The present disclosure relates generally to tissue screws, methods of making same, same and methods of using same. More particularly, the present disclosure pertains to a monolithic tissue screw of fabricated of a single, unitary piece of material. Still more particularly, the present disclosure pertains to a monolithic tissue screw having a helical coil portion and screw head portion with a driver aperture passing axially through the screw head portion and a co-axial with the helical coil portion.
Tissue screws typically are either of unitary or two piece construction in which the tissue screw head has a blind recess or a shaped head configured to couple to a driver and a screw shank having external threads projecting radially outward from the screw shank. In either case, it is necessary to apply an axial force to the tissue screw while also applying a rotational to the tissue screw to drive the screw into the desired tissue. Helical coils are also know for use in joining to soft tissue, such as for affixing pacemaker leads (See, e.g., US20180085571A1 or affixing surgical mesh to soft tissue in hernia repair (See, e.g., US20030009441A; such helical coils, however, typically do not have screw heads that engage with a driver to join the helical coil to the soft tissue.
The tissue screw of the present disclosure is configured to be driven into tissue based substantially only upon rotational force applied by the driver to the driver aperture and substantially without axial force applied to the coil portion of the tissue screw. The driver aperture is configured to allow a driver to pass into and through the driver aperture and apply a torsional force to the tissue screw head portion and rotate the helical coil portion, causing a tapered distal end of the helical coil portion to engage with tissue and allow the coil to draw down into the tissue substantially only with the application of rotational force to the tissue head portion.
It is an object of the present disclosure to provide a monolithic tissue screw having a unitary structure including a tissue screw head portion and a helical coil portion.
It is a further object of the present disclosure to provide a monolithic tissue screw in which the tissue screw head portion and the helical coil portion are fabricated from a single, unitary piece of precursor material.
It is yet a further object of the present disclosure to provide a monolithic tissue screw in which the tissue screw head portion has a driver aperture passing into and through the tissue screw head portion along a central longitudinal axis of the monolithic tissue screw.
It is still another objective of the present disclosure to provide a monolithic tissue crew in which the driver aperture is configured to accept a driver within the driver aperture such that the driver passes into and through the driver aperture along the central longitudinal axis of the monolithic tissue screw.
It is yet a further objective of the present disclosure
system and method of synchronously driving two or more tissue screws into and through the sewing skirt of an apical cuff, axially securing one or more compression plates and/or rings to bear against the sewing skirt, and affix the apical cuff to heart tissue.
It is another object of the present disclosure to provide a system and method of synchronously driving two or more tissue screws at the same rate and torque to axially secure an apical cuff to heart tissue.
It is a further object of the present disclosure to provide a system and method of synchronously driving two or more tissue screws with little or no axial force applied to the tissue screws.
It is yet another object of the present disclosure to provide a system and method of targeting a desired position for affixing an apical cuff to heart tissue.
It is still another object of the present disclosure to provide a monolithic tissue screw in which the helical coil portion defines an on open region within the helical coil that receives the driver within the open region.
It is still yet another object of the present disclosure to provide a monolithic tissue screw in which the helical coil portion has a tapered distal end.
It is yet a further object of the present disclosure to provide a monolithic tissue screw in which the helical coil portion has a continuous pitch to helical windings of the helical coil portion.
It is still another further object of the present disclosure to provide a monolithic tissue screw in which the helical coil portion has more than one pitch to the helical windings of the helical coil portion.
It is still further object of the present disclosure to provide a monolithic tissue screw in which the helical portion includes a helical winding having a transverse cross-sectional shape that is selected from the group of polygonal, circular, ovular, or elliptical.
It is another further object of the present disclosure that the driver for the monolithic tissue screw apply a torsional force to tissue screw head portion by engaging with lateral wall surfaces of the driver aperture substantially without axial force being applied to the helical coil portion or the tissue screw head portion.
These and other objects, features and advantages of the disclosed synchronous drive system and its sub-systems will be more apparent to those of ordinary skill in the art from the following more detailed description of the preferred embodiments of the present disclosure taken with reference to the accompanying Figures, individually and collectively. In the accompanying Figures, like structure and/or functional features are identified by like reference numerals for ease of reference.
The devices, system and methods of the present disclosure will be described with reference to certain exemplary embodiments thereof. These exemplary embodiments are intended to be illustrative and non-limiting examples of the present invention. The example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. Those of ordinary skill in the art will understand and appreciate that variations in materials, structure, material properties, and tolerances may be made without departing from the scope of the invention, which is defined only by the claims appended hereto and their range of equivalents. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure.
The scope of the disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” It is to be understood that unless specifically stated otherwise, references to “a,” “an,” and/or “the” may include one or more than one and that reference to an item in the singular may also include the item in the plural. All ranges and ratio limits disclosed herein may be combined.
Moreover, where a phrase similar to “at least one of A, B, and C” is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C. Different cross-hatching when used throughout the figures to denote different parts but not necessarily to denote the same or different materials.
For ease of understanding, the present invention is described with reference to the accompanying Figures. In the accompanying Figures like elements are identified by like reference numerals.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below”, or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
“Substantially” is intended to mean a quantity, property, or value that is present to a great or significant extent and less than totally.
“About” is intended to mean a quantity, property, or value that is present at ±10%. Throughout this disclosure, the numerical values represent approximate measures or limits to ranges to encompass minor deviations from the given values and embodiments having about the value mentioned as well as those having exactly the value mentioned. Other than in the working examples provided at the end of the detailed description, all numerical values of parameters (e.g., of quantities or conditions) in this specification, including the appended claims, are to be understood as being modified in all instances by the term “about” whether or not “about” actually appears before the numerical value. “About” indicates that the stated numerical value allows some slight imprecision (with some approach to exactness in the value; approximately or reasonably close to the value; nearly). If the imprecision provided by “about” is not otherwise understood in the art with this ordinary meaning, then “about” as used herein indicates at least variations that may arise from ordinary methods of measuring and using such parameters. In addition, disclosure of ranges includes disclosure of all values and further divided ranges within the entire range, including endpoints given for the ranges.
The steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Elements and steps in the figures are illustrated for simplicity and clarity and have not necessarily been rendered according to any particular sequence. For example, steps that may be performed concurrently or in different order are illustrated in the figures to help to improve understanding of embodiments of the present disclosure.
Any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact. Surface shading lines may be used throughout the figures to denote different parts or areas but not necessarily to denote the same or different materials. In some cases, reference coordinates may be specific to each figure.
Systems, methods, and apparatus are provided herein. In the detailed description herein, references to “one embodiment,” “an embodiment,” “various embodiments,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element is intended to invoke 35 U.S.C. 112(f) unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Turning to
The open helical coil portion 14 terminates at the distal aspect 19 thereof in a tapered distal end 20 configured to penetrate into tissue.
The tissue screw head portion 12 includes a driver aperture 16 that passes axially into and through the tissue screw head portion 12 and communicate with the central open space 17. The driver aperture 16 may be any desired shape, including, without limitation, polygonal, ovular, elliptical or other shape suitable for engaging a mating driver. A mating driver (not shown) passes into and through the driver aperture 16 and into the central open space 17 circumscribed by the open helical coil portion 14. The driver aperture 16 has side walls that act as load bearing surfaces against which the mating driver bears when a torsional rotational force is applied by the mating driver to the driver aperture 16.
A clocking marker 21 may be provided either on or in the tissue screw head portion 12 or in association with the driver aperture 16. Where provided in association with the driver aperture 16, clocking marker 21 may be contiguous with the driver aperture 16 and extend into the screw head portion 12 from the a wall of the driver aperture 16, as illustrated, or may be a projection from the screw head portion 12 and into the driver aperture 16. Clocking marker 21, where optionally provided, serves to provide the user with a visual indicia of the rotational position of the tissue screw 10. Clocking marker 21 is preferably in axial alignment with the tapered distal end 20 of the open helical coil portion 14 so that the user has a visual indictor of the rotational position of the tapered distal end 20.
As illustrated in
Upon applying a torsional rotational force from the driver to the driver aperture 16, the open helical coil portion 14 will begin to rotate about its longitudinal axis and the tapered distal end 20 of the open helical coil portion 14 will penetrate into tissue. As the torsional rotational force continues to be applied, the open helical portion 14 will be drawn down into the tissue under the influence substantially only of the rotation of the open helical portion 14 and substantially without an axial force being applied to the tissue screw 10.
It will be understood by those skilled in the art that transfer of force from the driver to the tissue screw head 12 imparts a rotational force to the open helical coil 14. This rotational force imparts a focal strain at a junction 18 between the tissue screw head 12 and the open helical coil 14. In order to disburse the focal strain at the junction 18, the junction 18 may be configured as a taper 18a (
The open helical coil portion 14 has plural helical windings. The plural helical windings have a pitch between adjacent windings that corresponds to a distance of one complete helix turn, i.e., 360 degree arc, and is measured parallel to the axis of the helix. The tissue screw 10 may have an equal helical pitch along its entire length, may have a gradient pitch, or it may have two or more different pitches along its entire length.
A third variant of the tissue screw 30 illustrated in
A further variant of the tissue screw 40 is illustrated in
While the present disclosure has been made with reference to the accompanying Figures and exemplary and alternative embodiments or variants of the present invention, it will be understood that the present disclosure is not intended to be limited only to the described elements, embodiments, materials, methods, assemblies, structures, dimensions, geometries or the like. Rather, the scope of the present disclosure is intended to be restricted only by the claims appended hereto. Variations in sizes, shapes, geometries, combinations, assemblies, materials or the like are expressly contemplated by the present disclosure.
This application is a continuation of co-pending U.S. patent application Ser. No. 17/458,297, filed Aug. 26, 2021, which is fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17458297 | Aug 2021 | US |
Child | 18539845 | US |