The present application relates generally to systems and methods for separating tissue in a patient, and more specifically, to techniques for separating pacing leads from a patient.
Cardiac pacing systems typically include a pacemaker and a pacing lead, which are placed inside the body of a patient. The pacemaker includes a power source and circuitry configured to send timed electrical pulses to the pacing lead. The pacing lead carries the electrical pulse to the heart to initiate a heartbeat, and transmits information about the heart's electrical activity to the pacemaker. The pacing lead can include a fixation mechanism that holds the lead to the cardiac tissue. In some cases, a pacing lead is inserted through a vein and guided into a heart chamber where it is attached with the heart. In other instances, a pacing lead is attached to the outside of the heart. A common problem associated with pacing leads is the development of scar tissue or adhesions where the pacing lead contacts the patient's body tissue. Patient tissue can become attached with the pacing lead, and thus removal or extraction of the pacing lead may present complications.
Current pacing lead extraction techniques include mechanical traction, mechanical devices, and laser devices. Mechanical traction is often accomplished by inserting a locking stylet into the lead and pulling to remove it. In some cases, for example where mechanical traction is ineffective, dilating telescopic sheaths can be used to strip away the scar tissue adhering the lead to the body. Unfortunately, metal sheaths that are currently used to strip scar tissue from implanted leads often cannot traverse the tortuous lead path, and in many instances can only be used in proximal locations. Currently used plastic sheaths may be able to access certain distal lead locations, but often suffer from poor torque properties, low radiopacity, and ineffective penetration into hard tissue because they have soft tips that deform when in contact with the hard tissue. Dilation techniques often involve pushing tissue away from the lead when the sheath is pushed longitudinally along the lead. However, longitudinal forces can be easily lost during the procedure by tortuousity or curvature in the lead and by friction encountered within the anatomy or over the pacing lead. Longitudinal forces also may require heavy counter traction on the lead-that can result in pacing lead breakage. Some mechanical sheaths have proposed trigger mechanisms for extending a blade from a sheath. At least some of these devices, however, involve complicated activation mechanisms and may not be well suited for negotiating the tortuous paths that exist in certain vascular or physiological environments. Laser devices typically employ laser energy to cut the scar tissue away from the lead thus allowing for removal. Although effective in some circumstances for removing chronic implanted pacing leads, many laser systems can be expensive and unaffordable to many treatment centers.
What is needed are improved mechanical devices and methods for extracting pacing leads as well as other objects. These techniques can provide effective alternatives to currently used dilating lead extraction sheaths and laser systems.
Advantageously, embodiments of the present invention encompass separating devices having improved separating surfaces and shapes that are well suited for freeing pacing leads from adherent scar tissue. For example, a separating tip or element can provide a bevel or angle to enhance contact between a separating tip blade and the patient tissue during rotation of the tip. In some cases, a separating tip provides a separating surface that can be lightly forced against a tissue without separating the tissue, and that can separate the tissue when pressed more forcefully against the tissue or when rotated relative to the tissue. Separating systems can be configured to extract pacing leads primarily by torque. An exemplary separating system involves a torqueable and flexible polymer sheath with a durable, radiopaque tip section that includes hard plastic or metal. The shaft can be composed of a braided composite construction to provide flexibility along with a 1:1 torque response. The system may also include a handle to allow for improved rotation capabilities. When the sheath is rotated, a cutting tip can strip, dilate, or cut adhered tissue from the lead in an axial manner. The configurations provided herein allow pacing lead extraction under reduced force, thereby minimizing the incidence of lead breakage and protecting the safety of the patient. By combining such torque characteristics with distal surface cutting edges, it is possible to effectively penetrate resistant scar tissue when necessary, while maintaining a safe, non-separating profile when the sheath is advanced longitudinally over a pacing lead.
Many of the embodiments described herein refer to cutting elements, cutting assemblies, cutters, and the like, which often include items for cutting tissue, however it is understood that these cutting features can be replaced with or referred to as stripping or dilating elements, stripping or dilating assemblies, or strippers or dilators. Similarly, these cutting features may be referred to as separating elements, separating assemblies, or separators. Stripping features can include items for stripping tissue from pacing leads and other objects within the body of a patient. Relatedly, dilating features can include items for dilating tissue surrounding or near pacing leads and other objects within the body of a patient. Cutting features or procedures can be used or referred to interchangeably with stripping features or procedures, and with dilating features or procedures. Methods that include stripping or dilating tissue may or may not include cutting tissue. In some embodiments, cutting, stripping, or dilating elements or procedures, or any combinations thereof, may be referred to as separating elements or procedures. For example, a separator may refer to or encompass a cutter, a stripper, or a dilator, or any combination thereof. The separating devices, sheath configurations, and other systems and methods described herein are well suited for use with retractable lead extraction techniques disclosed in previously incorporated U.S. patent application Ser. No. 11/605,006, filed Dec. 22, 2006 (Retractable Separating Systems and Methods). Such separating and retractable extraction devices can be used in conjunction with lead locking devices in an explant procedure. In an exemplary method, a lead is disconnected from a pacemaker, and a lead locking device is inserted into or coupled with the lead. A separating or retractable extraction system can be placed over the lead and the lead locking device, and advanced distally so as to separate tissue that is attached with or surrounding the lead. Lead locking devices are often useful in providing traction with a pacing or defibrillator lead without breaking or damaging the lead.
In a first aspect, embodiments of the present invention provide a system for separating an object from a patient tissue. The system can include a sheath having a proximal end and a distal end. The system can also include a cylindrical separator coupled with the distal end of the sheath. The separator can have an internal lumen, a proximal end, and a distal end having a separating mechanism. The separating mechanism can include an abrasive material. In some cases, the abrasive material includes diamond, aluminum carbide, silica carbide, or the like. The distal end of the separator can define a plane, and the internal lumen of the separator can define a central longitudinal axis. An acute angle between the plane and the central longitudinal axis can be within a range from about 10 degrees to about 65 degrees or from about 30 degrees to about 85 degrees. The separator may include a cutting member, a dilating member, a stripping member, or the like.
In another aspect, embodiments of the present invention provide a system for separating an object from a patient tissue, where the system includes an internal sheath having a proximal end and a distal end, an external sheath having a proximal end and a distal end, an internal separator coupled with the distal end of the internal sheath, the internal separator having a first separating mechanism, and an external separator coupled with the distal end of the external sheath, the external separator having a second separating mechanism. The internal separator can be disposed at least partially within the external separator, and the internal and external separators can be configured for relative rotational movement that brings the first separating mechanism and the second separating mechanism together. In some cases, the internal separator includes an internal cutting member, an internal stripping member, an internal dilating member, or the like, and the external separator includes an external cutting member, an external stripping member, an external dilating member, or the like. In some aspects, the first separating mechanism includes a first cutting blade, a first stripping blade, a first dilating blade, or the like, and the second separating mechanism includes a second cutting blade, a second stripping blade, a second dilating blade, or the like. In another aspect, embodiments provide a separating system that includes a sheath having a distal end, and a cylindrical separator. The separator can include a distal end having a separating mechanism, and a proximal end coupled with the sheath distal end. The distal end of the cylindrical separator can define a plane that is substantially perpendicular to a central longitudinal axis of the cylindrical separator. In some cases, the sheath includes a proximal end that is less flexible than the distal end of the sheath. The distal end of the sheath can have bending stiffness less than about 6 lb/in. The sheath can have a torsional transmission of greater than about 0.177 pound-inch. In some embodiments, the sheath includes a braid. The separator can include a cutting member, a stripping member, a dilating member, or the like. The separating mechanism can include a cutting blade, a stripping blade, a dilating blade, or the like.
In another aspect, embodiments of the present invention provide a system for separating an object from a patient tissue that includes a sheath having a proximal end and a distal end, and a cylindrical separator coupled with the distal end of the sheath. The separator can have an internal lumen, a proximal end, and a distal end. The distal end of the separator can define a plane, and can include plurality of teeth having separating means in perpendicular alignment with the plane or in alignment with a central longitudinal axis of the sheath. The internal lumen of the separator can define a central longitudinal axis, and an acute angle between the plane and the central longitudinal axis can be within a range from about 30 degrees to about 85 degrees.
In another aspect, embodiments of the present invention provide a system for separating an object from a patient tissue. The system can include a sheath having a distal end, and a cylindrical separator having a proximal end, a distal end, and an internal lumen that defines a central longitudinal axis. The proximal end of the separator can be coupled to the distal end of the sheath, and the distal end of the separator can include a rim that defines a plane which is not perpendicular to the central longitudinal axis of the separator, a separating mechanism disposed along a first portion of the rim, and a blunt edge disposed along a second portion of the rim. In some cases, the separating mechanism can be configured to separate the object from the tissue when the separator is rotated in one direction, but not when the separator is rotated in an opposite direction. The separating mechanism can be a cutting blade, a stripping blade, a dilating blade, or the like. In another aspect, embodiments of the present invention provide a system for separating an object from a patient tissue. The system can include a flexible shaft having a proximal end and a distal end, and a metal separator having a proximal end, a distal end, and an internal lumen that defines a central longitudinal axis. The proximal end of the separator can be coupled to the distal end of the sheath, and the distal end of the separator can include a separating means and can define a plane which is not perpendicular to the central longitudinal axis of the separator. The proximal end of the flexible shaft may be less or more flexible than the distal end of the shaft. In some cases, the distal end of the flexible shaft has a bending stiffness less than about 6 lb/in. In some cases, the flexible shaft has a torsional transmission of greater than about 0.177 pound-inch. In some cases, the flexible shaft includes a braid. In many cases, the separating mechanism is configured to separate the object from the patient tissue when the separator is rotated.
In still another aspect, embodiments of the present invention provide a system for separating an object from a patient tissue. The system includes a flexible shaft having a proximal end, a distal end, and an internal lumen having an inner diameter greater than about 0.130 inch. The shaft can have a bending stiffness of less than about 6 lb/in and a torsional transmission of greater than about 0.177 pound-inch. The system may also include a separator having a proximal end and a distal end. The proximal end of the separator can be coupled to the distal end of the sheath, the distal end of the separator can include a separating mechanism, and the separating mechanism can have a hardness greater than about B65 Rockwell. In yet another aspect, embodiments of the present invention provide a method for separating a patient tissue from an object. The method can include providing a tool that has a sheath having a proximal end and a distal end, and a separator operably coupled to the distal end of the sheath. The separator can have a proximal end, a distal end that includes a rim, a separating mechanism disposed along a first portion of the rim, a blunt edge disposed along a second portion of the rim, and an internal lumen that defines a central longitudinal axis. The method can include contacting the separating mechanism with patient tissue that is attached to the object. The method can also include rotating the separator so as to separate the tissue from the object with the separating mechanism. In some cases, the rim defines a plane that is not perpendicular to the central longitudinal axis of the separator. In some cases, the rim defines a plane that is perpendicular to the central longitudinal axis of the separator. In some cases, the separating mechanism can be configured to separate the tissue from the object when the separator is rotated in one direction, but not when the separator is rotated in an opposite direction.
In still another aspect, embodiments of the present invention provide a system for separating an object from a patient tissue. The system can include a sheath having a distal end. The system can also include a cylindrical separator having a proximal end, a distal end, and an internal lumen that defines a central longitudinal axis. The proximal end of the separator can be coupled to the distal end of the sheath, and the distal end of the separator can include a rim that defines a plane, a separating mechanism disposed along a first portion of the rim, and a blunt edge disposed along a second portion of the rim. In some cases, the plane is substantially perpendicular to the central longitudinal axis of the separator. In some cases, the plane is not substantially perpendicular to the central longitudinal axis of the separator. Optionally, an acute angle between the plane and the central longitudinal axis can be within a range from about 30 degrees to about 85 degrees.
For a fuller understanding of the nature and advantages of the present invention, reference should be had to the ensuing detailed description taken in conjunction with the accompanying drawings.
Embodiments of the present invention provide a mechanical sheath and cutting tip that can be safely deployed within the vascular system of a patient. Such systems include a flexible and torqueable sheath and a hard separating mechanism. A separating system can include, for example, a flexible sheath coupled with a tip, which may include a separating surface or shape. The cutting or separating surface or shape can be contacted with patient tissue, and the sheath can be rotated to effect cutting or separating of the tissue. Although the sheath may be flexible, it can also be pushable in the sense that a force applied to the proximal end of the sheath is in large part transferred to the distal end of the sheath. The sheath may also exhibit a high resistance to kinking or crushing. For example, it is possible to force the sheath into a severe bend or tortuous path without causing permanent deformation or damage to the sheath. Moreover, the sheath maintains a desired amount of torqueability, in that the a rotational force applied to a proximal end of the sheath is effectively translated to a distal end of the sheath.
A separating system can be used as an intra-operative device to free or explant a chronically implanted pacing or defibrillator lead. The system can include an inner lumen designed to allow a pacing lead and lead locking device to pass through it, as the system slides over the lead toward the distal tip of the lead in the heart. Often the system includes an outer sheath or shaft that can be used during the extraction procedure as an introducer and to support and align an inner sheath or shaft. The outer sheath can also be used as a conduit to remove the inner shaft with the extracted lead or object, and can be used as a conduit to implant a new lead or object.
Turning now to the drawings,
As shown in
Sheath 110 may be motorized to rotate or coupled with a motor that induces rotation in or applies torque to the sheath. In some embodiments, sheath 110 may be motorized to move in a reciprocating motion back and forth like a clothes washer cylinder or drum. Sheath 110 can be constructed to have varying degrees of stiffness along the length of the sheath. In some cases, a distal portion or end is more flexible relative to a proximal portion or end of the sheath. For example, distal end 114 of sheath 110 may include a flexible portion approximately 5 to 15 cm in length. In some cases, sheath 110 or sections or portions thereof may be fabricated via multi-durometer construction or multi-diameter construction techniques. For example, a sheath may include a series of one or more tubes or tube-like elements of progressively reduced durometer material fused together to form a sheath of varying stiffness. Accordingly, a sheath may have one portion that exhibits a first stiffness, and a second portion that exhibits a second stiffness. In one embodiment, the hardness of the tubes or tube-like structures become progressively softer or more flexible when going from the proximal end of the sheath to the distal end of the sheath. In some embodiments, tubes or tube-like structures may have progressively smaller diameters or thicknesses when going from the proximal end of the sheath to the distal end of the sheath. Relatedly, sheath 110 can present any of a variety of braid angles. For example, a sheath or components thereof may have sections, portions, or layers having a higher angle braid angle that imparts more flexibility. Similarly, a sheath or components thereof may have sections, portions, or layers having a lower braid angle that imparts less flexibility. Sheath 110 can be configured to provide a desired torque response. For example, in some embodiments sheath 110 provides close to 1:1 torque response. Torque response can refer to the ratio of proximal rotations to distal rotations. In some embodiments, a sheath can have a torque response within a range from about 1:0.6 to about 1:1. In similar embodiments, a sheath can have a torque response within a range from about 1:0.7 to about 1:1. A sheath may also have a torque response within a range from about 1:0.8 to about 1:1. In some cases, a sheath has a torque response within a range from about 1:0.9 to about 1:1. Sheath embodiments of the present invention can advantageously provide an optimum or high torque response while retaining a high degree of flexibility, which combination is often not available with current sheath or lead removal products.
System 100 may also include a positive fixation assembly 150 or configuration for handle 120. In this way, handle 120 can be fixed or is fixable at any desired location along the length of sheath 110. In use, when sheath 110 is inserted into a patient, an operator can therefore adjust the position of handle 120 along the length of sheath 110. For example, the operator may fix handle 120 at a location that is close to the patient or near a sheath insertion point. In this way, the operator can reduce or otherwise modulate or select the amount of sheath that is present between the handle and the patient's body or insertion point. The ability to control the position of handle 120 along the length of sheath 110 allows the operator to have more easily maneuver the system 110. If the distance between handle 120 and the patient's body or insertion point is too great, for example, the system may exhibit undesirable flexing or movement as the operator maneuvers the system. The positive fixation feature allows the handle to be moveable to more proximal positions along the sheath as a lead extraction progresses.
In some embodiments, shaft 1200, in combination with a separator, can be dimensioned to remove pacing leads up to 13 French (0.170 inch) in diameter. The shaft can have a bending stiffness of less than about 6 pounds per inch (lb/in), and a torsional stiffness greater than about 0.177 pound inch (lb-in). The separator can include a separating mechanism having a hardness greater than about B65 Rockwell. The separating mechanism hardness can be measured by the Rockwell scale, a standard scale used to grade metals. Table 1 provides a comparison between an exemplary shaft embodiment and other commonly used lead extraction shafts.
Table 1 indicates that embodiments of the present invention provide a sheath having bending properties similar to a smaller commonly available sheath. However, the present sheath can be sized to accommodate a lead or other object having a large diameter, while still retaining desirable torque properties. Moreover, embodiments of the present invention provide a system that includes a flexible and torqueable sheath and a hard separating mechanism.
Bending stiffness can be defined as the slope of the force/deflection curve pursuant to a flexural test such as ASTM D790 (e.g. 3 point bend test with 3 inch span length). Embodiments of the present invention provide sheaths having a bending stiffness of less than about 6 pound force per inch. Torsional transmission can be defined as the resulting torque load (e.g. in Newton-centimeters) transmitted to a distal end of a sheath while rotating a proximal end of the sheath a given amount (e.g. 90 degrees). The torsional transmission values provided in Table 1 correspond to a span (tube) length of 12 inches. An exemplary separating system may therefore include a flexible shaft having an inner diameter greater than about 0.130 inch and a bending stiffness of less than about 6 lb/in. The shaft can have a torsional transmission of greater than about 0.177 lb-in. The system can also include a separating mechanism having a hardness greater than about B65 Rockwell.
In addition to being well suited for the removal or detachment of pacing leads from a patient, embodiments of the present invention are well suited for detaching or removing any of a variety of objects from a patient, such as catheters, wires, implants, or other foreign bodies. Such objects may be disposed in veins, arteries, or any body lumen, cavity, or tissue.
Embodiments of the invention have now been described in detail. However, it will be appreciated that the invention may be carried out in ways other than those illustrated in the aforesaid discussion, and that certain changes and modifications may be practiced within the scope of the appended claims. Accordingly, the scope of this invention is not intended to be limited by those specific examples, but rather is to be accorded the scope represented in the following claims.
This application is a continuation of U.S. patent application Ser. No. 11/615,005, filed Dec. 22, 2006, now U.S. Pat. No. 9,028,520, and titled Tissue Separating Systems and Methods, the entire contents of which are incorporated herein by reference for all purposes. This application is related to U.S. patent application Ser. No. 11/615,006, filed Dec. 22, 2006 now U.S. Pat. No. 8,961,551, and titled Retractable Separating Systems and Methods, the entire contents of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1663761 | Johnson | Mar 1928 | A |
3400708 | Scheidt | Sep 1968 | A |
3614953 | Moss | Oct 1971 | A |
4051596 | Hofmann | Oct 1977 | A |
4203444 | Bonnell et al. | May 1980 | A |
4246902 | Martinez | Jan 1981 | A |
4274414 | Johnson et al. | Jun 1981 | A |
4471777 | McCorkle, Jr. | Sep 1984 | A |
4517977 | Frost | May 1985 | A |
4582056 | McCorkle et al. | Apr 1986 | A |
4587972 | Morantte et al. | May 1986 | A |
4598710 | Kleinberg et al. | Jul 1986 | A |
4646738 | Trott | Mar 1987 | A |
4662869 | Wright | May 1987 | A |
4674502 | Imonti | Jun 1987 | A |
4729763 | Henrie | Mar 1988 | A |
4754755 | Husted | Jul 1988 | A |
4767403 | Hodge | Aug 1988 | A |
4790310 | Ginsburg et al. | Dec 1988 | A |
4943289 | Goode et al. | Jul 1990 | A |
4950277 | Farr | Aug 1990 | A |
4988347 | Goode et al. | Jan 1991 | A |
5009659 | Hamlin et al. | Apr 1991 | A |
5011482 | Goode et al. | Apr 1991 | A |
5013310 | Goode et al. | May 1991 | A |
5031634 | Simon | Jul 1991 | A |
5078723 | Dance et al. | Jan 1992 | A |
5152744 | Krause et al. | Oct 1992 | A |
5201316 | Pomeranz et al. | Apr 1993 | A |
5207683 | Goode et al. | May 1993 | A |
5263928 | Trauthen et al. | Nov 1993 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5290275 | Kittrell et al. | Mar 1994 | A |
5290303 | Pingleton et al. | Mar 1994 | A |
5383199 | Laudenslager et al. | Jan 1995 | A |
5395328 | Ockuly et al. | Mar 1995 | A |
5423330 | Lee | Jun 1995 | A |
5456680 | Taylor et al. | Oct 1995 | A |
5484433 | Taylor et al. | Jan 1996 | A |
5507751 | Goode et al. | Apr 1996 | A |
5562694 | Sauer et al. | Oct 1996 | A |
5569284 | Young et al. | Oct 1996 | A |
5575797 | Neubauer et al. | Nov 1996 | A |
5620451 | Rosborough | Apr 1997 | A |
5632749 | Goode et al. | May 1997 | A |
5643251 | Hillsman et al. | Jul 1997 | A |
5651781 | Grace | Jul 1997 | A |
5697936 | Shipko et al. | Dec 1997 | A |
5697944 | Lary | Dec 1997 | A |
5718237 | Haaga | Feb 1998 | A |
5725523 | Mueller | Mar 1998 | A |
5766164 | Mueller et al. | Jun 1998 | A |
5782823 | Mueller | Jul 1998 | A |
5807399 | Laske et al. | Sep 1998 | A |
5814044 | Hooven | Sep 1998 | A |
5823971 | Robinson et al. | Oct 1998 | A |
5824026 | Diaz | Oct 1998 | A |
5863294 | Alden | Jan 1999 | A |
5873886 | Larsen et al. | Feb 1999 | A |
5879365 | Whitfield et al. | Mar 1999 | A |
5893862 | Pratt et al. | Apr 1999 | A |
5899915 | Saadat | May 1999 | A |
5910150 | Saadat | Jun 1999 | A |
5931848 | Saadat | Aug 1999 | A |
5941893 | Saadat | Aug 1999 | A |
5951581 | Saadat et al. | Sep 1999 | A |
5972012 | Ream et al. | Oct 1999 | A |
5980515 | Tu | Nov 1999 | A |
5980545 | Pacala et al. | Nov 1999 | A |
6007512 | Hooven | Dec 1999 | A |
6010476 | Saadat | Jan 2000 | A |
6019756 | Mueller et al. | Feb 2000 | A |
6022336 | Zadno-Azizi et al. | Feb 2000 | A |
6027497 | Daniel et al. | Feb 2000 | A |
6033402 | Tu et al. | Mar 2000 | A |
6036685 | Mueller | Mar 2000 | A |
6051008 | Saadat et al. | Apr 2000 | A |
6066131 | Mueller et al. | May 2000 | A |
6080175 | Hogendijk | Jun 2000 | A |
6083237 | Huitema et al. | Jul 2000 | A |
6099537 | Sugai et al. | Aug 2000 | A |
6102926 | Tartaglia et al. | Aug 2000 | A |
6120520 | Saadat et al. | Sep 2000 | A |
6126654 | Giba et al. | Oct 2000 | A |
6136005 | Goode et al. | Oct 2000 | A |
6139543 | Esch et al. | Oct 2000 | A |
6152909 | Bagaoisan et al. | Nov 2000 | A |
6152918 | Padilla et al. | Nov 2000 | A |
6156049 | Lovato et al. | Dec 2000 | A |
6159203 | Sinofsky | Dec 2000 | A |
6159225 | Makower | Dec 2000 | A |
6162214 | Mueller et al. | Dec 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6167315 | Coe et al. | Dec 2000 | A |
6174307 | Daniel et al. | Jan 2001 | B1 |
6190352 | Haarala et al. | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6203537 | Adrian | Mar 2001 | B1 |
6210400 | Hebert et al. | Apr 2001 | B1 |
6228076 | Winston et al. | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6241692 | Tu et al. | Jun 2001 | B1 |
6245011 | Dudda et al. | Jun 2001 | B1 |
6251121 | Saadat | Jun 2001 | B1 |
6258083 | Daniel et al. | Jul 2001 | B1 |
6290668 | Gregory et al. | Sep 2001 | B1 |
6315774 | Daniel et al. | Nov 2001 | B1 |
6324434 | Coe et al. | Nov 2001 | B2 |
6395002 | Ellman et al. | May 2002 | B1 |
6398773 | Bagaoisan et al. | Jun 2002 | B1 |
6402771 | Palmer et al. | Jun 2002 | B1 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6419674 | Bowser et al. | Jul 2002 | B1 |
6419684 | Heisler et al. | Jul 2002 | B1 |
6423051 | Kaplan et al. | Jul 2002 | B1 |
6428539 | Baxter et al. | Aug 2002 | B1 |
6428556 | Chin | Aug 2002 | B1 |
6432119 | Saadat | Aug 2002 | B1 |
6436054 | Viola et al. | Aug 2002 | B1 |
6436114 | Novak et al. | Aug 2002 | B1 |
6454741 | Muni et al. | Sep 2002 | B1 |
6454758 | Thompson et al. | Sep 2002 | B1 |
6461349 | Elbrecht et al. | Oct 2002 | B1 |
6478777 | Honeck et al. | Nov 2002 | B1 |
6488636 | Bryan et al. | Dec 2002 | B2 |
6500182 | Foster | Dec 2002 | B2 |
6512959 | Gomperz et al. | Jan 2003 | B1 |
6527752 | Bosley et al. | Mar 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6554779 | Viola et al. | Apr 2003 | B2 |
6558382 | Jahns et al. | May 2003 | B2 |
6565588 | Clement et al. | May 2003 | B1 |
6569082 | Chin | May 2003 | B1 |
6575997 | Palmer et al. | Jun 2003 | B1 |
6592607 | Palmer et al. | Jul 2003 | B1 |
6595982 | Sekino et al. | Jul 2003 | B2 |
6599296 | Gillick et al. | Jul 2003 | B1 |
6602241 | Makower et al. | Aug 2003 | B2 |
6607547 | Chin | Aug 2003 | B1 |
6610046 | Usami et al. | Aug 2003 | B1 |
6610066 | Dinger et al. | Aug 2003 | B2 |
6613013 | Haarala et al. | Sep 2003 | B2 |
6620153 | Mueller et al. | Sep 2003 | B2 |
6620160 | Lewis et al. | Sep 2003 | B2 |
6620180 | Bays et al. | Sep 2003 | B1 |
6641590 | Palmer et al. | Nov 2003 | B1 |
6652480 | Imran et al. | Nov 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6660021 | Palmer et al. | Dec 2003 | B1 |
6663626 | Truckai et al. | Dec 2003 | B2 |
6669685 | Rizoiu et al. | Dec 2003 | B1 |
6673090 | Root et al. | Jan 2004 | B2 |
6687548 | Goode | Feb 2004 | B2 |
6702813 | Baxter et al. | Mar 2004 | B1 |
6706018 | Westlund et al. | Mar 2004 | B2 |
6706052 | Chin | Mar 2004 | B1 |
6706065 | Langberg et al. | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6712773 | Viola | Mar 2004 | B1 |
6712826 | Lui | Mar 2004 | B2 |
6772014 | Coe et al. | Aug 2004 | B2 |
6802838 | Loeb et al. | Oct 2004 | B2 |
6805692 | Muni et al. | Oct 2004 | B2 |
6810882 | Langberg et al. | Nov 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6860860 | Viola | Mar 2005 | B2 |
6871085 | Sommer | Mar 2005 | B2 |
6884240 | Dykes | Apr 2005 | B1 |
6887238 | Jahns et al. | May 2005 | B2 |
6893450 | Foster | May 2005 | B2 |
6913612 | Palmer et al. | Jul 2005 | B2 |
6962585 | Poleo, Jr. | Nov 2005 | B2 |
6979290 | Mourlas et al. | Dec 2005 | B2 |
6979319 | Manning et al. | Dec 2005 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6999809 | Currier et al. | Feb 2006 | B2 |
7004956 | Palmer et al. | Feb 2006 | B2 |
7008434 | Kurz et al. | Mar 2006 | B2 |
7011682 | Lashinski et al. | Mar 2006 | B2 |
7033335 | Haarala et al. | Apr 2006 | B2 |
7033344 | Imran | Apr 2006 | B2 |
7033357 | Baxter et al. | Apr 2006 | B2 |
7060061 | Altshuler et al. | Jun 2006 | B2 |
7063693 | Guenst | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7092765 | Geske et al. | Aug 2006 | B2 |
7104983 | Grasso et al. | Sep 2006 | B2 |
7114642 | Whitman | Oct 2006 | B2 |
7117039 | Manning et al. | Oct 2006 | B2 |
7149587 | Wardle et al. | Dec 2006 | B2 |
7151965 | Osypka | Dec 2006 | B2 |
7189207 | Viola | Mar 2007 | B2 |
7191015 | Lamson et al. | Mar 2007 | B2 |
7192430 | Truckai et al. | Mar 2007 | B2 |
7204824 | Moulis | Apr 2007 | B2 |
7214180 | Chin | May 2007 | B2 |
7226459 | Cesarini et al. | Jun 2007 | B2 |
7238179 | Brucker et al. | Jul 2007 | B2 |
7238180 | Mester et al. | Jul 2007 | B2 |
7252641 | Thompson et al. | Aug 2007 | B2 |
7264587 | Chin | Sep 2007 | B2 |
7273478 | Appling et al. | Sep 2007 | B2 |
7276052 | Kobayashi et al. | Oct 2007 | B2 |
7288096 | Chin | Oct 2007 | B2 |
7296577 | Lashinski et al. | Nov 2007 | B2 |
7306588 | Loeb et al. | Dec 2007 | B2 |
7326226 | Root et al. | Feb 2008 | B2 |
7328071 | Stehr et al. | Feb 2008 | B1 |
7344546 | Wulfman et al. | Mar 2008 | B2 |
7357794 | Makower et al. | Apr 2008 | B2 |
7359756 | Goode | Apr 2008 | B2 |
7369901 | Morgan et al. | May 2008 | B1 |
7392095 | Flynn et al. | Jun 2008 | B2 |
7396354 | Rychnovsky et al. | Jul 2008 | B2 |
7398781 | Chin | Jul 2008 | B1 |
7449010 | Hayase et al. | Nov 2008 | B1 |
7462167 | Kratz et al. | Dec 2008 | B2 |
7485127 | Nistal | Feb 2009 | B2 |
7494484 | Beck et al. | Feb 2009 | B2 |
7507252 | Lashinski et al. | Mar 2009 | B2 |
7509169 | Eigler et al. | Mar 2009 | B2 |
7510576 | Langberg et al. | Mar 2009 | B2 |
7513877 | Viola | Apr 2009 | B2 |
7513892 | Haarala et al. | Apr 2009 | B1 |
7526342 | Chin et al. | Apr 2009 | B2 |
7537602 | Whitman | May 2009 | B2 |
7540865 | Griffin et al. | Jun 2009 | B2 |
7544197 | Kelsch et al. | Jun 2009 | B2 |
7559941 | Zannis et al. | Jul 2009 | B2 |
D600792 | Eubanks et al. | Sep 2009 | S |
7591790 | Pflueger | Sep 2009 | B2 |
7597698 | Chin | Oct 2009 | B2 |
7606615 | Makower et al. | Oct 2009 | B2 |
7611474 | Hibner et al. | Nov 2009 | B2 |
7637904 | Wingler et al. | Dec 2009 | B2 |
7645286 | Catanese et al. | Jan 2010 | B2 |
7648466 | Stephens et al. | Jan 2010 | B2 |
7651503 | Coe et al. | Jan 2010 | B1 |
7651504 | Goode et al. | Jan 2010 | B2 |
D610259 | Way et al. | Feb 2010 | S |
D611146 | Way et al. | Mar 2010 | S |
7674272 | Torrance et al. | Mar 2010 | B2 |
7695485 | Whitman et al. | Apr 2010 | B2 |
7695512 | Lashinski et al. | Apr 2010 | B2 |
7697996 | Manning et al. | Apr 2010 | B2 |
7713231 | Wulfman et al. | May 2010 | B2 |
7713235 | Torrance et al. | May 2010 | B2 |
7713281 | Leeflang et al. | May 2010 | B2 |
7722549 | Nakao | May 2010 | B2 |
7740626 | Takayama et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
D619252 | Way et al. | Jul 2010 | S |
D619253 | Way et al. | Jul 2010 | S |
7758594 | Lamson et al. | Jul 2010 | B2 |
7758613 | Whitman | Jul 2010 | B2 |
D621939 | Way et al. | Aug 2010 | S |
7766923 | Catanese et al. | Aug 2010 | B2 |
7780650 | Frassica et al. | Aug 2010 | B2 |
7780682 | Catanese et al. | Aug 2010 | B2 |
7780694 | Palmer et al. | Aug 2010 | B2 |
7794411 | Ritchart et al. | Sep 2010 | B2 |
7798813 | Harrel | Sep 2010 | B1 |
7803151 | Whitman | Sep 2010 | B2 |
7806835 | Hibner et al. | Oct 2010 | B2 |
7811281 | Rentrop | Oct 2010 | B1 |
7815655 | Catanese et al. | Oct 2010 | B2 |
7842009 | Torrance et al. | Nov 2010 | B2 |
7845538 | Whitman | Dec 2010 | B2 |
7858038 | Andreyko et al. | Dec 2010 | B2 |
7875018 | Tockman et al. | Jan 2011 | B2 |
7875049 | Eversull et al. | Jan 2011 | B2 |
7890186 | Wardle et al. | Feb 2011 | B2 |
7890192 | Kelsch et al. | Feb 2011 | B1 |
7896879 | Solsberg et al. | Mar 2011 | B2 |
7896891 | Catanese et al. | Mar 2011 | B2 |
7905889 | Catanese et al. | Mar 2011 | B2 |
7909836 | McLean et al. | Mar 2011 | B2 |
7914464 | Burdorff et al. | Mar 2011 | B2 |
7914542 | Lamson et al. | Mar 2011 | B2 |
D635671 | Way et al. | Apr 2011 | S |
7918230 | Whitman et al. | Apr 2011 | B2 |
7918803 | Ritchart et al. | Apr 2011 | B2 |
7930040 | Kelsch et al. | Apr 2011 | B1 |
7935146 | Langberg et al. | May 2011 | B2 |
7938786 | Ritchie et al. | May 2011 | B2 |
7942830 | Solsberg et al. | May 2011 | B2 |
7951071 | Whitman et al. | May 2011 | B2 |
7951158 | Catanese et al. | May 2011 | B2 |
7963040 | Shan et al. | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7974710 | Seifert | Jul 2011 | B2 |
7981049 | Ritchie et al. | Jul 2011 | B2 |
7981050 | Ritchart et al. | Jul 2011 | B2 |
7981128 | To et al. | Jul 2011 | B2 |
7988726 | Langberg et al. | Aug 2011 | B2 |
7991258 | Temelkuran et al. | Aug 2011 | B2 |
7992758 | Whitman et al. | Aug 2011 | B2 |
7993350 | Ventura et al. | Aug 2011 | B2 |
7993351 | Worley et al. | Aug 2011 | B2 |
7993359 | Atwell et al. | Aug 2011 | B1 |
8007469 | Duffy | Aug 2011 | B2 |
8007488 | Ravenscroft | Aug 2011 | B2 |
8007503 | Catanese et al. | Aug 2011 | B2 |
8007506 | To et al. | Aug 2011 | B2 |
8016748 | Mourlas et al. | Sep 2011 | B2 |
8016844 | Privitera et al. | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8016858 | Whitman | Sep 2011 | B2 |
8021373 | Whitman et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8043309 | Catanese et al. | Oct 2011 | B2 |
RE42959 | Saadat et al. | Nov 2011 | E |
8052616 | Andrisek et al. | Nov 2011 | B2 |
8052659 | Ravenscroft et al. | Nov 2011 | B2 |
8056786 | Whitman et al. | Nov 2011 | B2 |
8056791 | Whitman | Nov 2011 | B2 |
8070762 | Escudero et al. | Dec 2011 | B2 |
8090430 | Makower et al. | Jan 2012 | B2 |
8097012 | Kagarise | Jan 2012 | B2 |
8100920 | Gambale et al. | Jan 2012 | B2 |
8118208 | Whitman | Feb 2012 | B2 |
8126570 | Manning et al. | Feb 2012 | B2 |
8128577 | Viola | Mar 2012 | B2 |
8128636 | Lui et al. | Mar 2012 | B2 |
8133214 | Hayase et al. | Mar 2012 | B2 |
8137377 | Palmer et al. | Mar 2012 | B2 |
8142442 | Palmer et al. | Mar 2012 | B2 |
8142446 | Shan | Mar 2012 | B2 |
RE43300 | Saadat et al. | Apr 2012 | E |
8157815 | Catanese et al. | Apr 2012 | B2 |
8186559 | Whitman | May 2012 | B1 |
8187204 | Miller et al. | May 2012 | B2 |
8192430 | Goode et al. | Jun 2012 | B2 |
8202229 | Miller et al. | Jun 2012 | B2 |
8206409 | Privitera et al. | Jun 2012 | B2 |
8211118 | Catanese et al. | Jul 2012 | B2 |
8216254 | McLean et al. | Jul 2012 | B2 |
8235916 | Whiting et al. | Aug 2012 | B2 |
8236016 | To et al. | Aug 2012 | B2 |
8239039 | Zarembo et al. | Aug 2012 | B2 |
8241272 | Arnold et al. | Aug 2012 | B2 |
8251916 | Speeg et al. | Aug 2012 | B2 |
8252015 | Leeflang et al. | Aug 2012 | B2 |
8257312 | Duffy | Sep 2012 | B2 |
8272554 | Whitman et al. | Sep 2012 | B2 |
8273078 | Muenker | Sep 2012 | B2 |
8295947 | Lamson et al. | Oct 2012 | B2 |
8303511 | Eigler et al. | Nov 2012 | B2 |
8323240 | Wulfman et al. | Dec 2012 | B2 |
8326437 | Cully et al. | Dec 2012 | B2 |
8333740 | Shippert | Dec 2012 | B2 |
8333776 | Cheng et al. | Dec 2012 | B2 |
8337516 | Escudero et al. | Dec 2012 | B2 |
8343167 | Henson | Jan 2013 | B2 |
8343187 | Lamson et al. | Jan 2013 | B2 |
8353899 | Wells et al. | Jan 2013 | B1 |
8361094 | To et al. | Jan 2013 | B2 |
8361097 | Patel et al. | Jan 2013 | B2 |
8364280 | Marnfeldt et al. | Jan 2013 | B2 |
8372098 | Tran | Feb 2013 | B2 |
8394110 | Catanese et al. | Mar 2013 | B2 |
8394113 | Wei et al. | Mar 2013 | B2 |
8425535 | McLean et al. | Apr 2013 | B2 |
9028520 | Taylor et al. | May 2015 | B2 |
9345508 | Hendrick | May 2016 | B2 |
20010005789 | Root et al. | Jun 2001 | A1 |
20010016717 | Haarala et al. | Aug 2001 | A1 |
20010025174 | Daniel et al. | Sep 2001 | A1 |
20010031981 | Evans et al. | Oct 2001 | A1 |
20010039427 | Dinger et al. | Nov 2001 | A1 |
20010041899 | Foster | Nov 2001 | A1 |
20010044568 | Langberg et al. | Nov 2001 | A1 |
20020002372 | Jahns et al. | Jan 2002 | A1 |
20020007204 | Goode | Jan 2002 | A1 |
20020010475 | Lui | Jan 2002 | A1 |
20020010487 | Evans et al. | Jan 2002 | A1 |
20020016628 | Langberg et al. | Feb 2002 | A1 |
20020045811 | Kittrell et al. | Apr 2002 | A1 |
20020065543 | Gomperz et al. | May 2002 | A1 |
20020068954 | Foster | Jun 2002 | A1 |
20020087151 | Mody et al. | Jul 2002 | A1 |
20020103477 | Grasso et al. | Aug 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020103533 | Langberg et al. | Aug 2002 | A1 |
20020123785 | Zhang et al. | Sep 2002 | A1 |
20020151961 | Lashinski et al. | Oct 2002 | A1 |
20020183735 | Edwards et al. | Dec 2002 | A1 |
20020188278 | Tockman et al. | Dec 2002 | A1 |
20030009146 | Muni et al. | Jan 2003 | A1 |
20030036788 | Coe et al. | Feb 2003 | A1 |
20030050630 | Mody et al. | Mar 2003 | A1 |
20030050631 | Mody et al. | Mar 2003 | A1 |
20030055444 | Evans et al. | Mar 2003 | A1 |
20030055445 | Evans et al. | Mar 2003 | A1 |
20030069575 | Chin et al. | Apr 2003 | A1 |
20030073985 | Mueller et al. | Apr 2003 | A1 |
20030078562 | Makower et al. | Apr 2003 | A1 |
20030105451 | Westlund et al. | Jun 2003 | A1 |
20030125619 | Manning et al. | Jul 2003 | A1 |
20030167056 | Jahns et al. | Sep 2003 | A1 |
20030187460 | Chin et al. | Oct 2003 | A1 |
20030187461 | Chin | Oct 2003 | A1 |
20030199921 | Palmer et al. | Oct 2003 | A1 |
20030204202 | Palmer et al. | Oct 2003 | A1 |
20030208209 | Gambale et al. | Nov 2003 | A1 |
20030229323 | Haarala et al. | Dec 2003 | A1 |
20030229353 | Cragg | Dec 2003 | A1 |
20040006358 | Wulfman et al. | Jan 2004 | A1 |
20040010248 | Appling et al. | Jan 2004 | A1 |
20040015193 | Lamson et al. | Jan 2004 | A1 |
20040019359 | Worley et al. | Jan 2004 | A1 |
20040049208 | Hill | Mar 2004 | A1 |
20040054368 | Truckai et al. | Mar 2004 | A1 |
20040054388 | Osypka | Mar 2004 | A1 |
20040059348 | Geske et al. | Mar 2004 | A1 |
20040064024 | Sommer | Apr 2004 | A1 |
20040068256 | Rizoiu et al. | Apr 2004 | A1 |
20040068288 | Palmer et al. | Apr 2004 | A1 |
20040093016 | Root et al. | May 2004 | A1 |
20040097788 | Mourlas et al. | May 2004 | A1 |
20040102804 | Chin | May 2004 | A1 |
20040102841 | Langberg et al. | May 2004 | A1 |
20040111101 | Chin | Jun 2004 | A1 |
20040116939 | Goode | Jun 2004 | A1 |
20040116992 | Wardle et al. | Jun 2004 | A1 |
20040133220 | Lashinski et al. | Jul 2004 | A1 |
20040138562 | Makower et al. | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040143284 | Chin | Jul 2004 | A1 |
20040147911 | Sinofsky | Jul 2004 | A1 |
20040147912 | Sinofsky | Jul 2004 | A1 |
20040147913 | Sinofsky | Jul 2004 | A1 |
20040153096 | Goode et al. | Aug 2004 | A1 |
20040153098 | Chin et al. | Aug 2004 | A1 |
20040153146 | Lashinski et al. | Aug 2004 | A1 |
20040172116 | Seifert et al. | Sep 2004 | A1 |
20040176840 | Langberg et al. | Sep 2004 | A1 |
20040181249 | Torrance et al. | Sep 2004 | A1 |
20040199191 | Schwartz | Oct 2004 | A1 |
20040216748 | Chin | Nov 2004 | A1 |
20040220519 | Wulfman et al. | Nov 2004 | A1 |
20040230212 | Wulfman | Nov 2004 | A1 |
20040230213 | Wulfman et al. | Nov 2004 | A1 |
20040235611 | Nistal | Nov 2004 | A1 |
20040236312 | Nistal et al. | Nov 2004 | A1 |
20040236397 | Coe et al. | Nov 2004 | A1 |
20040243123 | Grasso et al. | Dec 2004 | A1 |
20040243162 | Wulfman et al. | Dec 2004 | A1 |
20040254534 | Bjorkman et al. | Dec 2004 | A1 |
20040260322 | Rudko et al. | Dec 2004 | A1 |
20040267276 | Camino et al. | Dec 2004 | A1 |
20040267304 | Zannis et al. | Dec 2004 | A1 |
20050004644 | Kelsch et al. | Jan 2005 | A1 |
20050025798 | Moulis | Feb 2005 | A1 |
20050027337 | Rudko et al. | Feb 2005 | A1 |
20050038419 | Arnold et al. | Feb 2005 | A9 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050065561 | Manning et al. | Mar 2005 | A1 |
20050090748 | Makower et al. | Apr 2005 | A1 |
20050096740 | Langberg et al. | May 2005 | A1 |
20050131399 | Loeb et al. | Jun 2005 | A1 |
20050149104 | Leeflang et al. | Jul 2005 | A1 |
20050149105 | Leeflang et al. | Jul 2005 | A1 |
20050197623 | Leeflang et al. | Sep 2005 | A1 |
20050222607 | Palmer et al. | Oct 2005 | A1 |
20050228402 | Hofmann | Oct 2005 | A1 |
20050228452 | Mourlas et al. | Oct 2005 | A1 |
20050251116 | Steinke et al. | Nov 2005 | A1 |
20050259942 | Temelkuran et al. | Nov 2005 | A1 |
20050267557 | Flynn et al. | Dec 2005 | A1 |
20050273090 | Nieman et al. | Dec 2005 | A1 |
20050283143 | Rizoiu | Dec 2005 | A1 |
20050288596 | Eigler et al. | Dec 2005 | A1 |
20050288604 | Eigler et al. | Dec 2005 | A1 |
20050288654 | Nieman et al. | Dec 2005 | A1 |
20050288722 | Eigler et al. | Dec 2005 | A1 |
20060041250 | Poleo | Feb 2006 | A1 |
20060052660 | Chin | Mar 2006 | A1 |
20060084839 | Mourlas et al. | Apr 2006 | A1 |
20060100663 | Palmer et al. | May 2006 | A1 |
20060116746 | Chin | Jun 2006 | A1 |
20060116757 | Lashinski et al. | Jun 2006 | A1 |
20060167417 | Kratz et al. | Jul 2006 | A1 |
20060173440 | Lamson et al. | Aug 2006 | A1 |
20060217755 | Eversull et al. | Sep 2006 | A1 |
20060229490 | Chin | Oct 2006 | A1 |
20060235431 | Goode et al. | Oct 2006 | A1 |
20060247751 | Seifert | Nov 2006 | A1 |
20060253179 | Goode et al. | Nov 2006 | A1 |
20060265042 | Catanese et al. | Nov 2006 | A1 |
20060276871 | Lamson et al. | Dec 2006 | A1 |
20060287574 | Chin | Dec 2006 | A1 |
20070005084 | Clague et al. | Jan 2007 | A1 |
20070015964 | Eversull et al. | Jan 2007 | A1 |
20070016130 | Leeflang et al. | Jan 2007 | A1 |
20070021812 | Manning et al. | Jan 2007 | A1 |
20070049929 | Catanese et al. | Mar 2007 | A1 |
20070050003 | Zarembo et al. | Mar 2007 | A1 |
20070083217 | Eversull et al. | Apr 2007 | A1 |
20070100410 | Lamson et al. | May 2007 | A1 |
20070106328 | Wardle et al. | May 2007 | A1 |
20070129710 | Rudko et al. | Jun 2007 | A1 |
20070142846 | Catanese et al. | Jun 2007 | A1 |
20070197861 | Reiley et al. | Aug 2007 | A1 |
20070198020 | Reiley et al. | Aug 2007 | A1 |
20070232981 | Ravenscroft et al. | Oct 2007 | A1 |
20070265648 | Cohen | Nov 2007 | A1 |
20070276412 | Catanese et al. | Nov 2007 | A1 |
20070293853 | Truckai et al. | Dec 2007 | A1 |
20080004643 | To et al. | Jan 2008 | A1 |
20080004644 | To et al. | Jan 2008 | A1 |
20080004645 | To et al. | Jan 2008 | A1 |
20080004646 | To et al. | Jan 2008 | A1 |
20080004647 | To et al. | Jan 2008 | A1 |
20080015625 | Ventura et al. | Jan 2008 | A1 |
20080021484 | Catanese et al. | Jan 2008 | A1 |
20080021485 | Catanese et al. | Jan 2008 | A1 |
20080033232 | Catanese et al. | Feb 2008 | A1 |
20080033456 | Catanese et al. | Feb 2008 | A1 |
20080033458 | McLean et al. | Feb 2008 | A1 |
20080033488 | Catanese et al. | Feb 2008 | A1 |
20080039833 | Catanese et al. | Feb 2008 | A1 |
20080039872 | Catanese et al. | Feb 2008 | A1 |
20080039874 | Catanese et al. | Feb 2008 | A1 |
20080039875 | Catanese et al. | Feb 2008 | A1 |
20080039876 | Catanese et al. | Feb 2008 | A1 |
20080039889 | Lamson et al. | Feb 2008 | A1 |
20080039893 | McLean et al. | Feb 2008 | A1 |
20080039894 | Catanese et al. | Feb 2008 | A1 |
20080045986 | To et al. | Feb 2008 | A1 |
20080051756 | Makower et al. | Feb 2008 | A1 |
20080058759 | Makower et al. | Mar 2008 | A1 |
20080071341 | Goode et al. | Mar 2008 | A1 |
20080071342 | Goode et al. | Mar 2008 | A1 |
20080097426 | Root et al. | Apr 2008 | A1 |
20080103439 | Torrance et al. | May 2008 | A1 |
20080103446 | Torrance et al. | May 2008 | A1 |
20080103516 | Wulfman et al. | May 2008 | A1 |
20080125748 | Patel | May 2008 | A1 |
20080147061 | Goode et al. | Jun 2008 | A1 |
20080154293 | Taylor | Jun 2008 | A1 |
20080183163 | Lampropoulos et al. | Jul 2008 | A1 |
20080208105 | Zelickson et al. | Aug 2008 | A1 |
20080221560 | Arai et al. | Sep 2008 | A1 |
20080228208 | Wulfman et al. | Sep 2008 | A1 |
20080249516 | Muenker | Oct 2008 | A1 |
20080262516 | Gambale et al. | Oct 2008 | A1 |
20080275497 | Palmer et al. | Nov 2008 | A1 |
20080275498 | Palmer et al. | Nov 2008 | A1 |
20080281308 | Neuberger et al. | Nov 2008 | A1 |
20080287888 | Ravenscroft | Nov 2008 | A1 |
20080306333 | Chin | Dec 2008 | A1 |
20090012510 | Bertolero et al. | Jan 2009 | A1 |
20090018523 | Lamson et al. | Jan 2009 | A1 |
20090018553 | McLean et al. | Jan 2009 | A1 |
20090018565 | To et al. | Jan 2009 | A1 |
20090034927 | Temelkuran et al. | Feb 2009 | A1 |
20090036871 | Hayase et al. | Feb 2009 | A1 |
20090054918 | Henson | Feb 2009 | A1 |
20090060977 | Lamson et al. | Mar 2009 | A1 |
20090071012 | Shan et al. | Mar 2009 | A1 |
20090076522 | Shan | Mar 2009 | A1 |
20090131907 | Chin et al. | May 2009 | A1 |
20090157045 | Haarala et al. | Jun 2009 | A1 |
20090192439 | Lamson et al. | Jul 2009 | A1 |
20090204128 | Lamson et al. | Aug 2009 | A1 |
20090221994 | Neuberger et al. | Sep 2009 | A1 |
20090222025 | Catanese et al. | Sep 2009 | A1 |
20090227999 | Willis et al. | Sep 2009 | A1 |
20090234378 | Escudero et al. | Sep 2009 | A1 |
20100004606 | Hansen et al. | Jan 2010 | A1 |
20100016836 | Makower et al. | Jan 2010 | A1 |
20100030154 | Duffy | Feb 2010 | A1 |
20100030161 | Duffy | Feb 2010 | A1 |
20100030247 | Pikus et al. | Feb 2010 | A1 |
20100030262 | McLean et al. | Feb 2010 | A1 |
20100030263 | Cheng et al. | Feb 2010 | A1 |
20100049225 | To et al. | Feb 2010 | A1 |
20100063488 | Fischer et al. | Mar 2010 | A1 |
20100125253 | Olson et al. | May 2010 | A1 |
20100137873 | Grady et al. | Jun 2010 | A1 |
20100160952 | Leeflang et al. | Jun 2010 | A1 |
20100191165 | Appling et al. | Jul 2010 | A1 |
20100198194 | Manning et al. | Aug 2010 | A1 |
20100198229 | Olomutzki et al. | Aug 2010 | A1 |
20100217277 | Truong | Aug 2010 | A1 |
20100222737 | Arnold et al. | Sep 2010 | A1 |
20100222787 | Goode et al. | Sep 2010 | A1 |
20100240951 | Catanese et al. | Sep 2010 | A1 |
20100256616 | Katoh et al. | Oct 2010 | A1 |
20100280496 | Shippert | Nov 2010 | A1 |
20100324472 | Wulfman | Dec 2010 | A1 |
20100331793 | Tulleken | Dec 2010 | A1 |
20110004238 | Palmer et al. | Jan 2011 | A1 |
20110009957 | Langberg et al. | Jan 2011 | A1 |
20110022057 | Eigler et al. | Jan 2011 | A1 |
20110028959 | Chasan | Feb 2011 | A1 |
20110034790 | Mourlas et al. | Feb 2011 | A1 |
20110040238 | Wulfman et al. | Feb 2011 | A1 |
20110040312 | Lamson et al. | Feb 2011 | A1 |
20110040315 | To et al. | Feb 2011 | A1 |
20110040326 | Wei et al. | Feb 2011 | A1 |
20110046648 | Johnston et al. | Feb 2011 | A1 |
20110054493 | McLean et al. | Mar 2011 | A1 |
20110060349 | Cheng et al. | Mar 2011 | A1 |
20110071440 | Torrance et al. | Mar 2011 | A1 |
20110105947 | Fritscher-Ravens et al. | May 2011 | A1 |
20110106004 | Eubanks et al. | May 2011 | A1 |
20110106099 | Duffy et al. | May 2011 | A1 |
20110112548 | Fifer et al. | May 2011 | A1 |
20110112562 | Torrance | May 2011 | A1 |
20110112563 | To et al. | May 2011 | A1 |
20110112564 | Wolf | May 2011 | A1 |
20110118660 | Torrance et al. | May 2011 | A1 |
20110144423 | Tong et al. | Jun 2011 | A1 |
20110144425 | Catanese et al. | Jun 2011 | A1 |
20110151463 | Wulfman | Jun 2011 | A1 |
20110152607 | Catanese et al. | Jun 2011 | A1 |
20110152906 | Escudero et al. | Jun 2011 | A1 |
20110152907 | Escudero et al. | Jun 2011 | A1 |
20110160747 | McLean et al. | Jun 2011 | A1 |
20110160748 | Catanese et al. | Jun 2011 | A1 |
20110166564 | Merrick et al. | Jul 2011 | A1 |
20110178543 | Chin et al. | Jul 2011 | A1 |
20110190758 | Lamson et al. | Aug 2011 | A1 |
20110196298 | Anderson et al. | Aug 2011 | A1 |
20110196355 | Mitchell et al. | Aug 2011 | A1 |
20110208207 | Bowe et al. | Aug 2011 | A1 |
20110213398 | Chin et al. | Sep 2011 | A1 |
20110218528 | Ogata et al. | Sep 2011 | A1 |
20110238078 | Goode et al. | Sep 2011 | A1 |
20110238102 | Gutfinger et al. | Sep 2011 | A1 |
20110245751 | Hofmann | Oct 2011 | A1 |
20110251629 | Galdonik et al. | Oct 2011 | A1 |
20110257592 | Ventura et al. | Oct 2011 | A1 |
20110270169 | Gardeski et al. | Nov 2011 | A1 |
20110270170 | Gardeski et al. | Nov 2011 | A1 |
20110270289 | To et al. | Nov 2011 | A1 |
20110300010 | Jarnagin et al. | Dec 2011 | A1 |
20110301417 | Mourlas et al. | Dec 2011 | A1 |
20110301626 | To et al. | Dec 2011 | A1 |
20120035590 | Whiting et al. | Feb 2012 | A1 |
20120041422 | Whiting et al. | Feb 2012 | A1 |
20120053564 | Ravenscroft | Mar 2012 | A1 |
20120065659 | To | Mar 2012 | A1 |
20120083810 | Escudero et al. | Apr 2012 | A1 |
20120083826 | Chao et al. | Apr 2012 | A1 |
20120095447 | Fojtik | Apr 2012 | A1 |
20120095479 | Bowe et al. | Apr 2012 | A1 |
20120097174 | Spotnitz et al. | Apr 2012 | A1 |
20120123411 | Ibrahim et al. | May 2012 | A1 |
20120136341 | Appling et al. | May 2012 | A1 |
20120165827 | Khairkhahan et al. | Jun 2012 | A1 |
20120165861 | Palmer et al. | Jun 2012 | A1 |
20120191015 | Zannis et al. | Jul 2012 | A1 |
20120209173 | Hayase et al. | Aug 2012 | A1 |
20120215305 | Le et al. | Aug 2012 | A1 |
20120239008 | Fojtik | Sep 2012 | A1 |
20120245600 | McLean et al. | Sep 2012 | A1 |
20120253229 | Cage | Oct 2012 | A1 |
20120265183 | Tulleken et al. | Oct 2012 | A1 |
20120323252 | Booker | Dec 2012 | A1 |
20120323253 | Garai et al. | Dec 2012 | A1 |
20120330292 | Shadduck et al. | Dec 2012 | A1 |
20130006228 | Johnson et al. | Jan 2013 | A1 |
20130035676 | Mitchell et al. | Feb 2013 | A1 |
20130096582 | Cheng et al. | Apr 2013 | A1 |
20130103047 | Steingisser et al. | Apr 2013 | A1 |
20140031800 | Oren et al. | Jan 2014 | A1 |
20150216547 | Hendrick | Aug 2015 | A1 |
20160317173 | Hendrick | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
H05506382 | Sep 1993 | JP |
2004516073 | Jun 2004 | JP |
9117711 | Nov 1991 | WO |
9533513 | Dec 1995 | WO |
9907295 | Feb 1999 | WO |
9949937 | Oct 1999 | WO |
9958066 | Nov 1999 | WO |
0176680 | Oct 2001 | WO |
0249690 | May 2003 | WO |
2004080345 | Sep 2004 | WO |
2004080507 | Sep 2004 | WO |
2006007410 | Jan 2006 | WO |
2008005888 | Jan 2008 | WO |
2008005891 | Jan 2008 | WO |
2008042987 | Apr 2008 | WO |
2009005779 | Jan 2009 | WO |
2009054968 | Apr 2009 | WO |
2009065082 | May 2009 | WO |
2009126309 | Oct 2009 | WO |
2011003113 | Jan 2011 | WO |
2011084863 | Jul 2011 | WO |
2011133941 | Oct 2011 | WO |
2011162595 | Dec 2011 | WO |
2012009697 | Apr 2012 | WO |
2012098335 | Jul 2012 | WO |
2012114333 | Aug 2012 | WO |
2012177117 | Dec 2012 | WO |
2013036588 | Mar 2013 | WO |
Entry |
---|
Decision to Grant for European Patent Application No. 07255018.9, dated Aug. 8, 2013, 2 pages. |
Department of Health and Ageing in Australian Government, “Horizon Scanning Technology Prioritising: Laser Extraction Systems.” 2010. 15 pages. |
EP extended Search Report mailed Oct. 21, 2009; Application No. 07255019.7, 8 pages. |
Extended European Search Report for European Application No. 07255018.9, dated Nov. 12, 2010. |
Final Action for U.S. Appl. No. 11/615,005, mailed Nov. 9, 2009, 10 pages. |
Final Action for U.S. Appl. No. 11/615,005, mailed Nov. 21, 2013, 20 pages. |
Final Action for U.S. Appl. No. 11/615,006 mailed Oct. 26, 2009, 9 pages. |
Intent to Grant for European Patent Application No. 07255018.9, dated Nov. 29, 2012, 7 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/059434, dated Dec. 13, 2013, 14 pages. |
International Search Report and Written Opinion issued in PCT/US2014/019258, mailed Aug. 8, 2014, 21 pages. |
International Search Report and Written Opinion issued in PCT/US2014/021167 mailed Jun. 26, 2014, 19 pages. |
International Search Report and Written Opinion issued in PCT/US2014/026496 mailed Jul. 30, 2014, 16 pages. |
International Search Report and Written Opinion issued in PCT/US2015/016899, mailed May 1, 2015, 14 pages. |
Notice of Allowance for European Patent Application No. 07255018.9, dated Jul. 26, 2012, 47 pages. |
Notice of Allowance for Japan Patent Application No. 2007-333273, mailed Jan. 16, 2014, 3 pages. |
Official Action for European Patent Application No. 07255018.9, dated Jul. 19, 2011, 3 pages. |
Official Action for U.S. Appl. No. 11/615,005, mailed Apr. 16, 2009, 13 pages. |
Official Action for U.S. Appl. No. 11/615,005, mailed Feb. 11, 2011, 12 pages. |
Official Action for U.S. Appl. No. 11/615,005, mailed Jul. 21, 2010, 10 pages. |
Official Action for U.S. Appl. No. 11/615,005, mailed Mar. 14, 2013, 16 pages. |
Official Action for U.S. Appl. No. 13/800,728, mailed Jan. 16, 2014, 14 pages. |
Official Action for U.S. Appl. No. 11/615,006 mailed Apr. 24, 2009, 7 pages. |
Official Action for U.S. Appl. No. 11/615,006 mailed Feb. 17, 2010, 8 pages. |
Official Action for U.S. Appl. No. 11/615,006 mailed Jul. 20, 2010, 9 pages. |
Official Action for U.S. Appl. No. 11/615,006 mailed Mar. 14, 2013, 16 pages. |
Office Action for U.S. Appl. No. 11/615,006 mailed Nov. 22, 2013, 16 pages. |
Official Action with English translation for Japan Patent Application No. 2007-333173, mailed Apr. 30, 2013, 5 pages. |
Official Action with English translation for Japan Patent Application No. 2007-333173, mailed Aug. 13, 2012, 7 pages. |
Official Action with English translation for Japan Patent Application No. 2007-333273, mailed Jul. 30, 2012, 7 pages. |
Official Action with English translation for Japan Patent Application No. 2007-333273, mailed Jun. 6, 2013, 10 pages. |
PCT Application No. PCT/US2015/016899 entitled Medical Device for Removing an Implanted Object filed Feb. 20, 2015. |
PCT Application No. PCT/US2015/018305 entitled Multiple Configuration Surgical Cutting Device filed Mar. 2, 2015. |
U.S. Appl. No. 13/800,651 entitled System and Method of Ablative Cutting and Pulsed Vacuum Aspiration, filed Mar. 13, 2013. |
U.S. Appl. No. 13/800,675 entitled Laser Catheter With Helical Internal Lumen, filed Mar. 13, 2013. |
U.S. Appl. No. 13/800,700 entitled Device and Method of Ablative Cutting With Helical Tip, filed Mar. 13, 2013. |
U.S. Appl. No. 13/800,728 entitled Laser Ablation Catheter, filed Mar. 13, 2013. |
U.S. Appl. No. 13/828,231 entitled Tissue Slitting Methods and Systems, filed Mar. 14, 2013. |
U.S. Appl. No. 13/828,310 entitled Tissue Slitting Methods and Systems, filed Mar. 14, 2013. |
U.S. Appl. No. 13/828,383 entitled Tissue Slitting Methods and Systems, filed Mar. 14, 2013. |
U.S. Appl. No. 13/828,441 entitled Tissue Slitting Methods and Systems, filed Mar. 14, 2013. |
U.S. Appl. No. 13/828,536 entitled Expandable Lead Jacket, filed Mar. 14, 2013. |
U.S. Appl. No. 13/828,638 entitled Lead Removal Sleeve, filed Mar. 14, 2013. |
U.S. Appl. No. 13/834,405 entitled Retractable Blade for Lead Removal Device, filed Mar. 15, 2013. |
U.S. Appl. No. 14/577,976 entitled Surgical Instrument Including an Inwardly Deflecting Cutting Tip for Removing an Implanted Object filed Dec. 19, 2014. |
U.S. Appl. No. 14/589,688 entitled Retractable Separating Systems and Methods filed Jan. 5, 2015. |
U.S. Appl. No. 14/627,851 entitled Medical Device for Removing an Implanted Object filed Feb. 20, 2015. |
U.S. Appl. No. 14/627,950 entitled Medical Device for Removing an Implanted Object filed Feb. 20, 2015. |
U.S. Appl. No. 14/635,742 entitled Multiple Configuration Surgical Cutting Device filed Mar. 2, 2015. |
U.S. Appl. No. 61/793,597 entitled Surgical Instrument for Removing an Implanted Object filed Mar. 15, 2013. |
U.S. Appl. No. 61/987,993 entitled Dual Mode Mechanical Catheter Cutting System filed May 2, 2014. |
U.S. Appl. No. 62/005,315 entitled Surgical Instrument for Removing an Implanted Object filed May 30, 2014. |
U.S. Appl. No. 62/058,790 entitled Medical Device for Removing an Implanted Object filed Oct. 2, 2014. |
U.S. Appl. No. 62/094,808 entitled Multiple Configuration Surgical Cutting Device filed Dec. 19, 2014. |
U.S. Appl. No. 62/113,865 entitled Medical Device for Removing an Implanted Object filed Feb. 9, 2015. |
Number | Date | Country | |
---|---|---|---|
20150209062 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11615005 | Dec 2006 | US |
Child | 14682779 | US |