGAACACTGAAGCTTTCTTT





123
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGGCCAGCCAGGGTGGGGGAAGAGACCCAGTACTTC





124
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTGGGGGCTACAATGAGCAGTTCTTC





125
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGAGTCCAAGAGACCCAGTACTTC





126
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTACGGCAAAGCAGGCAGAACACTGAAGCTTTCTTT





127
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGGAGGACAGCCCTATGGCTACACCTTC





128
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCCTACGTGCGGGCGGCGGACCAGATACGCAGTATTTT





129
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGGGGTAGCCGTGGTGGACGAGCAGTACTTC





130
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGTGGGGATTTGGGGGGACCTACGAGCAGTACTTC





131
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAGGGCAGCAAGAGCAGTTCTTC





132
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAGGGGGGGGCTCTTGGCTACACCTTC





133
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTCCGGACAGGGGGCCACTGAAGCTTTCTTT





134
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGTTGGTGTTTACGAGCAGTACTTC





135
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGTTGCCCAACTACGTGCACTGAAGCTTTCTTT





136
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGACCAGGACAGGTTAAACTATGGCTACACCTTC





137
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGGGGGGCGATTCACCCCTCCACTTT





138
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTCCTGGACAGCTTGAACACTGAAGCTTTCTTT





139
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATCCAACGGACTCCTACGAGCAGTACTTC





140
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAATTTGGTTACGAGCAGTACTTC





141
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCACTTATAACACCGGGGAGCTGTTTTTT





142
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGGGGAGGGAGGACAGCTAGACGGCTACACCTTC





143
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCACCTAGGGGTGAGCAGTTCTTC





144
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTCGAGCCTCCCAACACCGGGGAGCTGTTTTTT





145
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGCACAAATGAGCAGTTCTTC





146
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGTCGCTAGCGGGGGGCGCGAGCAGTACTTC





147
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGATTCCCCGTTGAACACTGAAGCTTTCTTT





148
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGAGGGGGCTTATACGAGCAGTACTTC





149
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAACGGAGGATAGCAGGTCAAGAGACCCAGTACTTC





150
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCGTCAGGGGGCTCGGGCACTGAAGCTTTCTTT





151
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTTCAATGGACAGGGGTGCAGGAGCAGTTCTTC





152
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAATACCGGGTTGGGGTCACTGAAGCTTTCTTT





153
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCTTCACAGGGTACACCGGGGAGCTGTTTTTT





154
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCTGGGCGCGGGAGTAGGTGAGCAGTTCTTC





155
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGAGGACAGGGGACGTGAGCAGTTCTTC





156
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGAGTTAGACCGGGGACGGGACTATGGCTACACCTTC





157
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGCGCTTCTAGCGGAGACCACAGATACGCAGTATTTT





158
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGGTCAGGGGAGTACATTCAGTACTTC





159
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGAACTAGCGGACCCTACGAGCAGTACTTC





160
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCGCCCGCTTCAGGGGGCACTGAAGATACGCAGTATTTT





161
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCATGAGCGGTTAGGGAATGAGCAGTTCTTC





162
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTGCCGGGACCACAAAAGAGGACGAGCAGTACTTC





163
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGAACCCTGGGGACCGGGGGCCGCTCCTACAATGAGCAGTTCTTC





164
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGAGGGACAGGGCCCATATGGCTACACCTTC





165
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGAAATACAGGGGCCTACCGTTCCTACAATGAGCAGTTCTTC





166
13-TL647-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAAATAGCGGTGAGCAGTTCTTC





167
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGATGGGACAGGGGCCTACGAGCAGTACTTC





168
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTGAGCAGGACCTACGAGCAGTACTTC





169
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTCGAGGTGGGACTTCCAAGAGACCCAGTACTTC





170
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGACCGGGACAGGGCCACAGATACGCAGTATTTT





171
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTATTCAGGGTTTGGGCACAGATACGCAGTATTTT





172
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTGGGGGACGACCTACGAGCAGTACTTC





173
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCAGGGGGTACGAGCAGTACTTC





174
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGGGCGGGGGGTAATGAGCAGTTCTTC





175
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACACCCCCTACGGGGGGGCCGCGACCCAGTACTTC





176
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGGACCCACGACTACCTGGATAGCGGGGGGGCCGCAGATACG






CAGTATTTT





177
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCCGGGACTAGCGGGGGGGCCGTCGGGGAGCTG






TTTTTT





178
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCACCCCGGACTAGCGGGGGGCCGGTACCAAGAGACC






CAGTACTTC





179
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTAGGACTAGGCAGCCAAGAGACCCAGTACTTC





180
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCTGAGACTGAAGCTTTCTTT





181
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGACCAAGACTCAAAGGCGACGGGACAGATACGCAGTATTTT





182
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCTAGTCGCCTTATAACCAAGGCGAACACCGGGGAGCTGTTTTTT





183
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGAGAATGAGGGTAATGAGCAGTTCTTC





184
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGGACAGGGAGCCTACGAGCAGTACTTC





185
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCTCGACTAGCGGGGGGCCGTCAAAGCACA






GATACGCAGTATTTT





186
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATTGCAGGGCACAGATACGCAGTATTTT





187
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGGGCGGGTGGCAGCCCGATACTACAATGAGCAGTTCTTC





188
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGAGACCCGACAGGGAGGCGTGAGGACTGAAGCTTTCTTT





189
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCGAGTTAGAGGGGGGTACAATGAGCAGTTCTTC





190
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTTGGAGGGCAGGAGTACTCTGGAAACACCATATATTTT





191
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGACCTAAGGTGGGGACAGTACCAAGAGACCCAGTACTTC





192
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCACGTTGGACCTTACTAGCGGGGGGGAGGATACGCAGTATTTT





193
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGATGGGACGAACACCGGGGAGCTGTTTTTT





194
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCCCTGGGGTAGCGGGGGGCAGGAGACCCAGTACTTC





195
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCGAGGCGACAGGAACCTCCTACAATGAGCAGTTCTTC





196
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGAAATGGGGCTTATAATTCACCCCTCCACTTT





197
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGACACAGGAGCCCGCCACTATGGCTACACCTTC





198
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGACCAGCATTACAAGAGACCCAGTACTTC





199
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGTTCGGCTACAATGAGCAGTTCTTC





200
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTGGGGACTAGCGGAGACCAATGAGCAGTTCTTC





201
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTACCGGGACAGATGAACACTGAAGCTTTCTTT





202
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTACGAGGAAGGGTACCCAAAAACATTCAGTACTTC





203
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCGGAGGGGGCGCTTGGAAACACCATATATTTT





204
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAGGGGACAGGGACTATATACGAGCAGTACTTC





205
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCGGCAGGGGACCCTTCTGGGGCCAACGTC






CTGACTTTC





206
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCGGCTTTCGCGGCGAGCTATGGCTACACCTTC





207
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCGTACAGGACAAATGAAAAACTGTTTTTT





208
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCCGGGGAGCTGTTTTTT





209
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCGCGCCTCGCCTGACAGGGGGTTTTTGTAC






ACCGGGGAGCTGTTTTTT





210
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAGGAGGGTTGGATTCGTATCTTC





211
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACTCGGGGACAGAGCCTCCAAGAGACCCAGTACTTC





212
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCTCCCCCGGGACTAGCGGGGGGGCCTGGG






GATACGCAGTATTTT





213
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATCTAAGGGAAGCAGGGCTAACTATGGCTACACCTTC





214
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGGTGGCGAGCAGTACTTC





215
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCGGACGTGGCCAAAAACATTCAGTACTTC





216
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATACGCTCGGCTTACGAGCAGTACTTC





217
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCCCCCTATAACTCCTACGAGCAGTACTTC





218
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGACAGGGGCTCCCGGGGAGCTGTTTTTT





219
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGCTAGCGGGGGATTTCTCGGAGATACGCAGTATTTT





220
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGTTCGCAGGGGGCGATCACCCCTCCACTTT





221
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAATCACGGACTAGCGGGGGGCGGGGAGAGCAGTTCTTC





222
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCCACCGGGACCGTAACTACGAGCAGTACTTC





223
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGGGAGCATCAGGGACGAGAGAACACCGGGGAGCTGTTTTTT





224
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTACGGGCCTACGAGCAGTACTTC





225
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACGGGTCAGCTTTACACCGGGGAGCTGTTTTTT





226
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTGGAGGCCAGCTGGAAACACCATATATTTT





227
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGACAGGGGATTCTTCGATGAGCAGTTCTTC





228
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCCCCGGACAGGGGCTACAATGAGCAGTTCTTC





229
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTCCCCCAAGAGACCATGAACACTGAAGCTTTCTTT





230
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCGGCACTTACGGGGCAAACTACGAGCAGTACTTC





231
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCGTGGGACAGTTCTACGAGCAGTACTTC





232
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCCGGGGGGACAGAGGCATGAACACTGAAGCTTTCTTT





233
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTATGGGGCGGACAGACTCATCTACAATGAGCAGTTCTTC





234
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCGCCGGACAGGGGTGCCACTGAAGCTTTCTTT





235
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGATCGAAGGCCTCGATCTGGAAACACCATATATTTT





236
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCAGAAATCAGCCCCAGCATTTT





237
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAAGACGGGACTAGCGATAGAGAGACCCAGTACTTC





238
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGTGAGTCCGGAGCAGGTTACGTTCCCTACAATGA






GCAGTTCTTC





239
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTCCCGGACTAGCGGGGGGGCAGGAGAGCAGTACTTC





240
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTATCGCTCCTCGTAGGAGGGGGAGTCAAAAA






CATTCAGTACTTC





241
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGATGGGCCTCTGGATACGCAGTATTTT





242
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTATACGGCCAACTACGAGCAGTACTTC





243
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACCGGACTAGCGGGGGTTTAAACACC






GGGGAGCTGTTTTTT





244
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCCGCATTATCTGGTGGGTCTCTCTC






TCTGGGGCCAACGTCCTGACTTTC





245
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGGGCGGGGGGGCCACAATGAGCAGTTCTTC





246
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGTTGGGCCGGGGGCGCGCGGCTACACCTTC





247
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATCTTAACAGCGTCGCCCCAAGCGGCGAGCAGTACTTC





248
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTACCGGGACAGACTCAATGAGCAGTTCTTC





249
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACGGGTCAGCTTTACACCGGGGAGCTGTTTTTT





250
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATAGGGGGTGGTGGGACAATGAGCAGTTCTTC





251
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAGGACAGCGACCGGGGCGAGCAGTACTTC





252
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATGATGGCTCCGCTTCTTATCTTAGCAAT






CAGCCCCAGCATTTT





253
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACGCAACCGACAGGGGGCTTCTACGAGCAGTACTTC





254
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCTCTCGCCCGGAGCCAGTACTTC





255
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGTCGACAGGGCGCTCTGGAAACACCATATATTTT





256
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGACAGGGATTGAAGCTTTCTTT





257
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCATTTATAGAGGCCTTTACGCAGTATTTT





258
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGCATGACAGGGGGCTGGGGTCAGCCCCAGCATTTT





259
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGTAGGGGGCCAAGGCTACGAGCAGTACTTC





260
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGACGACCCGGGGCTTGGCACAGATACGCAGTATTTT





261
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGAAATCAATGAGCAGTTCTTC





262
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAAGGGACAGGGGATTTATGGCTACACCTTC





263
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCACATCTGGGACAGATACCTTACAATGAGCAGTTCTTC





264
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCCCCTTGGCGGGGGCATGAGCAGTTCTTC





265
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCTTTGGTGGGCTCCTACGAGCAGTACTTC





266
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCGCCTCCCACGGCGGAGGGATACTACGAGCAGTACTTC





267
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCACCCGGGACACGAGTCCTACGAGCAGTACTTC





268
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCTAGGACAGACGGCGCAAAAACTGTTTTTT





269
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCAACGGCGATGAGCAGTTCTTC





270
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAATTGACGGAAGCTTTCTTT





271
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCTAGGAGCAATCAGCCCCAGCATTTT





272
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCAGAGGGGCGACCTTCTACGAGCAGTACTTC





273
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCGGCAGGGGGCCCTTCTGGGGCCAAC






GTCCTGACTTTC





274
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGAGTGGGCAGGTAGCAATCAGCCCCAGCATTTT





275
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCACCATTCCCCCCCCAGAGCTCCTACAATGAGCAGTTCTTC





276
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGGGGCCCTCAGGGGTACTACGAGCAGTACTTC





277
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTAGGGGTCCCGACAGGGGGAGACTCACCCCTCCACTTT





278
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACACGCCTTGGGCAGGACCCTACGAGCAGTACTTC





279
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCATCCTACGGGGGGACTACAATGAGCAGTTCTTC





280
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATCTTAGGACTCACCGGGGAGCTGTTTTTT





281
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGGACTAAATTCACCCCTCCACTTT





282
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCGCGGGTCGCGGTAGCGGGGGGAC






TAAGCTCCTACAATGAGCAGTTCTTC





283
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGTTAGGCCCCGTCGGCAGGGGTGATGACGAG






CAGTACTTC





284
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGTGAAATGGGGGGGGGCCAAGAGACCCAGTACTTC





285
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCGCGACAGGGGGCCCAGAGACCCAGTACTTC





286
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACTCCTTGGACAGGGGGCTCCAACTCCTATAATTCAC






CCCTCCACTTT





287
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCCGTCGCGGGGGGGGACAATGAGCAGTTCTTC





288
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCTAGCGGGGGGCCCTACAATGAGCAGTTCTTC





289
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGTGCCTAGCGGGGGAGAGACCCAGTACTTC





290
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGCCGTGGACAGGGACGACGAGCAGTACTTC





291
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCATTAGTGCGGGGGGCGCATGGTCAGCCCCAGCATTTT





292
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGACATGGGGAGGGGTGGCGAGCAGTACTTC





293
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGGGACTAGCAATGAGCAGTTCTTC





294
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGACTTGTCTTCACCCCTCCACTTT





295
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTTACGGACAGGAATCGAGACTACGAGCAGTACTTC





296
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACCGGACAGCCTTTGGTAGCACAGATACGCAGTATTTT





297
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCTTTGGGGTCCGGGACTGTAGCGAGGGCTAGAGA






CGAGCAGTACTTC





298
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCCAAACGGCGGCAACTAATGAAAAACTGTTTTTT





299
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCGGAAACGGGAACACCGGGGAGCTGTTTTTT





300
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCATCCCGTCCCGACCTGGCACAGATACGCAGTATTTT





301
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTTTCCGGGCGGGGGGAACACTGAAGCTTTCTTT





302
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGAGTTGCAGGGTCATAATGAAAAACTGTTTTTT





303
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCCCCGTGGTGGAGACCCAGTACTTC





304
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGAACATGCGAACACTGAAGCTTTCTTT





305
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCCAAGGGGGGGCCGGGACCCAGTACTTC





306
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCATCGAGACAGGGGGGACACTGAAGCTTTCTTT





307
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGGGAGCCTGGGCGGGGAGCTGTTTTTT





308
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAACTTCCGGGACAGGCCGTACAATGAGCAGTTCTTC





309
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAATCTAGCGGGGGGGCAGATACGCAGTATTTT





310
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTAGTCGGAGCTCCTACGAGCAGTACTTC





311
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCACAGGGGCCCTCCTACGAGCAGTACTTC





312
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGGCTGGGACTACAAGGATCTAGCACAGATACGCAGTATTTT





313
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGTACTGCGGGGTACACCGGGGAGCTGTTTTTT





314
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGTGAAGACGGTATGAACACTGAAGCTTTCTTT





315
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAACAGGGAGGATGCAGTTAGCACTGAAGCTTTCTTT





316
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTATGCGTCCCCCACTGAAGCTTTCTTT





317
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCGAGTTGGAACCGGGGAGCTGTTTTTT





318
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCCAAAAGGAACCGATCACCCCTCCACTTT





319
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCCACACCGGACCTCTACAATGAGCAGTTCTTC





320
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGACCCCCCAGGGACAACATATATCGATAAT






TCACCCCTCCACTTT





321
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCAGGGGTCGCTGGCTACACCTTC





322
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAACCTAGGACAGGGGGAAACAATGAGCAGTTCTTC





323
139-TL706-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATTCGCAATAGAGCAGGGGAACACCGGGGAGCTG






TTTTTT





324
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGACCGGGACAGGGCCACAGATACGCAGTATTTT





325
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCACCCCGGACTAGCGGGGGGCCGGTACCAAGAGAC






CCAGTACTTC





326
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTGAGACTGAAGCTTTCTTT





327
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGAAACAGTCTCTAATGAAAAACTGTTTTTT





328
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCACATCTGGGACAGATACCTTACAATGAGCAGTTCTTC





329
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGACCCGACAGGGAGGCGTGAGGACTGAAGCTTTCTTT





330
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGAGGCCCTAGCTCAGAACAATGAGCAGTTCTTC





331
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGGGCGGGTGGCAGCCCGATACTACAATGAGCAGTTCTTC





332
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCATTTATAGAGGCCTTTACGCAGTATTTT





333
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCAAATTTGATGACAGAAGCAAAAGCTAACTATGG






CTACACCTTC





334
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGCACTTACGGGGCAAACTACGAGCAGTACTTC





335
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTCGACTAGCGGGGGGCCGTCAAAGCACA






GATACGCAGTATTTT





336
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTACCCCCCCAGGGATGGGGGTCGCGACTAAT






GAAAAACTGTTTTTT





337
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCGGACGTCTCTCTGGGGCCAACGTCCTGACTTTC





338
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGGCCCGGGTACCAAGAGACCCAGTACTTC





339
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGGACCCACGACTACCTGGATAGCGGGGGGGCCGCAGAT






ACGCAGTATTTT





340
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTTGGAGGGCAGGAGTACTCTGGAAACACCATATATTTT





341
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAGGAAATGACAGGGTTGTCCTCCACAGATAC






GCAGTATTTT





342
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATGGGACAGGGGCCTACGAGCAGTACTTC





343
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGAATTCCGCGGGGTACAGTAGAGCTGTTTTTT





344
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGAGGCGGCGGGAACAGATACGCAGTATTTT





345
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCCGAGGGACGGACGCAGATACGCAGTATTTT





346
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGAAGACGGTATGAACACTGAAGCTTTCTTT





347
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTCCCCGACAGGTATGAACACTGAAGCTTTCTTT





348
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCGTACAGGACAAATGAAAAACTGTTTTTT





349
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGAACAACGCGGGGGGCTGGGACAATGAGCAGTTCTTC





350
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGCCGGCCAGCGGGGGGGCCGTAGGACAG






ATACGCAGTATTTT





351
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGACAGGGATTGAAGCTTTCTTT





352
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTGGACAGGGGGCCAAGAGACCCAGTACTTC





353
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAAGGGACAGGGGATTTATGGCTACACCTTC





354
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGTCCGGGGCCTCCTATGGCTACACCTTC





355
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTAAACAGGATTACTATGGCTACACCTTC





356
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCCAAAGGACAGGGGGTATCGCTGAAGCTTTCTTT





357
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCGACTTAGATGAGGGCTTGAACACTGAAGCTTTCTTT





358
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTCGGACAGGGGCCGATGCGGAGCAGTTCTTC





359
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTACGACAGGTTCGACGAGCAGTACTTC





360
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCGGACGGGACAGCCTGGACTATGGCTACACCTTC





361
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGACAGGTCCCGGCAATTCACCCCTCCACTTT





362
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGTCGACAGGGCGCTCTGGAAACACCATATATTTT





363
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGACTAAATCACGAGACCCAGTACTTC





364
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGGTGGCGAGCAGTACTTC





365
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAGGGGAGGTGGCAGATACGCAGTATTTT





366
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAATCACGGACTAGCGGGGGGCGGGGAGAGCAGTTCTTC





367
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAAACCCAAAAAGGGACAGGGGAACACCGGGGAGCTGTTTTTT





368
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCAGCCCTATATCGGAGTTCTTC





369
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCGAGAAGACACGGCCGTGGATGGCTACACCTTC





370
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAAGCGGGGGTCTAGAAGATACGCAGTATTTT





371
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCACGCCGGGACAGGGACTCTACGAGCAGTACTTC





372
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGTCCGATTAATTAGGACTAGCGGCGACTAC






GAGCAGTACTTC





373
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAATAGGGACAGGGTTGACCGGGGAGCTGTTTTTT





374
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTGCAGGGTGGTCGATATGGCTACACCTTC





375
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCACGGACAGGGGCTGGTCACTGAAGCTTTCTTT





376
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGGCACAGGGGCCGAGCAGTACTTC





377
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCCCAGTGACGCAGGGAAGGAAC






ACCGGGGAGCTGTTTTTT





378
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGGGACAGGGACTGCCTACGAGCAGTACTTC





379
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGACCCCCCAGGGACAACATATATCGATAA






TTCACCCCTCCACTTT





380
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGACCAGCCAAGATATAGCAATCAGCCCCAGCATTTT





381
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTCGGGACAGGGATGGCAGATACGCAGTATTTT





382
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTGGGGCGGGGGGCATACAGATACGCAGTATTTT





383
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGATTCGGCCAGCAATTCACCCCTCCACTTT





384
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAATCAAGGGGGCGGAGGAGACCCAGTACTTC





385
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTCGGCGACTAGCGGGGGCCCTAATGGATACAAT






GAGCAGTTCTTC





386
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCGGGACACCCACTGAAGCTTTCTTT





387
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTGGACAGGGGGTGAAGTACGAGCAGTACTTC





388
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCTCTCTCCCCCAGGGGGATGGCTACGAGCAGTACTTC





389
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAGAGATGGGGACCCCTCTCCTACGAGCAGTACTTC





390
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAGCGGAGAACACTGAAGCTTTCTTT





391
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTACAGGGAAACACTGAAGCTTTCTTT





392
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCCTGGGGACTAGCGGGGGCCGAAGAGACCCAGTACTTC





393
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTAGCGACTCTAGCACAGATACGCAGTATTTT





394
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAAGAACACCGGGGAGCTGTTTTTT





395
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACCGGCAGGGACTTTGGGGCGAGCAGTACTTC





396
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGGACTAGACGGTTACGAGCAGTACTTC





397
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGCGACAGGATTGGCAACACTGAAGCTTTCTTT





398
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGGCAAGACAGGCTCGAGTCCATGAGCAGTTCTTC





399
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGACATGGACAGGGGGATAATTCACCCCTCCACTTT





400
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACGATCTAGCGGGGGGAGACGAGCAGTACTTC





401
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGGTGGGGGACTAGCCCCTTCGGTGTCCTAC






AATGAGCAGTTCTTC





402
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGAGGGCAGGGGCTGGACTGAAGCTTTCTTT





403
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCCCCTCCCGTCTGGGGGCCCGGCCCCCAGATACG






CAGTATTTT





404
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTACCTGGGACAGGGGGAATAGTCTCCCTGAAGCTTTCTTT





405
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGGAAACAGGAGAACTATGGCTACACCTTC





406
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGTTTCCAGGGGGTAAAGGGGGATTTTATGAAAA






ACTGTTTTTT





407
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATACGCTCGGCTTACGAGCAGTACTTC





408
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTGGGGCAGCTACGAGCAGTACTTC





409
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGGACGGGGACGGACACTGAAGCTTTCTTT





410
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTGCCTTGGACAGGTGCTTATGGCTACACCTTC





411
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGTACCGGGCCGGAGCACCGGGGAGCTGTTTTTT





412
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGACCAGGGATCTGGGTCACCCCTCCACTTT





413
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCCCGCCCGTGAGCAGTTCTTC





414
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGTGGGGCTAGGTTTAACTACGAGCAGTACTTC





415
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTACCGGGGCATATGGCTACACCTTC





416
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCCCGTAGGGACCTCCTACGAGCAGTACTTC





417
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAGACAGGGAGGGAAGAGACCCAGTACTTC





418
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCTCGACAGGGACCCTCCAATGAGCAGTTCTTC





419
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGCCGCAGCCAGGGTGGGACCAAGAGACCCAGTACTTC





420
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAATGGGGGGCACAGATACGCAGTATTTT





421
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCGGGGGGAGGGTGGCCTTTGAATGAGCAGTTCTTC





422
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGGCGCTCTGGCCAACACTGAAGCTTTCTTT





423
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTACAACAGGTACCCATAGCAATCAGCCCCAGCATTTT





424
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAACAGGCGTCCGCACAGATACGCAGTATTTT





425
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGGGGGGTCAGCACAGATACGCAGTATTTT





426
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATACGGTCCTCCTACGAGCAGTACTTC





427
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGCAGACAGGGAGAAATCAGCCCCAGCATTTT





428
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGTGACGAGACCACTGAAGCTTTCTTT





429
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTCACAGGACAGGGCTACAATGAGCAGTTCTTC





430
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGGGGGGGAGAACACCGGGGAGCTGTTTTTT





431
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCGCCGACAGGGTGGGGATATAATTCACCC






CTCCACTTT





432
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGGGGACGCGGGGAATCGTACAATGAGCAGTTCTTC





433
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCCCGGGGGGAGCTCCTACAATGAGCAGTTCTTC





434
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTGGACAGGGGCGGGGAACACTGAAGCTTTCTTT





435
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACCGACGGGTTCCTGGGGCCAACGTCCTGACTTTC





436
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATGAGTATGAGCAGTTCTTC





437
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATCGGGTGGTGGTGAAGCTTTCTTT





438
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAGGGGACAGGTTTCGAAAAACTGTTTTTT





439
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAATCTCCGGGGGTGGCACCGGGGAGCTGTTTTTT





440
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGCGGTGGGGACAGGACTCACCGGGGAGCTGTTTTTT





441
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCAGGAAACGAGCAGTACTTC





442
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCGAATCTAGCTCTCAATGAGCAGTTCTTC





443
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGGGTTTCGACCCAATAGCAATCAGCCCCAGCATTTT





444
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGTTGGGTCGCACGAGCAGTACTTC





445
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGATGCAGGGGCCGCCTACGAGCAGTACTTC





446
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAACGGGGACCAGGGGAGAGACCCAGTACTTC





447
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTTCTTGAAGAGACCCAGTACTTC





448
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCGACTGCGGGGGCCCCCCGGATCTTC





449
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGGGTCAAAGGGACAGGGGGTCATCAGCCCCAGCATTTT





450
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCACGGCAGCCAAGAGACCCAGTACTTC





451
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGTTAGCGGGGGCAGGTTGGACACCGGGGAGCTGTTTTTT





452
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCATAGCGCGGGGGCTAATGAGCAGTTCTTC





453
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCCAAACGGCGGCAACTAATGAAAAACTGTTTTTT





454
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGAGAGGAGACAGGGCCCAACTACTACGAGCAGTACTTC





455
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGGTATGAGACAGGGTGGTTTAGGCACAGATACGCAGTATTTT





456
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCGGGGGGGTCCTACGAGCAGTACTTC





457
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCTGGAGGGACAGGGGCCGCTGAAGCTTTCTTT





458
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTATGGGCGGGGGGGCCACAATGAGCAGTTCTTC





459
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTGTCGCCGGGACAGATGAGCAGTACTTC





460
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGCAGGGGCTATTACGAGCAGTACTTC





461
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCCCCCAAGAGACCATGAACACTGAAGCTTTCTTT





462
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGTCGCAGCCACAGATACGCAGTATTTT





463
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTGGACACGGAACACTGAAGCTTTCTTT





464
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTTCTGGGACAGGGGACACCGGGGAGCTGTTTTTT





465
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCAGGGGGACAGGGGACGGTTAACTATGGCTACACCTTC





466
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGGGACAGGGTGGGTAATGGCTACACCTTC





467
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTATTTGGGGCCTACGAGCAGTACTTC





468
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCACCGGGACAAGCTACGAGCAGTACTTC





469
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGATGGGCGGGAGAAACACCGGGGAGCTGTTTTTT





470
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTATACGGGGGTGAGGGAGAGACCCAGTACTTC





471
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTGGGGGAGAGCAACTAATGAAAAACTGTTTTTT





472
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCTGGACGGCTCTCTGGGGCCAACGTCCTGACTTTC





473
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATAGGGAGTCATCGAACACCGGGGAGCTGTTTTTT





474
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCGGACGACTAGCCGATAGCACAGATACGCAGTATTTT





475
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATCGCGGCGGGAAAAAGAGACCCAGTACTTC





476
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCACTATAGCTCTCGGGACAGGGTTCGGCTACACCTTC





477
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCACGACTAGCGGGGGTTGAGCAGTACTTC





478
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGTTAGGCAGGGGTATGGCTACACCTTC





479
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCCGGAGAGGCAGGCCAGCCTACGAGCAGTACTTC





480
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAATTTGGGGGACCGGGGAGCTGTTTTTT





481
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACGACGGGGGGCTACAATGAGCAGTTCTTC





482
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCACCCCGGACTGAGCTACGAGCAGTACTTC





483
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCAATACAGGGGCCTATGGCTACACCTTC





484
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCGCTAGCGGGGACTCCTACGAGCAGTACTTC





485
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGCCCCGGGGGAGGTGAAAAACTGTTTTTT





486
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGTGGGACGGAGCGATACACCTTC





487
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAGCAGGGGCAGATACGCAGTATTTT





488
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTTCTCAGGCTCAATATGGCTACACCTTC





489
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATCGCAGGGGGTTCTTGAGACCCAGTACTTC





490
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGAGGCAAGCCCTGAAGCTTTCTTT





491
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTCAAGAGGGGAACATCTACGAGCAGTACTTC





492
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGGGCAGTAACACTGAAGCTTTCTTT





493
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAGCTCCTACGAGCAGTACTTC





494
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTCAGGGGACAGGGGGAATCTACGAGCAGTACTTC





495
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCGGGACAGGGGACGTGGAACTATGGCTACACCTTC





496
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCTGTACAGGGTGCGAACCTCCCGGGGGAAAAACTG






TTTTTT





497
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTACTTAGTCCTAGCGGGGGCCAAGAGACCCAGTACTTC





498
140-TL706-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAAGTTCCAGGGATTATGTGGGGTACACTGAAGCTTTC






TTT





499
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCACCACCTGACAACCCAACTAATGAAAAACTGTTTTTT





500
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGTGCCTCCCGGGGGCCCAGATACGCAGTATTTT





501
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAACTGCAGGGAGAGATACGCAGTATTTT





502
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCGGATCACCGTCTTAACTATGGCTACACCTTC





503
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCGGGGGAGACCGCTACTATGGCTACACCTTC





504
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGATGCCAATGAAGCTTTCTTT





505
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTATCACTGGAATGAGCAGTTCTTC





506
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGTAAACAGGGGGGGAACACTGAAGCTTTCTTT





507
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGTAGCCAATGAGCAGTTCTTC





508
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGATCAGGGGCTCCACTTCAGGGAGACCCAGTACTTC





509
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCATCGCTAGCGGGGCTAGCACAGATACGCAGTATTTT





510
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGTCCGCCAGATAACTATGGCTACACCTTC





511
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTTTCGGACGATCTTCCCGAAAAACTGTTTTTT





512
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGAGAACTAGCGGGGGGACTCACGGATACGCAGTATTTT





513
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTCCGCTCATCTCCTGGAACATTCAGTACTTC





514
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGGGACAGCCCTCTGGAAACACCATATATTTT





515
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGACCAGAACCCTAACTATGGCTACACCTTC





516
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGATTCAGGGATGAACAATGAGCAGTTCTTC





517
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGGTAACGGTCCGTAATGAAAAACTGTTTTTT





518
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTAGCCGGGACAGACAATGAGCAGTTCTTC





519
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGATTCGGACAGGCCTCACAATGAGCAGTTCTTC





520
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTGGGGAACTGAAGCTTTCTTT





521
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTAACCGGGACAGCAAATTCTAACTATGGCTACACCTTC





522
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTAGGGAGTGATGGGGTCTATGGCTACACCTTC





523
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCGGGCGAGTACGAGCAGTACTTC





524
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATTGGAAGTTGGATCTCTACGAGCAGTACTTC





525
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCTGGGGGACAGGGGACACTGAAGCTTTCTTT





526
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTGCCGGGCCCCCTTACTTC





527
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCAGGGACTCTGGAAACACCATATATTTT





528
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCCGTGCGGCTAGCGGGGGCTGAGCAGTTCTTC





529
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCAAAGGTTTCAGCCGCACCACTTATAATTCACCCCTC






CACTTT





530
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTGGGGGGCAGGCTCCAGCTATGGCTACACCTTC





531
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCAGACCTGAACACTGAAGCTTTCTTT





532
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGAGTCTGGGGGGACAGGTTCTCCCTACGAGCAGTACTTC





533
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAACCGTCCTCCGGGCACCCACGGATGGCTACACCTTC





534
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACCAGGGGACAGGAGGATTAAGAGACGAGCAGTACTTC





535
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGCCTCGGGTCCTGTGCATTTT





536
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCAGATCCCCGCCCCTGGGTAGCGGAGCCCAAG






AGACCCAGTACTTC





537
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGACAGTTATCTGGAAACACCATATATTTT





538
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCCGGACAGCGTCGGCCCCAGCATTTT





539
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACGGGACGGAGCACCGGGGAGCTGTTTTTT





540
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGACGGGGGGGCAGACGTTCGGTACCAA






GAGACCCAGTACTTC





541
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGACTAGCGGGCCCTACAATGAGCAGTTCTTC





542
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCAGTCGACTGGCGGATACGCAGTATTTT





543
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGGGGCCAGCGGGGGACTCCGAGCAGTTCTTC





544
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGCCCCCCGGATCTTTATGGCTACACCTTC





545
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGAGGGGACAGGCTATCAGCCCCAGCATTTT





546
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAACGAGTACTTTAGAAATCAGCCCCAGCATTTT





547
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCGAGACTAGCGGGGGATACAATGAGCAGTTCTTC





548
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGATGGGGTGAGACTAAACATTCAGTACTTC





549
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGAACTAGCGGGGTTCTCCAATGAGCAGTTCTTC





550
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCTCCGGGATTGGCTACACCTTC





551
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCCCTGTCCGAGCGAAGTACTATGGCTACACCTTC





552
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGACTAGCAACACCGGGGAGCTGTTTTTT





553
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCTGAGGGAAGAATTGAACACTGAAGCTTTCTTT





554
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCTCGGACAGGACTGGCAATGAGCAGTTCTTC





555
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCGGGACAGGGGATGCGACCCAGTACTTC





556
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCACCCCCAACACCGGGGAGCTGTTTTTT





557
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCTACAGCAAACAATCAGCCCCAGCATTTT





558
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAAGAATCGGGGGGTCACTTTCACCAATC






CAGATCTACGAGCAGTACTTC





559
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGATGGGGGACACCGGGGAGCTGTTTTTT





560
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTGCGCCCGGGACTAGCGGGGGGCCCAGAT






ACGCAGTATTTT





561
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATAGGGACGTACGCGAACACCGGGGAGCTGTTTTTT





562
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTGATCCCCGGGGCCACAGATACGCAGTATTTT





563
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGGGACTAGCGGGGGGGCAGATACGCAGTATTTT





564
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTGATGGCAGATACGCAGTATTTT





565
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAGCGTTGGGGGAGCACAGATACGCAGTATTTT





566
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGTTCGAGGGGGCCCAAGAGACCCAGTACTTC





567
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTGGGGGGACAGAACTATGGCTACACCTTC





568
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTTGGGGACACGAACACTGAAGCTTTCTTT





569
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCATCGGGGGGCACTGAAGCTTTCTTT





570
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAAAAACCACGGGACAGGCTTAGACGAGCAGTACTTC





571
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTACTGGACAGGCAGAAAAACTGTTTTTT





572
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTAGCCCCCCAGGGGGCGAGTTCTGGCTACACCTTC





573
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCGGGACGGGATCCTACGAGCAGTACTTC





574
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTCCTTCCCGACAGTCCCCAACGGGCCCAGTACTTC





575
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTAGCGGGCGGGGGCTCCTACGAGCAGTACTTC





576
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGCGTACCTCTGTGAACGTCCTGACTTTC





577
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAACTAGCGGGGGGGCGCGATGAGCAGTTCTTC





578
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCGAATGGGGGGTGGAACTATGGCTACACCTTC





579
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCGGGACAGGGGTATCACAGATACGCAGTATTTT





580
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATTGGAGTGGCATCCCCGGGGAGCTGTTTTTT





581
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCCTGGGGTTCTGAAGCTTTCTTT





582
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGCTCGGGGTTCACGGCCTGAACACTGAAGCTTTCTTT





583
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTACGGCTCCCGGGACTACCTCCTACGAGCAGTACTTC





584
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCACCTTACCCCTTGGGAACAGATACGCAGTATTTT





585
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTGGGACAGGGGAACACTGAAGCTTTCTTT





586
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCGCCGGATTGACCTTGGCGAAGAGACCCAGTACTTC





587
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCTCAGGGTCCCCAATTGGCCCAGCATTTT





588
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCACTCCGGGACAGGGTTCCCCTGGCCTTC





589
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTTGGCGGGGGGACCTACGAGCAGTACTTC





590
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCCTCGGGGGTACCAATCTTGCAGATACGCAGTATTTT





591
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTGGTCCGTTTGGCACCGGGGAGCTGTTTTTT





592
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTACAGGGGGCGCTAGAAGGCTACACCTTC





593
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCAAGACTAGCGGGGGGTATAGCACAGATACGCAGTATTTT





594
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCATTACAGGGGGGGATCAGCCCCAGCATTTT





595
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCTGGGGCTTCAAGAGACCCAGTACTTC





596
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCGGAACGACAGGGTACGGGAAGAGCAATCAGCCCCAGCATTTT





597
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTATACGGGGCGGGTGAGCAGTACTTC





598
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTCCCCGGTCAGGCCAGATACGCAGTATTTT





599
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGTAGCCAATGAGCAGTTATTC





600
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGCAGGGGGATCCTACAATGAGCAGTTCTTC





601
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATTGGACAGGGGTACGAGCAGTACTTC





602
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCACCAAGCCGATGAGCAGTTCTTC





603
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCCTTAGGTGTAAGCGGGGCAAGCTCCTAC






AATGAGCAGTTCTTC





604
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGGTACAGGGGCGTCTAATGAAAAACTGTTTTTT





605
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCAGCGACTAGCGGGGGCCGGGACGAGCAGTACTTC





606
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTATTTGAGGACAGGGGGCTAAGAGAGACCCAGTACTTC





607
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCTGGACAGACAGATACGCAGTATTTT





608
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCAAAACGCCTACAGGGGGAAGCCCCAGCATTTT





609
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTGTCCGGGGGGGGAATGGGTGAGCAGTTCTTC





610
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCCGTAGGGGCTAGAGAGCAGTACTTC





611
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCGAACTAGCGTCCGGGGAGCTGTTTTTT





612
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGGACAGGGGGGGTCAGCCCCAGCATTTT





613
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGAGATGCAGGGGCGGGAGGCTACACCTTC





614
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCCCAACGGGGGCCTATGGCTACACCTTC





615
151-TL722-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCGGACTAGCGGGGGGGCGGATGAGCAGTTCTTC





616
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCGGGGGAGACCGCTACTATGGCTACACCTTC





617
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGACGACCGGGACAGGGATGGATTCCGATACA






ATCAGCCCCAGCATTTT





618
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGATTCGGACAGGCCTCACAATGAGCAGTTCTTC





619
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAAAGGTTTCAGCCGCACCACTTATAAT






TCACCCCTCCACTTT





620
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCGGGTATAGTAGCAATCAGCCCCAGCATTTT





621
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGGGCGAGTACGAGCAGTACTTC





622
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGAGGGGCAGGAGACAGATACGCAGTATTTT





623
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGGGGTTGGGACAGGGGAACCTACGAGCAGTACTTC





624
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTGCCGGGCCCCCTTACTTC





625
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGGACAGGATCTAACTATGGCTACACCTTC





626
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAGACGGCACTTCCTACGAGCAGTACTTC





627
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTGGGACAGGGGGGCACTAATGAAAAACTGTTTTTT





628
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGGACGGTTAGCGGACACCGGGGAGCTGTTTTTT





629
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGACGGGACGGCTACACCTTC





630
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCCGGGACAGCACCTACGAGCAGTACTTC





631
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAATAATCCTTGCCTACGAGCAGTACTTC





632
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGGGGACACGCAGTACTTC





633
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGAGGACGGTATGAACACTGAAGCTTTCTTT





634
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTATACGGCGAAGATCCTGACTTTC





635
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTAGAGCAGGGGAAACCAACTATGGCTACACCTTC





636
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGTGGGACAGGCGCCTACGAGCAGTACTTC





637
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGACGGCTAGCGGGCACCGGGGAGCTGTTTTTT





638
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCAGCCCCAGGAGGCCAGCCCCAGCATTTT





639
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTAACCGGGACAGCAAATTCTAACTATGGCTACACCTTC





640
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGGAAGGGGAGTAGAGACCCAGTACTTC





641
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGCAAGAGTCGGGGCAGCCCCAGCATTTT





642
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGACAGGGGTTCCTGAAAAACTGTTTTTT





643
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTGGTCCGTTTGGCACCGGGGAGCTGTTTTTT





644
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGATCCGGGACAGGGGAATGAGCAGTTCTTC





645
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCTTGGGACAGGATAAAGGAGCAGTACTTC





646
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCGGGGGAGGGGGCTGGTACAATGAGCAGTTCTTC





647
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCGGGACAGGGGGCAGGCCCCAGCATTTT





648
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGATGGACAGGCCAACGTCCTGACTTTC





649
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTGTACAGGGGACCGATACGCAGTATTTT





650
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGAGACAGGGAGACTACGAGCAGTACTTC





651
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGGGAGCAGCGGAACTAATGAAAAACTGTTTTTT





652
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGACAGGTGGGGACAATCAGCCCCAGCATTTT





653
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAGTAGCGGGTACCAAGAGACCCAGTACTTC





654
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCTCTTCCTTTGGACGGGGAGCTCCTACAAT






GAGCAGTTCTTC





655
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGGAATGAAGCTTTCTTT





656
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCGACGACCCGTTCCGACTCCTACGAGCAGTACTTC





657
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCCCTGCCCGGGCGGGGGCGCGAGCAGTACTTC





658
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAGACAGGGGCCGAGAGACCCAGTACTTC





659
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGGGGCGGCTCCTACGAGCAGTACTTC





660
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAAGTCCGATCACCGGGGAGCTGTTTTTT





661
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAGATAATACAGGGCGCAATCAGCCCCAGCATTTT





662
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCGGCCCGGGGGTCCCACCGTACGATACGCAGTATTTT





663
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAGCTCAAATCAATGGGCTATGGCTACACCTTC





664
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGAATCTACCCTTTCTGGCACGGACACAGA






TACGCAGTATTTT





665
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGCGTCGCTTAGCACAGATACGCAGTATTTT





666
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCGGACGGGCTCCTACGAGCAGTACTTC





667
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCGGGAACAGCCGGCTTACGCAGTATTTT





668
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCCAGACAGGGAACAATCAGCCCCAGCATTTT





669
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACATCGACAGGGATGGCTGAAAAACTGTTTTTT





670
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTCCCGGACAGGGGGCGACAGATACGCAGTATTTT





671
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAGATCTATATAGCAATCAGCCCCAGCATTTT





672
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGGGGTTTGCCAAAAACATTCAGTACTTC





673
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGGGACAGGGAACTACGAGCAGTACTTC





674
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTCTCCCGGGACAGGGGAACACCGGGGAGCTGTTTTTT





675
152-TL722-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAATGGGCTAGCGGGGAGACCCAGTACTTC





676
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGATCTCGGTAAGCAGCCCCAGCATTTT





677
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATCGTTGACCTACGGTAGAGGGCAGCCCCAGCATTTT





678
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTACGACCCACCCTAATCAGCCCCAGCATTTT





679
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGAGGAACAGGGGGCGCTGAACGAGCAGTACTTC





680
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACGAGGTGGGACAGGGAGCCCGAAGGGTACGAGCAGTACTTC





681
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTCGGGACACGTCTATGGCTACACCTTC





682
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTTACAGGGGATGAACACTGAAGCTTTCTTT





683
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGCTACGAGCAGTACTTC





684
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCCCGTCCGTTGGGACAAATCTACGAGCAGTACTTC





685
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTTCGGCCGGGCTCAATCAGCCCCAGCATTTT





686
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAATGCATATGATAATTCACCCCTCCACTTT





687
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTTGGACTAGCGGTCTACGAGCAGTACTTC





688
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGAGCCCGGGACTACCCGGGTCGATGAGCAGTTCTTC





689
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCGCCCGGGAGGACGCCAGGAAACACCATATATTTT





690
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCCGGGGACAGGTTCTGAACACCGGGGAGCTGTTTTTT





691
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCACCGGTACAAACAGATACGCAGTATTTT





692
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGGCCCGCTAGCGGGAGGACAGATACGCAGTATTTT





693
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAAAGCTACGAGCAGTACTTC





694
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCCGGGACTAGCGGAGAGCTCCTACGAGCAGTACTTC





695
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTTCGCGACACTTCTCCTACGAGCAGTACTTC





696
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGGGGCAGCTCCTCAGGGGATGGCTACACCTTC





697
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATAGGGGGAGCTAATGAGCAGTTCTTC





698
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCCCCCGGGGGGCGGACAGGACCTATAAC






TATGGCTACACCTTC





699
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCGGACTGGACTACGAGCAGTACTTC





700
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCGTACGGGGACGCTTTGGGAGAGACCCAGTACTTC





701
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCTGGAGGGGACGGATACGAGCAGTACTTC





702
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGGAACAGGGCTCTATAATTCACCCCTCCACTTT





703
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCATGGTAGCGGGAGGTACCTACGAGCAGTACTTC





704
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCTGGAATTTTGGACAGGGGATATCCTACGAGCAGTACTTC





705
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGTTCTGAACACTGAAGCTTTCTTT





706
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGCGGGAGGGATCTCCTACGAGCAGTACTTC





707
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGATTGGGGGACTAGCGGGGGGTCTTGGAG






TGAGCAGTTCTTC





708
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGCCTTAATGCGAGAGGCTGAAGCTTTCTTT





709
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTGGGGGACAGTTAATGAGCAGTTCTTC





710
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCAGAGAGCGGACCCCCACAGATACGCAGTATTTT





711
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCGTACGAGCAGTACTTC





712
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTATGGGGGGGCAGTGAAGCTTTCTTT





713
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGGGGGGGCACAGATACGCAGTATTTT





714
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCCCCACTAGCGGCCAAGAGACCCAGTACTTC





715
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCCCTCGGATGGACTGCCGTACCAAGAGACCCAGTACTTC





716
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTGCGGGAAACACTGAAGCTTTCTTT





717
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGTCCGGGACAGGGCTTCCGGGGGGGAGACCCAGTACTTC





718
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCAAGTGCAGGGGTTGAGCAGTTCTTC





719
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCACGAAGGGACCGATTCCACCTACTATAATTCACCC






CTCCACTTT





720
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCGGACAGGGGAGAGCAGATACGCAGTATTTT





721
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGGATGTCGGGAACATTCAGTACTTC





722
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCGCCCTCAGGGGGCGGGGAGACCCAGTACTTC





723
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTACCCCGACAGGGTTAAACACTGAAGCTTTCTTT





724
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGATAGGGGGACAACCGGGATGAACACT






GAAGCTTTCTTT





725
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTAGCGTCGCAGGAACAAGAGACCCAGTACTTC





726
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGCATTATCCACAGATACGCAGTATTTT





727
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGATTGGGGCGGAGGCTCCTACAATGAGCAGTTCTTC





728
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCATGGGTGGATACGAGCAGTACTTC





729
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCAGTGGGACTAGCGGGGGTTACGAGCAGTACTTC





730
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTTCAGGACTAGCTGGGATCTACGAGCAGTACTTC





731
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCTTCGGCTAGCGGGCTAAATGAGCAGTTCTTC





732
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCTCAACCCGGGACTAGCGGGAGAGACCCAGTACTTC





733
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCTCAGGGGAGGAACGAGCAGTACTTC





734
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGAGGAACAGGGGGCGCTGAACGAGCAGTACTTC





735
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTCTTCCGAGGGCGGGAGAAATCTACGAGCAGTACTTC





736
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGTTCACAGCCTCTCCTACGAGCAGTACTTC





737
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCCCTGTCGTCGGCGGTGGCGTACAA






TGAGCAGTTCTTC





738
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATCTCGGACAGTACACAACAAATCAGCCCCAGCATTTT





739
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGGGCTACGGGGGCGCGACTGAAGCTTTCTTT





740
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCAAAGCGGGGGGCTATCCTACAATGAGCAGTTCTTC





741
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGAGGGCGGATTGAACACTGAAGCTTTCTTT





742
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCCAGTATGAGCAGTTCTTC





743
157-TL704-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCACCAACAGGGGGCGAAGATACGCAGTATTTT





744
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATCGGGTTAGCAGGAACACCGGGGAGCTGTTTTTT





745
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGCGAGCGGGCCCCAAGAGACCCAGTACTTC





746
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTTCGGCCGGGCTCAATCAGCCCCAGCATTTT





747
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCATAGGCGCTAGCGGTTACAATGAGCAGTTCTTC





748
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTCGGGACACGTCTATGGCTACACCTTC





749
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATTACTGCAATCCTACAATGAGCAGTTCTTC





750
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGACTAGCGGGACCCTACGAGCAGTACTTC





751
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTTACAGGGGATGAACACTGAAGCTTTCTTT





752
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAATGCATATGATAATTCACCCCTCCACTTT





753
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTACGACCCACCCTAATCAGCCCCAGCATTTT





754
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCGGGACTTTCGCTACGAGCAGTACTTC





755
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGGTAGGGTATGGCTACAATGAGCAGTTCTTC





756
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGACTGGACTACGAGCAGTACTTC





757
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGACTCGGGACGGTTCTCTGGGGCCAACGTCCTGACTTTC





758
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGGGCTACCACCGGGGAGCTGTTTTTT





759
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGAGCAAGGGACTTTCATTCCCCAGCATTTT





760
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCAACAGGGGGCGAAGATACGCAGTATTTT





761
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAAGCTACGAGCAGTACTTC





762
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCGTTCGGGGTACCTTCAGGGACCCAGTACTTC





763
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGACGGGGGGGCCCTACAATGAGCAGTTCTTC





764
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACACGACTAGCGGCACCGGGGAGCTGTTTTTT





765
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCATGGTAGCGGGAGGTACCTACGAGCAGTACTTC





766
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGACTGGGCCTTCTTACGCAGTATTTT





767
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCTGGACAGGGGCGACTACGAGCAGTACTTC





768
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCAAGTCGCTTACTTGGCAGCCCGGGTAACACTGAAGCTTTCTTT





769
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCCCCCGGGGGGCGGACAGGACCTATAA






CTATGGCTACACCTTC





770
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACGAGGTGGGACAGGGAGCCCGAAGGGTACGAGCAGTACTTC





771
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTTGGGGGATTACCTCCTACGAGCAGTACTTC





772
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCGAAGTTAGCGGGGGGACCCAAGAGACCCAGTACTTC





773
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCGGGACTAGCGGGTTCACAGATACGCAGTATTTT





774
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGGGGCGCGAGTGGAAAAAGAAAAACTGTTTTTT





775
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCCCACTAGCGGCCAAGAGACCCAGTACTTC





776
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCGTACGGGGACGCTTTGGGAGAGACCCAGTACTTC





777
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATTGGGGGACTAGCGGGGGGTCTTGGAGTGA






GCAGTTCTTC





778
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGGAAACGGACTAGTTGGCCTCGAGAGACCCAGTACTTC





779
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGACTAGCGGGGGGGCCAATGAGCAGTTCTTC





780
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCCGGGGACAGGTTCTGAACACCGGGGAGCTGTTTTTT





781
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTACGGCGGGGGCCATGAGCAGTTCTTC





782
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCCCCGGGAGGGAATACTATGGCTACACCTTC





783
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTACCGACAGGGGACTAGCGGGGGTAGCG






GACGAGCAGTACTTC





784
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCGCCGCAAGATACGCAGTATTTT





785
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTACATGGGACCAACACAGATACGCAGTATTTT





786
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCATAGACGGGAGCGAGACCCAGTACTTC





787
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATGGGGACGTGGGAAGACAATGAGCAGTTCTTC





788
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATCGTGCGGGACAGGGGACAGAGACCCAGTACTTC





789
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCCGTCCGTTGGGACAAATCTACGAGCAGTACTTC





790
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGGACAGCTCCTACGAGCAGTACTTC





791
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCGGGACAGCTTGGGAGACCCAGTACTTC





792
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTTATGGGCAGAGTACCTACGAGCAGTACTTC





793
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAGGAACCTCCGGACGATGGTCTTTACGAGCAGTACTTC





794
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCTTAGCGGGGGCCTACTACAATGAGCAGTTCTTC





795
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGAGGGCGGATTGAACACTGAAGCTTTCTTT





796
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCACGAAGGGACCGATTCCACCTACTATAATTCACC






CCTCCACTTT





797
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAAATCCGGGGGCGAGTTTACGAGCAGTACTTC





798
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTGGGGACAGGGGACAATGAGCAGTTCTTC





799
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGCCAGGGCTAGCAATCAGCCCCAGCATTTT





800
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAAAGGGACGGGCAGGGACAACATTCAGTACTTC





801
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCACCAAGGTGCCCCGGCAAGTTCTTACGGCTACACCTTC





802
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTTCGGCGGGGCTCAATCAGCCCCAGCATTTT





803
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTTCCCGGACGGGACCGGGGAGCTGTTTTTT





804
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGACAAGCGGGGGTTAATGAGCAGTTCTTC





805
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCACCGTTAGGGCATTTGAGCGTCGATGAGCAGTTCTTC





806
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTCGCGGGGGGAGAGCAGTTCTTC





807
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTACGTGGGGCGAAAAACTGTTTTTT





808
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAAAGGGGGCGGCAATGAGCAGTTCTTC





809
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCCCGCCTAGCCCTGACCGGGGAGCTGTTTTTT





810
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGGGTAAGAACTGAAGCTTTCTTT





811
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTCAATCGGGACCCCGACTACAATGAGCAGTTCTTC





812
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCCCCGGACTAGCGGGAGCGTACGAGCAGTACTTC





813
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCGCGGTAACGACCGCGCAGGGGGAGACCCAGTACTTC





814
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCCCGCGCGAAAGAGCGGTGAACACCGGGGAGCTGTTTTTT





815
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGGTAGTGGCGGGAGTGAGGAATGAGCAGTTCTTC





816
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGTCGATATCACCGCTCAATGGCTACACCTTC





817
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATCCGGGACTGAAGCTTTCTTT





818
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGAGGACAGCTACAAGAGACCCAGTACTTC





819
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACCCTGAGTGCGGGAGTGATGCCAGATACGCAGTATTTT





820
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGGGACTAGCGGGAGGACCGGGGAGCTGTTTTTT





821
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCACCCCGGGACAGGGGTGGGTACACCTCCTACAA






TGAGCAGTTCTTC





822
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGACCGACTAGCTGGGGAGCAGTACTTC





823
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGTAGCGACTAGCGATGAGCAGTTCTTC





824
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTAGCCTGAGGGTCTCCTACGAGCAGTACTTC





825
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAGCCGGACAGGGCTTTTCATCAGATACGCAGTATTTT





826
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCAGGGAGAGGCACTGAAGCTTTCTTT





827
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCTATGGACTAGCGGAGCGATTCAGGATACGCAGTATTTT





828
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCATTTTGGGGGAGGGGTTTGGTCCTACGAGCAGTACTTC





829
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTAGGACAGGGTATTGACACCGGGGAGCTGTTTTTT





830
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTACCGGGACTGATACCTACGAGCAGTACTTC





831
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTTCGCGACACTTCTCCTACGAGCAGTACTTC





832
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGACCTGCTACTAGCGGGTTGGGGGATGAGCAGTTCTTC





833
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGGGGACAGGGTGGAGACCCAGTACTTC





834
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCTAGCGGTCCCACAGATACGCAGTATTTT





835
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATAGGGGGGGGGGATACGAGCAGTACTTC





836
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGGGGCAGCTCCTCAGGGGATGGCTACACCTTC





837
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGGAAGTACAGCAGACTACGAGCAGTACTTC





838
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCGGGACAGGGGGTAAAAATGAAAAACTGTTTTTT





839
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGAGGCGGGTCAAGCACAGATACGCAGTATTTT





840
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAGCGAGAGGATAGCGGGAGGGCGACAAGAGACCCAG






TACTTC





841
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCCTAGCGCCGAGCAGTACTTC





842
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCGGGAGGGCTTGAAGATGAGCAGTTCTTC





843
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATTTACAGGGGATGAACACTGAAGCTTTCTTT





844
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAACCGGACAGATAGCTCCTACAATGAGCAGTTCTTC





845
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAGGGGCTAGGTCGGGTGAGCAGTACTTC





846
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGATCTACCGGGACAGGGATACGAGCAGTACTTC





847
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTACCCCGACAGGGTTAAACACTGAAGCTTTCTTT





848
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCATGACGGGAGCCGGTAACTATGGCTACACCTTC





849
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGAGCGAACCTTTACAGGGAATGGGG






GCCTATGGCTACACCTTC





850
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGCCAAGGGTGAACTTCATACGAACACC






GGGGAGCTGTTTTTT





851
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCCTGGGACTAGCGGACACAGATACGCAGTATTTT





852
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTAACAGGGGGGGGGAATCAGCCCCAGCATTTT





853
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAACTTAAGGGACAGGGGGTTGACTATGGCTACACCTTC





854
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCAGACAGGGCTCACAGATACGCAGTATTTT





855
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAAGAAGGCGGGCCGCCGCCAAGCTCCTACAATGAG






CAGTTCTTC





856
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGAGGTCGGGGGAGGGGGACGAGCGAACACCG






GGGAGCTGTTTTTT





857
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGATGGAGGGGACGCACATACCCAAGAGACCCAGTACTTC





858
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGAATTAGCGGGACCCACACAGATACGCAGTATTTT





859
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCGCCAAAGCCCATGGCTACACCTTC





860
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCACAGACGGGACTCGACGAGACCCAGTACTTC





861
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTCGACAGTAACACTGAAGCTTTCTTT





862
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGCAGGGTTACACCGGGGAGCTGTTTTTT





863
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTACAGGAGACCTCCTACGAGCAGTACTTC





864
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGGTAATGAGCAGTTCTTC





865
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGAGGGGGGGGAAGAGACCCAGTACTTC





866
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAGGTTGTAGGAGGGCCCGGGGAGCTGTTTTTT





867
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATTCGGGCAGGGGTTACGAGCAGTACTTC





868
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCCATTTTAAGGACGAGGAGCACACTGAAGCTTTCTTT





869
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGAATGGATAGATACGCAGTATTTT





870
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGATGATAGGGCCGGGGAGCTGTTTTTT





871
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAACCGGACAGTCCTACAATGAGCAGTTCTTC





872
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTTAGACTAGCCTACAATGAGCAGTTCTTC





873
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGACAGGGATACAGCCCCAGCATTTT





874
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGGGACCCTCGGGACAAGTAGTACATACTATGGCTACACCTTC





875
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCTTTTTTTGGAGTGTTAGCAGATACGCAGTATTTT





876
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTAACGGGGACACTGAAGCTTTCTTT





877
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGACAGGGATCTCAGCACCGGGGAGCTGTTTTTT





878
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAATCCACAGGGGAGTGAGCAGTTCTTC





879
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAACAGGGACAGCTACCTACGAGCAGTACTTC





880
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGTCCGGGACAGGGCTTCCGGGGGGGAGACCCAGTACTTC





881
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCGAACGACGGGATCTCTGGAAACACCATATATTTT





882
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGGACTAGCGGGATACAAGAGACCCAGTACTTC





883
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCAACCGGGACAGAAGAGACCCAGTACTTC





884
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCGGGACTAGACCGATAGAGATGTTGAAC






GAGCAGTACTTC





885
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGTCCGGGGACTACCTGGTTGCAGTACTTC





886
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGGACTAGCGGGGGTTGAAAATGAGCAGTTCTTC





887
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCGCCACTAGGTGATGAGCAGTTCTTC





888
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGAATTCTCCTTCCAAGAGACCCAGTACTTC





889
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGGGGACTAGCGGGATCTACAATGAGCAGTTCTTC





890
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAATATTCATTAGGGCAGGGAGGCGACGAGCAGTACTTC





891
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGGCCCCGGACAGGGCAATGAGCAGTTCTTC





892
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGGGGCCAGTCCTACGAGCAGTACTTC





893
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGACCAGCGTACTATGGCTACACCTTC





894
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAACGCGCGCGGCCTTTCGGGACAGGGGCCCACCGGGG






AGCTGTTTTTT





895
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCGGGACCCACGGGACTAGCGATCCACTACGAGC






AGTACTTC





896
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCATCACTAGCGGGGGGCCGAGGGGAGCAGTTCTTC





897
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGTCGGCCCCCGGGTGGACAGGGAACACTGAAGCT






TTCTTT





898
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTCGGGACAGCTCGAACACTGAAGCTTTCTTT





899
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCACAGGGTACGAGGAAGAGACCCAGTACTTC





900
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCCGGACCTGATATAGCCAAAAACATTCAGTACTTC





901
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTTTAGAGCGGACTAGCGTGGTCACAGATACGCAGTATTTT





902
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTTTCGGACGGGAGGACGGATACGCAGTATTTT





903
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGTCACCCGGGACAGGGCTCAAGAGACCCAGTACTTC





904
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGCGACTAGCGGGGGCACCGGAGAGACCCAGTACTTC





905
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGACCGTTACCGATCACCCCTCCACTTT





906
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCGTGGAGGCCACTGAAGCTTTCTTT





907
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAAGATACGGCGCACGAGCAGTACTTC





908
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTAGCGGGGAACCCTACGAGCAGTACTTC





909
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGTAGCTGGCACAGATACGCAGTATTTT





910
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGACGCCCCCGGGCCAATGAACACTGAAGCTTTCTTT





911
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAATTCCGGGTTTGGAATTCACCCCTCCACTTT





912
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCGGAGGGACTAGCGGGAGGGCCGGGGGGACCGGGGAG






CTGTTTTTT





913
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCATTGGCTATCGACGAGCAGTACTTC





914
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATCGGCTAGCGGGAAAAAGGGGGGCA






GATACGCAGTATTTT





915
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGCCCGGGACAGCGCCTACGAGCAGTACTTC





916
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCCCGCTTGAGGAGCAGTACTTC





917
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATTTGTCTGGGGCCAACGTCCTGACTTTC





918
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGACAGGCCTCTCCTACGAGCAGTACTTC





919
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCATTCCACTAGCGTCAGCCTCCTACAATGAGCAGTTCTTC





920
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTACTACCCGGTCAGCCTGACAATGAGCAGTTCTTC





921
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTGGAGGGGAAACGCAGTATTTT





922
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGCTGCCGATTCCGAGCAGTACTTC





923
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGGGTCTGGGGTTCGAGCAGTACTTC





924
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTAGTCGGACTAGCGGACACCTCCTACGAGCAGTACTTC





925
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCACTCCCGGACCGGGACAGAGCTCCTACGAGCAGTACTTC





926
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATCGGGGGGCCCAAGAGACCCAGTACTTC





927
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGCCCCGGGACAGCCAGACAATGAGCAGTTCTTC





928
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCCGAATTGGACAGGGGTGACTATGGCTACACCTTC





929
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGATGTCGGGAACATTCAGTACTTC





930
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTAGGTGCAGGGAGGTATGTTGAGCAGTTCTTC





931
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTACGGCTGTCGGGAGATACGCAGTATTTT





932
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGATCGACAGGAGATCTCTGGAAACACCATATATTTT





933
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTCGGGGGATCGAGGACAATGAGCAGTTCTTC





934
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCAGGGATCAACGAGCAGTACTTC





935
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCATTGTCTAGTAGCCACAATGAGCAGTTCTTC





936
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATCCGGCAAGCAACTAATGAAAAACTGTTTTTT





937
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGAGCTGGACACCAGCTCCTACGAGCAGTACTTC





938
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGGGACAGGGCCTACAATGAGCAGTTCTTC





939
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGGGACTAGCGGGAGGCCCGAACACCGGGGAG






CTGTTTTTT





940
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGCAGGAGGACGGGAGGAGGCAATTCACCCCTCCACTTT





941
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGAGGGGGATAATCAGCCCCAGCATTTT





942
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCGACGGACTAGCGGGGCGTCCTCCAGAGACCCAGTACTTC





943
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGAGCGGGGGCCACAGATACGCAGTATTTT





944
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCGGGACAGGGGCTTTCCAATGAGCAGTTCTTC





945
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGGGTTACGGAGGTGCAGGGCTGTTTTTT





946
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGTAGGGGACGGGACTAGCGTTTACAAT






GAGCAGTTCTTC





947
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCAGACAGGAAACTACGAGCAGTACTTC





948
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGAAGGGGGACTAACGTCAGATACGCAGTATTTT





949
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAACTACGGCTTGGGGAGCTGTTTTTT





950
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATAGGGCGGGAACGGAGACCCAGTACTTC





951
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCTCAGGAGGACTCCTATAATTCACCCCTCCACTTT





952
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGGGGGGGACAACTCCTACTACGAGCAGTACTTC





953
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGATTTAAGCGGGTGGAACACCGGGGAGCTGTTTTTT





954
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGCTCAGGGATCTATAATTCACCCCTCCACTTT





955
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGGGGGGATAGCGGGAGAGAATGAGCAGTTCTTC





956
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCACGAATGCAGGGGGCGGTCAATTGGGGGAGCAGTACTTC





957
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGATGCCCGGGACAGGGTTGAAGAGACCCAGTACTTC





958
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGCTACGGCACAGATACGCAGTATTTT





959
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGTCCGCGGGACACCTAGACGCTACGAGCAGTACTTC





960
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCGCGGGGAGCTCCTACAATGAGCAGTTCTTC





961
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGTGGATCTCAACACTGAAGCTTTCTTT





962
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATCTACGGGGGGGAAACTACGAGCAGTACTTC





963
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTACAGGGGGCTGGGAACACTGAAGCTTTCTTT





964
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATCCAGGTGGTGTGGTCTACAATGAGCAGTTCTTC





965
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAAACACAGGGATATTTACCGGGGAGCTGTTTTTT





966
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGAAATTGCCACTGAAGCTTTCTTT





967
158-TL704-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGATCGGGAGGAAGTTCTTC





968
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCAACGACATGACACCTGGGTGGATCTTC





969
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCTGACTCCCGGGAGGGGGAGCGAGGAACTGAAGCTTTCTTT





970
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATAGACGGCACTTCCTACGAGCAGTACTTC





971
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCTTTACTAGCGGGAACACCGGGGAGCTGTTTTTT





972
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCATCTTCTACCGGGGGGGCTAACGGGGAGCTGTTTTTT





973
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCATAGGGGGGGGGACAGATACGCAGTATTTT





974
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAAGAAAACTACTCTGGAAACACCATATATTTT





975
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTAACGGGGCCGAACACTGAAGCTTTCTTT





976
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGACGGGGACCGGAGTGGAGCAGTACTTC





977
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCAGGAGGGGGGGGAGCCTACGAGCAGTACTTC





978
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGATCTGGCAGGGTTCGCCTACGAGCAGTACTTC





979
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGCCGGGACCTACGAGCAGTACTTC





980
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTTGGGACAGCCTACAATGAGCAGTTCTTC





981
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGAACCGGGACTAGCGGGGGTCTTGAGCAGTTCTTC





982
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCCGCCGGGGGCGGGGAGCTGTTTTTT





983
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGAACAGGGGGTATACTATGGCTACACCTTC





984
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAATAGAGACACCGCCTCAAATGAGCAGTTCTTC





985
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTCCATTTGGGACCAATGAGCAGTTCTTC





986
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGACCGGGCCCCAACACCGGGGAGCTGTTTTTT





987
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGGGGAGAACTATGGCTACACCTTC





988
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGTGAGGACGGTATGAACACTGAAGCTTTCTTT





989
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGAACGGGTTATCCCAATGGCTACACCTTC





990
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGACGGAGCCCGCTACAATGAGCAGTTCTTC





991
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGACAGGGTTACAAGAGACCCAGTACTTC





992
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGGATGGACTAGCGGGGCGACGCAGTATTTT





993
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAGGGACAGGGGGACGAGCAGTACTTC





994
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCGAGTCTGGGGACTAATGAAAAACTGTTTTTT





995
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAAACGGCGCTTGGCGGGCGAACTACAATGAGCAG






TTCTTC





996
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCCGATAGGGACAGGGGAAAACATTCAGTACTTC





997
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTTTCGGGCGGGGGGGACAATGAGCAGTTCTTC





998
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTACACAGATACGCAGTATTTT





999
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCAGTGACAGGGGGCTTGACACTGAAGCTTTCTTT





1000
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCATCCGGGGGGGCAGGAGCCTACGAGCAGTACTTC





1001
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTCCCCCTCGGGCAGAACACTGAAGCTTTCTTT





1002
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGACAGCCAATTCACAGATACGCAGTATTTT





1003
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTTGGCGGACCGGGACAGGAGAGAGAAACACTGAAGCTTTCTTT





1004
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTCCGACAGCTCCTATAATTCACCCCTCCACTTT





1005
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGAAAGCGGGAGTTACTACGAGCAGTACTTC





1006
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCTGGCTCTAGCGGGGCCGACGAGCAGTACTTC





1007
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCGCACTAGCGGCCCGTACAATGAGCAGTTCTTC





1008
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCGGGGGAGGGGGCTGGTACAATGAGCAGTTCTTC





1009
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCTGGGACTAGCGGAGCCTACAATGAGCAGTTCTTC





1010
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGTGCTGGACAATGAGCAGTTCTTC





1011
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGGGACAGCCAACAATGAGCAGTTCTTC





1012
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCCCCCGATACCTACAATGAGCAGTTCTTC





1013
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGGGACTGGGGCGATGTGGTACTTC





1014
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGAGACAGGGAGACTACGAGCAGTACTTC





1015
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCCGAGGGTAGCGGACTCTACGAGCAGTACTTC





1016
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTGGGAAGGCTCCTACGAGCAGTACTTC





1017
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCCGCCTCGCTTCGACTAGCGGGGGGTTGGAATGAGCAGTTCTTC





1018
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCAAAGCCGAAAAGCAAAGGGACAGGGTTCCCTGGGAGCAG






TACTTC





1019
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGACCCTCGGGGGGGGTGGAGACCCAGTACTTC





1020
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGATCGGGGGGGGGCAAGGGAGCAGTACTTC





1021
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGACTCCTAGCACAGATACGCAGTATTTT





1022
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTTGGCGGGGGGGCCAATGAGCAGTTCTTC





1023
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAACGGGAGGGACAGGGGGCACTGAAGCTTTCTTT





1024
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGATGTGGCAGGGGAGGGGCAGGAGCAGTTCTTC





1025
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTTTATAACGGGGAGCTGTTTTTT





1026
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCTCAGGGTGGGAGCAGTACTTC





1027
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGGGGAATGAAGCTTTCTTT





1028
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGATTCAGGGATGAACAATGAGCAGTTCTTC





1029
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCATCTTCGGGGGACGGGGGTAAAGATGAGCAGTTCTTC





1030
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTAATTTCCAGGGGCACTACGAGCAGTACTTC





1031
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTCGGGGGGGACTACAATGAGCAGTTCTTC





1032
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTGGACAGGGAATGAGCAGTTCTTC





1033
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCGGTACTGGGGCGGCGTGGAAACACCATATATTTT





1034
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCGGGAGTCCGTCCGGGGAGCTGTTTTTT





1035
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGATAGGAAGAGGACAGGGCCCTTGAACACTGAAGC






TTTCTTT





1036
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTTTTGCAGTCCTACAATGAGCAGTTCTTC





1037
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGAATCTACCCTTTCTGGCACGGACACAGAT






ACGCAGTATTTT





1038
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCTCCAGAGGGTGGGCACTGAAGCTTTCTTT





1039
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCCGGACGGGCTCCTACGAGCAGTACTTC





1040
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCCAACCAAGATTTAACTTATTCGCTAACTATGGCTACACCTTC





1041
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCGGGACAGTATACACCGGGGAGCTGTTTTTT





1042
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCCCCGGGCGGGGGAGAGCAGTACTTC





1043
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTGGGCTATGGCTACACCTTC





1044
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGAATGGACAGGGGGCAGAGATACGCAGTATTTT





1045
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGGCCATTGGGGGAGATGGCTACACCTTC





1046
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCCAAGAGGGCTTAAGCTACGAGCAGTACTTC





1047
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGTCCCGGACAGGGGGCGACAGATACGCAGTATTTT





1048
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGGGACAGGGAACTACGAGCAGTACTTC





1049
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCTTATCTTGGCTCCTACAATGAGCAGTTCTTC





1050
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGTGGGGGCAGGCCCGCAGTATTTT





1051
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAGTCAACGCTCCACAATGAGCAGTTCTTC





1052
172-TL720-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATAGCCGGGCTAGCGGGGGGCCTTAATGAGCAGTTCTTC





1053
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCTGACTCCCGGGAGGGGGAGCGAGGAACTGAAGCTTTCTTT





1054
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCCGATAGGGACAGGGGAAAACATTCAGTACTTC





1055
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAGACGGCACTTCCTACGAGCAGTACTTC





1056
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGGGCAACTTGCACCCGGGGAGCTGTTTTTT





1057
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGCCGGGACTAGCGAGTCCAATGAGCAGTTCTTC





1058
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACGTGGGGGCAGGCCCGCAGTATTTT





1059
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCGGGACAGTATACACCGGGGAGCTGTTTTTT





1060
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCTTTACTAGCGGGAACACCGGGGAGCTGTTTTTT





1061
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTTCGGGCCCCGTGGAGGACATTCAGTACTTC





1062
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTCTTGAGGCCAACGTCCTGACTTTC





1063
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTACGGGACAGCTGAACACTGAAGCTTTCTTT





1064
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAGTCAACGCTCCACAATGAGCAGTTCTTC





1065
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGACGGGGACCGGAGTGGAGCAGTACTTC





1066
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATGGGGTGGAGTCAGCCCCAGCATTTT





1067
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCGACGAGCGGGATACGCAGTATTTT





1068
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGTGCTGGACAATGAGCAGTTCTTC





1069
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCCAGTCGGGGGGTTCGAACACCGGGGAGCTGTTTTTT





1070
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCCTGGGGTTCGCGCGGCTACACCTTC





1071
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTGGGGACAGGGGACGGCTACACCTTC





1072
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACGGGACAGCCAACAATGAGCAGTTCTTC





1073
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCCAAGAGGGCTTAAGCTACGAGCAGTACTTC





1074
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAATAGAGACACCGCCTCAAATGAGCAGTTCTTC





1075
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGTCCTCGCCGGGGGCTCCCTACGAGCAGTACTTC





1076
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAACGGGAGGGACAGGGGGCACTGAAGCTTTCTTT





1077
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACCACAGATACGCAGTATTTT





1078
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTAATAGGGGGAGCGAGCAGTACTTC





1079
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCTCCCCAGCGGGGGTCCACAATGAGCAGTTCTTC





1080
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCTCCCCTAACAGTTCTCACCGGGGAGCTGTTTTTT





1081
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTTGGGGGGCTGGCCACTGAAGCCTTCTTT





1082
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTGGCGGGGGGGCCAATGAGCAGTTCTTC





1083
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTACCGCCGAGCGCCGGCTACAATGAGCAGTTCTTC





1084
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGTTAACAGGGTCTAACAATGAGCAGTTCTTC





1085
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCGGCTTTCCGGATACGCAGTATTTT





1086
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCGCCGATGTGCCCGAAACCTCACGGGACAGGGTC






CGTAATGAGCAGTTCTTC





1087
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGATGGCTCCGGGACAGCCCCCTACGAGCAGTACTTC





1088
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCAGGCGGAGAGCAGTACTTC





1089
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGATACAGGCCTCTCTGGAAACACCATATATTTT





1090
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCGGGACTCTTCCTACAATGAGCAGTTCTTC





1091
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGGCGGGGGAGCAGTTCTTC





1092
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCGGACCCCTACGGAGTGATATACGAGCAGTACTTC





1093
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATATCAGCGGGGGCCCCTCCTCCTTC





1094
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTGACAGTTCGGAAGCTTTCTTT





1095
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGAGGGACAGCGGGACTAACTATGGCTACACCTTC





1096
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTCACCCCGGGTAGTACAGATACGCAGTATTTT





1097
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGAGGACAGGGTTTGTCACTGAAGCTTTCTTT





1098
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTCGCACGTGGAGCCAAGGGTGGCTACACCTTC





1099
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCCCCCTCGGAGGGCAGTCCTACGAGCAGTACTTC





1100
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATCGCGATTGGGGCGGAGCAGTACTTC





1101
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGACTAGGGACAGGGGGGAGCAGTTCTTC





1102
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGAGGATTGGCTAGCGGGGGGGCCT






GCAGATACGCAGTATTTT





1103
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCCATGACAGCTACGAGCAGTACTTC





1104
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTCGACACTAACTACTATGGCTACACCTTC





1105
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTACGGGCTTAAACCACACTGAAGCTTTCTTT





1106
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCGGGGATCCAAAACACCATATATTTT





1107
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGAGGACGGTATGAACACTGAAGCTTTCTTT





1108
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTGGACGGGTTACGGGGGAGACCCAGTACTTC





1109
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGGCCCTTTACCCTCCTTC





1110
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAGCCGGGACAGGGACCGTAATGAGCAGTTCTTC





1111
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCTCTGTACAGCGGGATAGAGAGCTCCTACAAT






GAGCAGTTCTTC





1112
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGTGGGACAGGGTTCCAATGAGCAGTTCTTC





1113
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATCCCGACCCGCTGGATGGCTACACCTTC





1114
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTAGCGGGGGGGAAAATGAGCAGTTCTTC





1115
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATCCAGAAATCAACACTGAAGCTTTCTTT





1116
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTCCAGACAGGGACAATGAAAAACTGTTTTTT





1117
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAACCTCTGGGGGGGCTCCTACAATGAGCAGTTCTTC





1118
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGACAGCCAATTCACAGATACGCAGTATTTT





1119
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGAAAGCGGGAGTTACTACGAGCAGTACTTC





1120
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGGAGACTAGCGGGGACCGACAATGAGCAGTTCTTC





1121
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGACTCCCGGTACAATGAGCAGTTCTTC





1122
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTGATCCCCGGGGCCACAGATACGCAGTATTTT





1123
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAGGACAGATCCTAACCCTGGAAACACCATATATTTT





1124
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAGCGACACCAGGGGAGCAGTACTTC





1125
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCCCCGGAGGAGGAGTCGATGAAGCTTTCTTT





1126
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATCTCTGGACAATGAACACCGGGGAGCTGTTTTTT





1127
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTTGGGGGGCTGGCCACTGAAGCTTTCTTT





1128
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGGGGCTAGGGCGGGGGGGCTTGAACACCGGG






GAGCTGTTTTTT





1129
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGACCGGACCGGCGAGACCCAGTACTTC





1130
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGCAGGGGGGACTAGCGGGGGGATTGAGCAGTTCTTC





1131
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGGTAGCGGGCAAGAGACCCAGTACTTC





1132
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGGGGGACAGAACTATGGCTACACCTTC





1133
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGGTTATCCTCCTACGAGCAGTACTTC





1134
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGACCACTAGCGAGGGTAAACTACGAGCAGTACTTC





1135
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTGGACAGTTTCGTCGGACTATGGCTACACCTTC





1136
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATTTCTCTTCGGTAAGCCCCAGCATTTT





1137
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGACGGGCCTCTGGATGAGCAGTTCTTC





1138
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTACTGGGACAGGGCTTACTTC





1139
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCCGACAGGGGAAGACCCAGTACTTC





1140
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCCCAGGAGGTGATGGCAATCAGCCCCAGCATTTT





1141
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGAATCTACCCTTTCTGGCACGGACACAGAT






ACGCAGTATTTT





1142
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCTCCAGAGGGTGGGCACTGAAGCTTTCTTT





1143
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTTCACCGACAGGGGGCCCCTACAATGAGCAGTTCTTC





1144
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGTGCCTCCCGGGGGCCCAGATACGCAGTATTTT





1145
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGAATGGACAGGGGGCAGAGATACGCAGTATTTT





1146
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGTAGCCAATGAGCAGTTCTTC





1147
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGCCGCCCGTGGACCGGGGAGAGACCCAGTACTTC





1148
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGCTCCCCGGACATATAGAAACAGATACGCAGTATTTT





1149
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCGACCTTAACTATGGCTACACCTTC





1150
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCACAAACAGGGAACACCGGGGAGCTGTTTTTT





1151
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTACCAGGGTACCCCGGAAACACCATATATTTT





1152
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTCCGCGCCGGGACCCTGGGGGTGAGCAGTTCTTC





1153
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCGATCCTTGTTGCACAGGGTCATGAACACTGAA






GCTTTCTTT





1154
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATTGGAGTGGCATCCCCGGGGAGCTGTTTTTT





1155
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCCGCTGAACTGACTGGGTGGAGCGGGGGGCCC






AATGAGCAGTTCTTC





1156
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCACCAAATGGTCTAACTATGGCTACACCTTC





1157
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGACAGGGCGGAAACTATGGCTACACCTTC





1158
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGCAGCGGGGGGGGACCGGGAATGAGCAGTTCTTC





1159
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGAGGCCGGTTATAATCAGCCCCAGCATTTT





1160
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTCGGGACAGGATAATTCACCCCTCCACTTT





1161
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGCGAGACAGGGAAAGGAGACCCAGTACTTC





1162
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAACAAAACACCGGGGAGCTGTTTTTT





1163
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGGAACTGACAGGCCCTCCCTACGAGCAGTACTTC





1164
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGGGACAGGGGTGAATGAGCAGTTCTTC





1165
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGGGCAGTTCTATGGCTACACCTTC





1166
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAACGGGACAGGCCTCCGGGCTGGGGGCTACACCTTC





1167
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATCCCGACATCGGGGAGCTGTTTTTT





1168
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCCCCGATACCTACAATGAGCAGTTCTTC





1169
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGTTGGATCCAATGAGCAGTTCTTC





1170
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAATGGTCCACACTGAAGCTTTCTTT





1171
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCGATAGATACGCAGTATTTT





1172
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGCTCCTGAGGCTAGCGGATACAATGAGCAGTTCTTC





1173
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGGGGAGACCCTACACACTGAAGCTTTCTTT





1174
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAAACTAGCGGGGGGGGGAGATACGCAGTATTTT





1175
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTATGGACAGAACTATGGCTACACCTTC





1176
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGGGTGTTAGCACAGATACGCAGTATTTT





1177
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATCTAAGGGGCAATGAGCAGTTCTTC





1178
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGAGGGGGGACAGCTGAATGAAAAACTGTTTTTT





1179
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGACAGCCTACGAGCAGTACTTC





1180
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTTCAGGGGACGAGGGTCAGCCCCAGCATTTT





1181
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCCTTGGACGACCCCACCGGGGAGCTGTTTTTT





1182
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTACACCAGGGTCCCTCCTACGAGCAGTACTTC





1183
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTCCGGGTAGGGAGAACACCGGGGAGCTGTTTTTT





1184
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTACAACACCAAACTATGGCTACACCTTC





1185
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCAACATACACAGCACAGATACGCAGTATTTT





1186
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGAAAGACTGGGGTCTCCACTGAAGCTTTCTTT





1187
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGAATCMCTTTTCCCTGGACACCGGGGAGCTGTTTTTT





1188
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGGGGGACAGAACTATGGCTACACCTTC





1189
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGGGGCAGGGGGCTGAGTGAGCAGTTCTTC





1190
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGTATGCAGGTCCTAACTATGGCTACACCTTC





1191
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTCTGACTAGCGGGGATGAGCAGTTCTTC





1192
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCGGGACAGGGACCCCAGATACGCAGTATTTT





1193
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCGCCCATACTCCAAAGAGACCCAGTACTTC





1194
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGTACTCCTCTGGGGCCAACGTCCTGACTTTC





1195
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGTTGGGCGGGGAGATCTACAATGAGCAGTTCTTC





1196
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCGGACTAGCGGGGGGGCGGATGAGCAGTTCTTC





1197
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCGGGACTAGCGGCGACAATGAGCAGTTCTTC





1198
173-TL720-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAACGACATGACACCTGGGTGGATCTTC





1199
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTAGGGGACTAGCGGGAGTCAATGAGCAGTTCTTC





1200
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTCCGTCGCGGGAGGAGACCCAGTACTTC





1201
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGGCCCCGAGCGGGCTGAAGCTTTCTTT





1202
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGATTGGGAGAGCACAGATACGCAGTATTTT





1203
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAATCCGGGTGGGGGGAAATCAGCCCCAGCATTTT





1204
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAAGAGGGATACGCCTACGAGCAGTACTTC





1205
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGATCAATGAGCAGTTCTTC





1206
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTAAGCGGGAGGGCACCGGGGAGCTGTTTTTT





1207
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTAAGACTCCCCGGGCACACTGAAGCTTTCTTT





1208
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGCCAGGGGTACCGACGAGCAGTACTTC





1209
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCTCCATAGGAGGAGACGAGCAGTACTTC





1210
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCTGACAGTATTCAACGGGTGTTC





1211
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCCCACAATGAGCAGTTCTTC





1212
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCTTTTCGGGGTTGGGCTACGAGCAGTACTTC





1213
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGACTGACAGGGGAAAGGACCTACGAGCAGTACTTC





1214
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCGCCCTCCCCGGGTCCTCCTACGAGCAGTACTTC





1215
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCCGATTTCTTAGCGGGAGTCTTGATGAGCAGTTCTTC





1216
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGCACCTACAGGGCACCCCCTGGAAACACCATATATTTT





1217
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAATCTCTGAAGCTTTCTTT





1218
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCCCCGACAGGGGGTGGACACTGAAGCTTTCTTT





1219
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGACATTTGAAGCTTTCTTT





1220
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCCGACACGGCCCAGCATTTT





1221
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATAGGCTGGGGTAGCTCCTACAATGAGCAGTTCTTC





1222
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAGGGACAACTAGCTCCCGGGGAGCTGTTTTTT





1223
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGGAGGGGATGGCTGAAGCTTTCTTT





1224
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAAGACGGACATGAACACTGAAGCTTTCTTT





1225
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTGAGGGGCGACTTACTGAAGCTTTCTTT





1226
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCACCCAACCGGAGACTGTTTTTT





1227
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCACCAGCCCAGGGGGCCGGGGCTACACCTTC





1228
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAAGGCCGGACCTCCAGCTCCTACAATGAGCAGTTCTTC





1229
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGGGGGGAACACTGAAGCTTTCTTT





1230
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTTACGGGACAGGGGGCGGCTATGGCTACACCTTC





1231
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCTTAGAGTTTTCCTACGAGCAGTACTTC





1232
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAACTAGCGGGCCATACAATGAGCAGTTCTTC





1233
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCGTCGCGGGCACAGATACGCAGTATTTT





1234
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGTCGAAACGAGCAGTACTTC





1235
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTAACGGGGACAGGGACCAAAAACATTCAGTACTTC





1236
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGTCCAAGGGGGTTCCTACGAGCAGTACTTC





1237
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGAATCCCAAGCAGGTTCCTACAATGAGCAGTTCTTC





1238
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTAAGTCTAGCTGGGGATGAGCAGTTCTTC





1239
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGACGGACAGGGGCGCCAGCACTGAAGCTTTCTTT





1240
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTGGGTCCGGGGACTAGCGTCTACGAGCAGTACTTC





1241
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGGGGCAGGGGACTACGAGCAGTACTTC





1242
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCCCCGGGACGGAGGGCGAGCAGTACTTC





1243
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAGCCTGTTACGGGACTAGCGGGGCGG






AGCTCCTACAATGAGCAGTTCTTC





1244
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCGGACAGGATGAACACTGAAGCTTTCTTT





1245
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGAAGCCGACCAGGGGGTATACAATGAGCAGTTCTTC





1246
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGATAAGAGGGACGAGCAGTACTTC





1247
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTAATTGCACTAGGTATGGAAGATACGCAGTATTTT





1248
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCTGGAGTGGTGACAGCAGTAACACTGAAGCTTTCTTT





1249
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTGGAGGGGACGGCTACGAGCAGTACTTC





1250
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCCCCAGCGGGACTCACAGATACGCAGTATTTT





1251
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCACTGACCCTCTTCCTAGCGGGGCCCTACAAT






GAGCAGTTCTTC





1252
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCATGACAGGTCAACTAATGAAAAACTGTTTTTT





1253
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTGGGAGGGCCCCTACGAGCAGTACTTC





1254
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGGACAGGGTCGGGGAGCTGTTTTTT





1255
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATAGGACTGTCTAGTCTCAATGAGCAGTTCTTC





1256
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTTTGGGGACACTGAAGCTTTCTTT





1257
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTCAAGGGAGAGAATGAAAAACTGTTTTTT





1258
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGGGACAGGTTGGGGAGGCACTGAAGCTTTCTTT





1259
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGACCCAGGGGGGACAGGGCTTTTGGAAAAACTG






TTTTTT





1260
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCAGGCCGGGACAGGGGTTACGAGCAGTACTTC





1261
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCTCCGGGGGGGACAGGGGTGGTCGAGACCCAGTACTTC





1262
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAGACTGGGACAGGGAACACTGAAGCTTTCTTT





1263
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGATGTAGATACTGGAAACACCATATATTTT





1264
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGTTTAGGACCGAACACCGGGGAGCTGTTTTTT





1265
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCACCCTCATCTAGCGGGAATTGGGATGAGCAGTTCTTC





1266
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAAGGGGACAGGGTTTGAGGGGGGTCGCGGCTTTCTTT





1267
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGACTAGCGGGAGCCTTAAGGTTCGAGCAGTTCTTC





1268
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGGCAGGAGCTCTCTCCTACGAGCAGTACTTC





1269
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCCCACCGCTACGAGCAGTACTTC





1270
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGCCACATTCCCACAGGGGGCACCTTACAATGAGCAGTTCTTC





1271
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGGGAGCGACTAGCGGTTACCTACAATGAGCAG






TTCTTC





1272
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTCCTTACGAGACGTGGGCGAAGATCGAGAACACTGAAGCT






TTCTTT





1273
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTAGGGACAGATTACGAGCAGTACTTC





1274
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCACGTCGGGACTAGCGGTTACGAGCAGTACTTC





1275
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGTGACAGAGAACACTGAAGCTTTCTTT





1276
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCTCGGGGTATCAACATTCGAACACTGAAGCTTTCTTT





1277
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCATTCGGACCGGGGGTGCTGGCAATCAGCCCCAGCATTTT





1278
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGGAACTAGCCCCTACAATGAGCAGTTCTTC





1279
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCCCCCGACTAGCGGGAGGGGAGACCGGGGAGCTGTTTTTT





1280
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGCTGACAATGAGCAGTTCTTC





1281
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGGAGCGGGAGCCCCCGTTGAGCAGTTCTTC





1282
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTCGGCCCCCTCCCTACGAGCAGTACTTC





1283
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTACAGATACGCGAGATGGCTACACCTTC





1284
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTACTCCTGCTAGCGGGAGGGAGTACAATGAGCAGTTCTTC





1285
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTACAGGGGGCGAGGGCGACCGAGCAGTACTTC





1286
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCAGAGATTGGGGGAGCTCCTACAATGAGCAGTTCTTC





1287
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCGTAGCGGGAGGGTTGTTGTATGAGCAGTTCTTC





1288
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGTGATGTAGCGGGAGGTTACGAGCAGTACTTC





1289
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAAGAGCAGGGCCGGCAGTCCCTACGAGCAGTACTTC





1290
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGGCGGAAGGTTCGATGAGCAGTTCTTC





1291
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTACCCGGGACTAGCGGGAGCATACGAGCAGTACTTC





1292
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCAAGCGACCGCTCCTACGAGCAGTACTTC





1293
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCCGGACTGAAGCTTTCTTT





1294
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATATGCCGCAAGTTCAGTAGCTAGCGGGGG






GACAGATACGCAGTGTTTT





1295
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAGAGCTTACCCTCGACAGGGGGTCACAATGA






GCAGTTCTTC





1296
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGCCCCCGAGCGGGCTGAAGCTTTCTTT





1297
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTCAGAACTAGCAACGCGCAGTATTTT





1298
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCTAGCAGCCCCAGTGGAGTAGCGGGAGACGTGGAGACCCAGTACTTC





1299
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTCACCGGGACGGTAATGAAAAACTGTTTTTT





1300
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATGGATCGTGCTAGCACAGATACGCAGTATTTT





1301
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCCATAATTTCACAGGGGATGAGACCCAGTACTTC





1302
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTACGACTAGCGGCTAACACCGGGGAGCTGTTTTTT





1303
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAAAGGGGCTTACCTACGAGCAGTACTTC





1304
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCGTGGCTGATTCCTACGAGCAGTACTTC





1305
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGGGGGCTTCGACAGGGGAGACCACGAGCAGTACTTC





1306
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGAACAGGGAGGTTCTAGGGGCTACACCTTC





1307
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCTCCGGGACAGGGGGCGAGGAGACCCAGTACTTC





1308
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTACGACAGGGAGAGGTCACAGATACGCAGTATTTT





1309
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAGGAAGGGGAGCTTTTCTTT





1310
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGCCCAGGGGACACAGCCTACGAGCAGTACTTC





1311
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCACAGTCCGAACACTGAAGCTTTCTTT





1312
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCACCATACAGGAGCCGAACACTGAAGCTTTCTTT





1313
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTACCAGCGTAGGAGGGTCCTACAATGAGCAGTTCTTC





1314
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCGAGGACAGGGGATATACGAACACTGAAGCTTTCTTT





1315
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAAGAGTTACCAGGAGGGAACACTGAAGCTTTCTTT





1316
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGTCGCCGTGAGTGGGAGACCCAGTACTTC





1317
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTGATACTAGCGGGAGGAGGGCCGGGGAGCTGTTTTTT





1318
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTAGCGACGCCGCCCTCCTACGAGCAGTACTTC





1319
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCACGGACAGGGTACTACAATGAGCAGTTCTTC





1320
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAATCGGGGTTGGGAACACTGAAGCTTTCTTT





1321
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGATTGGGACGGGACTAGCGCCGCCTACGAGCAGTACTTC





1322
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATCCTACGCGGGGTGGGAGCTCCTACGAGCAGTACTTC





1323
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCAAAGGGGAGTTGGGGACACCCCCCCGGGAGACCCAGTAC






TTC





1324
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTGGGGGGCGGGAGGATTGTACGAGCAGTACTTC





1325
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGGGTTGTAGCGGGAGGCAATGAGCAGTTCTTC





1326
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGTTGGTGAAGCTTTCTTT





1327
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATCCCCGGGACTAGCGGACACAGATACGCAGTATTTT





1328
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCACCCCTTAGCGGGGGGTTGTACAATGAGCAGTTCTTC





1329
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTGCAGGACAGGGCCGAATGGGAGATACGCAGTATTTT





1330
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCACCAACCGGGTCCTAGGGGACTATGGCTACACCTTC





1331
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGGGAGGGGCGCACCCACTGAAGCTTTCTTT





1332
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGTGGGGTAATCAGCCCCAGCATTTT





1333
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGATGGCGGGGGCAGGGAGACCCAGTACTTC





1334
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATAGGACACGACGGCATGAACACTGAAGCTTTCTTT





1335
18-TL615-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGAGGGACTAGCGGGGGGCCCTGCCCACAATGAG






CAGTTCTTC





1336
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGATCAATGAGCAGTTCTTC





1337
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCTTTTCGGGGTTGGGCTACGAGCAGTACTTC





1338
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTAAGCGGGAGGGCACCGGGGAGCTGTTTTTT





1339
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATTTTCGAGGGGAGACATTCAGTACTTC





1340
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCATTCGGACCGGGGGTGCTGGCAATCAGCCCCAGCATTTT





1341
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGACGGACAGGGGCGCCAGCACTGAAGCTTTCTTT





1342
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGGGGCTGTCCGGGGCCAGGAACGAGCAGTACTTC





1343
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGTCCAAGGGGGTTCCTACGAGCAGTACTTC





1344
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCATCCCCCACGGGGCTAGCGGGCTATACGAGCAGTACTTC





1345
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGTTGGGAGGACTGAACACTGAAGCTTTCTTT





1346
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGAGGTAGCGGGAGCGAGATACGAGCAGTACTTC





1347
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGCCACATTCCCACAGGGGGCCCCTTACAATGAGCAGTTCTTC





1348
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGTAACCGGGAGAAATAGCAATCAGCCCCAGCATTTT





1349
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGACGGGTCCTACAATGAGCAGTTCTTC





1350
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCCGATTTCTTAGCGGGAGTCTTGATGAGCAGTTCTTC





1351
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGAGTGGGGTTTGGGCCAAAACGGGGAGCTGTTTTTT





1352
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAGGCTGGGGTAGCTCCTACAATGAGCAGTTCTTC





1353
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGGAGGGGATGGCTGAAGCTTTCTTT





1354
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGGAGGGGGTCCCCAAGAGACCCAGTACTTC





1355
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCGACAAAGACCAGCCCCAGCATTTT





1356
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAACGGGGACAGGGACCAAAAACATTCAGTACTTC





1357
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATTATCCGGGAAGCCCCAGCATTTT





1358
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCCTGCACCGGGACAGGGTAGTCGAGCAGTACTTC





1359
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGTACAATGAGCAGTTCTTC





1360
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGACCTAAAACTAGCGGGAGCCTCGATGAGCAGTTCTTC





1361
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGGAACGAGCAGTACTTC





1362
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTACGGGACAGGGACTTACGAGCAGTACTTC





1363
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTATACGGGGGCTATGGCTACACCTTC





1364
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATCAGGGAGCTGGGGGGACACTGAAGCTTTCTTT





1365
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGACTCACTAGCGGATAGCACAGATACGCAGTATTTT





1366
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTATTCCGGGACTGGCCTACAATGAGCAGTTCTTC





1367
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGAAACTCGGGACGAGCAGTACTTC





1368
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGAACAGGGGGCTGAAGCTTTCTTT





1369
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGTAAGGCAGCTGGGGGAGCAGTACTTC





1370
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGAATCGGACAGAGCTCCTACGAGCAGTACTTC





1371
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGAGAGAGACCAATGGCTGAGACCCAGTACTTC





1372
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTACCAGCTCCTACGAGCAGTACTTC





1373
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTATTCGGGGTCTAGCCGCTACGAGCAGTACTTC





1374
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTTGGTAGTTGGAGCACCGGGGAGCTGTTTTTT





1375
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTTTTTCCTCAGGACAGGGGGCATACGAGCAGTACTTC





1376
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGACTAGCGGACTACGAGCAGTACTTC





1377
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTCAGGGACACATCCTACGAGCAGTACTTC





1378
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGAAACGGACGGTAACACTGAAGCTTTCTTT





1379
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGTAACAATGAGCAGTTCTTC





1380
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCCACCGCTACGAGCAGTACTTC





1381
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCTTTTCGGGGTTGGGCTACGAGCAGTACTTC





1382
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGAGGACCACCTCACCGGGGAGCTGTTTTTT





1383
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCTAACAGGGGGCCGAGGGAGACTGAAGCTTTCTTT





1384
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGACAGGGTACGAAGCGGGGAGCTGTTTTTT





1385
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGACGGACTAGCGGGAGACACCGGGGAGCTGTTTTTT





1386
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGCGACGGAATCTCTGGGGCCAACGTCCTGACTTTC





1387
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCGCCCCGGAGAAACTAGCGGGAGTCTCCTACGAG






CAGTACTTC





1388
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCTTTCCCGGGACAGAGTAATGAAAAACTGTTTTTT





1389
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCCAAAGGGGGCGTCTGATCCAGCCCCAGCATTTT





1390
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGAGGGGGAAGCTATGGCTACACCTTC





1391
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGAACAGGGAGGTTCTAGGGGCTACACCTTC





1392
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGGTTCACAGGGGCTCACAGATACGCAGTATTTT





1393
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCACCGGGACTAGCGGAGCCAGTGAGCAGTTCTTC





1394
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGAGGAGAGTTACAATGAGCAGTTCTTC





1395
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCACTCAAAATGAGCAGTTCTTC





1396
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCAGGTTACAATGAGCAGTTCTTC





1397
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCTACAGGGGTCTCCTACGAGCAGTACTTC





1398
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACGGAGCGGGAGGGTTCCGAGCAGTACTTC





1399
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATTACCTAGCGGGGGGCCGGGCTGAGCAGTTCTTC





1400
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCATCGGACAGGGCCCTTCCTACGAGCAGTACTTC





1401
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACCAGGGGGGGAACTATGGCTACACCTTC





1402
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTCCTCCGGGACAGGGGTCGAGCAGTACTTC





1403
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGAAAGAGTTGGCGACGAGCAGTACTTC





1404
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACCAACCGGGTCCTAGGGGACTATGGCTACACCTTC





1405
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGATGCTTTCACAGATACGCAGTATTTT





1406
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCCGACTAGCGGGAGGCGGTGAGCAGTTCTTC





1407
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCAGGGCTTACAATGAGCAGTTCTTC





1408
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGACAGAGAACACCGGGGAGCTGTTTTTT





1409
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTACTCCACCCTTTCTACGAGCAGTACTTC





1410
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCCCAGGGGACCACTACGAGCAGTACTTC





1411
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGATCGATCGGGCCTAGGGGACTTC





1412
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGAACTACGAGCAGTACTTC





1413
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTTACCCAGGGAAGGACTACACCTTC





1414
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGCCACATTCCCACAGGGGGCACCTTACAATGAGCAGTTCTTC





1415
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGCCTTGGGGGAAACACTGAAGCTTTCTTT





1416
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCGCCGGGACAGGAGACTACGAGCAGTACTTC





1417
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGACATCGTGAGCAATCAGCCCCAGCATTTT





1418
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGGGTTTGGGAGACCCAGTACTTC





1419
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGTCCCAGGGAACACTGAAGCTTTCTTT





1420
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGACTGACTGGGGGAACACCGGGGAGCTGTTTTTT





1421
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCAAAGACAGGGTTGAATGAGCAGTTCTTC





1422
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAATCTCTGAAGCTTTCTTT





1423
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAGGGACAGGGGACGCCTTTCGCTCCTAC






AATGAGCAGTTCTTC





1424
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGAGCCAACCGCTATGGCTACACCTTC





1425
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATCCGCAGGGGGAGGTGGCAATCAGCCCCAGCATTTT





1426
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGGTGTTGCCCAGTACTTC





1427
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGCGGGACTAGCGGAAATATTCTCCTACAATGAGCAGTTC






TTC





1428
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCCCGGGGGGGTCAGCCCCAGCATTTT





1429
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAGACAGAGAACACCGGGGAGCTGTTTTTT





1430
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGTGCAGGGGTTCGCCGGGGAGCTGTTTTTT





1431
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGACACCCTCGGGGGGGGTGACACCGGGGAGCTGTTTTTT





1432
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCGTAGGGAACACTGAAGCTTTCTTT





1433
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCAGCTGGGAAGCAGTATTTT





1434
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGGGACAGGAGTCCTACGAGCAGTACTTC





1435
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCTGACAGGGGGCCGTAATCAGCCCCAGCATTTT





1436
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATCCCCGGCAGGGGGACACCGGGGAGCTGTTTTTT





1437
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTCGATGGGGCCAACGTCCTGACTTTC





1438
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAACGCGTGGAATGAGCAGTTCTTC





1439
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCAGGGGCCGGGGAGCTGTTTTTT





1440
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGCTATCTCTTTCGGGGAGCAGTACTTC





1441
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGCTCCCCGGGGGCGATGAGCAGTTCTTC





1442
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGACCCCCTCAACAGTACCTTTTTTT





1443
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTGCTAGCGCAGCAGTTCTTC





1444
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGGGTCAGGACCCCCAAATGAGCAGTTCTTC





1445
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAAGAGAGGGGGGGAGGAGCAGATACGCAGTATTTT





1446
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGGGACAGATCAATTCACCCCTCCACTTT





1447
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTTACATCGGGAGCACAGATACGCAGTATTTT





1448
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAATAGGCTACGAGCAGTACTTC





1449
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCTCCCGACAGGGGCTGAAGATACGCAGTATTTT





1450
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGAATCTAGCGGGAGCCGGGGAGCTGTTTTTT





1451
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCATGGGGGGACAGAACTATGGCTACACCTTC





1452
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGAGGGGGAACAGTAGACAAAAACATTCAGTACTTC





1453
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATTGGCGTCTATGGCTACACCTTC





1454
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGAAAAGGGTCGGGTCCCGGACGGCCCTAGC






GTCCCTTACAATGAGCAGTTCTTC





1455
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGGGGCACTGAAGCTTTCTTT





1456
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTATGGCGGTAGATACAATGAGCAGTTCTTC





1457
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGGAAGGGCCTCGGGGACTGAAGCTTTCTTT





1458
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAAAGGGACGGCGGCGACTATGGCTACACCTTC





1459
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAATCGACCAGGGACAGCCGAAGAGCAGTTCTTC





1460
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCATGGCGGAATCATTCGGCGGACCGAGGGG






AATGAGCAGTTCTTC





1461
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGTCGGCGGGAGAGCTACGAGCAGTACTTC





1462
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGACCGCGGCAGATGAAGAGACCCAGTACTTC





1463
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTCTCGACAGCTCCTACGAGCAGTACTTC





1464
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATCCAGGGGGCCCTAACTCCTACA






ATGAGCAGTTCTTC





1465
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGACCCCCTTTTGGTGGGGGTGGACA






CTGAAGCTTTCTTT





1466
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGGGGGTTAATATGAACACTGAAGCTTTCTTT





1467
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCTGACAGGGAGTCGCAATCAGCCCCAGCATTTT





1468
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGTCCAGATACCTACGAGCAGTACTTC





1469
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGAGGGGGAGCCAAAAACATTCAGTACTTC





1470
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTACGGACTAGCCTACAATGAGCAGTTCTTC





1471
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCGCCGACAGGGGGCTGGTATGGCTACACCTTC





1472
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAAAGGGGTCACCGGGGAGCTGTTTTTT





1473
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCCTGCAGGGGTTAGCGGGAGAAGAGCAGTTCTTC





1474
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCACCGGTGGGTACTACGAGCAGTACTTC





1475
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTAGCAAGGGAACTGAAGCTTTCTTT





1476
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTACGATTTACAGGGGAGGTGGAGCTGTTTTTT





1477
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCCGGGCACTGAAGCTTTCTTT





1478
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCACTACAGGGTTATGCTGAAGCTTTCTTT





1479
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAAGACTCCCCGGGCACACTGAAGCTTTCTTT





1480
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTGGGACAGGGGGCGAGGAGACCCAGTACTTC





1481
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCAGCGGGGCCTAGGCTATGGCTACACCTTC





1482
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAGGATCCTACACCTACCTACGAGCAGTACTTC





1483
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTGGGACTATCTTACAATGAGCAGTTCTTC





1484
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACCAACTCCGGGACCGCGAGGTCACCCCTCCACTTT





1485
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCGACAGCTACAATCAGCCCCAGCATTTT





1486
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTCTCCGGGACTATAGCAATCAGCCCCAGCATTTT





1487
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTGGGCCGTGGCGAGCAGTACTTC





1488
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCTAGCAGCTTAGGTCCTAGCGTGAGGGAGACCCAGTACTTC





1489
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTATGACTAGCCGGACGGATGAGCAGTACTTC





1490
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCACAACCGGGACCTTTCTACGAGCAGTACTTC





1491
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTAACCCTATAGCGGGAGGACCCTACAATGAGCAGTTCTTC





1492
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGTCGGGGAGCACCTACGAAGAGACCCAGTACTTC





1493
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGACTTTCCAGGGTCTAATCAGCCCCAGCATTTT





1494
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCCAGCGGGAGCAAATCAAGAGACCCAGTACTTC





1495
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAAAGGGTTTGAACACTGAAGCTTTCTTT





1496
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCACTAACTATGGCTACACCTTC





1497
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGGGGTACTAGCGGGGGCGCAGATACGCAGTATTTT





1498
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCAACAGGGGATCCTTACAATGAGCAGTTCTTC





1499
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGAAACAGGCTTCAATCAGCCCCAGCATTTT





1500
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGTGGGTAGCGGGATGGGATGAGCAGTTCTTC





1501
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGAGGACCCTCCTACGAGCAGTACTTC





1502
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACTTCGGACAGGGGGCTTGCCGGGGAGCTGTTTTTT





1503
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGCGGGACTAGCGGTTACAATGAGCAGTTCTTC





1504
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGATGGGACTAGCGGGAGTCGAGTCCAAAAAC






ATTCAGTACTTC





1505
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCCCCCGGGGCCGAGCAGTACTTC





1506
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTTACCATCGGGGGAGACCCAGTACTTC





1507
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGCCCTGGGGGTAGTTCACCCCTCCACTTT





1508
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCGGTGCGGGGAAGGACTATGGCTACACCTTC





1509
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGCCTTTACAGGGGTGGAGCAATCAGCCCCAGCATTTT





1510
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGGGGCTGGCCGGGGCCAGGAACGAGCAGTACTTC





1511
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGATATAGTAGCGGGAGGGGGCGAGCAGTACTTC





1512
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCCTAGGGCGGGAGGGGAGCAATGAGCAGTTCTTC





1513
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTCTTACGGGAGGTCACAGATACGCAGTATTTT





1514
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCACCCCAGGGATCAACACCGGGGAGCTGTTTTTT





1515
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGATCGGGAAGGCGGCGCTGAAGCTTTCTTT





1516
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAAGGCAGGGGCCGTCCTACGAGCAGTACTTC





1517
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCAACGAACCACGAACACTGAAGCTTTCTTT





1518
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAGGACTGTCTAGTCTCAATGAGCAGTTCTTC





1519
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCTTACCTGGCATAGCCCCCATCAGCTCCTACGAGCAGTACTTC





1520
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGGGTTGTAGCGGGAGGCAATGAGCAGTTCTTC





1521
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGACAGAGGACAATGAGCAGTTCTTC





1522
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTACTCAGGTGGACACTGGAAACACCATATATTTT





1523
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGGGGGGAGCAAATACGAGCAGTACTTC





1524
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGTGGGGTAATCAGCCCCAGCATTTT





1525
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCACCTACGCAGGGAGGTTTTGGGAGCCCCAGCATTTT





1526
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGTCAGGAGACCGTGAAGCTTTCTTT





1527
19-TL615-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTCGCGGGAGATCCGCCTACGAGCAGTACTTC





1528
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTTTCGGGAGGGCCCTACAATGAGCAGTTCTTC





1529
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCAAGTGGATTTTCAACTAATGAAAAACTGTTTTTT





1530
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATAGGAGCGGGAGAGAGTATTTT





1531
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGATACCGGCAGCACCTCTTATGGCTACACCTTC





1532
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCAGCGGGATTGGGCCACGAGCAGTACTTC





1533
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGACTAGCGGTATTTACAATGAGCAGTTCTTC





1534
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTCGGACAGGACACCGGGGAGCTGTTTTTT





1535
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCAGGGAAGGGAACTGAAGCTTTCTTT





1536
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTATGACTGGAGACTCAAAGAGACCCAGTACTTC





1537
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCTCCGGGACAGTCCTACGAGCAGTACTTC





1538
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGGTGGAGGGGGCACTGAAGCTTTCTTT





1539
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCTACAGGCCAAGAGACCCAGTACTTC





1540
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCCTCGTTGACAGGGCCATTGTCCGAGCAGTACTTC





1541
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCCTCTTATTGGAGCGGTAAGCTCCTACGAGCAGTACTTC





1542
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAATTCGGGGGAGACACTGAAGCTTTCTTT





1543
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCACCAGCCCAGGGGGCCGGGGCTACACCTTC





1544
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCCGTCCGGGGGCAGGAAACACTGAAGCTTTCTTT





1545
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATGTTTTCTCCGGTCTCCTACAATGAGCAGTTCTTC





1546
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCATGGGGATCCCAATGAGCAGTTCTTC





1547
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGGGGGACAGGGGGAATGGGAGCTGTTTTTT





1548
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTCCTACTAGCGAACACAGATACGCAGTATTTT





1549
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTGGGGCAGGGGCGCAAATTCACCCCTCCACTTT





1550
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGGGACATTTCCCGAACCGGGCTACACCTTC





1551
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATGGCGGCGGGGGGGCGCATTGAGCAGTTCTTC





1552
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGGGACAGTCTGTGGACACCGGGGAGCTGTTTTTT





1553
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGACAGGGATCTCTCTGGAAACACCATATATTTT





1554
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAAGCCGGGACAGGTGACGAGCAGTACTTC





1555
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATGACCTTAAACCTGCCGAGCAGTACTTC





1556
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGGCCGAGAGGGCAGGGGAAGAGACCCAGTACTTC





1557
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTCGGCACGGAGGCTTTCTTT





1558
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGACAGCTATGGCTACACCTTC





1559
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGGACTTGGCAGGCCTTGAAGCTTTCTTT





1560
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGCGGGACAGGTAACTGTTCGCTACGAGCAGTACTTC





1561
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCCTCTATGAGCAGTTCTTC





1562
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCAGGGTATAGCAATCAGCCCCAGCATTTT





1563
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAACTCGTCTCTGGAAACACCATATATTTT





1564
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGCGGGGTGCGAGACTACAAGAGACCCAGTACTTC





1565
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGCGAAGCCTTTCAATGAGCAGTTCTTC





1566
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTCTCGGGACTTCACAATGAGCAGTTCTTC





1567
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTAAGTCACAGGGACCCCTATGGCTACACCTTC





1568
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCTCCGGGACTAGGTACAGATACGCAGTATTTT





1569
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTCGTGGGCTTGGAGCTTTCTTT





1570
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGACGGGGGCCTTCACACAGATACGCAGTATTTT





1571
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTCAATCCCTACAATGAGCAGTTCTTC





1572
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGATTCGGGGAGTGGCAATCAGCCCCAGCATTTT





1573
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCGGAGGCAGGGGGAACTACGAGCAGTACTTC





1574
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTGGGGACAGAACACCGGGGAGCTGTTTTTT





1575
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCACAGGGCCGCCTTTGATAGCTTTCTTT





1576
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATCAAATTCGGGCACTGAAGCTTTCTTT





1577
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCTTTGGGGGTGAACACTGAAGCTTTCTTT





1578
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCACCCGGGACAGGGGATTTACGAGCAGTACTTC





1579
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGTGAGTCTACAGGGGAGGACCAGCCCCAGCATTTT





1580
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGTCGTCGGGGAAAGAGCAGTACTTC





1581
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTTGATCTGGCGGCGGGGTCATCCACA






GATACGCAGTATTTT





1582
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCACTTTGCCCTCAGGGGTTTACGAGCAGTACTTC





1583
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTACGGACAGGGGTAAAAGAGACCCAGTACTTC





1584
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGTGAACGCGGGGGGCCCCATGAGCAGTTCTTC





1585
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCTCCGGGACAGGGGTTCCCCGAGCAGTACTTC





1586
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGACGACGGGGTTGATGAGCAGTACTTC





1587
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGTGGGGGGGCAGATACGCAGTATTTT





1588
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATCGTGGGACAGGGATTGGATA






CTCAACAATGAGCAGTTCTTC





1589
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCCAAGCCGTGGGGGACGTGGCAGATACGCAGTATTTT





1590
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTATACTTCCGGCTCCTACAATGAGCAGTTCTTC





1591
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCGCCGATAGCGGGAGAGTCGCTGAGCAGTTCTTC





1592
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGGTAGCACCCAATGAGCAGTTCTTC





1593
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTTCCCACACTGAAGCTTTCTTT





1594
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCTAGCAGCCTAGCGGGCGGGGACTACCACGAGCAGTACTTC





1595
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTAAGCTAGGGACAGGGAGGGACAATGAGCAGTTCTTC





1596
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCACCGGAGGACAGGGTGAGGAGCACTGAAGCTTTCTTT





1597
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATCGGGACTTTCCCGGAGGAGATACGAGCAGTACTTC





1598
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGTTCTAGCTCCTAGCACAGATACGCAGTATTTT





1599
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATACCCCCCGGGGAGCAATCAGCCCCAGCATTTT





1600
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCCTAGAGAACCAAGAGACCCAGTACTTC





1601
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGCGGGGGCCTCGATGGCTACACCTTC





1602
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGGTTACAATGAGCAGTTCTTC





1603
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATCCCAGGGGGTATGGCTACTATGGCTACACCTTC





1604
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTAGCGTTACTGACAGATACGCAGTATTTT





1605
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGAGTACGGGGGGGCCCAGAATGAGCAGTTCTTC





1606
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCTGGAGCGTAGCACGGTACACTGAAGCTTTCTTT





1607
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCACACTGGGGTCCACCGGGGAGCTGTTTTTT





1608
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTGACAGGGGGGACTGAAGCTTTCTTT





1609
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAAGTTCTAACCTTCTATGGCAATCAGCCCCAGCATTTT





1610
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGATGTTTGGACAGCCTATGGCTACACCTTC





1611
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGTTTTCCTCGGGGATCTACGAGCAGTACTTC





1612
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCAGGAATAGACAACTATGGCTACACCTTC





1613
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGTAGCGGGGCCATACAATGAGCAGTTCTTC





1614
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGTGGTGCAGTACAATGAGCAGTTCTTC





1615
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGTCTCTAGCGGGAACCCTCCAAGAGACCCAGTACTTC





1616
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGGGAGGGGATTAGGGTACGAGCAGTACTTC





1617
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGGTTACGGCTACGAGCAGTACTTC





1618
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTTCCCTTGGGACTAGCGGGGCCCCATCCTACGAGCAGTACTTC





1619
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCGCAGGACCTGAGCAGTTCTTC





1620
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTGGGCCCCGGGACAGCCCGACAATGAGCAGTTCTTC





1621
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGGAGACAGGGCTATGGCTACACCTTC





1622
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGCACGGCACTAGCGGTTACAATGAGCAGTTCTTC





1623
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATTCTACAGACTCTGGGGCCAACGTCCTGACTTTC





1624
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGATCCCGGGGTTGTACGAGCAGTACTTC





1625
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGACGAGACAGGGGACACTGAAGCTTTCTTT





1626
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTAGAGGGCGGGAGGGCTTGGGAGACCCAGTACTTC





1627
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGTTCAGGTGAACACTGAAGCTTTCTTT





1628
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGCGCTGGACAGGGCAGGATGGCTACACCTTC





1629
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCCTGGGACGGCACTGAAGCTTTCTTT





1630
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCCGAGGTACAATGAACACTGAAGCTTTCTTT





1631
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAATCTACCCAGGGGTATTCACCCCTCCACTTT





1632
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGGCTCCTCTCTCAGGAGATAGACGTACAGAT






ACGCAGTATTTT





1633
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTAGCGGACACAAGAACACTGAAGCTTTCTTT





1634
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGAGGACGGCTCCTACGAGCAGTACTTC





1635
55-TL661-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGTCGGGACAGTGAACACTGAAGCTTTCTTT





1636
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGTTACAATGAGCAGTTCTTC





1637
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTCCTACTAGCGAACACAGATACGCAGTATTTT





1638
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAAGTGGATTTTCAACTAATGAAAAACTGTTTTTT





1639
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATAGGAGCGGGAGAGAGTATTTT





1640
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGCCGAGAGGGCAGGGGAAGAGACCCAGTACTTC





1641
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTGGGACAAGCCCTACGAGCAGTACTTC





1642
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCAAATCCGAACACCGGGGAGCTGTTTTTT





1643
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGACGAGACAGGGGACACTGAAGCTTTCTTT





1644
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCTCCGGGACTAACTATGGCTACACCTTC





1645
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAATTCGGGGGAGACACTGAAGCTTTCTTT





1646
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCTCTATGAGCAGTTCTTC





1647
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGATACCGGCAGCACCTCTTATGGCTACACCTTC





1648
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAGGGAAGGGAACTGAAGCTTTCTTT





1649
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGCTCCTCTCTCAGGAGATAGACGT






ACAGATACGCAGTATTTT





1650
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACCGGGGGGCCTACGAGCAGTACTTC





1651
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCATGGGGATCCCAATGAGCAGTTCTTC





1652
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTAGCCCCCGGGACAGGGGGCTACGAGCAGTACTTC





1653
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCTAGCGTCTAGCACAGATACGCAGTATTTT





1654
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGACACCCCGCAGGCAGCAGTCTATGGCTACACCTTC





1655
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTACCGGGGCGGACGGGGCCAACGTCCTGACTTTC





1656
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAAGACAGGGACAGCTCCACCGGGGAGCTGTTTTTT





1657
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGACGACGGGGTTGATGAGCAGTACTTC





1658
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCTTCCGGGAGAGGTGAGCAGTTCTTC





1659
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACCAGCCCAGGGGGCCGGGGCTACACCTTC





1660
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCTCGACAGGGATTCAGCCCCAGCATTTT





1661
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGCGGGGGCCTCGATGGCTACACCTTC





1662
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGTCAAGGGGGGGCTTGGGGCTACACCTTC





1663
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATAGAGCGGGAGGGATTTGGGAA






GAGACCCAGTACTTC





1664
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACCTCTAGGGAGGCCTCCTACAATGAGCAGTTCTTC





1665
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATCGGAAGGGGACTCTCCTACGAGCAGTACTTC





1666
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGGGCAGGGGCGCAAATTCACCCCTCCACTTT





1667
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGTCTAGCGGGGACCGGGGAGCTGTTTTTT





1668
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAAGTGGATTTTCAACTAATGAAAAACTGTTTTTT





1669
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCCCTCCGGGACGGCTAGCTCTGGAAACACCATATATTTT





1670
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCTCTAGCGGTCCCTGGGGTGAGCAGTTCTTC





1671
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGTTCAGGTGAACACTGAAGCTTTCTTT





1672
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACGCTGGGGTCGGGGGGAGCTGAGCAGTTCTTC





1673
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCCCCACCTCGACAGCATTACTGAAGCTTTCTTT





1674
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTCACTCGGGGGGGGACTGAAGCTTTCTTT





1675
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGCCGGACGGAATAATATAGACACTGAAGCTTTCTTT





1676
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCACAGGGTGACGCGGATCAGCCCCAGCATTTT





1677
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTTGGGGAGGCTACACCTTC





1678
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCCGGGAGGACGGTAATAGCAATCAGCCCCAGCATTTT





1679
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCTCTGGTCGACAGGGCTCAAGAGACCCAGTACTTC





1680
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTTAGTTCTAAAGTGGCAGCCTACGAGCAGTACTTC





1681
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCAACAATGAGCAGTTCTTC





1682
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTATCTGGGGGTAACTGGGGCAGATACGCAGTATTTT





1683
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGGGGGACAGGGTCTGGCTACACCTTC





1684
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTACGACTAGCGGGGGGGCCACAGATACGCAGTATTTT





1685
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGGAAGGGACGCTCTACGAGCAGTACTTC





1686
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTACCGGGAGGGTCGACGAGCAGTACTTC





1687
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGACTTGGCAGGCCTTGAAGCTTTCTTT





1688
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCCCGGGGGGAGGAGAGACCCAGTACTTC





1689
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGCGACGGAGGCACAGATACGCAGTATTTT





1690
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGATCCGGAGGGATTGGAGACCCAGTACTTC





1691
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAAAATGGCTGGAAACACCATATATTTT





1692
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAGAAGACTAGCGGAAGAGACCCAGTACTTC





1693
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCTAGCGGGAGGGGTGAGCAGTTCTTC





1694
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAGGTGGCAGCTACAATGAGCAGTTCTTC





1695
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTTTTAAAGGTGGGGCCTACGAGCAGTACTTC





1696
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGAACGCGGGAGGGCCGCGGTTCTTC





1697
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAATCGACTCCCAACCGGCATACGCAGTATTTT





1698
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGACAGGGGGCGAAGGCACTGAAGCTTTCTTT





1699
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTACAATGAGCAGTTCTTC





1700
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGCGGGGTCACTCGAAGTATCTAACTATGGCTACACCTTC





1701
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGGACTAGCGAGTTTCCCCCTCTT






CAAGAGACCCAGTACTTC





1702
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTGACAGGGGGGACTGAAGCTTTCTTT





1703
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCTTCGGGGGGGGGACCCAGTACTTC





1704
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGAGGAAGGGGATGGCTACACCTTC





1705
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCCCGGGGCCTACGAGCAGTACTTC





1706
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGCCTCGACAGACATGAACACTGAAGCTTTCTTT





1707
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCAACTAGCGGGCTTCACAATGAGCAGTTCTTC





1708
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCCCCAATGGACCCAGCATTTT





1709
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCCTACAGGGGGCGTATGGCTACACCTTC





1710
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGCCTCCGGGGGGCGCGAGTACCCAGCCCCAGCATTTT





1711
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAATCCGCCGGGGCACAGCCCCAGCATTTT





1712
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGGCCGAGCGGGGGGGCGTTGGATGGCTACACCTTC





1713
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGATAGTCTAGCGGGACACGAGCAGTACTTC





1714
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCTAGTGGTTTGGACCCCTTGGGCACCGGGGAGCTGTTTTTT





1715
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGGACGTCTGAATGAGCAGTTCTTC





1716
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATGCTTCCGGAGCTAACTATGGCTACACCTTC





1717
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGAGGATCAGGGGTTGAGTGAGCAGTTCTTC





1718
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGAAATCACGGGACAGGCTAATCAGCCCCAGCATTTT





1719
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCACCCGGGACAGGGGTACTTCTTC





1720
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACCTTTGCGGCGAACACCGGGGAGCTGTTTTTT





1721
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAGGCTGAGGGGGGAGAAGAGCAGTACTTC





1722
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGCAGGAGGCTCCTACAATGAGCAGTTCTTC





1723
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCGGCCCAGCGGGACCTTTCTTT





1724
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGACATAAGGGGGACTGAAGCTTTCTTT





1725
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGCCCGAGTGTCCGGGCTCACTGAAGCTTTCTTT





1726
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTGGGCCCCGGGACAGCCCGACAATGAGCAGTTCTTC





1727
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCGGGGACGGTTTCTTTCTACGAGCAGTACTTC





1728
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTTCAGGGGGCCGGACAGATACGCAGTATTTT





1729
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGGGAGGCCCTATAATTCACCCCTCCACTTT





1730
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGATCCCGGGGTTGTACGAGCAGTACTTC





1731
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGACGGCAGGGTACAGAGACCCAGTACTTC





1732
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGACAGGGATCTCTCTGGAAACACCATATATTTT





1733
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATATGACAGGGGGCGAGACCCAGTACTTC





1734
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCGACGGAGGGAAGAGACCCAGTACTTC





1735
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATCAAATTCGGGCACTGAAGCTTTCTTT





1736
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGAGAATCCGGGAGTGGCAGATACGCAGTATTTT





1737
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAAAGAGGGCACTGAAGCTTTCTTT





1738
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGCTACAGGTTCCGACTATGGCTACACCTTC





1739
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGGGGCAGGGGCTCTCAAGAGACCCAGTACTTC





1740
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGTACAGAGCACAGATACGCAGTATTTT





1741
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGAGGGAGTTGGGGAGCTGTTTTTT





1742
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGACAACTACAATGAGCAGTTCTTC





1743
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCGCCCGCTTCAGGGGGCACTGAAGATACGCAGTATTTT





1744
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCACGGTGGGCTCCGGTGGAACCGGGGAGCTGTTTTTT





1745
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCGTGAGCTCCTACGAGCAGTACTTC





1746
56-TL661-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGAGTCGGGACAGGGATACGAGCAGTACTTC





1747
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTACCCTCGATAGCAATCAGCCCCAGCATTTT





1748
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGATCCCAGGGGAGCTGGGGCCAACGTCCTGACTTTC





1749
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCTCCTAGGGCAGCGACGCAGTACTTC





1750
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGGACTTGGACCGCTACGAGCAGTACTTC





1751
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGACAGGGTCAGGAGAGCAGTACTTC





1752
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTGGGGGGAGGGAACTGAAGCTTTCTTT





1753
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAAGGGGTGCCGGGGAGCTGTTTTTT





1754
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCTACCAGCCGGGACAGGGGCCCTCACA






GATACGCAGTATTTT





1755
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTCCTGGGGGGCCAAGATACGCAGTATTTT





1756
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGACAAGGGGATAGCAATCAGCCCCAGCATTTT





1757
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGTCCCAGGGAGCTCCTACAATGAGCAGTTCTTC





1758
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGATGTTACAGGGTCTGGGGCCAACGTCCTGACTTTC





1759
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCAGGGAACACCGGGGAGCTGTTTTTT





1760
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGAGGAAGGGAGTGGGGCCAACGTCCTGACTTTC





1761
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGAGGGGGGTACTGGGGCCAACGTCCTGACTTTC





1762
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTATCGGAGGGAGGGACAGATACGCAGTATTTT





1763
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAGCCTGTTACGGGACTAGCGGGGCGGAGCTC






CTACAATGAGCAGTTCTTC





1764
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCGGACTAGCGGGGGCCCCAATGAGCAGTTCTTC





1765
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTGGAGGGGACGGCTACGAGCAGTACTTC





1766
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGAGGCCCCTGGGCCCCAGCATTTT





1767
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTAAGGAGGGACAGGGACGGAAACACCATATATTTT





1768
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGACTAGAGGACAGCATAAGCTCCGAGCAGTACTTC





1769
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGGGGGGAACACTGAAGCTTTCTTT





1770
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTATCCCCGGGGGCCAGCAATCAGCCCCAGCATTTT





1771
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCCCGGGACTAGCGTCGGAGACCCAGTACTTC





1772
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGATGGGACCCGCGACAATGGCTACACCTTC





1773
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCCGTTGGGCCCGACAACAGTTCTTC





1774
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGAGGGACTAGCGGGGGGCCCTGCCCAC






AATGAGCAGTTCTTC





1775
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCCAAGTACTAGCAATGAGCAGTTCTTC





1776
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTAGTGGCGGGGTAGCCTACAATGAGCAGTTCTTC





1777
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTGGGGGGGGGAGCCAAAAACATTCAGTACTTC





1778
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCGCCTTGGCAAGCGGGAGAGGGGGAGCAGTACTTC





1779
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTGGACTAGCACCGGGGAGCTGTTTTTT





1780
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCGCCGGCTAGCGGGGGGGGCGCG






GATGAGCAGTTCTTC





1781
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCAAAGGGGAGTTGGGGACACCCCCCCGG






GAGACCCAGTACTTC





1782
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAGGGGCTGTCCTACGAGCAGTACTTC





1783
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCGTCGGGACAGGACTACGAGCAGTACTTC





1784
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCGGGCCAAACTACGAGCAGTACTTC





1785
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCGTCGCGGGCACAGATACGCAGTATTTT





1786
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTATATGGCGGCTACGAGCAGTACTTC





1787
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCGACAGGGTGGGAGACCCAGTACTTC





1788
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCCTGCCCTACGGGATGGGCACAGATACGCAGTATTTT





1789
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGAGACAGGCTCTGGGGCCAACGTCCTGACTTTC





1790
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTCGGGACTGACTACGAGCAGTACTTC





1791
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTTGGCACAAGGACTAGCGGGAGGTAC






TCGATCCAGTTCTTC





1792
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCACTAGCGGGAGGGCCGTATGTCCCGAGTGA






GTACGAGCAGTACTTC





1793
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCTGTTGGGGTTACTAACTATGGCTACACCTTC





1794
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTGGAGGGTCGGCAAGAGACCCAGTACTTC





1795
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGCGGGAGCCTACGAGCAGTACTTC





1796
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGTTGGAGGGGGGGTTAATGAGCAGTTCTTC





1797
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCAGGGGCGGGACGGCCCGATACAATGAGCAGTTCTTC





1798
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAGAAGGAGGCAGGGGAGACCCAGTACTTC





1799
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAAGGTGTGTCAGTGAACACTGAAGCTTTCTTT





1800
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCATGGGACAGGAGATCCTAGTCGCTACGAGCAGTACTTC





1801
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCTGGAGCCCCGGGGGACCGTACCGAAACGAGCAGTACTTC





1802
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTACTGCACAGGGATCGAACACTGAAGCTTTCTTT





1803
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCACCCCAGGGATCAACACCGGGGAGCTGTTTTTT





1804
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGGACAGGGTCGGGGAGCTGTTTTTT





1805
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAGGTTGGGAGATACGAGCAGTACTTC





1806
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGGGTGGCACTGAAGCTTTCTTT





1807
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATCCTACGCGGGGTGGGAGCTCCTACGAGCAGTACTTC





1808
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCGAGAGACCGAACACCGGGGAGCTGTTTTTT





1809
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTTTGGGGACACTGAAGCTTTCTTT





1810
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCGGGGACAGCCTATGGCTACACCTTC





1811
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATGGCAGGGAACGAACACCGGGGAGCTGTTTTTT





1812
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGGGAGGGACAGGGGGTCAGATACGCAGTATTTT





1813
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTACTACGAGGAAAACTGTTTTTT





1814
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCGGGACCGAACTACGAGCAGTACTTC





1815
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAGACTGGGACAGGGAACACTGAAGCTTTCTTT





1816
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACCAGGGAGGAGACTATGGCTACACCTTC





1817
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTATGGTCGCTAGCGGCCAAAGAGCCCCAGTACTTC





1818
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGATTTCACCACCGGGGGAGCTACGAGCAGTACTTC





1819
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGACTAGCGGGAGCCTTAAGGTTCGAGCAGTTCTTC





1820
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCAGCACAGACTGGGGGACTGAAGCTTTCTTT





1821
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGACCGGGACAGGGTTTTAATGAGCAGTTCTTC





1822
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTCCTTACGAGACGTGGGCGAAGATCGAGAACACT






GAAGCTTTCTTT





1823
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTACCGCGACAGGGGATGGCTACACCTTC





1824
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCTGGAGGAGCCGGACAGGGTGGCACGAGCAGTACTTC





1825
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTACCCTCGATAGCAATCAGCCACAGCATTTT





1826
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGCCCGGGAAGGGGCCTACGAGCAGTACTTC





1827
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCTGGAGTACCCGGGACACCTACGAGCAGTACTTC





1828
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCGTTCGGGACAGTTGATCAGCCCCAGCATTTT





1829
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTAGGGACAGATTACGAGCAGTACTTC





1830
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGATCTCCTTCCTCCGGGACAGTAATATCTTAC






AATGAGCAGTTCTTC





1831
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCACGTCGGGACTAGCGGTTACGAGCAGTACTTC





1832
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGATCCGCACGGGGCCAGGAACGAGCAGTACTTC





1833
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGTGACAGAGAACACTGAAGCTTTCTTT





1834
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGAGTCGTACGGACCAAAACAAGAGACCCAGTACTTC





1835
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTACCCCCACACAATGAGCAGTTCTTC





1836
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCACCAGCCCAGGGGGCCGGGGCTACACCTTC





1837
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAAGAGGGAACACTGAAGCTTTCTTT





1838
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCCCCGGGACTAGCGGGGTCCTACGAGCAGTACTTC





1839
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGCGGGGACGGTTGGAACTGAAGCTTTCTTT





1840
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCACCCTGTCCCCGGGACAGGGGGCCTCCGGGGAGCTGTTTTTT





1841
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGCTGACAATGAGCAGTTCTTC





1842
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCGGGGTAGCGGGAGAATTTTACGAGCAGTACTTC





1843
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTCGGCCCCCTCCCTACGAGCAGTACTTC





1844
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGGAGCGGGAGCCCCCGTTGAGCAGTTCTTC





1845
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTGGGGGGCTCAGCCCCAGCATTTT





1846
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCACAGACGGACAGGGTATAGACATTCAGTACTTC





1847
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAGGGACAGGCCTTGTACACCGGGGAGCTGTTTTTT





1848
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTCACAAGAGATACGCAGTATTTT





1849
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCGATATGGGAATGAGGGAGAGCACA






GATACGCAGTATTTT





1850
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGGCCGGTGGGGAACACTGAAGCTTTCTTT





1851
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTACGACCCCGGGACAGGGTACAAACTATGGCTACACCTTC





1852
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCGCTTACTAGCGGTACGAACACCGGGGAGCTGTTTTTT





1853
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGGTCGACAGGCGAAAAACTGTTTTTT





1854
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCGTAGCGGGAGGGTTGTTGTATGAGCAGTTCTTC





1855
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGGCAGCAAGCAAGAGACCCAGTACTTC





1856
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGGAGTGGAGAATGAGCAGTTCTTC





1857
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCTTACGGATGGTCAAGAGACCCAGTACTTC





1858
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGTGATGTAGCGGGAGGTTACGAGCAGTACTTC





1859
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTCGTCAGTCCCGGCTACGAGCAGTACTTC





1860
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGTTCCGGGGTACCGGGGAGCTGTTTTTT





1861
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCAGCGGCGATGAACACTGAAGCTTTCTTT





1862
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAAGAGCAGGGCCGGCAGTCCCTACGAGCAGTACTTC





1863
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGGGGCCTCATACGAGCAGTACTTC





1864
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGCCCCGACAGAACTTAACTATGGCTACACCTTC





1865
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATAGTGCAATTCTACGAGCAGTACTTC





1866
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGATCTAGGGATGCACAATCAGCCCCAGCATTTT





1867
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCACTAGCGGGGACCTTGTACCAAGAGACCCAGTACTTC





1868
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCATGGGACAGGGGATTGCAAGATACGCAGTATTTT





1869
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGAGTCGATAGGGTACGAGCAGTACTTC





1870
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCAGAGATCGGGTTGGACAGGCGAACGGGGAGCTGTTTTTT





1871
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTCAGAACTAGCAACGCGCAGTATTTT





1872
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTGGATAGTAAGGGCCCTCCTCGCGACGAGCAGTACTTC





1873
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATGGATCGTGCTAGCACAGATACGCAGTATTTT





1874
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGCCCAGGGGGCGGACACTGAAGCTTTCTTT





1875
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGAGCCTACAGGGAGCTGGGCACTGAAGCTTTCTTT





1876
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACCCGGCAACTAATGAAAAACTGTTTTTT





1877
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGGTCGGGGGCCGGGAGACCCAGTACTTC





1878
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCTCCGGGACAGGGGGCGAGGAGACCCAGTACTTC





1879
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGGCAGCAAGCAAGAGACCCAGTACTTC





1880
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGCACAGGGGGCTGGTAATTCACCCCTCCACTTT





1881
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCGGGCCTACTAGTGACTCCTACAATGAGCAGTTCTTC





1882
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGACCGGACAGCGACAGATACGCAGTATTTT





1883
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTACATCAGGGACCTTCCTACGAGCAGTACTTC





1884
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCGAGGTCAATTAACACCGGGGAGCTGTTTTTT





1885
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCACCATACAGGAGCCGAACACTGAAGCTTTCTTT





1886
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAAGCAGAAGGTGGCTACACCTTC





1887
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAAGTTGTCGGAGGGCTCGAGCAGTACTTC





1888
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAAGAGTTACCAGGAGGGAACACTGAAGCTTTCTTT





1889
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCTATTACAGGGGAAAAGAGACCCAGTACTTC





1890
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAAAATGGAGGGAGGGCCCTCCTACGAGCAGTACTTC





1891
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTTGGGGGGGATCAGCCCCAGCATTTT





1892
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCGACCGCTGCAGGTAATCAGCCCCAGCATTTT





1893
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGGGGACAGGGGTGGAAGCTTTCTTT





1894
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGGGACAGGGATATTCCTACGAGCAGTACTTC





1895
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTCGGGACTCCTACCTACGAGCAGTACTTC





1896
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAAGTATTAGCCATGAGCAGTTCTTC





1897
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATCGGTGCGGGAGCCCCGTTTGACATTCAGTACTTC





1898
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTATTCTTATAGCACAGATACGCAGTATTTT





1899
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACAGCGGGACAGGGGGCTCGTGGAAACACCATATATTTT





1900
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCACCCCTTAGCGGGGGGTTGTACAATGAGCAGTTCTTC





1901
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCCATTCCGGCTTTTACGAGCAGTACTTC





1902
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGGGAGGGGCGCACCCACTGAAGCUTCUT





1903
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTAGCCGCCGACTGGAAGTCCTACGAGCAGTACTTC





1904
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGACTAGCGGCTGGCAATGAGCAGTTCTTC





1905
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGGGGACAGATACGCAGTATTTT





1906
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATAGGACACGACGGCATGAACACTGAAGCUTCUT





1907
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCGGCTGGACAGGGCCTGAGACCCAGTACTTC





1908
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCTGGGACAGCTCTCGAGCAGTACTTC





1909
63-TL663-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGATCCCAGGGGAGCTGGGGCCAACGTCTTGACTTTC





1910
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCACAGGGCAATAAGATCGAGCAGTACTTC





1911
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGCACAGGGGGCTGGTAATTCACCCCTCCACTTT





1912
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGTCGTGGGCTCGAGCTACGAGCAGTACTTC





1913
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCGCAGCAAGCCAAAAACATTCAGTACTTC





1914
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATCGTATGGGGGAAATTCACCCCTCCACTTT





1915
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCATGGGACAGGAGATCCTAGTCGCTACGAGCAGTACTTC





1916
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTTGGTAGTTGGAGCACCGGGGAGCTGTTTTTT





1917
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCGACCGCTGCAGGTAATCAGCCCCAGCATTTT





1918
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTTCAGGGGACTCCTACAATGAGCAGTTCTTC





1919
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCGGGCCAAACTACGAGCAGTACTTC





1920
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAAGCTGGGAGAACACTGAAGCTTTCTTT





1921
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTACCACTTTCAGGTGGACACCGGGGAGCTGTTTTTT





1922
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCTACCAGCCGGGACAGGGGCCCTCACAGATACGCAG






TATTTT





1923
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGGGGGAACACTGAAGCTTTCTTT





1924
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCATGTGGGGGCCCCGGAGGGGCACTGAAGCTTTCTTT





1925
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCGGGACAGCTTACAATCAGCCCCAGCATTTT





1926
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCATCGGACAGGGCCCTTCCTACGAGCAGTACTTC





1927
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGTGGGGGCATGGGGGAGCAGTACTTC





1928
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAAGACAGGGGGTAGCACAGATACGCAGTATTTT





1929
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATCCCCGGGGGCCAGCAATCAGCCCCAGCATTTT





1930
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAGTCCCATCTCCTACGAGCAGTACTTC





1931
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCCCGGACACCTACGGCGGGGAGCTGTTTTTT





1932
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGACTAGCACCGGGGAGCTGTTTTTT





1933
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTAAACAGGGGGCGACCACTGAAGCTTTCTTT





1934
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACCGCAGGGGGAGGCGTAACCCAGTACTTC





1935
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAAGGCAGGGGCCGTCCTACGAGCAGTACTTC





1936
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCAGACAGGGGGCTTTGAATGAGCAGTTCTTC





1937
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTACGGGGGAACACTGAAGCTTTCTTT





1938
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATCGGAGGGAGGGACAGATACGCAGTATTTT





1939
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCCACCGCTACGAGCAGTACTTC





1940
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAAGGGGAAATTCACCCCTCCACTTT





1941
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGACAGGGTACGAAGCGGGGAGCTGTTTTTT





1942
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATCCGCACGGGGCCAGGAACGAGCAGTACTTC





1943
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCAGGAACCCCCGGGGCTTTCGAGCAGTACTTC





1944
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGGAGCGGGAGCCCCCGTTGAGCAGTTCTTC





1945
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCTCCGGAACGGATATAAACTGTTTTTT





1946
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATTACCTAGCGGGGGGCCGGGCTGAGCAGTTCTTC





1947
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTGGCCGACAGGGCCGTAGCAATCAGCCCCAGCATTTT





1948
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGACGGGCCGGAGCAGTTCTTC





1949
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAATGTGGGACCAAATAATTCACCCCTCCACTTT





1950
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGTTGGGACAGGGGGACTATGGCTACACCTTC





1951
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGTTGTCGGAGGGCTCGAGCAGTACTTC





1952
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCACCGGGACTAGCGGAGCCAGTGAGCAGTTCTTC





1953
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTTCAGATACGCAGTATTTT





1954
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGTGGCACTGAAGCTTTCTTT





1955
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATAGGAGGTACGGACGAGCAGTACTTC





1956
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCAACGAACCACGAACACTGAAGCUTCUT





1957
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGTCCCAGGGAGCTCCTACAATGAGCAGTTCTTC





1958
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCGTCGGGACAGGACTACGAGCAGTACTTC





1959
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATCGGTCTAGCGGGAGGAUGGTGCAGATACGCAGTATTTT





1960
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTCCCTTGTTCCGGACTAGCGGGGGGGCCGATTGGGAGCAGTTC






TTC





1961
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGTCCAGATACCTACGAGCAGTACTTC





1962
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTATACCGTGGCCCACACCGGGGAGCTGTTTTTT





1963
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCCACAGGGGACCTGAACACTGAAGCTTTCTTT





1964
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAAGCATAGGCACAGGCACCTTTGACGAGCAGTACTTC





1965
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTCACAGGGGCCTACGAGCAGTACTTC





1966
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAGGGACTCTTGGGCAGTTCTTC





1967
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGTTAAAGGGGACAGGGATGAACACTGAAGCTTTCTTT





1968
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCGGACTGGGGATTTACGAGCAGTACTTC





1969
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGTCTTGGCAGTACGAGCAGTACTTC





1970
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACAACCCCCGGGACAGCTTCTGAAAAACTGTTTTTT





1971
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCCGCGACTCCTTGGGCGAGCAGTACTTC





1972
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATGGTCGCTAGCGGCCAAAGAGCCCCAGTACTTC





1973
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTGGACAGGGGTTCTACGAGCAGTACTTC





1974
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATATGGCGGCTACGAGCAGTACTTC





1975
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCGACAGAAGGGAAAAACTGTTTTTT





1976
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGGACGCAGGGTCGGCACAGATACGCAGTATTTT





1977
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCGACATTTCTAACTATGGCTACACCTTC





1978
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCGCCGGGACAGGAGACTACGAGCAGTACTTC





1979
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCCTCGTAGGTGGCAATCAGCCCCAGCATTTT





1980
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGGTGCAACCGGGGAGCTGTTTTTT





1981
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTACCCCCGACAGGGCCGGATTACGAGCAGTACTTC





1982
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGAGGAAAACATTCAGTACTTC





1983
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTGCTGTTAGGGAGCAATCAGCCCCAGCATTTT





1984
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCTTGACAGGGGGCGCGAACACTGAAGCTTTCTTT





1985
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGTCGACAGGGGAGTACTTC





1986
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGGGCCCGGCGGGGGAGCAGTACTTC





1987
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCAGTGCGGGAGGGCCATACGATGAGCAGTTCTTC





1988
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCCCTAGCGGCCAGCTCCTACAATGAGCAGTTCTTC





1989
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGTCCCAGGGAACACTGAAGCTTTCTTT





1990
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTGGCACAAGGACTAGCGGGAGGTACTCG






ATCCAGTTCTTC





1991
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGTTGGGGAAGCGGGGGTGAGCAGTACTTC





1992
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGAGGCTCGGTGAGCAGTTCTTC





1993
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGGGGTAGGGGGAGCAACTAATGAAAAACTGTTTTTT





1994
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGGGGGACAGAACTATGGCTACACCTTC





1995
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAACAAGCCCAGGGGCCACTGAAGCTTTCTTT





1996
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTACGAACACTGAAGCTTTCTTT





1997
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCACAGGGCAATAAGATCGAGCAGTACTTC





1998
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGTACTCTGAGGACGGGAACTACGAGCAGTACTTC





1999
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGTACTTGGGACAGGGAGGCCACCGGGGAGCTGTTTTTT





2000
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACAGCGGGCTCGAACACCGGGGAGCTGTTTTTT





2001
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCACCGAGATTCAGCCCCAGCATTTT





2002
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCGGGGCGGGGGGGACAGAGACCCAGTACTTC





2003
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGGGGGATCAGCGGACCGCTCCTACAATGAGCAGTTCTTC





2004
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGACCCCACTAGCGGGAGCTACGAGCAGTACTTC





2005
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATCTCGCACAGATACGCAGTATTTT





2006
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGCTAGCCGGTAACGAGCAGTACTTC





2007
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGCTGGCACAGATACGCAGTATTTT





2008
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGGGACAGGGGCAGGCCTAGAGGACTACACCTTC





2009
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCTAACAGGGGTGGGTATTCACCCCTCCACTTT





2010
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATTGGGGTGGAAGACGAACACCGGGGAGCTGTTTTTT





2011
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGTTGGGACAGGGGGACTATGGCTACACCTTC





2012
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCACCTGGGGCCAACGTCCTGACTTTC





2013
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGTACAGGGGGGTGGCTATGGCTACACCTTC





2014
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGTGCAGGGGTTCGCCGGGGAGCTGTTTTTT





2015
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCAGGGGCGGGACGGCCCGATACAATGAGCAGTTCTTC





2016
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGTGGACAGTTACAATGAGCAGTTCTTC





2017
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGCAACAGGGGGATATAGTCAGCCCCAGCATTTT





2018
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGACAGCTCTGGAAACACCATATATTTT





2019
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATTTCTCTTCGAGCAGTACTTC





2020
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCACCAAAGTTCTGGTCAGCCCCAGCATTTT





2021
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGTACGTTCCCTAACCTCCTACGAGCAGTACTTC





2022
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGTGTACAGCTGCTTCCTAAGGGTGTTGAGCAGTTCTTC





2023
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCGGGGGGGACAGGGCGGACTCTGGGGCCAACGTCCTGACTTTC





2024
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATATTGAAAGGCTACGAGCAGTACTTC





2025
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTACAGACAGTAGTGAGCAGTTCTTC





2026
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGAGCTTACGGGCACAGATACGCAGTATTTT





2027
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGTCACGAATCCTACGAGCAGTACTTC





2028
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACTTCGGACAGGGGGCTTGCCGGGGAGCTGTTTTTT





2029
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGACTTATAGAGGGTTCCGAGCAGTACTTC





2030
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGCAAGACGGTCGAACTGAAGCTTTCTTT





2031
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCACGGATTCTCTGGAAACACCATATATTTT





2032
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTCAGCAAGAACACTGAAGCTTTCTTT





2033
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGATTTGGACGCTAGCACAAACCACAATGAGCAGTTCTTC





2034
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCGCCGGCTAGCGGGGGGGGCGCGGATGAGCAGTTC






TTC





2035
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCMCGGCGCCTCTGGGGCCAACGTCCTGACTTTC





2036
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGACAGCCGGGTATGGCTACACCTTC





2037
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGATAGCTACAGATACGCAGTATTTT





2038
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGACAGGGCTACGAGCAGTACTTC





2039
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATCGGTGCTCTCCTACAATGAGCAGTTCTTC





2040
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTACATCAGGGACCTTCCTACGAGCAGTACTTC





2041
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACGACGGACAGAACACTGAAGCTTTCTTT





2042
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGAGGTCAATTAACACCGGGGAGCTGTTTTTT





2043
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGATCCGGGCCAAGAGACCCAGTACTTC





2044
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATTAGACAGGGGGATGAGCAGTTCTTC





2045
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGACATCCGGGACAGGGGCCACGAGCAGTACTTC





2046
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCCTAGGGCGGGAGGGGAGCAATGAGCAGTTCTTC





2047
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTCCCCTTTTCGAGCGGGAAGCTCCTACGAGCAGTACTTC





2048
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTTCCAGCAGCTCCGGGCCAAACTACGAGCAGTACTTC





2049
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGGGACTAGCTTTACTCACAGATACGCAGTATTTT





2050
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGGGGCCCCGGGGAGCTGTTTTTT





2051
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCTAAGTGGACCTATGGCTACACCTTC





2052
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAATTTTTCTGGCAGGGGGCTTTTTGTTCGAGCACT






GAAGCTTTCTTT





2053
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGTTGCTGGGGGAGACACAGATACGCAGTATTTT





2054
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGGGGCACTGAAGCTTTCTTT





2055
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGACAGGGGCGAAAAACACTGAAGCTTTCTTT





2056
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCACGCCGATGTTAGCGGCCCAAGGGAGCTCCTACAAT






GAGCAGTTCTTC





2057
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCTTAACAGGGGTCTCTATAATTCACCCCTCCACTTT





2058
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAATCGACCAGGGACAGCCGAAGAGCAGTTCTTC





2059
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAATCCACACAGATACGCAGTATTTT





2060
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCGGGGGCGGCCGGGGATTCACCCCTCCACTTT





2061
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAAGTCCAGGGGGCATTCAGTACTTC





2062
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCGGGACCGATGAGCAGTTCTTC





2063
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGACCACGGGACTAGCCCTCACAATGAGCAGTTCTTC





2064
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGGAGGCCGGGACTAGGTACGAGCAGTACTTC





2065
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCCCGCGGCGCCAACGTCCTGACTTTC





2066
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGAGAGACCGAACACCGGGGAGCTGTTTTTT





2067
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCTTCCAACAGCCGGCGCCAACGTCCTGACTTTC





2068
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCACACTAGCGGGGCGAACACCGGGGAGCTGTTTTTT





2069
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGCCCTGGGACAGGCGGGGAACACTGAAGCTTTCTTT





2070
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCACCCCCCAGGCGCCATCCTACGAGCAGTACTTC





2071
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGGCTAGCGGGAGACAATGAGCAGTTCTTC





2072
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGTACCCTACCCTCCTACGAGCAGTACTTC





2073
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGAGGGACAGGCGAGCTCCTACGAGCAGTACTTC





2074
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACCTAAAGACAGGGGAGGGCTATGGCTACACCTTC





2075
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGATCGGACCAAGAGACCCAGTACTTC





2076
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGTTTAGCGGGGATGAGCAGTTCTTC





2077
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGGGACTGAACACAGATACGCAGTATTTT





2078
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCTCGGACAACCCAAACTACGAGCAGTACTTC





2079
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTCACCGAACTAAGGACAGGGACCTTAAGGATGAG






CAGTTCTTC





2080
64-TL663-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGCTGGACAGGGCCTGAGACCCAGTACTTC





2081
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTGGGGATTCCGGCGGGACTATGGCTACACCTTC





2082
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGAGTGCGGGAGCTTCACAGCGTGCCCAGATACG






CAGTATTTT





2083
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGACCCGGGGGAAGTTCGACTACTAGCACAGATACG






CAGTATTTT





2084
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAGCAGGGGACCTTATGGACAGATACGCAGTATTTT





2085
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCCTAGGACTGCAAGAGACCCAGTACTTC





2086
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAGGGGGGGGACGGCCCCTACAATGAGCAGTTCTTC





2087
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCTGGGCCAGGGACGAACACTGAAGCTTTCTTT





2088
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTACTAAGGGCCTACGAGCAGTACTTC





2089
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCGGCAGGAGCCTCCTACGAGCAGTACTTC





2090
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTTGGTATGAACACTGAAGCTTTCTTT





2091
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTAGAGACAGGGCCGTACTTT





2092
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCCCAATATTTTTACACTGAAGCTTTCTTT





2093
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCTTCGGGTGAGCAGTTCTTC





2094
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCCCGACTAGCGGGAGCTATAGATACGCAGTATTTT





2095
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTGGGGAACGGGGTACGAGCAGTACTTC





2096
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGAGTCGACAGGGTTAAATACGCAGTATTTT





2097
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCGTACTGGGGACTAGCAACGATGAGCAGTTCTTC





2098
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCGCGAGTAGGGAGTAATTCACCCCTCCACTTT





2099
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTACGGGACAGGGGGCGGATGGCTACACCTTC





2100
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCATTGTCTAGTAGCCACAATGAGCAGTTCTTC





2101
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGCACAGACAGGGTCTTACTATGGCTACACCTTC





2102
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTATACAGGGACTCGATGGCTACACCTTC





2103
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGGACAAGCCTACGAGCAGTACTTC





2104
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTCCGGGACATAAGACAGTATTTT





2105
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGATCCAGGGTATTACAATGAGCAGTTCTTC





2106
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCAGGACTAGCTCCTACAATGAGCAGTTCTTC





2107
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGTCCTCATATCCAGAGCTCCTACGAGCAGTACTTC





2108
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGATATGGAGGGCAAGGTCGATGAGCAGTTCTTC





2109
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTAGGGGGGACTCCGTTCAATGAGCAGTTCTTC





2110
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCCAAAGTACTAGCGGGATATCCACCGGGGAGCTGTTTTTT





2111
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAACCAGATACGCAGTATTTT





2112
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCGGAGGGAACACTGAAGCTTTCTTT





2113
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGGCCGAGGAAATCTATAGCAATCAGCCCCAGCATTTT





2114
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCGGGCCGGGACTAGCGGGAGGGCTTTACGAGCAGTACTTC





2115
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGGAGTGACGGAGACGGAGACCCAGTACTTC





2116
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTATCAGGACAGGGCCAAATAGCAATCAGCCCCAGCATTTT





2117
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAAACGAAGATCAGTAGCACAGATACGCAGTATTTT





2118
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTAACCGTGGACAGGGGGCCTCTCTTC





2119
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGGGGAACAGGGCTCGACTCCTACGAGCAGTACTTC





2120
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCTCACTCCCGGAGAGGTTGGAGACCCAGTACTTC





2121
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCAGCGGGATGGGTTCCTACGAGCAGTACTTC





2122
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGGGTTAAGAGGGATGAGCAATCAGCCCCAGCATTTT





2123
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGCGTTGAAGAGAGGGCGTGGGGAATGAGTGAGACCCAGTACTTC





2124
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGTTACAGAAAACACCGGGGAGCTGTTTTTT





2125
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACGGGACAAGTCTCAATGAGCAGTTCTTC





2126
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTGGATCAACCCGGGACTAGCCTCGAACTAC






GAGCAGTACTTC





2127
90-TL101-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCATTGTGGGGAGGTCGCCTGCCGGTGAGCAGTTCTTC





2128
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGACAAGCCTACGAGCAGTACTTC





2129
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGGGAACGGGGTACGAGCAGTACTTC





2130
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGACCTTCTAGACATTGAGGCCGGGGAGCTGTTTTTT





2131
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTGCAAGGACTAGCGGAAGGCTCCTACAATGAGCAGTTCTTC





2132
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGTCGGGACTAGCGGGAGGCTGGGAGCAGTTCTTC





2133
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTAACCGTGGACAGGGGGCCTCTCTTC





2134
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACACTAGCGGGGACAATGAGCAGTTCTTC





2135
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCTTTGCCCGGACTAGCGGCGGCGGTGAGCAGTTCTTC





2136
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGCCCGACCTACCTCGCAGGGGCCCCAGCATTTT





2137
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAAGCCAGGGGACCCAGCCCCAGCATTTT





2138
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGGGTTAGCGGTTAGCTCCTACGAGCAGTACTTC





2139
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCGGACCGAGCACTGAGCAGTTCTTC





2140
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTACTAGCGGGAGTCGACACCGGGGAGCTGTTTTTT





2141
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCCTAGGACTGCAAGAGACCCAGTACTTC





2142
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGTTGGGACGAGCGGCAGCCCCTACGAGCAGTACTTC





2143
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTTTAGCGGGAGGAAACACCGGGGAGCTGTTTTTT





2144
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCGGCCGTTCTAGGGAGCTGTTTTTT





2145
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGAGAACGAGCAGTACTTC





2146
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGAAGGGACTAGCGGGAGTAAGGACAGATACGCAGTATTTT





2147
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTTACAGCGGGGGGAACACCGGGGAGCTGTTTTTT





2148
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGGATCTAGGGAATGAGCAGTTCTTC





2149
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATATCCGGACCTTGAAGCTTTCTTT





2150
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCCGTCAGTGGGCTGATAGCAATCAGCCCCAGCATTTT





2151
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCGGGACTAGCGACGGATGAGCAGTTCTTC





2152
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCTGGGACAGGGGAGGGCTATGAGCAGTTCTTC





2153
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAAAGGACTAGCGGGAGCTGGGACCCAGTACTTC





2154
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTTCGTCAGGGGGGAGGGCCAGGGATACGCAGTATTTT





2155
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAGGGACTAGCGGGAGGGCCGAATGAGCAGTTCTTC





2156
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGACAGGGCATTTATTCACCCCTCCACTTT





2157
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCCCCACCCGGGCCCAGTATGAGCAGTTCTTC





2158
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGGGGGGACAGGGCCCACTGAAGCTTTCTTT





2159
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGAGAGAGGACGGTCTTCCTACGAGCAGTACTTC





2160
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGACTGGGCCTTCTTACGCAGTATTTT





2161
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCCGGGACAGGGTGAAGGGTACGAGCAGTACTTC





2162
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTACTAAGGGCCTACGAGCAGTACTTC





2163
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGGGGGACAGTAACACCGGGGAGCTGTTTTTT





2164
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGGGCCCATTGGGACCGAATCAGCCCCAGCATTTT





2165
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCCTGGGGGCAGCACAGATACGCAGTATTTT





2166
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCAAGTCGCCCATGGTTGGGACAGGGAAACACCGGGGAGCTGTTTTTT





2167
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCTGCAGGGGAGCGGAGCTACGAGCAGTACTTC





2168
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACGACAGGGGCCTTTATGGCTACACCTTC





2169
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGTCAACAGGGGGCGGTCAGCCCCAGCATTTT





2170
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGACAGGACAGGGGGTTTTCCTACGAGCAGTACTTC





2171
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCATTGTCTAGTAGCCACAATGAGCAGTTCTTC





2172
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGGGAACAGGGAGGGGGCTACACCTTC





2173
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGTCTGGCGCTCGCACAGATACGCAGTATTTT





2174
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGATTTAAGCGGGTGGAACACCGGGGAGCTGTTTTTT





2175
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCCTCCACGGGAGAGACCCAGTACTTC





2176
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCTAGCGCGTTCGAGCAGTACTTC





2177
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCTCCCGGCAGGGACAGGGCACAGATACGCAGTATTTT





2178
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGTGACCCGGGCCACTGAAGCTTTCTTT





2179
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTAAGCCCGACAGGGGGCGGTACGAGCAGTACTTC





2180
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGTGTCCCTAGCGGGAGTTCAAGAGACCCAGTACTTC





2181
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGCCCAAATTCCGGGACTAGCTTCGTGGAGACCCAGTAC






TTC





2182
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAACGGAGCTGGACTACGAGCAGTACTTC





2183
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGAGCAGGGAGGCGAGTGAAAAACTGTTTTTT





2184
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCCCGTTCGGTGAAGCTTTCTTT





2185
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAAGCCCAGGCGGGACCCAGTACTTC





2186
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATCCAAGACTAGCGGGACCCGCC






GCAGATACGCAGTATTTT





2187
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTGGAGAAGAGGGGCGGAGACCCAGTACTTC





2188
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCGGCAACGCGAGGAGCAATCAGCCCCAGCATTTT





2189
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAGACTAGCGGGGAGCACGCTACGCAGTATTTT





2190
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAACACAGCAAACACTGAAGCTTTCTTT





2191
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGCCCCCAGTGTGAGGTTTCAAGAGACCCAGTACTTC





2192
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTACCCAGGGGCCGGGACTGAAGCTTTCTTT





2193
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAGCTGGGACTAGGGTCATTCAGTACTTC





2194
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCAAACTCTAAGTACGAGCAGTACTTC





2195
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGGACCGGGACAGGGGGGGACTTTT





2196
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGGGCTATCCTACGAGCAGTACTTC





2197
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCCATCAGACAGTCTCATACACAGATACGCAGTATTTT





2198
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCGAGACGGACACAGATACGCAGTATTTT





2199
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTCGCCGGGACCCCGGGGAGCTGTTTTTT





2200
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTTTTCCAGGGGGGCGCTGAAGCTTTCTTT





2201
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGATTATTAAGCGGCAGGGGGCGGGATGGCTACACCTTC





2202
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGTCGTGGCGGGCGGGCTGAACAATGAGCAGTTCTTC





2203
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTACCTACGGGACTAGCGTCAGACTCACAGATACGCAG






TATTTT





2204
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGGGACAGGGGTAAGGGTTTATAGCAATCAGCCCCAGCAT






TTT





2205
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGAACAGGGGCTCTAACTATGGCTACACCTTC





2206
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTCAGGGGGGGGCAAGTAGGGAACACTGAAGCTTTCTTT





2207
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTATCACAGTGCTCGCGGATCTAGCCAAAAACATTCAG






TACTTC





2208
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTTTCGAGACGGACGCATCGGAAACACTGAAGCTTTCTTT





2209
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGAATCTTCAGGGATGAGGGCCGGGGAGCTGTTTTTT





2210
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTATCCAGACAGGGCAGCTATGGCTACACCTTC





2211
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGATACTACCCCCTCAGATACGCAGTATTTT





2212
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCGAGCGGCAAGAGACCCAGTACTTC





2213
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGTGTACCGGGATTCGGACGGAACAATCAGCCCCAGCATTTT





2214
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGACCTAGCGGGAGGGCTGAAAGGGGTCTTC





2215
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTGGGGGAGGCGGATCGTGGCCCTCTCAAGAGACCCAGTACTTC





2216
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAATGGGGACTAGCGGGAGAGGGGATACGCAGTATTTT





2217
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGCGCGGCAAAGTGGCTACACCTTC





2218
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTACAGGGGGGCTAGCACAGATACGCAGTATTTT





2219
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATGGGCGGGAGGAGCAGATACGCAGTATTTT





2220
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGGACTAGCGGGCTTTCGAATGAGCAGTTCTTC





2221
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGACCATATGGGACACCTAATAGCAATCAGCCCCAGCATTTT





2222
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACTCAAGGGGCAGCGAACACTGAAGCTTTCTTT





2223
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGAGCCGTACTGAAGCTTTCTTT





2224
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATTCAGGGGACGCTGGGGCCAACGTCCTGACTTTC





2225
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGTCGGAGTATACAATGAGCAGTTCTTC





2226
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTATGCGGGGTTCGGGGTTCGGAGAGACCCAGTACTTC





2227
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTACCCAGGGGGCGAGACGAGCAGTACTTC





2228
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAACGGGGAGAATTTACAATGAGCAGTTCTTC





2229
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAACCGGAGCTGGCTACACCTTC





2230
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGTCCTAGCGGGCCGCTCGGAGAGACCCAGTACTTC





2231
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTACCCGTATCCGAGCAGTACTTC





2232
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGGGCGGGAGTAAGGCAGATACGCAGTATTTT





2233
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCACCGACAGCAATAATGAAAAACTGTTTTTT





2234
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAAGACCCGGGACTAGCGGAACCTACGAGCAGTACTTC





2235
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGGGACTAGCGGGAGAGCCGGGGAGCTGTTTTTT





2236
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCCGGGAACCAGCCTCTAACTATGGCTACACCTTC





2237
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGCGACACCGGACTAGCCGGGGAGACCCAGTACTTC





2238
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGCTGTGGTGGCAGGCTATGGCTACACCTTC





2239
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCAACGTTTTACACTGAAGCTTTCTTT





2240
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGGCCCTTGCGGGAAATGAGCAGTTCTTC





2241
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCAGACTCCGGAGTCCCGTACGAGCAGTACTTC





2242
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTCGGGGCTCGTCCTACGAGCAGTACTTC





2243
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGCCGGGGAAGCAAGCTACGAGCAGTACTTC





2244
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTCCGGGTGGGGGGAGGCAATCAGCCCCAGCATTTT





2245
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGAGTGCTAGCGGGAGAGCGGATACGCAGTATTTT





2246
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCACCCCGGGGGCAGGGTGACACTGAAGCTTTCTTT





2247
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGACCCGGACTAGCGGATCCCAGTTCTTC





2248
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGCGGGGGAGGGCCTCTCCAATGAGCAGTTCTTC





2249
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGGTCCCAAGCGTGGAGACCCAGTACTTC





2250
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGGGTGGGCGGACGGGAGTTATGAACACTGAAG






CTTTCTTT





2251
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGAACTAGCGGGAGGCGAGCAGTACTTC





2252
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGGAGGGCCGACGATGAGCAGTTCTTC





2253
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGGGGACATCTCTGGGGCCAACGTCCTGACTTTC





2254
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAAGGGGGGCTCCAATCAGCCCCAGCATTTT





2255
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCACGGACCGCCCTTGCTCGAGCAGTACTTC





2256
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAATCTCGACCGGGACAGGGACCAATGAGCAGTTCTTC





2257
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCGAGGACGGCCGGAAAATGAGCAGTTCTTC





2258
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCAAGTCGCTTCGGGACAGGGATTATCCAAGAGACCCAGTACTTC





2259
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCTCTAAGGGAGGGGCAGTACTTC





2260
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGACCCGATGACTAGCGGGAGTTTCTATGAGCAGTTCTTC





2261
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGTCAGGAACGCGTGGCTACACCTTC





2262
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGGCGGGATTTAGGAAGGTCCAACGAGCAGTACTTC





2263
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAGGACGGAACGGAACACTGAAGCTTTCTTT





2264
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGTCGGAGGGACTAACTATGGCTACACCTTC





2265
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTCGCAGGGAATTCAACAATGAGCAGTTCTTC





2266
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGATCGAGGTTCAAGCGGTGAGCAGTTCTTC





2267
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCAGGGGGCTTCATGTTCTATGGCTACACCTTC





2268
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGAACAGCTCTAGCGGGGGGAGGTGAGCAGTTCTTC





2269
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCGAGAGACAGGCATCTTTCTACGAGCAGTACTTC





2270
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCAGACAGACCAAGTAGGGTCTTC





2271
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGGCTGACAGGGGAGGACACTGAAGCTTTCTTT





2272
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTCAGCTACGAGCAGTACTTC





2273
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAACGTCTTCGGCGTTGGGGGCCGGGGAGCTGTTTTTT





2274
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCTCGTGAGGGGTCGGGCACTGAAGCTTTCTTT





2275
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGAGGGGTCTCAGCCCCAGCATTTT





2276
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCTCTTGGGGAAGCGGGCTCCTACACCGGGGAGCTGTTTTTT





2277
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCAGGGGGCGACGCCAAGAGACCCAGTACTTC





2278
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCGGGTCAGGCCAACCCATTCAGTACTTC





2279
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCACATCCGGGACAACCCTACGAGCAGTACTTC





2280
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGAAAGGGACTACGAGCAGTACTTC





2281
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTACAGGGATCGATCAGCCCCAGCATTTT





2282
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGAAGGGTGGAAAACACCGGGGAGCTGTTTTTT





2283
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGAGTAGATACGCAGTATTTT





2284
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGGACAGGGGCCACTGAAGCTTTCTTT





2285
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGGCACGACAGAAGAAGCTTTCTTT





2286
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCGACGAGTGAGCCCCTACGAGCAGTACTTC





2287
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATTAGCGGGAGGGCCTTCCGGTGAGCAGTTCTTC





2288
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCCGCCCTCCGGGCGCGGGAGTTATTGTGGGGCAAGAG






ACCCAGTACTTC





2289
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGCCAGACAACAGGGCGGACTGAAGCTTTCTTT





2290
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGAGGGACCTGGAACACCGGGGAGCTGTTTTTT





2291
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGTCTAGGGTACAATGAGCAGTTCTTC





2292
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCGTCCGGGGGAGAGGAACACTGAAGCTTTCTTT





2293
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCCGATCGGGACAGGGGAACACCGGGGAGCTGTTTTTT





2294
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCAGGAAGCGCATGGGACTCCTCTAATGAAAAA






CTGTTTTTT





2295
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTAGAGCGCGCAATGAGCAGTTCTTC





2296
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGCATTCAGGGGCGAGCAGTACTTC





2297
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTACCCCCCAAGACCACGTGGAGCAGTTCTTC





2298
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGGGGACTAGCCTACGAGCAGTACTTC





2299
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGCTCGCGATTGGGGAGGGCCTATTACAATGAGCAGTTCTTC





2300
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGTGGGAGACTAGCGGGAGAACCACTTATCTTC





2301
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGGGGGGGTGGGAAAAACTGTTTTTT





2302
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTGAACAGCGGGACAGGGGCAATGAGCAGTTCTTC





2303
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAAGGGGGCACCCCGACTGGGTATGGCTACACCTTC





2304
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGATCGACAGTTTACTACGAGCAGTACTTC





2305
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGGTAAAGCGGGAGTTAATCCCGGGGAGCTGTTTTTT





2306
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGACGGGACAGGCGGGGGGAATGAAAAACTGTTTTTT





2307
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCTACAGGGGGTTTTGGGAGAGACCCAGTACTTC





2308
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGAGAGGGGCTACGAGCAGTACTTC





2309
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTACGACAGGGGGTGCTAACTATGGCTACACCTTC





2310
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGTACAGGGGGCTGGTGGCTACACCTTC





2311
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGGGGGGGACTCTGGAAACACCATATATTTT





2312
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGAGCGCCCACGAACACTGAAGCTTTCTTT





2313
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTATTTCAGGGGAAAGGGGTGAGCAGTTCTTC





2314
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGTGAGGGCGGGAGTCTCTACGAGCAGTACTTC





2315
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACGGGACCGACTACGAGCAGTACTTC





2316
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCGGGGGGCTACAATGAGCAGTTCTTC





2317
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGAACCCCCGGAAGGGCTCCTACAATGAGCAGTTCTTC





2318
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGTACGCCGTGGCAATGAGCAGTTCTTC





2319
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCAAGATACGCAGTATTTT





2320
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCAGACAGGGACCTACGAGCAGTACTTC





2321
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAAGAGAGGCGGCTCCTACAATGAGCAGTTCTTC





2322
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGAGGGGACGCTTGGCACCGGGGAGCTGTTTTTT





2323
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAAGCGGGACAGGGGGAGAAAAACTGTTTTTT





2324
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGAGGTCTAGCGGCTTGATTGGTGAGCAGTTCTTC





2325
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGCTAAGGGAGCCCCCCTACAATGAGCAGTTCTTC





2326
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATGACAGAACGACGAGCTCCTATAATTCACCCCTC






CACTTT





2327
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGGGGAACAGGGCTCGACTCCTACGAGCAGTACTTC





2328
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGGGGCCTTTGGACTAGCCCGGGTAGCTC






CTACAATGAGCAGTTCTTC





2329
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGGTCAGGGGGGACAGACCCAGTACTTC





2330
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCACTCAAGGACAGGACTTACCCCTACGAGCAGTACTTC





2331
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCTGGACTAGCGGCACAGATACGCAGTATTTT





2332
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCGACGGTTTACGAGCAGTACTTC





2333
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGTCGGCAGGGAGCAACACTGAAGCTTTCTTT





2334
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCATCCCCGACAGGGCCCAGCAGTACTTC





2335
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAAGCAGGGGGCGAGGACAGATACGCAGTATTTT





2336
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCTGGACAGGGTTTCGCCTACGAGCAGTACTTC





2337
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCACGAGAGGGACTAGCGGTTTTTATCCCTCCCTCGCTGGG






GCCAACGTCCTGACTTTC





2338
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGACGGACTAGCGGAACCTACAATGAGCAGTTCTTC





2339
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGCCCAGTACGGCGGAAATCAGCCCCAGCATTTT





2340
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGGACTAGCGGGTTACAATGAGCAGTTCTTC





2341
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGACCGGGACTAGCGGCCTACAATGAGCAGTTCTTC





2342
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCCGACAGGGGAGGAAATACGCAGTATTTT





2343
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGAGGGGGCTGGAAAACTGTTTTTT





2344
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTATGGGAGCTCCTACAATGAGCAGTTCTTC





2345
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAATCCCAGGGACTCGGCAGATACGCAGTATTTT





2346
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGACGGCGAGCTGGCAGTTCCAAGAGA






CCCAGTACTTC





2347
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTCGGGACAGCACCTACGAGCAGTACTTC





2348
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGGGCGGACAGGGGAGGGAATCAGCCCCAGCATTTT





2349
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCAGGGGTGTAGGGACTGAAGCTTTCTTT





2350
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATCCGGGAATAGCAATCAGCCCCAGCATTTT





2351
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCGGACAGGACTCCTACAATGAGCAGTTCTTC





2352
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAACCCACCGGGCGGGGGTACGAGCAGTACTTC





2353
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTCACAGGGAGTGAGACCCAGTACTTC





2354
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTCCGGCTAGCGGATCGTACAAATGAGCAGTTCTTC





2355
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAGAGACAGGCAACGACCACAGATACGCAGTATTTT





2356
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGTCGGGCAGATACGCAGTATTTT





2357
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGACGGACTAGCGGGAGGGCCGATGAGCAGTTCTTC





2358
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGACATGAATCAGCCCCAGCATTTT





2359
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACTTACGACAGGGGGTAACACTGAAGCTTTCTTT





2360
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCTCATTGGGATTACCTACAATGAGCAGTTCTTC





2361
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGACAGGGTATGGACTGAAGCTTTCTTT





2362
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAGGGGTCACTCACAGATACGCAGTATTTT





2363
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTTTCGGCCCGAACACCGGGGAGCTGTTTTTT





2364
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACGCTGTCCCGGGACTAGCGGGCTCGACCTA






CAATGAGCAGTTCTTC





2365
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGGACAGTAATCAGCCCCAGCATTTT





2366
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCCCGGGACAGGCAGGTTCACCCCTCCACTTT





2367
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAAATGGGGATACGCAGTATTTT





2368
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATTACAGAATGTTTCACCCCTCCACTTT





2369
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCTTCACCGGGACAGGGGCCCAATGAGCAGTTCTTC





2370
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGTCGAGAGGGCGGGACTCTACAGATACGCAGTATTTT





2371
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAGGGAGGACAGGGAGGGAACGAGCAGTACTTC





2372
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAATTGCGGGGAGCCTACGAGCAGTACTTC





2373
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGCTTCAGGGGAGGAATCAGCCCCAGCATTTT





2374
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTAAGTCCCAGCTCAATCAGCCCCAGCATTTT





2375
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGCGGGAGGGGGTTCTCGGCAATGAGCAGTTCTTC





2376
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTCGACCTAGTCACCGGGGAGCTGTTTTTT





2377
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCTAGTGGTTCCGGGTACAATGAGCAGTTCTTC





2378
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCCCCCCAGGGAAGGCCACTGAAGCTTTCTTT





2379
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGACACGGGACTAGCAGTTACGAGCAGTACTTC





2380
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTGGGGGGGACAGGGGTTGGACGACTATGGCTACACCTTC





2381
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAGTCCCCCAGGGGCAGAGAGACCCAGTACTTC





2382
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGGGCCTACCCGATCCGGAGACCCAGTACTTC





2383
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCAGGGAATCTTAACTACTCTTACTACGAGCAGTACTTC





2384
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGACCGGGACAGGGAAAGGCTACACCTTC





2385
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTGAGATGTACTACGAGCAGTACTTC





2386
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTAGCATCGGCGCCTCGGGGTCGGATACGCAGTATTTT





2387
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCCCGTACTAGCGGAATCCCCTCCTACA






CAGATACGCAGTATTTT





2388
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCAGGGCCGGGAGTCGATCAGCCCCAGCATTTT





2389
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCCAGGGTTCCTACAATGAGCAGTTCTTC





2390
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGGGTTGTGACTAGCGGGAGTAACAATGAGCAGTTCTTC





2391
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAACTCGGACGGGAGCTCCTACAATGAGCAGTTCTTC





2392
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGACCCGGGACTGCTCACCGGGGAGCTGTTTTTT





2393
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGGTCGGCCTACGAGCAGTACTTC





2394
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACGGGACAGTAACCTACGAGCAGTACTTC





2395
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTATCTACAATGAGCAGTTCTTC





2396
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAACGAAGATCAGTAGCACAGATACGCAGTATTTT





2397
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGATGGGAGGAGAGGGTCCTACAATGAGCAGTTCTTC





2398
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCCCGGACAGAGCTACGAGCAGTACTTC





2399
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATCTGGGGGCACTGAAGCTTTCTTT





2400
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGGGGGACCTGGTGCTGGCTACACCTTC





2401
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTCGGGGACGGGGAGATGAGCAGTTCTTC





2402
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGAGAGGGCACCGGGGAGCTGTTTTTT





2403
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGCTTACGGGACTACTACAATGAGCAGTTCTTC





2404
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCTACACGATCCACTATGGCTACACCTTC





2405
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGTTTCCACCGGGGAGCTGTTTTTT





2406
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCCCACTGCAACTAATGAAAAACTGTTTTTT





2407
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAAGCGGGAGATACAATGAGCAGTTCTTC





2408
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGAAACAGCTACGGAGACCCAGTACTTC





2409
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATGAGGACTGGGGGTACAATGAGCAGTTCTTC





2410
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCTACGGGGCCTCCTACAATGAGCAGTTCTTC





2411
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATGGCAGACCCTGCCTTTCTCTGGAAAC






ACCATATATTTT





2412
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTCGGGGGAACACTGAAGCTTTCTTT





2413
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTCGGGACTAGCGGAGGCGGGGGCAATGAGCAGTTCTTC





2414
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATTTAGGGTCCAAAAACATTCAGTACTTC





2415
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGTCCCGGGACAGGGGTACGAGCAGTACTTC





2416
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAAGCGGTCAGCTCCACTACGAGCAGTACTTC





2417
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAGGGGGTGGGGAGACCCAGTACTTC





2418
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCGGACAGATCAATCAGCCCCAGCATTTT





2419
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGCCCCCAACTCTGGAAACACCATATATTTT





2420
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCGAGATCAGGCGAGAACGATTACGAGCAGTACTTC





2421
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCGAGCTTGCACGGGGCACTGAAGCTTTCTTT





2422
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGGGTACCGGGCTAGCGCCCAAGAGACCCAGTACTTC





2423
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGCCCTCCAAAATCAGCCCCAGCATTTT





2424
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACTAAATCTGGGGCCAACGTCCTGACTTTC





2425
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTGGGGCCGTCTATGGCTACACCTTC





2426
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCGATGGGCGGGACCTTGCTGGGCACTGAAGCTTTCTTT





2427
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTACCCCACAGGGGTCACAGATACGCAGTATTTT





2428
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGACCGGGAGGGCCGATCAATGAGCAGTTCTTC





2429
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGGAGACCGGGACTTCAACAATGAGCAGTTCTTC





2430
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGGGGACAGAGCTCCTACAATGAGCAGTTCTTC





2431
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTGCCTTTAGCGGAGAGAAACATTCAGTACTTC





2432
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGTTTCGCTGGGGAGTAATGAAGCTTTCTTT





2433
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTATAGCACAGGGGGCGACTATGGCTACACCTTC





2434
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGACGACTAGAGTTTGGCGAGCAGTACTTC





2435
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATCTAGGGTATGGCTACACCTTC





2436
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATCAGGGCAGTTTAATCAGCCCCAGCATTTT





2437
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCGAACTCTCTTGGAGACCCAGTACTTC





2438
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTGAATAGCAATCAGCCCCAGCATTTT





2439
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAACGCGAGCCGCGGGAGCAAATGAGCAGTTCTTC





2440
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACAGGGGGGTTCCTGGCTACACCTTC





2441
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCAACCGGTTCGGGGACCCCCTACGAGCAGTACTTC





2442
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCGGGACCACCTAAGATCTACGAGCAGTACTTC





2443
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTGGGGGTTGAGAATTCACCCCTCCACTTT





2444
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTAGCGGGAGTGACTGGGGCCAACGTCCTGACTTTC





2445
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCACAGGGATTGATCAGCCCCAGCATTTT





2446
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGGGACTATCTACAATGAGCAGTTCTTC





2447
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCGGACAGTATAGCAATCAGCCCCAGCATTTT





2448
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCACGAGGTCCTCTAATGAAAAACTGTTTTTT





2449
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAACCTTGGTGCTATCGGGGCCAACGTCCTGACTTTC





2450
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCGGACCTTCCCGACTCTGGAAACACCATATATTTT





2451
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGTCCGGACTGAAAAACTGTTTTTT





2452
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCTTGGGAAGAGACCCAGTACTTC





2453
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTAGACAGGGGGGTTCGAATGGCTACACCTTC





2454
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATGGGGACAGGGGGCCCGGAACACTGAAGCTTTCTTT





2455
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGAGGGTTCGGGATGTCGGGCGAGCAGTACTTC





2456
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCTCGGTTGGAGTAGGAGGAACCGGGGAGCTGTTTTTT





2457
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGGGACAGCCTAAAAGGGTACTTC





2458
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCGGGACTAGTGAAAACCGGGGAGCTGTTTTTT





2459
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCACCACCGGGACAGGGGCGCTCGGGGCCAACGTCCTGACTTTC





2460
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCCGAAACGGACTAGCGGGAGGGCCTTCCTACGAGCAGTACTTC





2461
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTATGGCAGAGACACAGATACGCAGTATTTT





2462
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGACTCAAGGGACCCGAGCTTTCTTT





2463
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTCGGGGGGGATACAATGAGCAGTTCTTC





2464
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACGACATTAGGCTCTGGGGCCAACGTCCTGACTTTC





2465
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGCCGGGAGCGAGCAGTACTTC





2466
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTACCGAGGGAAATCAGCCCCAGCATTTT





2467
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGAGACGCTAGCGGGCAACAATGAGCAGTTCTTC





2468
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGAACAGGCGAGGACCGGGGAGCTGTTTTTT





2469
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGGCAGAAACCTACGAGCAGTACTTC





2470
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGACGACTTCGGCGGGAGTTCCTACGAGCAGTACTTC





2471
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGTCCTAGCGGGAGGGGTCAATGAGCAGTTCTTC





2472
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGGACCGGAGCGGGAGACCCCTACGAGCAGTACTTC





2473
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCCTGGACTGTCTCGAACACCGGGGAGCTGTTTTTT





2474
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGTGCCCTGGCTGGGGCTTTCTTT





2475
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGACCTGGACAGGGGGACTATGGCTACACCTTC





2476
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATGCAGACTCGAACACCGGGGAGCTGTTTTTT





2477
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCATCATTATGGGGGCTGAAGCTTTCTTT





2478
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCTGGACTAGCGGGAGGGCCGACTTT





2479
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCTAATGATATCAGGGGGACAGCAGTTCTTC





2480
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAAGACTAGGGGTTAGAGAGCAGTTCTTC





2481
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCCAGACAGATACGCAGTATTTT





2482
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCTAGCAGCCCAGTGCCCGGGACAGGGGAAGGGACCGGGGA






GCTGTTTTTT





2483
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGGTCCTGTTTCGGCAGGCCTAAATTCACCCCTCCACTTT





2484
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCCATACCGGGACAGGGGCCTACGAGCAGTACTTC





2485
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTCGGTCAGGGTTTTAGTGAGCAGTACTTC





2486
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGGATGGACAGGGGAATACGAGCAGTACTTC





2487
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCTCCCCGATAGGAGGCGGGGTTAATAACACT






GAAGCTTTCTTT





2488
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAAGAGACCAAAGAGAACTATGGCTACACCTTC





2489
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCATTGGGACAGGACACTACGAGCAGTACTTC





2490
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGGTTCTAGTCTCGGTACGCAGTATTTT





2491
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTCATTGGGACTAGCGTATACAATGAGCAGTTCTTC





2492
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGTGGCTAGCCAGGGGCTCATATAATT






CACCCCTCCACTTT





2493
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGGCAGGGGGCATGGTCAGCCCCAGCATTTT





2494
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGATGTACAGAGCAATCAGCCCCAGCATTTT





2495
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGAGCCTTCCTGGAAACACCATATATTTT





2496
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTCAAGCGAGGATTAAACAAGAGACCCAGTACTTC





2497
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGTGGAGGGGAATGAGCAGTTCTTC





2498
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGAGGGACTAGCGGGAGGTGAGCAGTTCTTC





2499
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGCCGACCTCAGGGGGCGGATCACCCCTCCACTTT





2500
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGCGGCACAGGGGGCAGGGCAGCCCCAGCATTTT





2501
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCAGAAGGAGGGTTTGACCCAAATCAGCC






CCAGCATTTT





2502
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGTCTACCGGGACAGGGCTCAATGAGCAGTTCTTC





2503
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCCCGCCAGGGGGACGAGCAGTACTTC





2504
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCTCCGTGGGAGCGGGAGTTGTAGAGACCCAGTACTTC





2505
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCACGTTGCGGTTACCGGGGAGCTGTTTTTT





2506
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGTGTGGGGGTCTAGCACAGATACGCAGTATTTT





2507
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCTCGGACAGGGAAGACGGTCAATGAGCAGTTCTTC





2508
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGACCCTGGACATTACCTACGAGCAGTACTTC





2509
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCATAAACCGGAACACCGGGGAGCTGTTTTTT





2510
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCACCTCGGGAGTTTTAAAGACCCAGTACTTC





2511
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGAGGACAGATCCTATAGCAATCAG






CCCCAGCATTTT





2512
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCAGCGGGAGCTACACCGGGGAGCTGTTTTTT





2513
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCACGGATGGCCACAGATACGCAGTATTTT





2514
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCACCGAGGACTAGCGGGAGTTACACCGGG






GAGCTGTTTTTT





2515
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGACATTTGAGGGGTGTCTCCTACGAGCAGTACTTC





2516
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTGAAACAGACACAGATACGCAGTATTTT





2517
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACTCAGGGGTTCAGCACTGAAGCTTTCTTT





2518
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGCGGCGGAGGGGATCAGCCCCAGCATTTT





2519
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGATTAACCGGGACAAGTCTTAGCGAGCAGTACTTC





2520
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACGGGTCAGGGGGAGAGACCCAGTACTTC





2521
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAAGAGAGGGCGTGGGGAATGAGTGAGACCCAGTACTTC





2522
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCAACACTGACAGGCAACGAGCAGTACTTC





2523
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACAAGAGTGGGGGGGTCTCAAGAGACCCAGTACTTC





2524
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCGCCGGGACTTTCTAACTATGGCTACACCTTC





2525
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCGTAACCCCGGGACAGGGGTACGAGCAGTACTTC





2526
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAAGTCGTATCTACAATGAGCAGTTCTTC





2527
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAAATTTACGGTGTTGAACACCGGGGAGCTGTTTTTT





2528
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCATAACCTCTCGCCCGTACAATGAGCAGTTCTTC





2529
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGAGGACGGGGCCAACGTCCTGACTTTC





2530
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAATGCAGTGGGCACAGATACGCAGTATTTT





2531
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCACGTAGCAGATACGCAGTATTTT





2532
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCTTACAGGGCCAGGGCTACACCTTC





2533
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGATGGGACTAGCGGATACGAGCAGTACTTC





2534
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCAGGACTAGCGGGAGGGCCCAGCGGCCAACACAA






TGAGCAGTTCTTC





2535
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGTGACAATGAGCAGTTCTTC





2536
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGCGCCCGGCGGGGAGCTGTTTTTT





2537
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGATGGAGGGGTGGGAGAGAGTGAGCAGTTCTTC





2538
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGAACCCACAGGGGTGGACACCGGGGAGCTGTTTTTT





2539
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAACGCCTCCAGTTCTTC





2540
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGAGACTTACCCTTGATGGAGATACGCAGTATTTT





2541
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCGCAAAAACAGGGAGCACCGGGGAGCTGTTTTTT





2542
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAAGAAGGTAGCGGGAGGCAAGAGACCCAGTACTTC





2543
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCGAGACACCTCGGAGCAGTTCTTC





2544
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTGGGGTAGCGGGATGGACCGGGGAGCTGTTTTTT





2545
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGCAGACTAGCGGGGGGGTACAATGAGCAGTTCTTC





2546
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGAGGGGGTGGAACACCGGGGAGCTGTTTTTT





2547
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAATGGGTGGGGGGAATGAGCAGTTCTTC





2548
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATCTAGCGGGAGTAAACAATGAGCAGTTCTTC





2549
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGGTCTCGATGGACGACGGTGAAAAACTGTTTTTT





2550
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCACAGGGGCGGCAGCAAGAGACCCAGTACTTC





2551
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCAGGGACAGGGAAGGGCCGAGAGACCCAGTACTTC





2552
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGAGGGGGGCTCCTACAATGAGCAGTTCTTC





2553
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCGGGACAGGGGACTCTACAATGAGCAGTTCTTC





2554
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTATTGCTTAATTGAAGCGGGAGAATGTGAGCAGTACTTC





2555
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTCCCTACAGAGATACGCAGTATTTT





2556
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGACAGGCGTTCCTACACCTTC





2557
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAAGACCGGACAGGGTGGCAATCAGCCCCAGCATTTT





2558
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACGGTCCGGGAGAGACCCAGTACTTC





2559
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCCGGGACAGCGGATGGGGCCCGAGCAC






AGATACGCAGTATTTT





2560
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTAACGAGCTCCTACAATGAGCAGTTCTTC





2561
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCGGGAAGGGCAGTTCGAGCAGTACTTC





2562
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGATAGGGACAGCCAAAGCTTTCTTT





2563
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCAGGACTAGCGATGAACACCGGGGAGCTGTTTTTT





2564
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCTAGCCGGCGATACGCAGTATTTT





2565
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGGTCAGCACAGATACGCAGTATTTT





2566
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCATTACGGTACCCTGAACACTGAAGCTTTCTTT





2567
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCCCGGGTAGCGGGATATTACGAGCAGTACTTC





2568
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGGGACACCCAATCCGAGCAGTACTTC





2569
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGATTACTAGCGGGCCTTACGAGCAGTACTTC





2570
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCTGACCCAGGGAAATAATTCACCCCTCCACTTT





2571
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGAGGTTCCGGGAGGGGTTTATGGCTACACCTTC





2572
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTAGCGGGAGGACCTACGAGCAGTACTTC





2573
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATGGGGAGCCCTGGAGCAGTACTTC





2574
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATGCCGAACACTGAAGCTTTCTTT





2575
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGGGACTAGCGGGAGATCCCTTC






ACAGATACGCAGTATTTT





2576
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGTGGGGCTACAAGAGACCCAGTACTTC





2577
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCAGGGGGCTTAGTTCCGATATG






AACACTGAAGCTTTCTTT





2578
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAAGGTGGGCTAGCGGGAGGGCCTAAG






TCCAAAAACATTCAGTACTTC





2579
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGTCAGGGAGAACACCGGGGAGCTGTTTTTT





2580
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAAGACTAGCCCCCCAAGAGACCCAGTACTTC





2581
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGAGTGGGGGCCCCAGCATTTT





2582
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCCAGGGGAGCGACTCCTACGAGCAGTACTTC





2583
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTTTGGGTTCCTACAATGAGCAGTTCTTC





2584
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAATTTCAGGGCGCAGGTTATGAACACCGGGGAG






CTGTTTTTT





2585
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCAGCTCCGGGACAGGGTTTAACTATGGCTACACCTTC





2586
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGGTCGGAACAGTATAAACTATGGCTACACCTTC





2587
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTCGCGGGGAGGGCACTGAAGCTTTCTTT





2588
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGAAGCGGGAGGGCCGGCCGGGGAGCTGTTTTTT





2589
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGGGGACAGTCCTACGAGCAGTACTTC





2590
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACGAGCGGGAGGGAGCACAGATACGCAGTATTTT





2591
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTAAACAGGTTCTTAGCAATCAGCCCCAGCATTTT





2592
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGCCTCAAACAGGGGTGAAAGTGAAGCTTTCTTT





2593
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCCGTCGCCACCGGGGAGCTGTTTTTT





2594
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCGCACGATCAGGGGGCGGCGACCTACGAGCAGTACTTC





2595
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGCCGGGACAGACCTTTTCACAGATACG






CAGTATTTT





2596
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCTTGGGAACAGGGGTATGGGGTGAGCAGTTCTTC





2597
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTTGGACGAGGGGACCAAACTCCTACGAGCAGTACTTC





2598
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGTACTGGCCAATGAGCAGTTCTTC





2599
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTATCGGCTTAGCTCCTACAATGAGCAGTTCTTC





2600
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGACGCGGGGGAGCGAGCTTTCTTT





2601
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTCGGAGGGACAAGACTGAACACTGAAGCTTTCTTT





2602
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTGGGACTAGATACGCAGTATTTT





2603
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAAACCATGGAGTCAGGGATGGATTAACTA






TGGCTACACCTTC





2604
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGGGACGAGCTCCCAAGAGACCCAGTACTTC





2605
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGCGGGACTAGCGGGCACGAACACCGGGGAGCTGTTTTTT





2606
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCATCGGACTAGCGGGAGCCATGAGCAGTTCTTC





2607
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGAAGGCGAGCAGCCCCAGCATTTT





2608
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCAGACCGGGACGGCACTGAAGCTTTCTTT





2609
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGGGGTCGGGGATACTAACTATGGCTACACCTTC





2610
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGGGACCATCCTACGAGCAGTACTTC





2611
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTAATTGGGACAGCCAAGAGACCCAGTACTTC





2612
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGAAACAGGGTGCAACTAATGAAAAACTGTTTTTT





2613
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTTACCTCCCGGGCGGGACAGGTTATGGCTACACCTTC





2614
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATCGGGGGGCGAGCAGTACTTC





2615
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGGGGGATGGAGCGGGAGGACCAAGAGACCCAGTACTTC





2616
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCCTACTAGCGGTGAATACAATGAGCAGTTCTTC





2617
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGGAGCCAGGGATCATTATGAAAAACTGTTTTTT





2618
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCCCGGACTGAGAGCTCCTACAATGAGCAGTTCTTC





2619
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCCACCCCAGCGGGAGGGACCTACAATGAGCAGTTCTTC





2620
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGCGGGAGCAGGGCAATGAGCAGTTCTTC





2621
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGGGGGGACAGGGGGGGCAATGAGCAGTTCTTC





2622
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAGCAGGGGACCTTATGGACAGATACGCAGTATTTT





2623
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCATTGTTAACAGGGGTAAACTATGGCTACACCTTC





2624
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCATTCGGACAGGGCCTAACACAGATACGCAGTATTTT





2625
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGTTTATTTAGGCAGTCAAGAGACCCAGTACTTC





2626
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCCAGGGCCAACCCAACAATGAGCAGTTCTTC





2627
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTCAAACAGACAGACACAATGAGCAGTTCTTC





2628
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTTGCGGACTAGCGGGCCCTACAATGAGCAGTTCTTC





2629
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATCAGAAGCTCCTACGAGCAGTACTTC





2630
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAAGGGGGCGGGGGAACGCAGTATTTT





2631
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCGAGCGGGAATACAATGAGCAGTTCTTC





2632
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCATGGACTAGCGGGAGTATACGAGCAGTACTTC





2633
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGCTACGGTTAATTCACCCCTCCACTTT





2634
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCTCGGGCTATGGCTACACCTTC





2635
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATTTCCGGGGGGCAAGTACATTGGATTC






ACCCCTCCACTTT





2636
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTAGAGGCCCCGGGAATTCACCCCTCCACTTT





2637
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCGAGGCACCTATGGCTACACCTTC





2638
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGACTACGGGACAATGAGCAGTTCTTC





2639
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGCACGGGACAGGGGGTTACCATCGTTCTTC





2640
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATGATATATACGCGGGCTACACCTTC





2641
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTCAAGTAGCGGGAGGGCGTCAAGATACGCAGTATTTT





2642
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTGACGAATCCAGGGGGCTCCTACGAGCAGTACTTC





2643
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTAACCGACAGGGTCCCGAGCAGTACTTC





2644
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGGAGGGGCCGGGACTCTATACAATGAGCAGTTCTTC





2645
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGTCCACAGGAGCCAGGAATCAGCCCCAGCATTTT





2646
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCGACTTACCGGGGAGCTGTTTTTT





2647
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTATGGGACAGGAGGAACACTGAAGCTTTCTTT





2648
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTGTCGGACTGGGCCGGGGAGCTGTTTTTT





2649
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCCTCCAGGCGGACACCGGGGAGCTGTTTTTT





2650
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGTAGCAACTCACAGGGCGGAGAAAAACTGTTTTTT





2651
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAACGAACGGGGGACCTATAATTCACCCCTCCACTTT





2652
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGTACTAGATCAGCCCCAGCATTTT





2653
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTTGGTATGAACACTGAAGCTTTCTTT





2654
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAGTTTATGAACACTGAAGCTTTCTTT





2655
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTCCGAACACTGAAGCTTTCTTT





2656
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGATCAGCCCCAGCATTTT





2657
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCAGGACAGGGAACCACCATATATTTT





2658
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGGACAGGCCGAACACTGAAGCTTTCTTT





2659
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGGGGCAGAGACCCAGTACTTC





2660
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCCCTGGACAGCCGGGAGCACTGAAGCTTTCTTT





2661
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTCGCTACAGCACTGAACACTGAAGCTTTCTTT





2662
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCCTTACCGGGACAGGGGGGTTAGAGGTTAG






AAGCAAGCCCCAGCATTTT





2663
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGGTTCACCAGATACGCAGTATTTT





2664
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGGCACAGGGTACTACGAGCAGTACTTC





2665
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGTGGCAGGAAGCACAGATACGCAGTATTTT





2666
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTGGACAGGGGTTCCTACGAGCAGTACTTC





2667
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGCAGGGGGCAATTGGCAATCAGCCCCAGCATTTT





2668
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTGAGGGACCGAACCTACAATGAGCAGTTCTTC





2669
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAGAAACGGGGGGAACCGGGGAGCTGTTTTTT





2670
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCTCGACAGGAGATCTACTATGGCTACACCTTC





2671
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCATTCTATTCCCGGGACAGCCGAGCTACGAGCAGTACTTC





2672
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGCTTACGACAGGGTCTACGAGCAGTACTTC





2673
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAAGGGACTAGCCGAATATGAGCAGTTCTTC





2674
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCACTAGGGGGTCATCCTACAATGAGCAGTTCTTC





2675
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATACAGGGCCAAATCAGCCCCAGCATTTT





2676
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCACGGGACAGGGGTACACTGAAGCTTTCTTT





2677
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCAGACAGGGGCGGAGCACAGATACGCAGTATTTT





2678
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGACGGACAGGGCTTGTTCTATAATTCACCCCTC






CACTTT





2679
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCGAACACAGGGGAATCAGCCCCAGCATTTT





2680
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGTGAGACTAGCGCTAAAGAGACCCAGTACTTC





2681
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAACTAGCGTTAGCACAGATACGCAGTATTTT





2682
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAACTCAGGCAAAGAGACCCAGTACTTC





2683
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGTAGTATCGGTTCCAGGGGATTTTCAGATACGCAGTATTTT





2684
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGTGTACGGGGAATCAGGAACACTGAAGCTTTCTTT





2685
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCGCGGACAGGGGAAAAAACTGAAGCTTTCTTT





2686
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGCTTAGTGGGGACTAGCGGGAGAAGCAC






AGATACGCAGTATTTT





2687
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGAGGCAGCTACGAGCAGTACTTC





2688
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCCATGCTTCTCCGGGACAGGGTCCCGCAGATACGCAGTATTTT





2689
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCTCCGCGGGGTGGAACAATGAGCAGTTCTTC





2690
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCCACACAGATACGCAGTATTTT





2691
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTACCAGAATTCACCCCTCCACTTT





2692
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCGCCTGGACAGGGGGATGGCGGAGCTCCTACAA






TGAGCAGTTCTTC





2693
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTAGCGGGAGGGAGCACAGATACGCAGTATTTT





2694
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGGGGAAGTATCAGCCCCAGCATTTT





2695
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGCCGGGACAGGGGATCTACAATGAGCAGTTCTTC





2696
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTCTTCTCCGGGACACACTCCTACGAGCAGTACTTC





2697
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACTACTTGGCAGGGGGCCCCCTACAATGAGCAGTTCTTC





2698
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGTCCGACGACACCGGTACCAAGAGACCCAGTACTTC





2699
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGGAGGGCCGATAGGACAGGGCGGGATCCAACTGATACG






CAGTATTTT





2700
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGACAACGGGGCGGGAGCAGCTATGAGCAGTTCTTC





2701
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCACAAGGACAGGGGGCGGGCTATGGCTACACCTTC





2702
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGCCGCCGGGACAGGGCTGACTGAAGCTTTCTTT





2703
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTGGGCAGAATCAGCCCCAGCATTTT





2704
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGATTTTAGAGGACTGAACACTGAAGCTTTCTTT





2705
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGGGGGTTGGCGAACACTGAAGCTTTCTTT





2706
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGTACGGGCCGGGGGATACGCAGTATTTT





2707
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCGGACTAACTCGGTACGAGCAGTACTTC





2708
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTGGGACAACCCCTCCTACAATGAGCAGTTCTTC





2709
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTGCGGGACAGGGAGGCAATGAGCAGTTCTTC





2710
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGGGGAAATGAAAAACTGTTTTTT





2711
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCGGGAAACAATCAGCCCCAGCATTTT





2712
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATCATACAGCGGGGACAACTTC





2713
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGTCGGTCTAAGGGGCTTTGGCTACACCTTC





2714
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCCATCGCGTCAGGGAAAGAGACCCAGTACTTC





2715
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTCAAGCATGGGCAGGTGAGCAGTTCTTC





2716
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGTTGGGCGGATCTACGAGCAGTACTTC





2717
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCTCGAGGACAGGGTGACGAGCAGTACTTC





2718
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTTGGCAGGGCGCGATGAGCAATCAGCCCCAGCATTTT





2719
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCCGGGTATTAGAGCTGAAAAACTGTTTTTT





2720
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGGGACCGGGGAGCTGTTTTTT





2721
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGTTTTTGGAGCCCCAGCATTTT





2722
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTCGCCAAGAACACCGGGGAGCTGTTTTTT





2723
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTAGTAAGCTCTGGAAACACCATATATTTT





2724
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATTAACTCCCTCCGGTGAGCAGTTCTTC





2725
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAAGCCCCTAGCGGGAGGAGGCAATGAGCAGTTCTTC





2726
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTACGGGACAGGGGGCGGATGGCTACACCTTC





2727
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCCACTGGGCTAGCGGGTTTCTCCTACGAGCAGTACTTC





2728
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGACTAGCGGGAGGCCGGCATGAGCAGTTCTTC





2729
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTACAGGGACGAAGAGGCTACACCTTC





2730
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGAGACTAGCGGGAGCGAGCAGTACTTC





2731
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTACCCGCGGCGTCGTGGCGGGAGGGACTC






TACAATGAGCAGTTCTTC





2732
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCGAGGCAGGCCCTGGGGCCAACGTCCTGACTTTC





2733
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCTGTAAGCGGAGCATACAATGAGCAGTTCTTC





2734
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACGAGACAGGGATCGACCTACGAGCAGTACTTC





2735
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGGGACTACAGGAGACCCAGTACTTC





2736
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTACTTGGCAAGCCTAATGAAAAACTGTTTTTT





2737
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCAAGCAGCAGGGCGCGGGAGATCTACAATGAGCAGTTCTTC





2738
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAATGGACAGGGAAATTCTAAGCCCCAGCATTTT





2739
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAAGGGAGGACACTGAAGCTTTCTTT





2740
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCGCAGTTTCCGTGGCACAGATACGCAGTATTTT





2741
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGCAGAAACAGTGAACACTGAAGCTTTCTTT





2742
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGGGGGTTGATAATGAGCAGTTCTTC





2743
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGACTTGGGACTAGCGGGAAAGGCCGGCGCC






GAGCAGTACTTC





2744
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGTAACCGGCGCCGAGCAGTACTTC





2745
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATGGCGGGAGGCCCAATCAGCCCCAGCATTTT





2746
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGACCCCTTAGCGGGAGGGCCGAGGGCACAGAT






ACGCAGTATTTT





2747
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGAGGAGGGGACATATAACACTGAAGCTTTCTTT





2748
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGTTGAAGGGATTGGAAACACCATATATTTT





2749
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAAGGACTAGCGGGAGGACTGTATACAATG






AGCAGTTCTTC





2750
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCTAGTGGTTTGGTTACAGAGAATCAGCCCCAGCATTTT





2751
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATACAGGGTTCGAGACCCAGTACTTC





2752
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCGTCCCGGGACAGGGTTTTCTACGAGCAGTACTTC





2753
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCGCCGCCGTCCGGGACGCCCTCCCCTACGAGCAGTACTTC





2754
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGATTTTACGGGCCGGCAGTTCTTC





2755
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGATGGGACTAAACCTAGCACAGATACGCAGTATTTT





2756
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGATTCAAGGGGGGCCAAAAACATTCAGTACTTC





2757
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTACTGGGCTCTGGAAACACCATATATTTT





2758
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGTAGGCGGCGCCGGGGAGCTGTTTTTT





2759
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCCCAGATTACAGACTAGCGGGAGAA






AACGATGAGCAGTTCTTC





2760
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCTACCTCAGGTCGGGGGGATCAGCCCCAGCATTTT





2761
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGACGAGCTGGTCGAGATGGTGAGCAGTACTTC





2762
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGATTACACAGATACGCAGTATTTT





2763
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCAGGGCGCGGGAGATCTACAATGAGCAGTTCTTC





2764
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTCACCACTGGGACCTAACGAGCAGTACTTC





2765
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGTAAGCACCGGGGAGCTGTTTTTT





2766
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAGGGACAGGGGGCTGCGGAAGCTTTCTTT





2767
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAACAGGGCTTTCATATCAGCCCCAGCATTTT





2768
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTGGAGACAGCGGAAAACATTCAGTACTTC





2769
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGTGGTGCTGGCGAGCAGTACTTC





2770
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGCGGGGGCCAAAAACATTCAGTACTTC





2771
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGACCCGGGACTAGTCTCCTACAATGAGCAGTTCTTC





2772
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCCCAAAGTAGCGGCACCGGGGAGCTGTTTTTT





2773
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGGGCAGCGTTCGGGCGGCTCCTACAATGAGCAGTTCTTC





2774
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGATTCGGACGGGCCACAGATACGCAGTATTTT





2775
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCCCTTTAGACAGGCGGTAACTTTCTTT





2776
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGGTGGTGAGGGCGGGGGTAGCAATCAGCCCCAGCATTTT





2777
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCTGCTCTCGGAACTTACCCTACAATGAGCAGTTCTTC





2778
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGATCCTCCCCCGACTATGGCTACACCTTC





2779
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGGGGGGTACAGGAACACTGAAGCTTTCTTT





2780
91-TL101-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGCCGTGACTCACTACGAGCAGTACTTC





2781
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCTGCGGCCATGGAAGCTTTCTTT





2782
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTACGACTCAGGGGGGGCACGAGCAGTACTTC





2783
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGTGGGGGGAGAAAATCAGCCCCAGCATTTT





2784
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGGAGTAGAAGCCTACGAGCAGTACTTC





2785
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTTGGGTCTAGCGCCTATGAGCAGTTCTTC





2786
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGACCCGACCTCAATGAGCAGTTCTTC





2787
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGCCCAACCGGGACAGGGGGATGAAAAACTGTTTTTT





2788
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCAAAATGAAAAACTGTTTTTT





2789
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTCGGGACAGGGCCGTTTTGGCTACACCTTC





2790
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGACTAATTCTCCGAGGGGATCAGCCCCAGCATTTT





2791
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCTACAGGGGATATGGCTACACCTTC





2792
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCATGGGGGATCGAACACTGAAGCTTTCTTT





2793
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGATGAGGACCAGAACACCGGGGAGCTGTTTTTT





2794
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGGAGGGGAAGAGACCCAGTACTTC





2795
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAACGAATCAGGCTTCTGCGCAGTATTTT





2796
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAGGAAGGATGGGGGCGCTCCTACAATGAGCAGTTCTTC





2797
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTACGGCCGAACACTGAAGCTTTCTTT





2798
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGATCCCCGCGAAGGGTTCTATAGCAATCAGCCCCAGCAT






TTT





2799
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCCGAGGCGGGGCAGGCAATGAGCAGTTCTTC





2800
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCACCCGGGACGTACACTGAAGCTTTCTTT





2801
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGCGCTAAGGGGGGGCCTGCCTGGCTACACCTTC





2802
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCTCCAGGGACGGGAACTCCTACAATGAGCAGTTCTTC





2803
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGGGGAGCTCCTACAATGAGCAGTTCTTC





2804
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCTAGGGGCCGAGCGGGTGGATGAGCAGTTCTTC





2805
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCGACTAGCGGGGCTACCAATGAGCAGTTCTTC





2806
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCACCCCCAGAGGGACCTTCACGTACAATGAG






CAGTTCTTC





2807
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCATCCAGGGGGGAAGCAATCAGCCCCAGCATTTT





2808
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGGGTTTTTAAGTCGCCCCAGCATTTT





2809
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCCGGGACAGGGCTGATGGCTATGGCTACACCTTC





2810
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGGACGGGCGAGACCGGGGAGCTGTTTTTT





2811
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCTTACAGCCTATCTATGGCTACACCTTC





2812
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTCCTCGGGACTCATCTAGCACAGATACGCAGTATTTT





2813
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCCTATGGCTAGCGGGAGTTGATGAGCAGTTCTTC





2814
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTTCCCGGACTAGCGGAGTTTCCTACGAGCAGTACTTC





2815
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGATATACCGGACAGGGCCACTCTGAACACCG






GGGAGCTGTTTTTT





2816
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATAGCCCTCTGGGACTTCTACAATGAGCAGTTCTTC





2817
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCCCGACGGAGGGGGACGTTACGAGCAGTACTTC





2818
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTCGACAGCTACGAGCAGTACTTC





2819
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTTTCTTTGCCACTGAAGCTTTCTTT





2820
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGGGACTAGCGGGAGAGCAGTTCTTC





2821
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGAATGGGGGGCCCGGGCTTTCTTT





2822
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAACTTGCCGGGCACTAGCGGGTTATCCACA






GATACGCAGTATTTT





2823
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCGGCCTTCTCCGAGGGGTTGAAC






ACTGAAGCTTTCTTT





2824
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGAGCTACTAGCACAGATACGCAGTATTTT





2825
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGAAGAAGGAGGGACGAGTATTCACCCCTCCACTTT





2826
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGATTTAGTTGGGACTAGCGGGAGGACCTACAA






TGAGCAGTTCTTC





2827
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCTGGAGTCTCGCGGACTACGAGCAGTACTTC





2828
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCCGGGGGGAACACTGAAGCTTTCTTT





2829
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCTAGAGACCGGACTAGCGGGGATTACAATGAGCAGTTCTTC





2830
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCCCCGGCAAAGACCTACGAGCAGTACTTC





2831
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGCAGAGATTTTCGCGGCGAGCAGTACTTC





2832
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCTGGAGCCCAGAAAGGGATTCCTACGAGCAGTACTTC





2833
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGATAACGGGGGTGACACTGAAGCTTTCTTT





2834
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCCTCCAGGGGAATGAGCAGTTCTTC





2835
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTCCCGCCGTGGGTGATAGGGAAAAACTGTTTTTT





2836
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGGAGGGTCGGTGAGCAGTTCTTC





2837
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCACCTCGGGGTCCCAGGTTGAGACCCAGTACTTC





2838
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCAAAGGGACAGCTACCTACGAGCAGTACTTC





2839
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGGGTATCTGGGGGCAGATACGCAGTATTTT





2840
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTCAGGTCCGCCGGGGAGCTGTTTTTT





2841
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGAAGGGTCTAGCGGGGGGGACGAGCAGTACTTC





2842
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGTCGCTTACTCCTACAATGAGCAGTTCTTC





2843
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTACCTCAAGAGACCCAGTACTTC





2844
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTTGGGACAGGGAGCTACGAGCAGTACTTC





2845
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTTGCACCTTACAATGAGCAGTTCTTC





2846
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGGGACGGTGGGGAACACTGAAGCTTTCTTT





2847
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGGGGCGGGAATCAGCCCCAGCATTTT





2848
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCGTGGGGTGGTTCTTC





2849
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTACTCGATCGGGGAGGATCAGCCCCAGCATTTT





2850
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTATGATAGGGGGAATTCACCCCTCCACTTT





2851
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCTGGAGTCTTAGCCCAGACAGTGAAGCTTTCTTT





2852
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGGTTCTGACAGGGTGACCTACGAGCAGTACTTC





2853
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCATGACAGGGGGTCAGTCACCCCTCCACTTT





2854
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGGGGGAAGGTGGGAGCTTTCTTT





2855
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTGTCTACGCGGGACAGGGTTACGAGCAGTACTTC





2856
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTTATCGTTTGGGGACTACGAGCAGTACTTC





2857
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAAGCTATGACAGGGGGCGCCGACTATGGC






TACACCTTC





2858
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGGACAGGGCCAAGAGACCCAGTACTTC





2859
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAAGGACAGGGCGAGGACTGAAGCTTTCTTT





2860
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGTAGTATAGCGGGAGGGCCGCGGAATGAGCAGTTCTTC





2861
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGTGGGGACTGGGAGCTGATGGCTACACCTTC





2862
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCACTCTCGGGAGCTGGAAGATACGCAGTATTTT





2863
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGCGTCCGGTACAAATCAGCCCCAGCATTTT





2864
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGTTCCTTAGCCGACAGAACTAGGGGCTACACCTTC





2865
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAGGGACAACGGGCCTCCTACGAGCAGTACTTC





2866
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCTGAAAAGCTCCTACAATGAGCAGTTCTTC





2867
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCGGGCGACAGGGGCACACTGAAGCTTTCTTT





2868
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAAGGGGCGGAGCTGGCTCCTCTACGAGCAGTACTTC





2869
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCCGATGGGAGGGTTGAACACTGAAGCTTTCTTT





2870
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCAGTGCACTTAACAGGGGCCGCGGATACAATCAGCCCCAGCATTTT





2871
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCTGGAGTACGATTGACAATGAGCAGTTCTTC





2872
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTGGGGGGTCGGGAGCAGTTCTTC





2873
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCTCCCTCGCGAGCCGCAATATTCAAGAGACCCAGTACTTC





2874
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCTTGGCAAGTACTGAAGCTTTCTTT





2875
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTAGGGCCGGGACAGGGGGCCTACGAGCAGTACTTC





2876
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGCCAACTAGCGGGTAAAGAGACCCAGTACTTC





2877
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCACCCGACAGAGCAAAGCGGAGACCCAGTACTTC





2878
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCACCAGTGATTTAGGAGGGACCCAGCATTTT





2879
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCATCAGTGAGGGGTACGAGCAGTACTTC





2880
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCCAGGAAGGGTGGAAGTACGAGCAGTACTTC





2881
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCAGCTTATTTGATGAGGAAGAGACCCAGTACTTC





2882
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGTGCCAGCCAGGGACAGGGGGCTGGTTCACCCCTCCACTTT





2883
95-TL684-TIL-CD8+_CD103+
TIL
CD8+_CD103+
TGCGCCAGCAGCCAAGCTTCGGGACTAGTCTTGAACACCGGG






GAGCTGTTTTTT





2884
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGCCGTGGGGGGATACGCAGTATTTT





2885
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTATACGGGAAGGTACGAGCAGTACTTC





2886
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGTTCCGGGAGTAGGGTACGAGCAGTACTTC





2887
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTATTTTGGGGCTCGAACACTGAAGCTTTCTTT





2888
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGCCGCCAGTTCCCGATGGAATGAGCAGTTCTTC





2889
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTACAAGGAGATACGCAGTATTTT





2890
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTGGGGGTCCATGAGCAGTTCTTC





2891
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGCAAATCTACCCACAGATACGCAGTATTTT





2892
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGACGGAGGGGACACAGATACGCAGTATTTT





2893
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAATCTGTTTCCTACGAGCAGTACTTC





2894
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCATGCCTCCTCTGGAAACACCATATATTTT





2895
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGAATTAGGGGGGCAGCCCCAGCATTTT





2896
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCGCGGCCCACAGATACGCAGTATTTT





2897
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACCAGCCCAGGGGGCCGGGGCTACACCTTC





2898
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGCCGGAGGATTCACCCCTCCACTTT





2899
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTAGGTTTACAGGCCAATTATGGCTACACCTTC





2900
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGCGATCAGGGCCTCAGGGCTACACCTTC





2901
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGCACTAGCACATGAGCAGTTCTTC





2902
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCCCATAGGACAGGGTCAGATCAGCCCCAGCATTTT





2903
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTACAGGAGGGGTCGAGCAGTACTTC





2904
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGATCTAGCGGGAGGGCCTAGCACAGATACG






CAGTATTTT





2905
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTCTACAGGGGATATGGCTACACCTTC





2906
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATTCGGGAGCTGAAGCTTTCTTT





2907
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAATGGGGGGCCTGAACACTGAAGCTTTCTTT





2908
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAGACCGGGAGCGGTCCCTACGAGCAGTACTTC





2909
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGGCTAACGTGGACAGATACCTACGAGCAGTACTTC





2910
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGAGACTGGCAGTCACTACAATGAGCAGTTCTTC





2911
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGCTAAAAGACTAGCGGTCTACAATGAGCAGTTCTTC





2912
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACCTGGGGCAAGAGACCCAGTACTTC





2913
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAAGAAGGACATCAAGAGACCCAGTACTTC





2914
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAACCAGGGGCTAGGCACTGAAGCTTTCTTT





2915
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGAGGAGACCCAGTACTTC





2916
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCACTTTATGGGGGGGGCAGTACAATGAGCAGTTCTTC





2917
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCTTTCCAGACTGAAGCTTTCTTT





2918
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAATATGGGCAGGGGGCGGCAACTAAT






GAAAAACTGTTTTTT





2919
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAAGGACAGATGGGACATGAACACTGAAGCTTTCTTT





2920
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGGGACGGTGAGCAGTTCTTC





2921
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTATTCCGGGGGGAATGAGCAGTTCTTC





2922
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACAGGGGCTCCAATCAGCCCCAGCATTTT





2923
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCACAGGGGGGAACACTGAAGCTTTCTTT





2924
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGCGACAGGGGGGTACAATGAGCAGTTCTTC





2925
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTACTAGGGGGGACTAGCGGGAGGAATGA






GCAGTTCTTC





2926
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACGGTTTTAGCGATGAGCAGTTCTTC





2927
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCTTAAACAGGGCAAATGAGCAGTTCTTC





2928
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCGCACCCGGGACGTACACTGAAGCTTTCTTT





2929
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTAGGGGGGCGTGGGGGGCGAACACTGAAGCTTTCTTT





2930
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTTTGGGCTAGCGGACGAGAGACCCAGTACTTC





2931
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATCACGGGGTCACCTACGAGCAGTACTTC





2932
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCACGTCGGGGACGGCTACACCTTC





2933
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGAGATCGCACAGAGAATTCACCCCTCCACTTT





2934
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCATCAGCGCTAGCGGGGGGGCAGGGTACAATGAGCAGTTCTTC





2935
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAGATCAAAGGGGTGACCTAAATGAGCAGTTCTTC





2936
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCTGAGGACGGTCGGAATGAAAAACTGTTTTTT





2937
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGCGCGTACAGGACTCCAAGAGACCCAGTACTTC





2938
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTCAGAAGGGGTCGGTACGAGCAGTACTTC





2939
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAGGGATGGTCGGTCAATGAGCAGTTCTTC





2940
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGTCGGGGAGAGGGTCAGCCCCAGCATTTT





2941
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGACGGAGTCTCGGAGCAGTACTTC





2942
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCACATGACAAACTTCGACTCTGGAAACACCATATATTTT





2943
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGAAGAAGGGCTAGCGGGAGGAGGAGTAGATACGCAGTATTTT





2944
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTACCCCTGGGACAGGGGGATACGAGCAGTACTTC





2945
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGTAGGCGAAGAGACCCAGTACTTC





2946
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTCTGGACCTGACAGGGCCGAGCAGTACTTC





2947
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCAGGACTAGCGGGGCCCCCCAATGAGCAGTTCTTC





2948
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGACCCGCGGGGGGCCCTTACAATGAGCAGTTCTTC





2949
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCTAGGGGCCGAGCGGGTGGATGAGCAGTTCTTC





2950
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAAGATTGGTCTTGACAGGCCCTAATGAAAAA






CTGTTTTTT





2951
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCTCGGACAGGGGAGTGGCCGGGGAGCTGTTTTTT





2952
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTACTCGACAGGGGGGGTTAGTACCGGGGAGC






TGTTTTTT





2953
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGCAGATCGACAGGGGGGGGCACTGAAGCTTTCTTT





2954
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCGTCCTGGGACAGAAGGGTAAAGAGACCCAGTACTTC





2955
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCGAGGGGACTCAGCTCCTACAATGAGCAGTTCTTC





2956
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTGGACAGGAGTCACCGGGGAGCTGTTTTTT





2957
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGCGGGGACCTGAGCAGTTCTTC





2958
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGGATCAGGGGTTGAAGCTTTCTTT





2959
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCAGAGACTAGCAGACTACAATGAGCAGTTCTTC





2960
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATGGTACTAGCGGGGCCCCCTATGAGCAGTTCTTC





2961
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCACCCCTGCGGGGTTCCATAATGAAAAGCTGTTTTTT





2962
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTGAAGACAGGGCCGGCCAAGAGACCCAGTACTTC





2963
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTAGCCTCGGGCGGGGACTCCCAAGAGACCCAGTACTTC





2964
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATGCCGGGGGATACTATGGCTACACCTTC





2965
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCTGCTCCACGGGCAGGACGCAAGAGACCCAGTACTTC





2966
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTTGGCTACGAGCAGTACTTC





2967
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGCGTTGGGGACAGGGGACTAAAAGATACGCAGTATTTT





2968
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCCCAGGGAGTGGGGCTGGCTATGGCTACACCTTC





2969
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTTGGGGCTAGCGGGGCGCCCCTCTGAGCAGTTCTTC





2970
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCACCAGTGATGCCGCAACAGGGCGGTGGACCGGGGAGCTGTTTTTT





2971
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGTTTACATACTGGACTTACCTCCGAAGAGCAGTACTTC





2972
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCAGTGCTAGAGATACAGGACTAGAATACAATGAGCAGTTCTTC





2973
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGCGCCAGCAGCCAAGATTCGGGCTCTGGGGCCAACGTCCTGACTTTC





2974
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTAGGGGGGTTGGGCCGGGGGAGCAGTACTTC





2975
96-TL684-TIL-CD8+_CD103−
TIL
CD8+_CD103−
TGTGCCAGCAGCTCCCGGGACAGGGCCTACGAGCAGTACTTC
















TABLE 7







Specifically enriched genes in each 10x cluster














padj. value.
padj. value.
padj. val ue.
padj. value.
Min.
padj_Min.



vs. V
vs. IV
vs. III
vs. II
log2FC
log2FC

















FOS
NA
1.66E−82
6.63E−42
5.90E−54
2.620190055
6.63E−42


TNFAIP3
NA
1.58E−77
1.79E−131
7.53E−21
2.265213659
7.53E−21


JUNB
NA
1.68E−61
1.26E−30
4.72E−23
2.21557016
1.26E−30


ZFP36
NA
7.43E−53
2.03E−91
3.48E−29
2.918441617
3.48E−29


FOSB
NA
2.20E−50
5.67E−17
2.48E−29
1.769295602
5.67E−17


TSC22D3
NA
8.38E−58
 3.21E−132
1.27E−13
1.269885151
1.27E−13


KLF6
NA
7.95E−52
6.29E−50
1.66E−10
1.350296963
1.66E−10


IL7R
NA
1.63E−47
1.84E−43
1.50E−82
2.602331444
1.84E−43


ANXA1
NA
7.69E−32
6.33E−21
8.62E−45
2.064086901
6.33E−21


RGCC
NA
1.04E−45
1.06E−42
0.000401616
1.12087222
0.000401616


VIM
NA
1.42E−24
4.76E−46
1.08E−29
2.631230111
1.42E−24


NFKBIA
NA
2.17E−37
6.30E−24
2.97E−14
1.996504035
6.30E−24


GPR183
NA
1.81E−45
3.88E−52
3.00E−59
2.419298421
3.88E−52


FTH1
NA
7.43E−53
9.06E−85
1.81E−43
2.200051083
1.81E−43


ZFP36L2
NA
1.14E−22
1.90E−88
2.06E−21
1.884610725
2.06E−21


CD69
NA
1.51E−35
1.49E−56
2.18E−07
1.035505091
2.18E−07


IER2
NA
8.74E−21
0.002093792
7.85E−16
0.857291392
0.002093792


CXCR4
NA
2.28E−26
 1.00E−120
5.50E−10
1.193942163
5.50E−10


REL
NA
2.13E−21
3.31E−19
2.91E−09
1.369002869
2.91E−09


RORA
NA
3.93E−17
5.06E−36
7.78E−13
1.87840742
3.93E−17


BTG2
NA
7.14E−22
0.000122431
6.57E−11
0.873222337
0.000122431


MYADM
NA
7.69E−32
2.44E−27
4.11E−24
1.578811291
2.44E−27


ANKRD28
NA
1.16E−15
2.03E−19
7.49E−05
0.263208789
7.49E−05


MCL1
NA
1.50E−13
4.28E−26
2.30E−05
1.238637333
2.30E−05


PNRC1
NA
2.82E−10
1.70E−17
0.003629103
0.945575052
0.003629103


TUBA1A
NA
3.17E−17
9.60E−08
4.14E−05
0.887158592
4.14E−05


CD44
NA
6.64E−11
3.37E−27
9.28E−09
1.629746169
6.64E−11


YPEL5
NA
1.92E−15
2.53E−22
1.76E−06
1.224033473
1.76E−06


PTGER4
NA
1.50E−13
2.38E−22
6.44E−05
1.204635078
6.44E−05


IFITM2
NA
1.09E−09
2.02E−05
2.34E−10
1.08193307
2.02E−05


SELK
NA
3.40E−12
9.41E−13
0.005753149
0.727586968
0.005753149


S100A10
NA
2.56E−09
1.78E−16
2.25E−57
1.521791897
2.56E−09


PABPC1
NA
1.87E−47
1.78E−30
5.02E−27
0.884586386
1.78E−30


LMNA
NA
1.12E−30
1.57E−40
1.29E−28
1.437010868
1.12E−30


LEPROTL1
NA
3.23E−10
1.68E−10
5.28E−06
1.061103392
5.28E−06


SAT1
NA
4.69E−07
1.98E−05
1.11E−15
0.095828191
1.98E−05


TOBI
NA
3.73E−12
5.49E−21
1.45E−15
1.307119171
3.73E−12


FUS
NA
1.06E−08
4.19E−06
1.89E−05
0.327001458
1.89E−05


ODF2L
NA
6.35E−09
1.12E−08
2.90E−05
1.009673232
2.90E−05


IDS
NA
3.82E−08
8.49E−11
1.21E−05
1.139317416
1.21E−05


DDX3X
NA
8.31E−09
4.48E−07
0.000894747
0.474753873
0.000894747


SYTL3
NA
1.84E−06
5.40E−17
0.000253146
0.747116369
0.000253146


RP11-138A9
NA
5.39E−08
2.42E−06
9.96E−09
0.863328487
2.42E−06


FAM46C
NA
5.06E−13
2.80E−34
3.51E−05
0.847977473
3.51E−05


CRIP1
NA
0.001624171
2.75E−10
0.009834552
0.94600557
0.009834552


ELF1
NA
0.000138316
2.05E−07
2.46E−05
0.598563385
2.46E−05


AHNAK
NA
6.01E−08
6.41E−16
2.73E−11
1.007746639
6.01E−08


HIST1H4C
NA
1.49E−06
7.72E−07
3.78E−08
0.930026463
7.72E−07


SDCBP
NA
4.06E−08
1.41E−06
0.000141025
0.257116448
0.000141025


RPLP0
NA
0.008779115
0.003171103
1.72E−11
0.882868721
0.003171103


ARL4A
NA
6.33E−13
3.74E−12
2.22E−08
0.84659306
3.74E−12


GPR65
NA
0.000107073
3.79E−11
0.001590716
0.701424179
0.001590716


H3F3B
NA
4.72E−10
1.53E−16
2.42E−09
0.826890053
2.42E−09


IRF1
NA
1.23E−06
0.000197943
2.99E−11
0.665502687
0.000197943


RSL24D1
NA
6.36E−06
4.22E−06
0.003507975
0.570895999
0.003507975


EIF1
NA
1.02E−17
2.59E−48
0.002079569
0.347194993
0.002079569


JMJD1C
NA
2.15E−06
0.000384594
0.001770106
0.69361394
0.000384594


VAMP2
NA
1.04E−05
4.00E−11
4.52E−06
0.845807406
4.52E−06


YWHAZ
NA
0.001437739
2.04E−10
0.000145732
0.917970678
0.001437739


HOPX
NA
0.000188042
8.77E−10
6.66E−27
0.91334475
0.000188042


FOSL2
NA
2.65E−10
7.72E−18
4.66E−08
0.749791815
4.66E−08


PIK3R1
NA
0.003094919
1.94E−12
4.00E−33
0.891986772
0.003094919


EML4
NA
0.002137792
1.53E−23
3.09E−10
0.842854321
0.002137792


BTG1
NA
7.69E−32
8.31E−60
5.26E−21
0.705782569
5.26E−21


CD55
NA
2.03E−08
1.07E−10
3.39E−13
0.814799096
2.03E−08


YBX3
NA
2.26E−09
1.19E−11
1.70E−13
0.806710572
1.19E−11


PDE4B
NA
3.77E−06
9.92E−08
1.43E−05
0.806626131
3.77E−06


NFE2L2
NA
1.53E−06
5.49E−09
1.66E−06
0.753039458
1.66E−06


KLRC1
NA
1.26E−05
4.75E−12
5.03E−13
0.800761769
1.26E−05


RNF125
NA
2.54E−08
2.56E−15
0.002012095
0.634122788
0.002012095


RPS20
NA
6.54E−05
6.17E−15
8.67E−26
0.778950288
6.54E−05


MT-ND1
NA
0.007093368
3.72E−08
2.58E−05
0.775046717
0.007093368


LYAR
NA
1.24E−05
7.84E−05
3.42E−31
0.674717264
7.84E−05


AC016831.7
NA
1.68E−08
3.03E−12
6.50E−06
0.769830524
1.68E−08


CCNL1
NA
0.004250662
0.000149318
0.000568016
0.663748163
0.000568016


RPS5
NA
0.003560905
6.62E−08
1.93E−12
0.751571098
0.003560905


SVIP
NA
0.001454861
0.002421377
7.73E−05
0.638646302
0.002421377


RPS3A
NA
4.69E−07
9.96E−18
3.51E−18
0.7292654
4.69E−07


RPL9
NA
3.11E−05
1.61E−14
1.60E−21
0.713109274
3.11E−05


PDCD4
NA
0.007227659
0.001269895
3.29E−08
0.696493816
0.007227659


FAM177A1
NA
0.001073118
0.000765204
1.63E−05
0.65792054
0.000765204


SBDS
NA
3.73E−05
2.70E−07
2.70E−06
0.675014647
3.73E−05


SNRPG
NA
5.61E−05
0.007121432
5.02E−06
0.288220813
5.02E−06


TUBA1B
NA
0.005875971
0.00159609
0.005870285
0.56870654
0.005870285


VPS37B
NA
2.90E−06
6.37E−17
0.002169337
0.466707881
0.002169337


CDC42SE2
NA
0.000318843
0.009794205
9.76E−07
0.426037826
0.009794205


RPL17
NA
0.000630659
0.001422255
1.12E−08
0.536793345
0.001422255


PARP8
NA
0.000786244
6.64E−06
6.32E−08
0.630954581
0.000786244


STAT4
NA
0.002183591
1.07E−12
6.36E−06
0.629984817
0.002183591


TAGLN2
NA
0.008068302
2.55E−07
4.11E−10
0.61816233
0.008068302


KDM6B
NA
7.63E−09
9.02E−07
0.003503394
0.469156481
0.003503394


CSRNP1
NA
1.15E−08
3.86E−07
0.006290294
0.347032927
0.006290294


SERPINB9
NA
6.80E−05
0.001015828
0.005581702
0.265611197
0.005581702


MT-ND2
NA
6.27E−05
2.78E−22
1.77E−11
0.561392112
6.27E−05


MT-CO3
NA
0.001084082
7.15E−23
7.60E−05
0.470003688
7.60E−05


RPL14
NA
1.33E−05
9.62E−32
1.57E−29
0.541894813
1.33E−05


HNRNPUL1
NA
0.001475459
0.000513418
0.00070165
0.531020853
0.000513418


SKIL
NA
0.002695606
2.83E−06
4.92E−07
0.535590273
0.002695606


EIF1AX
NA
0.002892936
0.001131648
2.73E−05
0.522532099
0.002892936


PERP
NA
0.00018877
7.16E−08
9.54E−16
0.498498324
0.00018877


DNAJB9
NA
3.01E−05
1.43E−07
0.000128016
0.489115584
0.000128016


TSC22D2
NA
1.16E−06
0.005292869
0.000113539
0.33233768
0.005292869


CCND3
NA
0.001133665
0.000122431
2.23E−05
0.488870983
0.001133665


FRMD4B
NA
0.000908681
0.000501564
9.85E−09
0.445221505
0.000501564


RP11-138A9
NA
0.005651856
2.16E−07
8.35E−05
0.474233683
0.005651856


ATP2B1
NA
0.001485717
1.11E−06
3.36E−07
0.46857568
0.001485717


RTN4
NA
0.000805944
0.003453303
7.79E−05
0.375509687
7.79E−05


CD48
NA
0.009150862
0.000664974
7.86E−07
0.418732891
0.009150862


DSTN
NA
0.002904998
0.000186724
1.06E−15
0.417567773
0.002904998


PSME4
NA
0.008174178
0.001185436
0.006823469
0.387246929
0.006823469


FXYD2
NA
1.92E−07
8.51E−08
3.74E−17
0.404561207
8.51E−08


RPS4X
NA
0.000924117
1.20E−10
3.85E−28
0.381946846
0.000924117


MAP3K8
NA
0.000175794
6.51E−05
0.000127269
0.216967299
0.000127269


AUTS2
NA
0.005686021
4.23E−06
2.46E−09
0.371972221
0.005686021


RPL3
NA
0.001912992
1.99E−08
1.11E−24
0.361285551
0.001912992


MYBL1
NA
0.004982183
1.64E−06
6.07E−17
0.353506755
0.004982183


MIR29A
NA
2.01E−06
1.49E−05
0.00070165
0.312081318
1.49E−05


RPS8
NA
0.005759353
7.12E−15
2.10E−26
0.321078519
0.005759353


PTMA
NA
6.68E−12
3.30E−31
3.15E−06
0.173349586
3.15E−06


EEF1A1
NA
0.001809716
1.53E−25
2.68E−37
0.28930546
0.001809716


RPS12
NA
6.76E−08
2.50E−24
4.85E−60
0.258381871
6.76E−08


CLU
NA
0.002664342
9.28E−05
3.65E−12
0.258347767
0.002664342


RPS14
NA
5.25E−05
1.75E−14
3.61E−47
0.239824473
5.25E−05


RPL32
NA
3.82E−05
3.88E−13
3.93E−40
0.214370857
3.82E−05


RPS25
NA
0.000648948
1.87E−11
2.53E−26
0.206461064
0.000648948


RPL39
NA
0.000565095
1.74E−16
2.80E−43
0.195344507
0.000565095


RPL34
NA
0.000820145
7.92E−18
2.10E−32
0.18751242
0.000820145


RPL10
NA
0.000501243
1.98E−14
7.53E−35
0.184865229
0.000501243


EMB
NA
0.004669363
0.000271315
9.68E−05
0.165589987
0.004669363


RPLP2
NA
0.009961665
1.87E−26
3.62E−61
0.154274807
0.009961665


RPS29
NA
0.000799702
1.51E−28
3.69E−59
0.143164341
0.000799702


RAP1B
NA
0.006692062
0.002021216
2.97E−12
0.066991093
0.006692062


CREM
0.000637878
2.23E−13
7.25E−17
NA
0.16411119
0.000637878


SAMSN1
4.40E−06
3.48E−07
3.53E−13
NA
0.249849391
4.40E−06


SRGN
1.31E−06
4.57E−13
6.71E−21
NA
0.037430009
1.31E−06


SRSF5
1.90E−07
1.46E−08
3.95E−12
NA
0.035995217
1.90E−07


BIRC3
0.000244594
3.20E−09
0.002259756
NA
0.410890215
0.000244594


PHLDA1
9.04E−14
1.41E−29
3.04E−21
NA
1.460838105
9.04E−14


STAT3
2.48E−14
2.67E−12
4.05E−09
NA
1.210310952
2.48E−14


ETS1
3.31E−19
0.001454482
2.00E−15
NA
1.228327744
3.31E−19


ETV1
3.83E−21
9.49E−05
0.001411419
NA
0.477436057
0.001411419


NEAT1
2.24E−25
7.06E−13
2.70E−05
NA
1.108735317
2.70E−05


KRT86
5.53E−60
1.68E−26
3.58E−28
NA
1.991594638
3.58E−28


AKAP5
2.08E−34
8.64E−11
0.000495119
NA
0.737927495
0.000495119


HLA-DQA1
4.38E−33
1.38E−06
1.21E−07
NA
0.973184844
1.21E−07


CXCL13
 1.21E−146
2.32E−69
7.62E−40
NA
3.126576592
7.62E−40


CHN1
7.22E−65
3.28E−21
2.81E−27
NA
1.8586028
3.28E−21


TNIP3
2.53E−28
1.10E−08
3.42E−05
NA
0.96911344
3.42E−05


TIGIT
4.29E−61
1.12E−22
8.59E−14
NA
1.790082066
8.59E−14


LYST
1.57E−24
1.95E−05
1.25E−08
NA
1.197928623
1.95E−05


CTSW
5.45E−23
0.000690254
3.98E−07
NA
1.430011984
3.98E−07


HAVCR2
6.29E−78
2.02E−26
4.86E−12
NA
1.56926631
4.86E−12


AMICA1
2.10E−32
2.93E−06
1.15E−12
NA
1.557097802
2.93E−06


ALOX5AP
1.73E−26
0.003772
8.85E−11
NA
1.181535785
0.003772


AC002331.1
2.87E−63
3.61E−24
6.17E−11
NA
1.763215521
6.17E−11


AC092580.4
5.63E−85
1.60E−19
1.44E−29
NA
1.490695634
1.60E−19


SIRPG
4.37E−37
0.000329935
2.45E−05
NA
0.960381084
2.45E−05


HLA-DRA
2.43E−50
2.04E−11
1.27E−10
NA
1.700525516
1.27E−10


CD74
7.78E−36
2.60E−05
2.48E−06
NA
1.493444518
2.48E−06


SRGAP3
1.82E−43
6.23E−11
4.12E−08
NA
1.377296108
4.12E−08


HLA-DPA1
1.73E−29
0.003946769
5.07E−05
NA
1.105636301
0.003946769


AC069363.1
4.52E−43
3.02E−08
1.52E−05
NA
1.0532031
1.52E−05


RBPJ
5.99E−97
2.06E−33
6.86E−37
NA
3.430066413
6.86E−37


NKG7
7.63E−23
0.00490394
0.003416563
NA
0.615222066
0.00490394


HLA-DPB1
2.31E−33
0.00399397
2.47E−07
NA
1.17285258
0.00399397


ENTPD1
 7.75E−118
1.44E−25
5.10E−18
NA
2.237692196
5.10E−18


HLA-DRB1
1.08E−55
1.10E−09
9.61E−10
NA
1.867004057
9.61E−10


GZMA
1.09E−42
0.003619451
2.76E−10
NA
0.717131097
0.003619451


RGS1
5.90E−76
1.22E−46
 2.72E−103
NA
2.731407573
5.90E−76


RP11-347P5.
0.000420226
0.001942401
3.51E−07
NA
0.2373155
0.000420226


CLEC2B
0.000244272
3.65E−05
1.16E−11
NA
0.557073889
0.000244272


RNF19A
6.01E−20
1.56E−16
1.25E−26
NA
1.534939563
6.01E−20


KRT81
5.98E−13
8.34E−05
0.003052277
NA
0.376158507
0.003052277


RP11-279F6.
9.44E−16
0.004695777
0.002043077
NA
0.353215743
0.004695777


TNS3
1.13E−14
1.48E−09
0.003798297
NA
0.347046461
0.003798297


MAST4
1.69E−14
0.000994731
0.000913076
NA
0.599970917
0.000913076


LAYN
2.17E−35
1.42E−17
9.39E−10
NA
0.858923999
9.39E−10


TNFRSF18
1.34E−22
2.61E−12
2.91E−05
NA
0.651260673
2.91E−05


VCAM1
3.43E−31
3.78E−15
1.36E−07
NA
0.892616431
1.36E−07


AHI1
6.00E−25
1.59E−09
4.53E−05
NA
0.809032683
4.53E−05


ACP5
5.05E−18
3.58E−05
0.00381038
NA
0.699716551
0.00381038


TNFRSF9
8.16E−53
1.44E−25
2.38E−09
NA
1.010907938
2.38E−09


RAB27A
9.38E−19
0.000457807
0.009467496
NA
0.863443141
0.009467496


SLA
7.06E−20
0.000223607
0.007230644
NA
1.008695747
0.007230644


ITGAE
1.44E−23
8.44E−09
1.16E−06
NA
1.404487179
1.16E−06


CRTAM
1.72E−34
1.03E−12
5.22E−08
NA
1.273678799
5.22E−08


CTLA4
2.95E−108
5.96E−57
8.96E−54
NA
3.634958175
8.96E−54


CCL3
3.08E−42
6.42E−22
1.83E−14
NA
2.186450539
1.83E−14


IFNG
3.98E−40
1.24E−19
6.99E−09
NA
1.926260214
6.99E−09


CYSLTR1
0.003483664
0.00846443
0.000542256
NA
0.26981673
0.003483664


HLA-A
7.70E−07
0.000575743
2.83E−16
NA
0.222076438
0.000575743


RGS13
4.29E−09
1.12E−07
4.12E−08
NA
0.345333169
4.12E−08


IL26
2.58E−06
3.16E−05
1.41E−05
NA
0.335981266
1.41E−05


IL17A
4.68E−09
4.38E−06
2.96E−07
NA
0.387444572
2.96E−07


MYO1E
1.12E−08
0.000787688
3.80E−09
NA
0.356887185
0.000787688


TNFSF4
5.04E−09
1.30E−05
0.000906747
NA
0.310849396
0.000906747


AFAP1L2
1.97E−13
4.89E−06
3.55E−05
NA
0.40411992
3.55E−05


AGFG1
1.32E−06
0.000172958
0.000146563
NA
0.425946297
0.000146563


CSGALNACT1
2.21E−09
0.001466406
0.000268602
NA
0.385809284
0.000268602


CBLB
3.42E−05
0.005678513
0.003085899
NA
0.581796519
3.42E−05


PDCD1
2.72E−06
0.003085605
0.008364075
NA
0.526289264
0.008364075


CLECL1
5.40E−08
2.52E−05
1.39E−09
NA
0.762149336
2.52E−05


ARID5B
4.13E−07
3.93E−06
1.48E−06
NA
0.794915971
4.13E−07


ARL3
1.65E−13
0.002114441
0.005412229
NA
0.509782342
0.005412229


SNX9
2.86E−11
1.39E−08
4.92E−09
NA
0.768488877
4.92E−09


NR3C1
1.50E−06
5.68E−06
3.96E−07
NA
0.874460583
1.50E−06


PRDM1
5.23E−12
0.00266954
1.20E−06
NA
0.88275225
5.23E−12


ICOS
3.02E−06
1.22E−09
3.50E−11
NA
0.88604441
3.02E−06


MIR155HG
1.22E−14
3.12E−05
1.48E−06
NA
0.693045083
1.48E−06


CD7
1.79E−10
0.003289914
2.94E−06
NA
0.916916051
1.79E−10


PTPN22
2.33E−09
0.001275942
3.66E−10
NA
0.968242771
2.33E−09


CALR
5.60E−08
0.009999931
5.51E−05
NA
0.982686939
0.009999931


ID2
6.42E−16
0.000170191
3.77E−05
NA
0.875841563
3.77E−05


PRF1
1.75E−07
1.50E−05
0.002263138
NA
1.048524967
0.002263138


TOX
3.13E−20
6.37E−05
9.42E−11
NA
0.769197704
6.37E−05


GZMB
1.34E−06
3.51E−10
5.32E−08
NA
1.221935285
1.34E−06


ZEB2
1.86E−10
9.42E−11
9.00E−15
NA
1.249618159
1.86E−10


PAG1
7.77E−15
1.26E−06
2.52E−05
NA
1.040188511
2.52E−05


KLRD1
1.12E−14
0.000204255
5.79E−06
NA
1.221275836
5.79E−06


CLEC2D
1.84E−16
1.74E−07
1.74E−12
NA
1.425987745
1.84E−16


HLA-DRB5
1.53E−27
1.74E−06
2.66E−15
NA
1.098554982
1.74E−06


ITM2A
2.55E−25
1.24E−09
6.71E−10
NA
1.681694597
6.71E−10


DUSP4
7.60E−63
2.03E−45
1.70E−46
NA
3.575838252
1.70E−46


PPP1R15A
2.41E−11
3.42E−18
NA
2.24E−11
0.464034832
2.41E−11


JUN
1.87E−26
3.15E−65
NA
9.37E−16
1.180205182
1.87E−26


DNAJA1
1.69E−36
1.94E−44
NA
8.68E−31
1.876239108
1.69E−36


GADD45B
0.0001058
1.82E−07
NA
2.73E−21
0.43259821
0.0001058


HSP90AB1
2.58E−56
1.36E−40
NA
4.55E−37
1.994368885
2.58E−56


NEU1
9.13E−08
1.02E−21
NA
2.18E−10
0.769179396
9.13E−08


HSPA6
 8.48E−145
5.35E−76
NA
8.16E−76
3.408403253
5.35E−76


AC006129.2
7.48E−27
6.94E−07
NA
0.000474985
0.931576889
0.000474985


HSP90AA1
 4.56E−228
 9.78E−136
NA
 7.31E−122
2.867834259
9.78E−136


HSPE1
 1.66E−152
2.75E−77
NA
5.06E−70
3.80539206
2.75E−77


HSPB1
 1.44E−204
 8.65E−101
NA
8.71E−71
4.39192139
 8.65E−101


HSPA1B
0
 1.59E−166
NA
 3.66E−167
5.75800638
 1.59E−166


HSPA1A
0
 5.20E−156
NA
 3.71E−173
5.638622319
 5.20E−156


MRPL18
1.29E−05
7.33E−05
NA
7.65E−06
0.464014474
1.29E−05


HIST2H2AA3
0.00327089
3.93E−09
NA
4.40E−06
0.475956969
0.00327089


C17orf67
6.60E−10
0.00308263
NA
0.001284567
0.380442359
0.00308263


GPR113
8.30E−17
3.89E−08
NA
1.22E−07
0.499732558
3.89E−08


TRA2B
1.17E−05
6.18E−06
NA
1.54E−07
0.606306382
1.17E−05


TCP1
6.70E−08
0.002311184
NA
0.000213795
0.530155811
0.002311184


HSD17B7
2.72E−13
0.000222937
NA
0.00019165
0.461103562
0.000222937


NUDT4
1.26E−05
1.06E−06
NA
8.03E−06
0.769380579
1.26E−05


NR4A1
2.03E−10
2.32E−16
NA
5.32E−08
0.865822254
2.03E−10


DNAJA4
1.11E−25
4.91E−15
NA
9.33E−12
0.803134197
4.91E−15


MB21D1
1.14E−18
1.31E−05
NA
5.04E−12
0.650130282
1.31E−05


SERPIN H1
1.20E−28
6.61E−15
NA
5.04E−12
0.829860665
6.61E−15


DONSON
1.03E−14
0.002853788
NA
2.71E−15
0.736069594
0.002853788


ZFAND2A
4.16E−20
6.69E−16
NA
4.41E−12
1.066658182
4.16E−20


TSPYL2
1.28E−08
3.62E−16
NA
1.85E−05
1.080709987
1.28E−08


UGP2
1.71E−15
5.63E−06
NA
0.000844439
0.884934197
5.63E−06


MXD1
5.46E−20
1.92E−15
NA
2.65E−09
1.069026257
2.65E−09


FTL
1.02E−28
1.66E−13
NA
6.54E−22
1.169331909
1.02E−28


UBB
1.63E−29
1.32E−20
NA
1.47E−10
1.24307025
1.63E−29


BAG3
1.73E−45
2.85E−32
NA
4.82E−18
1.224624597
4.82E−18


CHORDC1
2.08E−27
7.44E−17
NA
1.92E−09
1.268567875
1.92E−09


UBC
8.93E−39
5.84E−34
NA
1.41E−05
0.902441099
1.41E−05


DNAJB4
5.52E−56
1.09E−42
NA
6.21E−28
2.038178703
1.09E−42


CACYBP
1.19E−52
2.35E−34
NA
1.53E−29
2.116008605
2.35E−34


HSPH1
7.63E−84
3.15E−65
NA
8.68E−50
2.988971735
3.15E−65


HSPA8
3.87E−75
2.06E−53
NA
1.54E−52
3.185712724
2.06E−53


HSPD1
5.83E−89
6.15E−53
NA
1.72E−65
2.942737466
6.15E−53


RGS2
1.16E−83
1.09E−61
NA
0.003360863
1.196385902
0.003360863


DNAJB1
 1.15E−221
 1.35E−148
NA
2.53E−160
4.824072522
 1.35E−148


CD52
2.69E−08
NA
3.20E−06
5.80E−05
0.484125919
2.69E−08


ATP5E
1.03E−12
NA
0.000456224
0.00057577
0.433144665
0.000456224


IL32
6.33E−19
NA
9.55E−06
4.69E−05
0.480236359
9.55E−06









REFERENCES



  • 1. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960-4 (2006).

  • 2. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492-499 (2011).

  • 3. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer 12, 252-264 (2012).

  • 4. Robert, C. et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 372, 150419053123009 (2015).

  • 5. Simon, S. & Labarriere, N. PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy? Oncolmmunology 7, e1364828 (2017).

  • 6. June, C. H., Warshauer, J. T. & Bluestone, J. A. Is autoimmunity the Achilles' heel of cancer immunotherapy? Nature Medicine 23, 540-547 (2017).

  • 7. Nizard, M. et al. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat. Commun. 8, 15221 (2017).

  • 8. Malik, B. T. et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2, (2017).

  • 9. Ganesan, A.-P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940-950 (2017).

  • 10. Djenidi, F. et al. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol. 194, 3475-86 (2015).

  • 11. Schenkel, J. M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886-97 (2014).

  • 12. Mackay, L. K. et al. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294-301 (2013).

  • 13. Hombrink, P. et al. Programs for the persistence, vigilance and control of human CD8+lung-resident memory T cells. Nat. Immunol. 17, 1467-1478 (2016).

  • 14. Milner, J. J. et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 2017 (2017). doi:10.1038/nature24993

  • 15. Cheuk, S. et al. CD49a Expression Defines Tissue-Resident CD8(+) T Cells Poised for Cytotoxic Function in Human Skin. Immunity 46, 287-300 (2017).

  • 16. Shwetank et al. Maintenance of PD-1 on brain-resident memory CD8 T cells is antigen independent. Immunol. Cell Biol. 95, 953-959 (2017).

  • 17. Prasad, S. et al. The PD-1: PD-L1 pathway promotes development of brain-resident memory T cells following acute viral encephalitis. J. Neuroinflammation 14, 82 (2017).

  • 18. Collins, S. et al. Regulation of CD4+ and CD8+ Effector Responses by Sprouty-1. PLoS One 7, e49801 (2012).

  • 19. Chan, C. J. et al. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat. Immunol. 15, 431-438 (2014).

  • 20. Janakiram, M., Chinai, J. M., Zhao, A., Sparano, J. A. & Zang, X. HHLA2 and TMIGD2: new immunotherapeutic targets of the B7 and CD28 families. doi:10.1080/2162402X.2015.1026534

  • 21. Utting, O. et al. Immune Functions in Mice Lacking Clnk, an SLP-76-Related Adaptor Expressed in a Subset of Immune Cells. Mol. Cell. Biol. 24, 6067-6075 (2004).

  • 22. Rapaport, A. S. et al. The Inhibitory Receptor NKG2A Sustains Virus-Specific CD8+ T Cells in Response to a Lethal Poxvirus Infection. Immunity 43, 1112-1124 (2015).

  • 23. Pallett, L. J. et al. IL-2(high) tissue-resident T cells in the human liver: Sentinels for hepatotropic infection. J. Exp. Med. 214, 1567-1580 (2017).

  • 24. Zheng, C. et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell 169, 1342-1356.e16 (2017).

  • 25. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782-95 (2013).

  • 26. Honey, K. CCL3 and CCL4 actively recruit CD8+ T cells. Nat. Rev. Immunol. 6, 427 (2006).

  • 27. Croft, M., So, T., Duan, W. & Soroosh, P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev. 229, 173-91 (2009).

  • 28. Kniemeyer, O., Brakhage, A. A., Ferreira, F., Wallner, M. & Sawitzki, B. Regulatory T Cell Specificity Directs Tolerance versus Allergy against Aeroantigens in Humans. Cell 167, 1067-1078.e16 (2016).

  • 29. Macosko, E. Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 161, 1202-1214 (2015).

  • 30. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-6 (2014).

  • 31. Patil, V. S. et al. Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Sci. Immunol 3, (2018).

  • 32. Emgård, J. et al. Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation. Immunity 48, 120-132.e8 (2018).

  • 33. Aranda, J. F. et al. MYADM regulates Rac1 targeting to ordered membranes required for cell spreading and migration. Mol. Biol. Cell 22, 1252-1262 (2011).

  • 34. Nieminen, M. et al. Vimentin function in lymphocyte adhesion and transcellular migration. Nat. Cell Biol. 8, 156-162 (2006).

  • 35. Tachibana, M. et al. Ankyrin repeat domain 28 (ANKRD28), a novel binding partner of DOCK180, promotes cell migration by regulating focal adhesion formation. Exp. Cell Res. 315, 863-876 (2009).

  • 36. Stinchcombe, J. C. et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol. 152, 825-833 (2001).

  • 37. Franciszkiewicz, K. et al. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions. Cancer Res. 73, 617-628 (2013).

  • 38. Yang, C. Y. et al. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat. Immunol. 12,1221-1229 (2011).

  • 39. Cui, W., Liu, Y., Weinstein, J. S., Craft, J. & Kaech, S. M. An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35, 792-805 (2011).

  • 40. Dominguez, C. X. et al. The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. J. Exp. Med. (2015). doi:10.1084/jem.20150186

  • 41. Muthusamy, N., Barton, K. & Leiden, J. M. Defective activation and survival of T cells lacking Ets-1 transcription factor. Nature 377, 639-642 (1995).

  • 42. Mackay, L. K. et al. Hobit and Blimp 1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science (80-.). 352, 459-463 (2016).

  • 43. Xiao, Y. et al. Protein Tyrosine Phosphatase SHP-1 Modulates T Cell Responses by Controlling Cbl-b Degradation. J. Immunol. 195, 4218-27 (2015).

  • 44. Huang, C.-Y. et al. DUSP4 deficiency enhances CD25 expression and CD4+ T-cell proliferation without impeding T-cell development. Eur. J. Immunol. 42, 476-488 (2012).

  • 45. Emadali, A. et al. Haploinsufficiency for NR3C1, the gene encoding the glucocorticoid receptor, in blastic plasmacytoid dendritic cell neoplasms. Blood 127, 3040-3053 (2016).

  • 46. Engler, J. B. et al. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc. Natl. Acad. Sci. 114, E181-E190 (2017).

  • 47. Prasad, S. et al. The PD-1: PD-L1 pathway promotes development of brain-resident memory T cells following acute viral encephalitis. J. Neuroinflammation 14, 82 (2017).

  • 48. Kim, S. V. et al. GPR15-Mediated Homing Controls Immune Homeostasis in the Large Intestine Mucosa. Science (80-.). 340, 1456-1459 (2013).

  • 49. Witherden, D. A. et al. The junctional adhesion molecule JAML is a costimulatory receptor for epithelial γδ T cell activation. Science (80-.). 329, 1205-1210 (2010).

  • 50. Bacon, C., Endris, V. & Rappold, G. A. The cellular function of srGAP3 and its role in neuronal morphogenesis. Mechanisms of Development 130, 391-395 (2013).

  • 51. Pardoll D M. The blockade of immune checkpoints in cancer immunotherapy. Nature reviews Cancer 2012; 12: 252-264.

  • 52. Drake C G, Lipson E J, Brahmer J R. Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nature reviews Clinical oncology 2014; 11: 24-37.

  • 53. Sharma P, Allison J P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015; 161: 205-214.

  • 54. Anusha-Preethi Ganesan J C, Oliver Wood, Eva M Garrido-Martin, Serena Chee, Toby Mellows, Daniela Samaniego-Castruita, Divya Singh, Gregory Seumois, Aiman Alzetani, Edwin Woo, Peter S. Friedmann, G J Thomas, Emma V King, Tilman Sanchez-Elsner, Pandurangan Vijayanand*#, Christian H Ottensmeier*, *joint senior authors #corresponding author. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nature Immunology—in press 2017;

  • 55. Engel I, Seumois G, Chavez L, Samaniego-Castruita D, White B, Chawla A, Mock D, Vijayanand P, Kronenberg M. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nat Immunol 2016; 17: 728-+.

  • 56. Schmiedel B J, Seumois G, Samaniego-Castruita D, Cayford J, Schulten V, Chavez L, Ay F, Sette A, Peters B, Vijayanand P. 17q21 asthma-risk variants switch CTCF binding and regulate IL-2 production by T cells. Nature communications 2016; 7:

  • 57. Seumois G, Chavez L, Gerasimova A, Lienhard M, Omran N, Kalinke L, Vedanayagam M, Ganesan A P V, Chawla A, Djukanovic R, Ansel K M, Peters B, et al. Epigenomic analysis of primary human T cells reveals enhancers associated with T(H)2 memory cell differentiation and asthma susceptibility. Nat Immunol 2014; 15: 777-+.

  • 58. LaFlam T N, Seumois G, Miller C N, Lwin W, Fasano K J, Waterfield M, Proekt I, Vijayanand P, Anderson M S. Identification of a novel cis-regulatory element essential for immune tolerance. J Exp Med 2015; 212: 1993-2002.

  • 59. Yue X, Trifari S, Aijo T, Tsagaratou A, Pastor W A, Zepeda-Martinez J A, Lio C J, Li X, Huang Y, Vijayanand P, Landesmaki H, Rao A. Control of Foxp3 stability through modulation of TET activity. J Exp Med 2016;

  • 60. Vijayanand P, Seumois G, Simpson L J, Abdul-Wajid S, Baumjohann D, Panduro M, Huang X, Interlandi J, Djuretic I M, Brown D R, Sharpe A H, Rao A, et al. Interleukin-4 Production by Follicular Helper T Cells Requires the Conserved 114 Enhancer Hypersensitivity Site V. Immunity 2012;

  • 61. Seumois G, Zapardiel-Gonzalo J, White B, Singh D, Schulten V, Dillon M, Hinz D, Broide D H, Sette A, Peters B, Vijayanand P. Transcriptional Profiling of Th2 Cells Identifies Pathogenic Features Associated with Asthma. Journal of Immunology 2016; 197: 655-664.

  • 62. Arlehamn C L, Seumois G, Gerasimova A, Huang C, Fu Z, Yue X, Sette A, Vijayanand P, Peters B. Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features. J Immunol 2014; 193: 2931-2940.

  • 63. Gerasimova A, Chavez L, Li B, Seumois G, Greenbaum J, Rao A, Vijayanand P, Peters B. Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data. PLoS One 2013; 8: e54359.

  • 64. Hinz D, Seumois G, Gholami A M, Greenbaum J A, Lane J, White B, Broide D H, Schulten V, Sidney J, Bakhru P, Oseroff C, Wambre E, et al. Lack of allergy to timothy grass pollen is not a passive phenomenon but associated with the allergen-specific modulation of immune reactivity. Clinical and Experimental Allergy 2016; 46: 705-719.

  • 65. Seumois G, Vijayanand P, Eisley C J, Omran N, Kalinke L, North M, Ganesan A P, Simpson L J, Hunkapiller N, Moltzahn F, Woodruff P G, Fahy J V, et al. An integrated nano-scale approach to profile miRNAs in limited clinical samples. Am J Clin Exp Immunol 2012; 1: 70-89.

  • 66. Vijayanand P, Durkin K, Hartmann G, Morjaria J, Seumois G, Staples K J, Hall D, Bessant C, Bartholomew M, Howarth P H, Friedmann P S, Djukanovic R. Chemokine receptor 4 plays a key role in T cell recruitment into the airways of asthmatic patients. Journal of immunology 2010; 184: 4568-4574.

  • 67. Vijayanand P, Seumois G, Pickard C, Powell R M, Angco G, Sammut D, Gadola S D, Friedmann P S, Djukanovic R. Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. The New England journal of medicine 2007; 356: 1410-1422.

  • 68. Patil V, Madrigal A, Schmiedel B, Clarke J, de Silva A, Harris E, Peters B, Seumois G, Weiskopf D, Sette A, Vijayanand P. Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Science Immunology—under review 2017;

  • 69. Mellone M, Hanley C J, Thirdborough S, Mellows T, Garcia E, Woo J, Tod J, Frampton S, Jenei V, Moutasim K A, Kabir T D, Brennan P A, et al. Induction of fibroblast senescence generates a non-fibrogenic myofibroblast phenotype that differentially impacts on cancer prognosis. Aging 2016; 9: 114-132.

  • 70. Wood O, Woo J, Seumois G, Savelyeva N, McCann K J, Singh D, Jones T, Peel L, Breen M S, Ward M, Garrido Martin E, Sanchez-Elsner T, et al. Gene expression analysis of TIL rich HPV-driven head and neck tumors reveals a distinct B-cell signature when compared to HPV independent tumors. Oncotarget 2016; 7: 56781-56797.

  • 71. Seckl M J, Ottensmeier C H, Cullen M, Schmid P, Ngai Y, Muthukumar D, Thompson J, Harden S, Middleton G, Fife K M, Crosse B, Taylor P, et al. Multicenter, Phase III, Randomized, Double-Blind, Placebo-Controlled Trial of Pravastatin Added to First-Line Standard Chemotherapy in Small-Cell Lung Cancer (LUNGSTAR). J Clin Oncol 2017; JCO2016697391.

  • 72. Ganesan A P, Wood O, Garrido-Martin E M, Chee S, Mellows T, Clarke J, Samaniego-Castruita D, Singh D, Seumois G, Altezani A, Woo E, Friedmann P S, et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nature immunology 2017; in press:

  • 73. Ottensmeier C H, Perry K L, Harden E L, Stasakova J, Jenei V, Fleming J, Wood O, Woo J, Woelk C H, Thomas G J, Thirdborough S M. Upregulated Glucose Metabolism Correlates Inversely with CD8+ T-cell Infiltration and Survival in Squamous Cell Carcinoma. Cancer Res 2016; 76: 4136-4148.

  • 74. Noble F, Mellows T, McCormick Matthews L H, Bateman A C, Harris S, Underwood T J, Byrne J P, Bailey I S, Sharland D M, Kelly J J, Primrose J N, Sahota S S, et al. TumApplicants' infiltrating lymphocytes correlate with improved survival in patients with oesophageal adenocarcinoma. Cancer Immunol Immunother 2016;

  • 75. McCann K J, Mander A, Cazaly A, Chudley L, Stasakova J, Thirdborough S M, King A, Lloyd-Evans P, Buxton E, Edwards C, Halford S, Bateman A, et al. Targeting Carcinoembryonic Antigen with DNA Vaccination: On-Target Adverse Events Link with Immunologic and Clinical Outcomes. Clin Cancer Res 2016;

  • 76. Karydis I, Chan P Y, Wheater M, Arriola E, Szlosarek P W, Ottensmeier C H. Clinical activity and safety of Pembrolizumab in Ipilimumab pre-treated patients with uveal melanoma. Oncoimmunology 2016; 5: e1143997.

  • 77. Chandran P A, Laske K, Cazaly A, Rusch E, Schmid-Horch B, Rammensee H G, Ottensmeier C H, Gouttefangeas C. Validation of immunomonitoring methods for application in clinical studies: The HLA-peptide multimer staining assay. Cytometry B Clin Cytom 2016;

  • 78. Arriola E, Wheater M, Galea I, Cross N, Maishman T, Hamid D, Stanton L, Cave J, Geldart T, Mulatero C, Potter V, Danson S, et al. Outcome and Biomarker Analysis from a Multicenter Phase 2 Study of Ipilimumab in Combination with Carboplatin and Etoposide as First-Line Therapy for Extensive-Stage SCLC. J Thorac Oncol 2016;

  • 79. McCann K J, Godeseth R, Chudley L, Mander A, Di Genova G, Lloyd-Evans P, Kerr J P, Malykh V B, Jenner M W, Orchard K H, Stevenson F K, Ottensmeier C H. Idiotypic DNA vaccination for the treatment of multiple myeloma: safety and immunogenicity in a phase I clinical study. Cancer Immunol Immunother 2015; 64: 1021-1032.

  • 80. Johnson P, Challis R, Chowdhury F, Gao Y, Harvey M, Geldart T, Kerr P, Chan C, Smith A, Steven N, Edwards C, Ashton-Key M, et al. Clinical and biological effects of an agonist anti-CD40 antibody: a Cancer Research U K phase I study. Clin Cancer Res 2015; 21: 1321-1328.

  • 81. Ward M J, Thirdborough S M, Mellows T, Riley C, Harris S, Suchak K, Webb A, Hampton C, Patel N N, Randall C J, Cox H J, Jogai S, et al. Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer. British journal of cancer 2014; 110: 489-500.

  • 82. Kvistborg P, Philips D, Kelderman S, Hageman L, Ottensmeier C, Joseph-Pietras D, Welters M J, van der Burg S, Kapiteijn E, Michielin O, Romano E, Linnemann C, et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Science translational medicine 2014; 6: 254ra128.

  • 83. Chudley L, McCann K J, Coleman A, Cazaly A M, Bidmon N, Britten C M, van der Burg S H, Gouttefangeas C, Jandus C, Laske K, Maurer D, Romero P, et al. Harmonisation of short-term in vitro culture for the expansion of antigen-specific CD8(+) T cells with detection by ELISPOT and HLA-multimer staining. Cancer Immunol Immunother 2014; 63: 1199-1211.

  • 84. Chudley L, McCann K, Mander A, Tjelle T, Campos-Perez J, Godeseth R, Creak A, Dobbyn J, Johnson B, Bass P, Heath C, Kerr P, et al. DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8(+) T-cell responses and increases PSA doubling time. Cancer Immunol Immunother 2012;

  • 85. Britten C M, Janetzki S, Butterfield L H, Ferrari G, Gouttefangeas C, Huber C, Kalos M, Levitsky H I, Maecker H T, Melief C J, O'Donnell-Tormey J, Odunsi K, et al. T cell assays and MIATA: the essential minimum for maximum impact. Immunity 2012; 37: 1-2.

  • 86. Hodi F S, O'Day S J, McDermott D F, Weber R W, Sosman J A, Haanen J B, Gonzalez R, Robert C, Schadendorf D, Hassel J C, Akerley W, van den Eertwegh A J, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711-723.

  • 87. McCann K J, Ashton-Key M, Smith K, Stevenson F K, Ottensmeier C H. Primary central nervous system lymphoma: tumor-related clones exist in the blood and bone marrow with evidence for separate development. Blood 2009; 113: 4677-4680.

  • 88. Mander A, Chowdhury F, Low L, Ottensmeier C H. Fit for purpose? A case study: validation of immunological endpoint assays for the detection of cellular and humoral responses to anti-tumApplicants' DNA fusion vaccines. Cancer Immunol Immunother 2009; 58: 789-800.

  • 89. Low L, Mander A, McCann K, Dearnaley D, Tjelle T, Mathiesen I, Stevenson F, Ottensmeier C H. DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Human gene therapy 2009; 20: 1269-1278.

  • 90. Lee S M, Rudd R, Woll P J, Ottensmeier C, Gilligan D, Price A, Spiro S, Gower N, Jitlal M, Hackshaw A. Randomized double-blind placebo-controlled trial of thalidomide in combination with gemcitabine and Carboplatin in advanced non-small-cell lung cancer. J Clin Oncol 2009; 27: 5248-5254.

  • 91. Rice J, Ottensmeier C H, Stevenson F K. DNA vaccines: precision tools for activating effective immunity against cancer. Nature reviews 2008; 8: 108-120.

  • 92. McCann K J, Johnson P W, Stevenson F K, Ottensmeier C H. Universal N-glycosylation sites introduced into the B-cell receptor of follicular lymphoma by somatic mutation: a second tumorigenic event? Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, UK 2006; 20: 530-534.

  • 93. McCann K, Sahota S S, Stevenson F K, Ottensmeier C H. Idiotype gene rescue in follicular lymphoma. Methods Mol Med 2005; 115: 145-171.

  • 94. Ottensmeier C H, Stevenson F K. Isotype switch variants reveal clonally related subpopulations in diffuse large B-cell lymphoma. Blood 2000; 96: 2550-2556.

  • 95. Ottensmeier C H, Wilkins B S, Stevenson F K. Immunogenetic features of diffuse and follicular lymphoma vary with disease status and reveal multiple isotype expression. Blood 1997; 90: 3932-3932.

  • 96. Ottensmeier C, Swanson L, Strobel T, Druker B, NiloffJ, Cannistra S A. Absence of constitutive EGF receptor activation in ovarian cancer cell lines. British journal of cancer 1996; 74: 446-452.

  • 97. Ottensmeier C, Mead G. Histological transformation of indolent (follicular) lymphoma. Ann Oncol 1996; 7: 849-853.

  • 98. Cannistra S A, DeFranzo B, Niloff J, Ottensmeier C. Functional heterogeneity of CD44 molecules in ovarian cancer cell lines. Clinical Cancer Res 1995; 1: 333-342.

  • 99. Cannistra S A, Abu-Jawdeh G, Niloff J, Strobel T, Swanson L, Andersen J, Ottensmeier C. CD44 variant expression is a common feature of epithelial ovarian cancer: lack of association with standard prognostic factors. J Clin Oncol 1995; 13: 1912-1921.

  • 100. Cannistra S A, Kansas G S, NiloffJ, DeFranzo B, Kim Y, Ottensmeier C. Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44H. Cancer Res 1993; 53: 3830-3838.

  • 101. Ganesan A P, Clarke J, Wood O, Garrido-Martin E M, Chee S J, Mellows T, Samaniego-Castruita D, Singh D, Seumois G, Alzetani A, Woo E, Friedmann P S, et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat Immunol 2017; 18: 940-950.

  • 102. Yu B, Zhang K, Milner J J, Toma C, Chen R, Scott-Browne J P, Pereira R M, Crotty S, Chang J T, Pipkin M E, Wang W, Goldrath A W. Epigenetic landscapes reveal transcription factors that regulate CD8(+) T cell differentiation. Nature immunology 2017; 18: 573-582.

  • 103. Overwijk W W, Theoret M R, Finkelstein S E, Surman D R, de Jong L A, Vyth-Dreese F A, Dellemijn T A, Antony P A, Spiess P J, Palmer D C, Heimann D M, Klebanoff C A, et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 2003; 198: 569-580.

  • 104. Helmich B K, Dutton R W. The role of adoptively transferred CD8 T cells and host cells in the control of the growth of the EG7 thymoma: factors that determine the relative effectiveness and homing properties of Tcl and Tc2 effectors. J Immunol 2001; 166: 6500-6508.

  • 105. Thompson E D, Enriquez H L, Fu Y X, Engelhard V H. Tumor masses support naïve T cell infiltration, activation, and differentiation into effectors. Journal of Experimental Medicine 2010; 207: 1791-1804.

  • 106. Lu T, Ramakrishnan R, Altiok S, Youn J I, Cheng P, Celis E, Pisarev V, Sherman S, Sporn M B, Gabrilovich D. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 2011; 121: 4015-4029.

  • 107. Chen R, Belanger S, Frederick M A, Li B, Johnston R I, Xiao N, Liu Y C, Sharma S, Peters B, Rao A, Crotty S, Pipkin M E. In vivo RNA interference screens identify regulators of antiviral CD4(+) and CD8(+) T cell differentiation. Immunity 2014; 41: 325-338.

  • 108. Trifari S, Pipkin M E, Bandukwala H S, Aijo T, Bassein J, Chen R, Martinez G J, Rao A. MicroRNA-directed program of cytotoxic CD8+ T-cell differentiation. Proc Natl Acad Sci USA 2013; 110: 18608-18613.

  • 109. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313: 1960-1964.

  • 110. Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 2015; 125: 3335-3337.

  • 111. Mackay L K, Minnich M, Kragten N A, Liao Y, Nota B, Seillet C, Zaid A, Man K, Preston S, Freestone D, Braun A, Wynne-Jones E, et al. Hobit and Blimp 1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 2016; 352: 459-463.

  • 112. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome J J, Bickham K L, Lerner H, Goldstein M, Sykes M, Kato T, Farber D L. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 2013; 38: 187-197.

  • 113. Garon E B, Rizvi N A, Hui R, Leighl N, Balmanoukian A S, Eder J P, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn M J, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. The New England journal of medicine 2015; 372: 2018-2028.

  • 114. Miller J F, Sadelain M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell 2015; 27: 439-449.

  • 115. Tumeh P C, Harview C L, Yearley J H, Shintaku I P, Taylor E J, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West A N, Carmona M, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515: 568-571.

  • 116. Kim P S, Ahmed R. Features of responding T cells in cancer and chronic infection. Curr Opin Immunol 2010; 22: 223-230.

  • 117. Philip M, Fairchild L, Sun L, Horste E L, Camara S, Shakiba M, Scott A C, Viale A, Lauer P, Merghoub T, Hellmann M D, Wolchok J D, et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 2017; 545: 452-456.

  • 118. Huang A C, Postow M A, Orlowski R I, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles J R, Wenz B, Adamow M, Kuk D, et al. T-cell invigoration to tumApplicants' burden ratio associated with anti-PD-1 response. Nature 2017; 545: 60-65.

  • 119. Schietinger A, Philip M, Krisnawan V E, Chiu E Y, Delrow J J, Basom R S, Lauer P, Brockstedt D G, Knoblaugh S E, Hammerling G J, Schell T D, Garbi N, et al. Tumor-Specific T Cell Dysfunction Is a Dynamic Antigen-Driven Differentiation Program Initiated Early during Tumorigenesis. Immunity 2016; 45: 389-401.

  • 120. Pauken K E, Sammons M A, Odorizzi P M, Manne S, Godec J, Khan O, Drake A M, Chen Z, Sen D R, Kurachi M, Barnitz R A, Bartman C, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 2016; 354: 1160-1165.

  • 121. Akhtar-Zaidi B, Cowper-Sal-lari R, Corradin O, Saiakhova A, Bartels C F, Balasubramanian D, Myeroff L, Lutterbaugh J, Jarrar A, Kalady M F, Willis J, Moore J H, et al. Epigenomic enhancer profiling defines a signature of colon cancer. Science 2012; 336: 736-739.

  • 122. Zhang J A, Mortazavi A, Williams B A, Wold B J, Rothenberg E V. Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell 2012; 149: 467-482.

  • 123. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf A C, Angell H, Fredriksen T, Lafontaine L, Berger A, Bruneval P, Fridman W H, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013; 39: 782-795.

  • 124. Baitsch L, Baumgaertner P, Devevre E, Raghav S K, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, Rufer N, Speiser D E. Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. The Journal of clinical investigation 2011; 121: 2350-2360.

  • 125. Collins N, Godec J, Zou L H, Mihm M C, Getz G, Haining W N. Transcriptional Hallmarks Of Tumor Infiltrating Lymphocyte Responses To Melanoma. Blood 2013; 122:

  • 126. Tirosh I, Izar B, Prakadan S M, Wadsworth M H, 2nd, Treacy D, Trombetta J J, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016; 352: 189-196.

  • 127. Curran M A, Geiger T L, Montalvo W, Kim M, Reiner S L, Al-Shamkhani A, Sun J C, Allison J P. Systemic 4-1B B activation induces a novel T cell phenotype driven by high expression of Eomesodermin. J Exp Med 2013; 210: 743-755.

  • 128. Willoughby J E, Kerr J P, Rogel A, Taraban V Y, Buchan S L, Johnson P W, Al-Shamkhani A. Differential impact of CD27 and 4-1B B costimulation on effector and memory CD8 T cell generation following peptide immunization. J Immunol 2014; 193: 244-251.

  • 129. Topalian S L, Drake C G, Pardoll D M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015; 27: 450-461.

  • 130. Wolff M, Kuball J, Ho W Y, Nguyen H, Manley T J, Bleakley M, Greenberg P D. Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 2007; 110: 201-210.

  • 131. Gros A, Robbins P F, Yao X, Li Y F, Turcotte S, Tran E, Wunderlich J R, Mixon A, Farid S, Dudley M E, Hanada K, Almeida J R, et al. PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. The Journal of clinical investigation 2014; 124: 2246-2259.

  • 132. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher I F, Sander C, Kirkwood J M, Kuchroo V, ZarApplicants' H M. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 2010; 207: 2175-2186.

  • 133. Wherry E J, Ha S J, Kaech S M, Haining W N, Sarkar S, Kalia V, Subramaniam S, Blattman J N, Barber D L, Ahmed R. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 2007; 27: 670-684.

  • 134. Mackay L K, RahimpApplicants' A, Ma J Z, Collins N, Stock A T, Hafon M L, Vega-Ramos J, Lauzurica P, Mueller S N, Stefanovic T, Tscharke D C, Heath W R, et al. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nature immunology 2013; 14: 1294-1301.

  • 135. Mueller S N, Gebhardt T, Carbone F R, Heath W R. Memory T cell subsets, migration patterns, and tissue residence. Annual review of immunology 2013; 31: 137-161.

  • 136. Skon C N, Lee J Y, Anderson K G, Masopust D, Hogquist K A, Jameson S C. Transcriptional downregulation of S1prl is required for the establishment of resident memory CD8+ T cells. Nature immunology 2013; 14: 1285-1293.

  • 137. Best J A, Blair D A, Knell J, Yang E, Mayya V, Doedens A, Dustin M L, Goldrath A W, Immunological Genome Project C. Transcriptional insights into the CD8(+) T cell response to infection and memory T cell formation. Nat Immunol 2013; 14: 404-412.

  • 138. Creyghton M P, Cheng A W, Welstead G G, Kooistra T, Carey B W, Steine E J, Hanna J, Lodato M A, Frampton G M, Sharp P A, Boyer L A, Young R A, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. P Natl Acad Sci USA 2010; 107: 21931-21936.

  • 139. Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, Cui K, Kanno Y, Roh T Y, Watford W T, Schones D E, Peng W, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 2009; 30: 155-167.

  • 140. Buenrostro J D, Wu B, Chang H Y, Greenleaf W J. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Current protocols in molecular biology/edited by Frederick M Ausubel [et al] 2015; 109: 21 29 21-29.

  • 141. Debey S, Schoenbeck U, Hellmich M, Gathof B S, Pillai R, Zander T, Schultze J L. Comparison of different isolation techniques prior gene expression profiling of blood derived cells: impact on physiological responses, on overall expression and the role of different cell types. The pharmacogenomics journal 2004; 4: 193-207.

  • 142. Seumois G, Chavez L, Gerasimova A, Lienhard M, Omran N, Kalinke L, Vedanayagam M, Ganesan A P, Chawla A, Djukanovic R, Ansel K M, Peters B, et al. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nat Immunol 2014; 15: 777-788.

  • 143. Hanna R N, Cekic C, Sag D, Tacke R, Thomas G D, Nowyhed H, Henley E, Rasquinha N, McArdle S, Wu R, Peluso E, Metzger D, et al. Patrolling monocytes control tumor metastasis to the lung. Science 2015; 350: 985-990.

  • 144. Ma W, Ay F, Lee C, Gulsoy G, Deng X, Cook S, Hesson J, Cavanaugh C, Ware C B, Krumm A, Shendure J, Blau C A, et al. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat Methods 2015; 12: 71-78.

  • 145. Libbrecht M W, Ay F, Hoffman M M, Gilbert D M, Bilmes J A, Noble W S. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression. Genome Res 2015; 25: 544-557.

  • 146. Gittelman R M, Hun E, Ay F, Madeoy J, Pennacchio L, Noble W S, Hawkins R D, Akey J M. Comprehensive identification and analysis of human accelerated regulatory DNA. Genome Res 2015; 25: 1245-1255.

  • 147. Dileep V, Ay F, Sima J, Vera D L, Noble W S, Gilbert D M. Topologically associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication-timing program. Genome Res 2015; 25: 1104-1113.

  • 148. Ay F, Vu T H, Zeitz M J, Varoquaux N, Carette J E, Vert J P, Hoffivan A R, Noble W S. Identifying multi-locus chromatin contacts in human cells using tethered multiple 3C. BMC genomics 2015; 16: 121.

  • 149. Ay F, Noble W S. Analysis methods for studying the 3D architecture of the genome. Genome Biol 2015; 16: 183.

  • 150. Ay F, Bunnik E M, Varoquaux N, Bol S M, Prudhomme J, Vert J P, Noble W S, Le Roch K G. Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res 2014; 24: 974-988.

  • 151. Ay F, Bailey T L, Noble W S. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res 2014; 24: 999-1011.

  • 152. Zeitz M J, Ay F, Heidmann J D, Lerner P L, Noble W S, Steelman B N, Hoffman A R. Genomic interaction profiles in breast cancer reveal altered chromatin architecture. PLoS One 2013; 8: e73974.

  • 153. Vita R, Peters B, Josephs Z, de Matos P, Ennis M, Turner S, Steinbeck C, SeymApplicants' E, Zarebski L, Sette A. A Model for Collaborative Curation, The IEDB and ChEBI Curation of Non-peptidic Epitopes. Immunome Res 2011; 7: 1-8.

  • 154. Peters B, Sette A. Integrating epitope data into the emerging web of biomedical knowledge resources. Nat Rev Immunol 2007; 7: 485-490.

  • 155. Sette A, Fleri W, Peters B, Sathiamurthy M, Bui R H, Wilson S. A roadmap for the immunomics of category A-C pathogens. Immunity 2005; 22: 155-161.

  • 156. Schulten V, Tripple V, Seumois G, Qian Y, Scheuermann R H, Fu Z, Locci M, Rosales S, Vijayanand P, Sette A, Alam R, Crotty S, et al. Allergen-specific immunotherapy modulates the balance of circulating Tfh and Tfr cells. J Allergy Clin Immunol 2017;

  • 157. Grifoni A, Angelo M, Sidney J, Paul S, Peters B, de Silva A D, Phillips E, Mallal S, Diehl S A, Botten J, Boyson J, Kirkpatrick B D, et al. Patterns of Cellular Immunity Associated with Experimental Infection with rDEN2Delta30 (Tonga/74) Support Its Suitability as a Human Dengue Virus Challenge Strain. J Virol 2017; 91:

  • 158. Angelo M A, Grifoni A, O'Rourke P H, Sidney J, Paul S, Peters B, de Silva A D, Phillips E, Mallal S, Diehl S A, Kirkpatrick B D, Whitehead S S, et al. Human CD4+ T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity. J Virol 2017; 91:

  • 159. Romero P, Banchereau J, Bhardwaj N, Cockett M, Disis M L, Dranoff G, Gilboa E, Hammond S A, Hershberg R, Korman A J, Kvistborg P, Melief C, et al. The Human Vaccines Project: A roadmap for cancer vaccine development. Science translational medicine 2016; 8: 334 ps339.

  • 160. Bono M R, Fernandez D, Flores-Santibanez F, Rosemblatt M, Sauma D. CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression. FEBS letters 2015; 589: 3454-3460.

  • 161. Kuhny M, Hochdorfer T, Ayata C K, Idzko M, Huber M. CD39 is a negative regulator of P2X7-mediated inflammatory cell death in mast cells. Cell communication and signaling: CCS 2014; 12: 40.

  • 162. Sandoval-Montes C, Santos-Argumedo L. CD38 is expressed selectively during the activation of a subset of mature T cells with reduced proliferation but improved potential to produce cytokines. Journal of leukocyte biology 2005; 77: 513-521.

  • 163. Munoz P, Mittelbrunn M, de la Fuente H, Perez-Martinez M, Garcia-Perez A, Ariza-Veguillas A, Malavasi F, Zubiaur M, Sanchez-Madrid F, Sancho J. Antigen-induced clustering of surface CD38 and recruitment of intracellular CD38 to the immunologic synapse. Blood 2008; 111: 3653-3664.

  • 164. Faure M, Long E O. KIR2DL4 (CD158d), an N K cell-activating receptor with inhibitory potential. Journal of immunology 2002; 168: 6208-6214.

  • 165. Rajagopalan S, Long E O. KIR2DL4 (CD158d): An activation receptor for HLA-G. Frontiers in immunology 2012; 3: 258.

  • 166. Wisniewski A, Kowal A, Wyrodek E, Nowak I, Majorczyk E, Wagner M, Pawlak-Adamska E, Jankowska R, Slesak B, Frydecka I, Kusnierczyk P. Genetic polymorphisms and expression of HLA-G and its receptors, KIR2DL4 and LILRB1, in non-small cell lung cancer. Tissue antigens 2015; 85: 466-475.

  • 167. Brooke G, Holbrook J D, Brown M H, Barclay A N. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family. Journal of immunology 2004; 173: 2562-2570.

  • 168. Piccio L, Vermi W, Boles K S, Fuchs A, Strader C A, Facchetti F, Cella M, Colonna M. Adhesion of human T cells to antigen-presenting cells through SIRPbeta2-CD47 interaction costimulates T-cell proliferation. Blood 2005; 105: 2421-2427.

  • 169. Sharma S, Quintana A, Findlay G M, Mettlen M, Baust B, Jain M, Nilsson R, Rao A, Hogan P G. An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca2+ entry. Nature 2013; 499: 238-242.

  • 170. Sharma S, Rao A. RNAi screening: tips and techniques. Nat Immunol 2009; 10: 799-804.

  • 171. Gwack Y, Sharma S, Nardone J, Tanasa B, Iuga A, Srikanth S, Okamura H, Bolton D, Feske S, Hogan P G, Rao A. A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 2006; 441: 646-650.

  • 172. Hombrink P, Helbig C, Backer R A, Piet B, Oja A E, Stark R, Brasser G, Jongejan A, Jonkers R E, Nota B, Basak O, Clevers H C, et al. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat Immunol 2016; 17: 1467-1478.

  • 173. Gould S E, Junttila M R, de Sauvage F J. Translational value of mouse models in oncology drug development. Nat Med 2015; 21: 431-439.

  • 174. Overwijk W W, Restifo N P. B16 as a mouse model for human melanoma. Current protocols in immunology/edited by John E Coligan [et al] 2001; Chapter 20: Unit 20 21.

  • 175. Abad J D, Wrzensinski C, Overwijk W, De Witte M A, Jorritsma A, Hsu C, Gattinoni L, Cohen C J, Paulos C M, Palmer D C, Haanen J B, Schumacher T N, et al. T-cell receptor gene therapy of established tumors in a murine melanoma model. Journal of immunotherapy 2008; 31: 1-6.


Claims
  • 1. A method of treating cancer and/or eliciting an anti-tumor response in a subject comprising administering to the subject an effective amount of a population of T-cells that exhibit higher than or lower than baseline expression of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7, or that express a T-cell receptor comprising at least one of the amino acid sequences set forth in Table 6, thereby treating cancer and/or eliciting an anti-tumor response in the subject.
  • 2. A method of treating cancer and/or eliciting an anti-tumor response in a subject comprising administering to the subject an effective amount of an agent that induces higher than or lower than baseline expression of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 in T-cells, or a T-cell receptor comprising at least one of the amino acid sequences set forth in Table 6, thereby treating cancer and/or eliciting an anti-tumor response in the subject.
  • 3. A method of treating cancer and/or eliciting an anti-tumor response in a subject or sample comprising administering an effective amount of one or more an agent that induces or inhibits in T-cells activity of one or more proteins encoded by genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 to the subject, thereby treating cancer and/or eliciting an anti-tumor response in the subject.
  • 4. The method of any one of claims 1 to 2, wherein the T-cells are tissue-resident memory cells (TRM) or CD8+ T-cells.
  • 5. The method of claim 4, wherein the T-cells are autologous to the subject being treated.
  • 6. The method of any one of claims 1 to 5, wherein the one or more gene or all of the genes from the group of 4-1BB, PD-1, CD103 or TIM3.
  • 7. The method of any one of claims 1 to 6, wherein baseline expression is normalized mean gene expression.
  • 8. The method of claim 7, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.
  • 9. The method of any one of claims 2 to 8, wherein the active agent is an antibody, a small molecule, a protein, a peptide, a ligand mimetic or a nucleic acid.
  • 10. The method of any one of claims 1 to 9, further comprising administering to the subject an effective amount of a cytoreductive therapy.
  • 11. The method of claim 10, wherein the cytoreductive therapy is one or more of chemotherapy, immunotherapy, or radiation therapy.
  • 12. A modified T-cell modified to exhibit higher than or lower than baseline expression of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7, or to express a T-cell receptor comprising at least one of the amino acid sequences set forth in Table 6.
  • 13. The modified T-cell of claim 12, wherein the one or more gene is selected from 4-1BB, PD-1, CD103 or TIM3.
  • 14. The modified T-cell of claim 12 or 13, wherein the T-cell is a tissue-resident memory cell (TRM) or a CD8+ T-cell.
  • 15. The modified T-cell of any one of claims 12 to 14, wherein the T-cell the T-cells are autologous to the subject being treated.
  • 16. The modified T-cell of any one of claims 12 to 15, wherein baseline expression is normalized mean gene expression.
  • 17. The modified T-cell of claim 16, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.
  • 18. The modified T-cell of any one of claims 12 to 17, wherein the modified T-cell is genetically modified, optionally using one or more of gene editing, recombinant methods and/or a CRISPR/Cas system.
  • 19. The modified T-cell of any one of claims 12 to 18, further modified to express a protein that binds to a cytokine, chemokine, lymphokine, or a receptor each thereof.
  • 20. The modified T-cell of claim 19, wherein the protein comprises an antibody or an antigen binding fragment thereof.
  • 21. The modified T-cell of claim 20, wherein the antibody is an IgG, IgA, IgM, IgE or IgD, or a subclass thereof.
  • 22. The modified T-cell of claim 21, wherein the antibody is an IgG selected from the group of IgG1, IgG2, IgG3 or IgG4.
  • 23. The modified T-cell of any one of claims 20 to 22, wherein the antigen binding fragment is selected from the group of a Fab, Fab′, F(ab′)2, Fv, Fd, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv) or VL or VH.
  • 24. The modified T-cell of any one of claims 12 to 23, wherein the modified T-cell comprises a chimeric antigen receptor (CAR).
  • 25. The modified T-cell of claim 24, wherein the chimeric antigen receptor (CAR) comprises: (a) an antigen binding domain; (b) a hinge domain; (c) a transmembrane domain; (d) and an intracellular domain.
  • 26. The modified T-cell of claim 25, wherein the CAR further comprises one or more costimulatory signaling regions.
  • 27. The modified T-cell of claim 26, wherein the antigen binding domain comprises an anti-CD19 antigen binding domain, the transmembrane domain comprises a CD28, CD28H (TMIGD2), AMICA1 or a CD8 α transmembrane domain, the one or more costimulatory regions selected from a CD28 costimulatory signaling region, a 4-1BB costimulatory signaling region, an ICOS costimulatory signaling region, an AMICA1 costimulatory signaling region, a CD28H (TMIGD2) costimulatory signaling region, and an OX40 costimulatory region or a CD3 zeta signaling domain.
  • 28. The modified T-cell of claim 27, wherein the anti-CD19 binding domain comprises a single-chain variable fragment (scFv) that specifically recognizes a humanized anti-CD19 binding domain.
  • 29. The modified T-cell of claim 27 or 28, wherein the anti-CD19 binding domain scFv of the CAR comprises a heavy chain variable region and a light chain variable region.
  • 30. The modified T-cell of claim 29, wherein the anti-CD19 binding domain of the CAR further comprises a linker polypeptide located between the anti-CD19 binding domain scFv heavy chain variable region and the anti-CD19 binding domain scFv light chain variable region.
  • 31. The modified T-cell of claim 30, wherein the linker polypeptide of the CAR comprises a polypeptide of the sequence (GGGGS)n wherein n is an integer from 1 to 6.
  • 32. The modified T-cell of any one of claims 24 to 31, wherein the CAR further comprises a detectable marker attached to the CAR.
  • 33. The modified T-cell of any one of claims 24 to 32, wherein the CAR further comprises a purification marker attached to the CAR.
  • 34. The modified T-cell of any one of claims 24 to 33, wherein the modified T-cell comprises a polynucleotide encoding the CAR, and optionally, wherein the polynucleotide encodes and anti-CD19 binding domain.
  • 35. The modified T-cell of claim 34, wherein the polynucleotide further comprises a promoter operatively linked to the polynucleotide to express the polynucleotide in the modified T-cell.
  • 36. The modified T-cell of claim 34, wherein the polynucleotide further comprises a 2A self-cleaving peptide (T2A) encoding polynucleotide sequence located upstream of a polynucleotide encoding the anti-CD19 binding domain.
  • 37. The modified T-cell of any one of claims 34 to 36, wherein the polynucleotide further comprises a polynucleotide encoding a signal peptide located upstream of a polynucleotide encoding the anti-CD19 binding domain.
  • 38. The modified T-cell of any one of claims 33 to 37, wherein the polynucleotide further comprises a vector.
  • 39. The modified T-cell of claim 38, wherein the vector is a plasmid.
  • 40. The modified T-cell of claim 38, wherein the vector is a viral vector selected from the group of a retroviral vector, a lentiviral vector, an adenoviral vector, and an adeno-associated viral vector.
  • 41. A composition comprising a population of modified T-cells according to any one of claims 12 to 40.
  • 42. A method of treating cancer in a subject and/or eliciting an anti-tumor response comprising administering to the subject or contacting the tumor with an effective amount of the modified T-cells according to any one of claims 12 to 40 and/or the composition according to claim 40, thereby treating cancer and/or eliciting an anti-tumor response in the subject.
  • 43. A method of diagnosing cancer, comprising contacting a sample isolated from the subject with an agent that detects the presence of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table Sand/or Table 7 in the sample isolated from the subject, wherein the presence of the one or more genes at higher or lower than baseline expression levels is diagnostic of cancer.
  • 44. A method of diagnosing cancer, comprising contacting tissue-resident memory cells (TRMs) or a cancer sample isolated from the subject with an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds CD28H (TMIGD2), and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of CD8+PD1+, CD8+TIM3+, CD8+LAG3+, CD8+AMICA1+, CD8+CD28H+, CD8+CTLA4+, CD8+PD1+TIM3+, CD8+PD1+LAG3+, CD8+PD1+AMICA1+, CD8+PD1+CD28H+, CD8+PD1+CTLA4+, CD8+TIM3+LAG3+, CD8+TIM3+AMICA1+, CD8+TIM3+CD28H+, CD8+TIM3+CTLA4+′CD8+LAG3+CTLA4+, CD8+LAG3+AMICA1+, CD8+LAG3+CD28H+, CD8+PD1+TIM3+LAG3+, CD8+LAG3+PD1AMICA1+, CD8+LAG3+PD1+CD28H+, CD8+PD1+LAG3+CTLA4+, CD8+PD1+TIM3+CTLA4+, CD8+PD1+TIM3+CTLA4+AMICA1+′, CD8+PD1+TIM3+CTLA4+CD28H+′ or CD8+PD1+TIM3+CTLA4+AMICA+CD28H+′ TRMs, wherein a high frequency of one or more of these TRMs is diagnostic of cancer.
  • 45. A method of diagnosing cancer in a subject comprising contacting tissue-resident memory cells (TRMs) isolated from the subject or cancer sample isolated from the subject, with an antibody or agent that recognizes and binds one or more proteins encoded by a gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 and, optionally, an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds CD28H (TMIGD2), an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds KLF3, an antibody or agent that recognizes and binds S1PR5, an antibody or agent that recognizes and binds S1PR1, an antibody or agent that recognizes and binds KLF2 and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of TRMs expressing these proteins, wherein a high frequency of TRMs expressing these proteins is diagnostic of cancer.
  • 46. A method of determining the density of tissue-resident memory cells (TRMs) in a cancer, tumor, or sample thereof comprising measuring expression of one or more gene selected from the group of 4-1BB, PD-1, CD103 or TIM3 or genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 in the cancer, tumor, or sample thereof, wherein higher or lower than baseline expression indicates higher density of TRMs in the cancer, tumor, or sample thereof.
  • 47. A method of determining prognosis of a subject having cancer comprising measuring the density of tissue-resident memory cells (TRM) in a sample isolated from the subject, wherein a high density of TRM indicates a more positive prognosis, e.g., an increased probability and/or duration of survival.
  • 48. A method of determining prognosis of a subject having cancer comprising contacting tissue-resident memory cells (TRMs) isolated from the subject with an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds CD28H (TMIGD2), and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of CD8+PD1+, CD8+TIM3+, CD8+LAG3+, CD8+AMICA1+, CD8+CD28H+, CD8+CTLA4+, CD8+PD1+TIM3+, CD8+PD1+LAG3+, CD8+PD1+AMICA1+, CD8+PD1+CD28H+, CD8+PD1+CTLA4+, CD8+TIM3+LAG3+, CD8+TIM3+AMICA1+, CD8+TIM3+CD28H+, CD8+TIM3+CTLA4+, CD8+LAG3+CTLA4+, CD8+LAG3+AMICA1+, CD8+LAG3+CD28H+, CD8+PD1+TIM3+LAG3+, CD8+LAG3+PD1+AMICA1+, CD8+LAG3+PD1+CD28H+, CD8+PD1+LAG3+CTLA4+, CD8+PD1+TIM3+CTLA4+, CD8+PD1+TIM3+CTLA4+AMICA1+′, CD8+PD1+TIM3+CTLA4+CD28H+′ or CD8+PD1+TIM3+CTLA4+AMICA+CD28H+′ TRMs, wherein a high frequency of one or more of these TRMs indicates a more positive prognosis, e.g., an increased probability and/or duration of survival.
  • 49. A method of determining prognosis of a subject having cancer comprising contacting tissue-resident memory cells (TRMs) isolated from the subject with an antibody or agent that recognizes and binds one or more proteins encoded by a gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 and, optionally, an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds CD28H (TMIGD2), an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds KLF3, an antibody or agent that recognizes and binds S1PR5, an antibody or agent that recognizes and binds S1PR1, an antibody or agent that recognizes and binds KLF2 and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of TRMs expressing these proteins, wherein a high frequency of TRMs expressing these proteins indicates a more positive prognosis, e.g., an increased probability and/or duration of survival.
  • 50. A method of determining prognosis of a subject having cancer comprising contacting tissue-resident memory cells (TRMs) isolated from the subject with an antibody or agent that recognizes and binds CD103 to determine the frequency of CD103+ TRMs or an antibody that recognizes and binds a protein encoded by a gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 to determine the frequency of TRMs expressing the protein, wherein a high or low frequency of TRMs expressing the protein indicates a more positive prognosis, e.g., an increased probability and/or duration of survival.
  • 51. A method of determining the responsiveness of a subject having cancer to immunotherapy comprising contacting tissue-resident memory cells (TRMs) isolated from the subject with an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds CD28H (TMIGD2), and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of CD8+PD1+, CD8+TIM3+, CD8+LAG3+, CD8+AMICA1+, CD8+CD28H+, CD8+CTLA4+, CD8+PD1+TIM3+, CD8+PD1+LAG3+, CD8+PD1+AMICA1+, CD8+PD1+CD28H+, CD8+PD1+CTLA4+, CD8+TIM3+LAG3+, CD8+TIM3+AMICA1+, CD8+TIM3+CD28H+, CD8+TIM3+CTLA4+, CD8+LAG3+CTLA4+, CD8+LAG3+AMICA1+, CD8+LAG3+CD28H+, CD8+PD1+TIM3+LAG3+, CD8+LAG3+PD1+AMICA1+, CD8+LAG3+PD1+CD28H+, CD8+PD1+LAG3+CTLA4+, CD8+PD1+TIM3+CTLA4+, CD8+PD1+TIM3+CTLA4+AMICA1+′, CD8+PD1+TIM3+CTLA4+CD28H+′ or CD8+PD1+TIM3+CTLA4+AMICA+CD28H+, TRMs, wherein a high frequency of one or more of these TRMs indicates responsiveness to immunotherapy.
  • 52. A method of determining the responsiveness of a subject having cancer to immunotherapy comprising contacting tissue-resident memory cells (TRMs) isolated from the subject with an antibody or agent that recognizes and binds one or more proteins encoded by a gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 and, optionally, an antibody or agent that recognizes and binds CD8, an antibody or agent that recognizes and binds PD-1, an antibody or agent that recognizes and binds TIM3, an antibody or agent that recognizes and binds LAG3, an antibody or agent that recognizes and binds CD28H (TMIGD2), an antibody or agent that recognizes and binds AMICA1, an antibody or agent that recognizes and binds KLF3, an antibody or agent that recognizes and binds S1PR5, an antibody or agent that recognizes and binds S1PR1, an antibody or agent that recognizes and binds KLF2 and an antibody or agent that recognizes and binds CTLA4 to determine the frequency of TRMs expressing these proteins, wherein a high frequency of TRMs expressing these proteins indicates responsiveness to immunotherapy.
  • 53. The method of any of claims 43 to 52, wherein the TRMs are CD19-CD20-CD14-CD56-CD4-CD45+CD3+CD8+ T-cells.
  • 54. A method of determining prognosis of a subject having cancer comprising measuring the density of CD103 or proteins encoded by one or more gene set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 in a sample isolated from the subject, wherein a high or low density of proteins indicates a more positive prognosis, e.g., an increased probability and/or duration of survival.
  • 55. A method of identifying a subject that will or is likely to respond to a cancer therapy, comprising contacting a sample isolated from the subject with an agent that detects the presence of one or more genes set forth in Table 1, Table 2, Table 3, Table 4, Table 5 and/or Table 7 in the sample, wherein the presence of the one or more genes at higher or lower than baseline expression levels indicates that the subject is likely to respond to cancer therapy.
  • 56. The method of any one of claim 43, 46 or 55, wherein baseline expression is normalized mean gene expression.
  • 57. The method of claim 56, wherein higher than baseline expression is at least about a 2-fold increase in expression relative to baseline expression and/or lower than baseline expression is at least about a 2-fold decrease in expression relative to baseline expression.
  • 58. The method of any one of claims 43 to 57, further comprising administering a cancer therapy to the subject.
  • 59. The method of claim 58, wherein the cancer therapy is chemotherapy, immunotherapy, radiation therapy, and/or administering to the subject or contacting the tumor with an effective amount of the modified T-cells according to any one of claims 12 to 40 and/or the composition according to claim 40.
  • 60. The method of any one of claims 43 to 59, wherein the cancer, tumor, or sample is contacted with an agent, optionally including a detectable label or tag.
  • 61. The method of claim 60, wherein the detectable label or tag comprises a radioisotope, a metal, horseradish peroxidase, alkaline phosphatase, avidin or biotin.
  • 62. The method of claim 60 or 61, wherein the agent comprises a polypeptide that binds to an expression product encoded by the gene, or a polynucleotide that hybridizes to a nucleic acid sequence encoding all or a portion of the gene.
  • 63. The method of claim 62, wherein the polypeptide comprises an antibody, an antigen binding fragment thereof, or a receptor that binds to the gene.
  • 64. The method of claim 63, wherein the antibody is an IgG, IgA, IgM, IgE or IgD, or a subclass thereof.
  • 65. The method of claim 64, wherein the IgG is an IgG1, IgG2, IgG3 or IgG4.
  • 66. The method of any one of claims 63 to 65 wherein the antigen binding fragment is a Fab, Fab′, F(ab′)2, Fv, Fd, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv) or VL or VH.
  • 67. The method of any one of claims 43 to 66, wherein the agent is contacted with the cancer, tumor, or sample in conditions under which it can bind to the gene it targets.
  • 68. The method of any one of claims 43 to 67, wherein the method comprises detection by immunohistochemistry (IHC), in-situ hybridization (ISH), ELISA, immunoprecipitation, immunofluorescence, chemiluminescence, radioactivity, X-ray, nucleic acid hybridization, protein-protein interaction, immunoprecipitation, flow cytometry, Western blotting, polymerase chain reaction, DNA transcription, Northern blotting and/or Southern blotting.
  • 69. The method of any one of claims 43 to 68, wherein the sample comprises cells, tissue, an organ biopsy, an epithelial tissue, a lung, respiratory or airway tissue or organ, a circulatory tissue or organ, a skin tissue, bone tissue, muscle tissue, head, neck, brain, skin, bone and/or blood sample.
  • 70. The method of any one of claims 1 to 11 or claims 41 to 69, wherein the cancer or tumor is an epithelial, a head, neck, lung, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland, brain, or comprises a lymphoma, breast, endometrium, uterus, ovary, testes, lung, prostate, colon, pancreas, esophagus, liver, skin, kidney, adrenal gland and/or brain cancer or tumor, a metastasis or recurring tumor, cancer or neoplasia, a non-small cell lung cancer (NSCLC) and/or head and neck squamous cell cancer (HNSCC).
  • 71. The method of any one of claims 43 to 70, wherein the method comprises detecting in the subject, the cells or the sample the number or density of Trm cells that are CD19−CD20−CD14−CD56−CD4−CD45+CD3+CD8+ T-cells.
  • 72. A kit comprising one or more of the modified T-cells according to any one of claims 12 to 40 and/or the composition according to claim 41 and instructions for use.
  • 73. The kit of claim 72, wherein the instruction for use provide directions to conduct the method of any one of claims 1 to 11 and/or 42 to 71.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/647,588, filed Mar. 23, 2018, and U.S. Provisional Application No. 62/770,412, filed Nov. 21, 2018, the content of each which is hereby incorporated by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/023767 3/22/2019 WO 00
Provisional Applications (2)
Number Date Country
62770412 Nov 2018 US
62647588 Mar 2018 US