The present invention generally relates to an anchor for use with a device which requires anchoring in a body lumen. The present invention more particularly relates to a mitral valve annulus device and assembly wherein the device is deployed and anchored in the coronary sinus of a heart adjacent the mitral valve annulus to reshape the mitral valve annulus.
The human heart generally includes four valves. Of these valves, a most critical one is known as the mitral valve. The mitral valve is located in the left atrial ventricular opening between the left atrium and left ventricle. The mitral valve is intended to prevent regurgitation of blood from the left ventricle into the left atrium when the left ventricle contracts. In preventing blood regurgitation the mitral valve must be able to withstand considerable back pressure as the left ventricle contracts.
The valve cusps of the mitral valve are anchored to muscular wall of the heart by delicate but strong fibrous cords in order to support the cusps during left ventricular contraction. In a healthy mitral valve, the geometry of the mitral valve ensures that the cusps overlie each other to preclude regurgitation of the blood during left ventricular contraction.
The normal functioning of the mitral valve in preventing regurgitation can be impaired by dilated cardiomyopathy caused by disease or certain natural defects. For example, certain diseases may cause dilation of the mitral valve annulus. This can result in deformation of the mitral valve geometry to cause ineffective closure of the mitral valve during left ventricular contraction. Such ineffective closure results in leakage through the mitral valve and regurgitation. Diseases such as bacterial inflammations of the heart or heart failure can cause the aforementioned distortion or dilation of the mitral valve annulus. Needless to say, mitral valve regurgitation must not go uncorrected.
One method of repairing a mitral valve having impaired function is to completely replace the valve. This method has been found to be particularly suitable for replacing a mitral valve when one of the cusps has been severely damaged or deformed. While the replacement of the entire valve eliminates the immediate problem associated with a dilated mitral valve annulus, presently available prosthetic heart valves do not possess the same durability as natural heart valves.
Various other surgical procedures have been developed to correct the deformation of the mitral valve annulus and thus retain the intact natural heart valve function. These surgical techniques involve repairing the shape of the dilated or deformed valve annulus. Such techniques, generally known as annuloplasty, require surgically restricting the valve annulus to minimize dilation. Here, a prosthesis is typically sutured about the base of the valve leaflets to reshape the valve annulus and restrict the movement of the valve annulus during the opening and closing of the mitral valve.
Many different types of prostheses have been developed for use in such surgery. In general, prostheses are annular or partially annular shaped members which fit about the base of the valve annulus. The annular or partially annular shaped members may be formed from a rigid material, such as a metal, or from a flexible material.
While the prior art methods mentioned above have been able to achieve some success in treating mitral regurgitation, they have not been without problems and potential adverse consequences. For example, these procedures require open heart surgery. Such procedures are expensive, are extremely invasive requiring considerable recovery time, and pose the concomitant mortality risks associated with such procedures. Moreover, such open heart procedures are particularly stressful on patients with a compromised cardiac condition. Given these factors, such procedures are often reserved as a last resort and hence are employed late in the mitral regurgitation progression. Further, the effectiveness of such procedures is difficult to assess during the procedure and may not be known until a much later time. Hence, the ability to make adjustments to or changes in the prostheses to obtain optimum-effectiveness is extremely limited. Later corrections, if made at all, require still another open heart surgery.
An improved therapy to treat mitral regurgitation without resorting to open heart surgery has recently been proposed. This is rendered possible by the realization that the coronary sinus of a heart is near to and at least partially encircles the mitral valve annulus and then extends into a venous system including the great cardiac vein. As used herein, the term “coronary sinus” is meant to refer to not only the coronary sinus itself but in addition, the venous system associated with the coronary sinus including the great cardiac vein. The therapy contemplates the use of a device introduced into the coronary sinus to reshape and advantageously effect the geometry of the mitral valve annulus.
The device includes a resilient member having a cross sectional dimension for being received within the coronary sinus of the heart and a longitudinal dimension having an unstressed arched configuration when placed in the coronary sinus. The device partially encircles and exerts an inward pressure on the mitral valve. The inward pressure constricts the mitral valve annulus, or at least a portion of it, to essentially restore the mitral valve geometry. This promotes effective valve sealing action and eliminates mitral regurgitation.
The device may be implanted in the coronary sinus using only percutaneous techniques similar to the techniques used to implant cardiac leads such as pacemaker leads. One proposed system for implanting the device includes an elongated introducer configured for being releasably coupled to the device. The introducer is preferably flexible to permit it to advance the device into the heart and into the coronary sinus through the coronary sinus ostium. To promote guidance, an elongated sheath is first advanced into the coronary sinus. Then, the device and introducer are moved through a lumen of the sheath until the device is in position within the coronary sinus. Because the device is formed of resilient material, it conforms to the curvatures of the lumen as it is advanced through the sheath. The sheath is then partially retracted to permit the device to assume its unstressed arched configuration. Once the device is properly positioned, the introducer is then decoupled from the device and retracted through the sheath. The procedure is then completed by the retraction of the sheath. As a result, the device is left within the coronary sinus to exert the inward pressure on the mitral valve to restore mitral valve geometry.
The foregoing therapy has many advantages over the traditional open heart surgery approach. Since the device, system and method may be employed in a comparatively noninvasive procedure, mitral valve regurgitation may be treated at an early stage in the mitral regurgitation progression. Further, the device may be placed with relative ease by any minimally invasive cardiologist. Still further, since the heart remains completely intact throughout the procedure, the effectiveness of the procedure may be readily determined. Moreover, should adjustments be deemed desirable, such adjustments may be made during the procedure and before the patient is sent to recovery.
Another approach to treat mitral regurgitation with a device in the coronary sinus is based upon the observation that the application of a localized force against a discrete portion of the mitral valve annulus can terminate mitral regurgitation. This suggests that mitral regurgitation may be localized and nonuniform. Hence, the device applies a force to one or more discrete portions of the atrial wall of the coronary sinus to provide localized mitral valve annulus reshaping instead of generalized reshaping of the mitral valve annulus. Such localized therapy would have all the benefits of the generalized therapy. In addition, a localized therapy device may be easier to implant and adjust.
A still further approach to treat mitral regurgitation from the coronary sinus of the heart contemplates a device having a first anchor configured to be positioned within and fixed to the coronary sinus of the heart adjacent the mitral valve annulus within the heart, a cable fixed to the first anchor and extending proximally from the first anchor within the heart, a second anchor configured to be positioned in and fixed in the heart proximal to the first anchor and arranged to slidingly receive the cable, and a lock that locks the cable on the second anchor. When the first and second anchors are fixed within the heart, the cable may be drawn proximally and locked on the second anchor. The geometry of the mitral valve is thereby effected. This approach provides flexibility in that the second anchor may be positioned and fixed in the coronary sinus or alternatively, the second anchor may be positioned and fixed in the right atrium. This approach further allows adjustments in the cable tension after implant.
A still further alternative for treating mitral regurgitation contemplates a device having a first anchor configured to be positioned within and anchored to the coronary sinus of the heart adjacent the mitral valve annulus within the heart. A second anchor is configured to be positioned within the heart proximal to the first anchor and adjacent the mitral valve annulus within the heart. A connecting member, having a fixed length, is permanently attached to the first and second anchors. As a result, when the first and second anchors are within the heart with the first anchor anchored in the coronary sinus, the second anchor may be displaced proximally to effect the geometry of the mitral valve annulus and released to maintain the effect on the mitral valve geometry. The second anchor may be configured, when deployed, to anchor against distal movement but be movable proximally to permit the second anchor to be displaced proximally within the coronary sinus.
A further device that effects the condition of a mitral valve annulus of a heart also includes an elongated member dimensioned to be placed in the coronary sinus of the heart adjacent the mitral valve annulus. Here, the elongated member is flexible when placed in the heart in a first orientation to position the device in the coronary sinus adjacent the mitral valve annulus and relatively inflexible when rotated into a second orientation after the device is positioned in the coronary sinus adjacent to the mitral valve annulus.
The device thus has a first radius of curvature when in the first orientation and a second and greater radius of curvature when in the second orientation to effect the mitral valve geometry. Once positioned and in the second orientation, the device is anchored against both longitudinal and rotational movement.
Devices, other than those described above may be placed in body lumens other than the coronary sinus for therapeutic effect. All such devices must be anchored against movement when deployed at least for an acute phase until the natural body mechanisms produce sufficient fibrotic tissue about the devices for permanent fixation. While the device anchors must protect against device movement, they must also allow ready deployment to facilitate device implant. However, it is desirable that the anchors also be readily releasable, at least during the acute phase to permit device position adjustment or even device removal if required. All of these factors are especially important for devices implanted in the heart because of the potential need for precise device positioning during implant and the extreme movement of the heart during heartbeats.
The invention provides an anchor that anchors a device having an elongated body in a body lumen. The anchor includes a fixation member carried on the device, the fixation member being adjustable from a first configuration that permits placement of the device in the body lumen to a second configuration that anchors the device within the body lumen, and a lock that locks the fixation member in the second configuration.
The lock is releasable to release the fixation member from the second configuration to permit the device to be removed from the body lumen. The fixation member may also be deformable to permit the device to be moved within the body lumen.
The fixation member is adjustable from the first configuration to a maximum second configuration. The lock may be configured to lock the fixation member at any one of a plurality of intermediate points between the first configuration and the maximum second configuration.
The fixation member may be elongated and have a first end hingedly coupled to the device body. The fixation member may thus extend along the device body closely spaced to the device body when in the first configuration and be pivoted from the device body to the second configuration to engage and anchor the device in the body lumen.
The anchor may further include a support that renders the fixation member substantially rigid when in the second configuration. The support may be an extension of the fixation member, wherein the fixation member includes a second end opposite the first end and wherein the lock locks the fixation member second end on the device body.
The fixation member may include a second end opposite the first end. The support may include a support member having a first end hingedly coupled to the fixation member second end and a second end opposite the support member first end. The lock may lock the support member second end on the device body. The support member second end may be slidable along the device body. The anchor may include a plurality of the fixation members and/or a plurality of support members.
The invention further provides a device that effects the condition of a mitral valve annulus of a heart. The device includes an elongated body dimensioned to be placed in the coronary sinus of the heart adjacent the mitral valve annulus. The device further includes a fixation member carried by the device, the fixation member being adjustable from a first configuration that permits placement of the device in the coronary sinus to a second configuration that anchors the device within the coronary sinus, and a lock that locks the fixation member in the second configuration.
The lock is releasable to release the fixation member from the second configuration to permit the device to be moved within the coronary sinus. The fixation member may be deformable to permit the device to be moved within the coronary sinus.
The fixation member may be adjustable from the first configuration to a maximum second configuration and the lock may lock the fixation member at any one of a plurality of intermediate points between the first configuration and the maximum second configuration.
The fixation member is elongated and has a first end hingedly coupled to the device body. The fixation member may extend along the device body closely spaced to the device body when in the first configuration and may be pivoted from the device body when in the second configuration to engage the coronary sinus and anchor the device in the coronary sinus. The device may further include a support that renders the fixation member substantially rigid when in the second configuration. The support may be an extension of the fixation member, wherein the fixation member includes a second end opposite the first end and wherein the lock locks the fixation member second end on the device body. The fixation member second end may be slidable along the device body and the device may include a plurality of the fixation members.
The fixation member may include a second end opposite the first end. The support may be a separate support member having a first end hingedly coupled to the fixation member second end and second end opposite the support member first end. The lock may then lock the support member second end on the device body. The support member second end may be slidable along the device body. The device may include a plurality of the fixation members and support members.
The invention further provides an assembly that effects the condition of a mitral valve annulus of a heart. The assembly includes a mitral valve therapy device dimensioned to be placed in the coronary sinus adjacent the mitral valve annulus. The device includes an elongated body, a fixation member carried by the device, the fixation member being adjustable from a first configuration that permits placement of the device in the coronary sinus to a second configuration that anchors the device within the coronary sinus, and a lock that locks the fixation member in the second configuration. The assembly further includes a flexible catheter having a lumen that receives the device and being dimensioned to be advanced into the coronary sinus to place the device adjacent the coronary sinus.
The assembly may further include an elongated pusher that is received by the lumen of the catheter proximal to the device and that permits the device and the catheter to be moved opposite each other. The assembly may further include a tether receivable by the catheter lumen and engageable with the device to pull the device distally with respect to the catheter. The catheter may be used to transition the fixation member from the first configuration to the second configuration. For example, the fixation member may be elongated and have a first end hingedly coupled to the device body. The fixation member may then extend along the device body when in the first configuration and the fixation member may be pivoted from the device body into the second configuration by distal movement of the catheter with respect to the device to cause the fixation member to engage the coronary sinus and anchor the device in the coronary sinus.
The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further aspects and advantages thereof, may best be understood by making reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like reference numerals identify identical elements, and wherein:
Referring now to
The mitral valve 12 includes an anterior cusp 16, a posterior cusp 18 and an annulus 20. The annulus encircles the cusps 16 and 18 and maintains their spacing to provide a complete closure during a left ventricular contraction. As is well known, the coronary sinus 14 partially encircles the mitral valve 12 adjacent to the mitral valve annulus 20. As is also known, the coronary sinus is part of the venous system of the heart and extends along the AV groove between the left atrium and the left ventricle. This places the coronary sinus essentially within the same plane as the mitral valve annulus making the coronary sinus available for placement of the mitral valve therapy device of the present invention therein.
The anchors 34 and 36 are shown in
The deployment system 52 illustrated in
In each of
To complete the anchor, the device 30 includes a resilient enlarged portion 48 over which the loop 46 may slide. Once the loop 46 is located distally of the enlarged portion 48, it will be held by the enlarged portion 48 for locking the device in the second configuration.
The particular configuration of the distal anchor 34 in accordance with this embodiment may be more particularly seen in
As the catheter 50 is moved distally, it forces the loop 46 of the anchor 34 over the enlarged portion 48 of the device 30 to a point distal to the enlarged portion 48. This locks the loop 46 distally of the enlarged portion 48 for locking the anchor 34 in an enlarged second configuration as illustrated in
One of the many features of the anchor of the instant invention is that it may be moved within or removed from the body lumen in which it is deployed. More specifically, and making reference to
Alternatively, by virtue of the support members, the anchor 34 may be formed of deformable material such as stainless steel. Using this to advantage, the anchor 34 may be partially collapsed by the catheter 50 to permit the anchor 34 and hence the device 30 to be moved and repositioned in the coronary sinus after which the resilience of the anchor material returns the anchor to its locked and deployed configuration. The anchor may be collapsed by the catheter 50 as illustrated in
In
As seen in
In
As can thus been seen, the present invention provides a new and improved anchor for anchoring a therapeutic device within a body lumen. The anchor of the present invention, by virtue of the lockable support member, creates mechanical advantage to assist deployment of the anchor. This also increases anchor strength. Because the support members may be of hooped or looped configuration, increased contact area between the anchor and the body lumen can be achieved. In addition, the anchor of the present invention allows deactivation and repositioning of the anchor or therapeutic device incorporating the anchor. Still further, because of the locked support structure, the anchor may be formed of smaller diameter wire, tube wall, or other materials which without the locked support provided by the anchor of the present invention would be unsuitable for this application.
While particular embodiments of the present invention have been shown and described, modifications may be made. It is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 10/994,153, filed Nov. 19, 2004, now U.S. Pat. No. 9,474,608, which is a divisional of U.S. application Ser. No. 10/142,637, filed May 8, 2002, now U.S. Pat. No. 6,824,562. These applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3620212 | Fannon, Jr. et al. | Nov 1971 | A |
3786806 | Johnson et al. | Jan 1974 | A |
3890977 | Wilson | Jun 1975 | A |
3974526 | Dardik et al. | Aug 1976 | A |
3995623 | Blake et al. | Dec 1976 | A |
4055861 | Carpentier et al. | Nov 1977 | A |
4164046 | Cooley | Aug 1979 | A |
4485816 | Krumme | Dec 1984 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4588395 | Lemelson | May 1986 | A |
4830023 | de Toledo et al. | May 1989 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5099838 | Bardy | Mar 1992 | A |
5104404 | Wolff | Apr 1992 | A |
5197978 | Hess | Mar 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5265601 | Mehra | Nov 1993 | A |
5344426 | Lau et al. | Sep 1994 | A |
5350420 | Cosgrove et al. | Sep 1994 | A |
5411549 | Peters | May 1995 | A |
5433727 | Sideris | Jul 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5449373 | Pinchasik et al. | Sep 1995 | A |
5454365 | Bonutti | Oct 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5474557 | Mai | Dec 1995 | A |
5507295 | Skidmore | Apr 1996 | A |
5507802 | Imran | Apr 1996 | A |
5514161 | Limousin | May 1996 | A |
5554177 | Kieval et al. | Sep 1996 | A |
5562698 | Parker | Oct 1996 | A |
5575818 | Pinchuk | Nov 1996 | A |
5584867 | Limousin et al. | Dec 1996 | A |
5601600 | Ton | Feb 1997 | A |
5617854 | Munsif | Apr 1997 | A |
5662703 | Yurek et al. | Sep 1997 | A |
5676671 | Inoue | Oct 1997 | A |
5733325 | Robinson et al. | Mar 1998 | A |
5733328 | Fordenbacher | Mar 1998 | A |
5741297 | Simon | Apr 1998 | A |
5752969 | Cunci et al. | May 1998 | A |
5800519 | Sandock | Sep 1998 | A |
5824071 | Nelson et al. | Oct 1998 | A |
5836882 | Frazin | Nov 1998 | A |
5871501 | Leschinsky et al. | Feb 1999 | A |
5891193 | Robinson et al. | Apr 1999 | A |
5895391 | Farnholtz | Apr 1999 | A |
5899882 | Waksman et al. | May 1999 | A |
5908404 | Elliot | Jun 1999 | A |
5928258 | Khan et al. | Jul 1999 | A |
5935161 | Robinson et al. | Aug 1999 | A |
5954761 | Machek et al. | Sep 1999 | A |
5961545 | Lentz et al. | Oct 1999 | A |
5978705 | KenKnight et al. | Nov 1999 | A |
5984944 | Forber | Nov 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6007519 | Rosselli | Dec 1999 | A |
6015402 | Sahota | Jan 2000 | A |
6022371 | Killion | Feb 2000 | A |
6027517 | Crocker et al. | Feb 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6053900 | Brown et al. | Apr 2000 | A |
6056775 | Borghi et al. | May 2000 | A |
6077295 | Limon et al. | Jun 2000 | A |
6077297 | Robinson et al. | Jun 2000 | A |
6080182 | Shaw et al. | Jun 2000 | A |
6086611 | Duffy et al. | Jul 2000 | A |
6096064 | Routh | Aug 2000 | A |
6099549 | Bosma et al. | Aug 2000 | A |
6099552 | Adams | Aug 2000 | A |
6129755 | Mathis et al. | Oct 2000 | A |
6159220 | Gobron et al. | Dec 2000 | A |
6162168 | Schweich, Jr. et al. | Dec 2000 | A |
6171320 | Monassevitch | Jan 2001 | B1 |
6183512 | Howanec et al. | Feb 2001 | B1 |
6190406 | Duerig et al. | Feb 2001 | B1 |
6200336 | Pavcnik et al. | Mar 2001 | B1 |
6210432 | Solem et al. | Apr 2001 | B1 |
6228098 | Kayan et al. | May 2001 | B1 |
6241757 | An et al. | Jun 2001 | B1 |
6254628 | Wallace et al. | Jul 2001 | B1 |
6267783 | Letendre et al. | Jul 2001 | B1 |
6275730 | KenKnight et al. | Aug 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6312446 | Huebsch et al. | Nov 2001 | B1 |
6334864 | Amplatz et al. | Jan 2002 | B1 |
6342067 | Mathis et al. | Jan 2002 | B1 |
6345198 | Mouchawar et al. | Feb 2002 | B1 |
6352553 | van der Burg et al. | Mar 2002 | B1 |
6352561 | Leopold et al. | Mar 2002 | B1 |
6358195 | Green et al. | Mar 2002 | B1 |
6368345 | Dehdashtian et al. | Apr 2002 | B1 |
6395017 | Dwyer et al. | May 2002 | B1 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6409750 | Hyodoh et al. | Jun 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6442427 | Boute et al. | Aug 2002 | B1 |
6464720 | Boatman et al. | Oct 2002 | B2 |
6478776 | Rosenman et al. | Nov 2002 | B1 |
6503271 | Duerig et al. | Jan 2003 | B2 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6556873 | Smits | Apr 2003 | B1 |
6562066 | Martin | May 2003 | B1 |
6562067 | Mathis | May 2003 | B2 |
6569198 | Wilson et al. | May 2003 | B1 |
6589208 | Ewers et al. | Jul 2003 | B2 |
6599314 | Mathis et al. | Jul 2003 | B2 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6623521 | Steinke et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6629994 | Gomez et al. | Oct 2003 | B2 |
6643546 | Mathis et al. | Nov 2003 | B2 |
6648881 | KenKnight et al. | Nov 2003 | B2 |
6652538 | Kayan et al. | Nov 2003 | B2 |
6656221 | Taylor et al. | Dec 2003 | B2 |
6676702 | Mathis | Jan 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6709425 | Gambale et al. | Mar 2004 | B2 |
6716158 | Raman et al. | Apr 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6721598 | Helland et al. | Apr 2004 | B1 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6733521 | Chobotov et al. | May 2004 | B2 |
6743219 | Dwyer et al. | Jun 2004 | B1 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6773446 | Dwyer et al. | Aug 2004 | B1 |
6776784 | Ginn | Aug 2004 | B2 |
6790231 | Liddicoat et al. | Sep 2004 | B2 |
6793673 | Kowalsky et al. | Sep 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6798231 | Iwasaki et al. | Sep 2004 | B2 |
6800090 | Alferness et al. | Oct 2004 | B2 |
6805128 | Pless et al. | Oct 2004 | B1 |
6810882 | Langberg et al. | Nov 2004 | B2 |
6821297 | Snyders | Nov 2004 | B2 |
6824562 | Mathis et al. | Nov 2004 | B2 |
6827690 | Bardy | Dec 2004 | B2 |
6881220 | Edwin et al. | Apr 2005 | B2 |
6890353 | Cohn et al. | May 2005 | B2 |
6899734 | Castro et al. | May 2005 | B2 |
6908478 | Alferness et al. | Jun 2005 | B2 |
6908482 | McCarthy et al. | Jun 2005 | B2 |
6926690 | Renati | Aug 2005 | B2 |
6935404 | Duerig et al. | Aug 2005 | B2 |
6949122 | Adams et al. | Sep 2005 | B2 |
6955689 | Ryan et al. | Oct 2005 | B2 |
6960229 | Mathis et al. | Nov 2005 | B2 |
6964683 | Kowalsky et al. | Nov 2005 | B2 |
6966926 | Mathis | Nov 2005 | B2 |
6976995 | Mathis et al. | Dec 2005 | B2 |
7004958 | Adams et al. | Feb 2006 | B2 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
7175653 | Gaber | Feb 2007 | B2 |
7179282 | Alferness et al. | Feb 2007 | B2 |
7270676 | Alferness et al. | Sep 2007 | B2 |
7309354 | Mathis et al. | Dec 2007 | B2 |
7311729 | Mathis et al. | Dec 2007 | B2 |
7316708 | Gordon et al. | Jan 2008 | B2 |
7364588 | Mathis et al. | Apr 2008 | B2 |
7452375 | Mathis et al. | Nov 2008 | B2 |
7503931 | Kowalsky et al. | Mar 2009 | B2 |
7591826 | Alferness et al. | Sep 2009 | B2 |
7608102 | Adams et al. | Oct 2009 | B2 |
7635387 | Reuter et al. | Dec 2009 | B2 |
7674287 | Alferness et al. | Mar 2010 | B2 |
7758639 | Mathis | Jul 2010 | B2 |
7814635 | Gordon | Oct 2010 | B2 |
7828841 | Mathis et al. | Nov 2010 | B2 |
7828842 | Nieminen et al. | Nov 2010 | B2 |
7828843 | Alferness et al. | Nov 2010 | B2 |
7837728 | Nieminen et al. | Nov 2010 | B2 |
7837729 | Gordon et al. | Nov 2010 | B2 |
7887582 | Mathis et al. | Feb 2011 | B2 |
8006594 | Hayner et al. | Aug 2011 | B2 |
8062358 | Mathis et al. | Nov 2011 | B2 |
8075608 | Gordon et al. | Dec 2011 | B2 |
8172898 | Alferness et al. | May 2012 | B2 |
8182529 | Gordon et al. | May 2012 | B2 |
8439971 | Reuter et al. | May 2013 | B2 |
8974525 | Nieminen et al. | Mar 2015 | B2 |
9320600 | Nieminen et al. | Apr 2016 | B2 |
9408695 | Mathis et al. | Aug 2016 | B2 |
9474608 | Mathis et al. | Oct 2016 | B2 |
9526616 | Nieminen | Dec 2016 | B2 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010041899 | Foster | Nov 2001 | A1 |
20010044568 | Langberg et al. | Nov 2001 | A1 |
20010049558 | Liddicoat et al. | Dec 2001 | A1 |
20020016628 | Langberg et al. | Feb 2002 | A1 |
20020042621 | Liddicoat et al. | Apr 2002 | A1 |
20020042651 | Liddicoat et al. | Apr 2002 | A1 |
20020049468 | Streeter et al. | Apr 2002 | A1 |
20020055774 | Liddicoat | May 2002 | A1 |
20020065554 | Streeter | May 2002 | A1 |
20020095167 | Liddicoat et al. | Jul 2002 | A1 |
20020138044 | Streeter et al. | Sep 2002 | A1 |
20020151961 | Lashinski et al. | Oct 2002 | A1 |
20020156526 | Hlavka et al. | Oct 2002 | A1 |
20020161377 | Rabkin et al. | Oct 2002 | A1 |
20020161393 | Demond et al. | Oct 2002 | A1 |
20020183837 | Streeter et al. | Dec 2002 | A1 |
20020183838 | Liddicoat et al. | Dec 2002 | A1 |
20020183841 | Cohn et al. | Dec 2002 | A1 |
20020188170 | Santamore et al. | Dec 2002 | A1 |
20020193827 | McGuckin et al. | Dec 2002 | A1 |
20030018358 | Saadat | Jan 2003 | A1 |
20030040771 | Hyodoh et al. | Feb 2003 | A1 |
20030069636 | Solem et al. | Apr 2003 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030078654 | Taylor et al. | Apr 2003 | A1 |
20030083613 | Schaer | May 2003 | A1 |
20030088305 | Van Schie et al. | May 2003 | A1 |
20030093148 | Bolling et al. | May 2003 | A1 |
20030130730 | Cohn et al. | Jul 2003 | A1 |
20040019377 | Taylor et al. | Jan 2004 | A1 |
20040039443 | Solem et al. | Feb 2004 | A1 |
20040073302 | Rourke et al. | Apr 2004 | A1 |
20040102840 | Solem et al. | May 2004 | A1 |
20040133220 | Lashinski et al. | Jul 2004 | A1 |
20040133240 | Adams et al. | Jul 2004 | A1 |
20040153147 | Mathis | Aug 2004 | A1 |
20040158321 | Reuter et al. | Aug 2004 | A1 |
20040176840 | Langberg | Sep 2004 | A1 |
20040193260 | Alferness et al. | Sep 2004 | A1 |
20040220654 | Mathis et al. | Nov 2004 | A1 |
20040220657 | Nieminen et al. | Nov 2004 | A1 |
20040260342 | Vargas et al. | Dec 2004 | A1 |
20050004667 | Swinford et al. | Jan 2005 | A1 |
20050027351 | Reuter et al. | Feb 2005 | A1 |
20050033419 | Alferness et al. | Feb 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050096740 | Langberg et al. | May 2005 | A1 |
20050137449 | Nieminen et al. | Jun 2005 | A1 |
20050137450 | Aronson et al. | Jun 2005 | A1 |
20050137451 | Gordon et al. | Jun 2005 | A1 |
20050149182 | Alferness et al. | Jul 2005 | A1 |
20050197692 | Pai et al. | Sep 2005 | A1 |
20050197693 | Pai et al. | Sep 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050209690 | Mathis et al. | Sep 2005 | A1 |
20050216077 | Mathis et al. | Sep 2005 | A1 |
20050261704 | Mathis | Nov 2005 | A1 |
20050272969 | Alferness et al. | Dec 2005 | A1 |
20060030882 | Adams et al. | Feb 2006 | A1 |
20060041305 | Lauterjung | Feb 2006 | A1 |
20060116758 | Swinford et al. | Jun 2006 | A1 |
20060142854 | Alferness et al. | Jun 2006 | A1 |
20060161169 | Nieminen et al. | Jul 2006 | A1 |
20060167544 | Nieminen et al. | Jul 2006 | A1 |
20060271174 | Nieminen et al. | Nov 2006 | A1 |
20060276891 | Nieminen et al. | Dec 2006 | A1 |
20070066879 | Mathis et al. | Mar 2007 | A1 |
20070239270 | Mathis et al. | Oct 2007 | A1 |
20080015407 | Mathis et al. | Jan 2008 | A1 |
20080015679 | Mathis et al. | Jan 2008 | A1 |
20080015680 | Mathis et al. | Jan 2008 | A1 |
20100280602 | Mathis | Nov 2010 | A1 |
20110066234 | Gordon et al. | Mar 2011 | A1 |
20110106117 | Mathis et al. | May 2011 | A1 |
20110308367 | Hayner et al. | Dec 2011 | A1 |
20120123532 | Mathis | May 2012 | A1 |
20120197389 | Alferness et al. | Aug 2012 | A1 |
20160374809 | Mathis et al. | Dec 2016 | A1 |
20170189185 | Nieminen et al. | Jul 2017 | A1 |
20170296341 | Nieminen et al. | Oct 2017 | A1 |
20180243091 | Nieminen et al. | Aug 2018 | A1 |
20180243092 | Mathis et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
0893133 | Jan 1999 | EP |
0903110 | Mar 1999 | EP |
0968688 | Jan 2000 | EP |
1050274 | Nov 2000 | EP |
1095634 | May 2001 | EP |
1177779 | Feb 2002 | EP |
2181670 | May 2010 | EP |
0741604 | Dec 1955 | GB |
2754067 | Mar 1998 | JP |
2000-308652 | Nov 2000 | JP |
2001-503291 | Mar 2001 | JP |
2003-503101 | Jan 2003 | JP |
2003-521310 | Jul 2003 | JP |
9902455 | Dec 2000 | SE |
WO9856435 | Dec 1998 | WO |
WO0044313 | Aug 2000 | WO |
WO0060995 | Oct 2000 | WO |
WO0074603 | Dec 2000 | WO |
WO0100111 | Jan 2001 | WO |
WO0119292 | Mar 2001 | WO |
WO0150985 | Jul 2001 | WO |
WO0154618 | Aug 2001 | WO |
WO0187180 | Nov 2001 | WO |
WO0200099 | Jan 2002 | WO |
WO0201999 | Jan 2002 | WO |
WO0205888 | Jan 2002 | WO |
WO0219951 | Mar 2002 | WO |
WO0234118 | May 2002 | WO |
WO0247539 | Jun 2002 | WO |
WO02053206 | Jul 2002 | WO |
WO02060352 | Aug 2002 | WO |
WO02062263 | Aug 2002 | WO |
WO02062270 | Aug 2002 | WO |
WO02062408 | Aug 2002 | WO |
WO02076284 | Oct 2002 | WO |
WO02078576 | Oct 2002 | WO |
WO02096275 | Dec 2002 | WO |
WO03015611 | Feb 2003 | WO |
WO03037171 | May 2003 | WO |
WO03049647 | Jun 2003 | WO |
WO03049648 | Jun 2003 | WO |
WO03055417 | Jul 2003 | WO |
WO03059198 | Jul 2003 | WO |
WO03063735 | Aug 2003 | WO |
Entry |
---|
El-Maasarany et al.; The coronary sinus conduit function: Anatomical study (relationship to adjacent structures); http://europace.oxfordjournals.org/cge/content/full/7/5/475. (accessed Sep. 9, 2008). |
Gray, H. Anatomy of the Human Body. The Systemic Veins. Philadelphia: Lea & Febiger, 1918; Bartleby.com. 2000. Available at www.bartleby.com/107/. Accessed Jun. 7, 2006. |
Heartsite.com. Echocardiogram, 1999; p. 1-4. A.S.M. Systems Inc. Available at: http://www.heartsite.com/html/echocardiogram.html. Accessed Jul. 1, 2005. |
Papageorgiou, P., et al. Coronary Sinus Pacing Prevents Induction of Atrial Fibrillation. Circulation. Sep. 16, 1997; 96(6): 1893-1898. |
Pelton et al. Medical uses of nitinol; Material Science Forum; vols. 327-328; pp. 63-70; 2000 (held in Kanazawa, Japan, May 1999). |
Pijls et al.; Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses; The New England J. of Med.; vol. 334; No. 26; pp. 1703-1708; Jun. 27, 1996. |
Pai, Suresh; U.S. Appl. No. 60/329,694 entitled “Percutaneous cardiac support structures and deployment means,” filed Oct. 16, 2001. |
Yamanouchi, et al.; Activation Mapping from the coronary sinus may be limited by anatomic variations; vol. 21 pp. 2522-2526; Nov. 1998. |
Nieminen et al.; U.S. Appl. No. 15/136,739 entitled “Tissue shaping device,” filed Apr. 22, 2016. |
Mathis et al.; U.S. Appl. No. 15/230,060 entitled “Fixed anchor and pull mitral device and method,” filed Aug. 5, 2016. |
Mathis et al.; U.S. Appl. No. 15/230,093 entitled “Fixed anchor and pull mitral valve device and method,” filed Aug. 5, 2016. |
Mathis et al.; U.S. Appl. No. 15/261,594 entitled “Tissue shaping device,” filed Sep. 9, 2016. |
Mathis et al.; U.S. Appl. No. 15/261,549 entitled “Tissue shaping device,” filed Sep. 9, 2016. |
Mathis et al.; U.S. Appl. No. 15/261,572 entitled “Tissue shaping device,” filed Sep. 9, 2016. |
Nieminen et al.; U.S. Appl. No. 15/368,467 entitled “Mitral valve annuloplasty device with twisted anchor,” filed Dec. 2, 2016. |
Wypych; U.S. Appl. No. 15/453,734 entitled “Methods and devices for reducing paravalvular leakage,” filed Mar. 8, 2017. |
Number | Date | Country | |
---|---|---|---|
20160374810 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10142637 | May 2002 | US |
Child | 10994153 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10994153 | Nov 2004 | US |
Child | 15261628 | US |