Tissue supported implantable device

Information

  • Patent Grant
  • 9060838
  • Patent Number
    9,060,838
  • Date Filed
    Friday, April 20, 2012
    12 years ago
  • Date Issued
    Tuesday, June 23, 2015
    9 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Nia; Alireza
    • Patel; Tarla
    Agents
    • Coloplast Corp., Coloplast A/S
    • Baumann; Nick
Abstract
An implant configured to treat prolapse of a pelvic organ includes a support member and an extension portion projecting from the support member. The extension portion has a barbed fixation means provided thereon for anchoring the extension portion into pelvic paravaginal tissue. The barbed fixation means allow bi-directional adjustment of the barbed fixation means relative to the tissue, and when suitably located, the barbed fixation means engage the tissue. The support member comprises a mesh material having a mass density of less than 50 g/m2.
Description
IMPLANT

The present invention relates to an implant and a method for the treatment of vaginal and/or uterine prolapse and/or pelvic floor reconstruction. Prolapse is a relatively common condition, particularly amongst older women. It occurs when the pelvic floor muscles become weak or damaged and can no longer support the pelvic organs. These organs are then able to push against the walls of the vagina causing the women to feel discomfort and “something coming down”.


Prolapse can be divided into a number of different categories according to the part of the vagina affected. Prolapse of the anterior (front) vaginal wall (cystourethrocoele) occurs when the bladder and/or the urethra push against and create a bulge in the front wall of the vagina. Prolapse of the posterior (back) vaginal wall can occur if the small intestine (enterocoele) or rectum (rectocoele) loses support and pushes against the back wall of the vagina. Uterine prolapse occurs when the womb drops down into the vagina and vault prolapse can occur in women who have had a hysterectomy.


Procedures have been developed to treat vaginal prolapse wherein, during surgery, mesh with long tails is used to attach the top of the vagina to the structurally defined tissues of the lower abdominal wall, the lumbar spine, or the ligaments of the pelvis. These tissues are comprised of dense, highly organised collagen. The mesh is typically introduced into the body through the vagina or an abdominal incision. Tethering of the vagina to these strong anchorage sites provides the vaginal wall with support. The disadvantage of this procedure is that the fixing of the mesh to these collagen dense tissues requires significant force to be employed by the surgeon to penetrate said tissue increasing the chance of tissue damage. Further, the sites of fixation can be highly innervated and vascularised, increasing the risk of trauma to the patient. Exit wounds through the abdomen or perineal skin may be required.


Typically, prior art devices used in the treatment of vaginal prolapse involve the anchoring of a support member in tissue types such as muscle, skin and cartilage, which have defined structures and comprise dense, highly organised collagen. The dense organised collagen makes these tissues, which are in fact resilient and hard to disrupt, difficult to penetrate. Thus to penetrate and anchor in such tissue requires an anchor to be sharp and/or requires a high force of insertion to be used. However, anchorage in structurally well defined tissue has conventionally been deemed advantageous, as anchors inserted in tissues with dense organised collagen provide a high retentive force against the implant being dislodged.


Recently, prolapse of the posterior vaginal wall has been treated by attaching a mesh to the posterior portion of the vagina while the other ends of the mesh extend through incisions in the perineum to anchor the mesh into layers of muscle, fascia and skin and thus secure the vaginal wall to defined structural tissues to provide the wall with support (Posterior intravaginal slingplasty (IVS) procedure). This procedure suffers from the disadvantage that the exit incisions or wounds in the perineum are close to the anus. These incisions may act as a portal for infection by colonic bacteria.


The present invention overcomes some of the problems associated with implants currently used to treat. vaginal prolapse and pelvic floor repair.


The inventor of the present application has surprisingly found that it is not essential to penetrate structurally defined tissues In order to anchor an implant such that it can provide suitable support to the vaginal wall. Instead, the inventor has developed an implant which may be successfully anchored in the structurally undefined fibro-fatty tissue of the pelvic paravaginal tissues for example the fibro-fatty tissue within the retropubic, paraurethral, or pararectal space and ischio-rectal fossa and which is adequate to ensure that the implant is capable of supporting the utero/vaginal tissues.


Thus, according to a first aspect of the invention there is provided an implant for use in vaginal wall support comprising (i) a vaginal support member substantially sized and/or shaped to the portion of the vaginal wall to be supported and (ii) at least two extension portions projecting from the support member; wherein at least one extension portion has fixation means for anchoring the extension portion into pelvic paravaginal fibro-fatty tissue without being fixed into defined structural tissues.


Preferably, in use, the implant may be anchored solely in the paravaginal fibro-fatty tissue without any need for extension portions or fixation means to fix into such defined structural tissues.


Pelvic paravaginal fibro-fatty tissue is fibro-fatty tissue which lies against or to the side of the vagina. Such tissue includes the fibro-fatty tissue of the retropubic space, paraurethral space, pararectal space and/or ischio-rectal fossa.


The retropubic space is defined by an antero-superior boundary which is the peritoneum and rectus sheath and an interior boundary of endopelvic fascia. The space defined by these boundaries is medially filled by the bladder, the urethra, fibro-fatty tissue and blood vessels. The blood vessels of the retropubic space generally become larger both in a superior and lateral direction within the retropubic space. The retropubic space extends approximately 8 cm from the endopelvic fascia to the rectus sheath, this distance varying by around 2 cm depending on the individual.


The paraurethral space is comprised of fibro-fatty tissue which lies against or to the side of the urethra.


The pararectal space is comprised of fibro-fatty tissue which lies against or to the side of the rectum.


The ischio-rectal fossa is a wedge shaped space filling in the lateral part of the anal triangle and extending forwards into the uro-genital triangle. Its lateral wall is formed by the fascia over the lower part of obturator internus, the falciform margin of the sacro-tuberous ligament and the tuber ischii. Medially the two fossae are separated by the perineal body, the anal canal and the anococcygeal body, and they are roofed in by the downward sloping levator ani muscles of the pelvic floor.


In the context of the present invention, defined structural tissues comprise tissues which comprise substantially organised collagen. For example, such tissues include the rectus fascia, pubic bone, Coopers ligament, sacrospinous ligament, skin, muscle and other fascia as well as other cartilage, bone, muscle or fascial tissues.


In contrast to defined tissues such as cartilage, bone or muscle, the pelvic paravaginal fibro-fatty tissues lack substantial organised collagen. This fibro-fatty tissue has a sponge or foam like consistency.


Fixation of the fixation means in pelvic paravaginal fibro-fatty tissue is advantageous as it allows positioning of the support member at a portion of the vaginal wall to be repaired even if the central vaginal tissue is not suitable for attachment of the support. Such circumstance may arise for example in paravaginal prolapse where a lateral defect is present or in more severe cases of prolapse.


The use of an implant which is supported by such tissue provides a number of advantages over the prior art. For example, implants of the invention are advantageous as fixation does not require exit incisions or wounds as required for posterior intravaginal slingplasty (IVS). Moreover, anchorage of an implant in the pelvic paravaginal fibro-fatty tissue avoids complications associated with bone anchorage and the pain associated with anchorage into structurally defined tissues.


As the fibro-fatty tissue is not as hard or as resilient as tissues such as muscle, skin or cartilage, insertion of an extension portion and fixation means of the implant of the invention in the fibro-fatty tissue only requires a low force. However, in order to provide anchorage in pelvic paravaginal fibro-fatty tissue it is important that, during insertion of fixation means the tissue is minimally disrupted.


Accordingly, in one embodiment, in use, the fixation means are provided in a first arrangement to allow insertion and retraction of the fixation means within the paravaginal fibro-fatty tissue whilst causing minimal tissue disruption and when suitably located the fixation means adopt a second arrangement wherein the fixation means grip the pelvic paravaginal fibro-fatty tissue.


The movement between the first arrangement and the second arrangement is preferably an active movement which is controlled by the surgeon during insertion, positioning and placement of the implant, rather than movement merely arising from the action of the surrounding tissue during insertion, positioning and placement of the fixation means of the implant.


Any suitable fixation means which are suitable for anchoring the extension portions in the fibro-fatty paravaginal tissue may be used.


In particular embodiments of the implant the fixation means may comprise adhesive portions and/or means shaped to grip the fibro-fatty tissue.


Any suitable adhesive may be used. For example, the adhesive may be one or more of cyanoacrylate, fibrin, albumin or gelatin based glues.


The adhesive may be provided such that in a first arrangement, it cannot interact with the pelvic paravaginal fibro-fatty tissue during placement of the implant and in a second arrangement, when the implant is suitably located, the adhesive is available for fixing to the surrounding pelvic paravaginal fibro-fatty tissue.


For example, the adhesive may be encapsulated within a capsule (a first arrangement of the fixation means) such that the adhesive cannot interact with the tissue during placement of the implant. When the implant is suitably located, the capsule of adhesive may be made to release the adhesive and allow the implant to be fixed to the surrounding tissue(a second arrangement).


Alternatively the adhesive may be activated by any suitable means, for example heat, light, cold or ultrasound. The implant can be moved into the pelvic paravaginal fibro-fatty tissue, for example the tissue of the pararectal space with the adhesive being provided in a first arrangement in which it is unable to adhere the implant to the surrounding tissue then, following the activation of the adhesive or change in state of the adhesive by some means, for example but not limited to heat, light, cold or ultrasound, the adhesive will adopt a second arrangement wherein it can adhere the fixation means of the implant to the surrounding tissue.


In particular embodiments of the implant the fixation means are resiliently deformable such that, in use, the fixation means are in a resiliently deformed position (a first arrangement) when inserted into the pelvic paravaginal fibro-fatty tissue and when being suitably positioned in the tissue. Positioning may involve bi-directional movement of the fixation means (repeated insertion and retraction of the extension portions and fixation means into the tissue). In the first arrangement, during insertion and placement, the fixation means do not grip the surrounding tissue and cause minimal tissue disruption.


When suitably located, the deformed fixation means can be released such that they adopt a second arrangement wherein the fixation means grip the tissue.


In embodiments wherein the fixation means comprise adhesive, the fixation means may be deformed such that on insertion and positioning of the fixation means, the adhesive is not in contact with the surrounding tissues. In such embodiments, only on release of the fixation means, such that they adopt a second arrangement, will the adhesive come into contact with the surrounding tissue and enable the fixation means to grip the surrounding pelvic paravaginal fibro-fatty tissue.


This has the advantage that insertion and positioning of the fixation means in a deformed arrangement causes minimal tissue disruption.


Preferably the fixation means comprise shaped means to anchor in the pelvic paravaginal fibro-fatty tissue.


Preferably at least part of the fixation means is shaped such that it can recoil from a deformed shape, which allows insertion and positioning of the fixation means in the pelvic paravaginal fibro-fatty tissue whilst causing minimal tissue disruption, to a resting shape in which the fixation means extend into the fibro-fatty tissue and grip the fibro-fatty tissue to inhibit retraction of the fixation means.


In one embodiment the fixation means comprise a substantially triangular portion of polymer tape wherein resistance against retraction of the fixation means from the fibro-fatty tissue is provided by the base of the triangular shaped polymer tape. In use, such an embodiment of the fixation means may be inserted into the pelvic paravaginal fibro-fatty tissue in a deformed arrangement, for example wherein the points at the base of the triangular shaped polymer tape are folded or rolled towards the centreline which extends perpendicularly from the base. Once inserted and suitably positioned, the fixation means are released such that the points at the base of the triangular shaped polymer tape extend away from the centreline and move into the surrounding tissue.


In this embodiment of the fixation means, resistance of the fixation means in the surrounding tissue is provided only at a single level.


Alternatively, the fixation means may be shaped such that when released from their deformed arrangement the fixation means adopt a substantially Y, 7, T, arrowhead, or a 3, 4 or more membered cloverleaf shape. In use, during insertion and positioning, these embodiments of fixation means are deformed such that they resemble a single member with substantially no projections extending therefrom. On release of the fixation means from the deformed shape the second arrangement adopted by the fixation means causes the fixation means to have increased resistance to retraction of the fixation means from the pelvic paravaginal fibro-fatty tissue tissue. Depending on the shape adopted by the fixation means following release from their deformed shape, fixation may be achieved a plurality of levels in the surrounding tissue.


The fixation means may be provided as a loop of suitable mesh material wherein during insertion of the loop into the fibro-fatty tissue the mesh is dragged into the tissue and on release of the loop the mesh is held in the fibro-fatty tissue with the plurality of strands of the mesh providing sufficient surface area such that retraction of the fixation means from the tissue is resisted by the tissue.


In embodiments of fixation means utilizing mesh material, the mesh, once suitably positioned, may be moved from a first arrangement which causes minimal tissue disruption during insertion to a second arrangement which provides improved resistance compared to the first arrangement.


In such embodiments a deformable plastics material, metal or memory metal may be surrounded by a mesh material such that when the fixation means is suitable positioned, the plastics material, metal or memory metal is released such that the mesh is moved to a second arrangement wherein the mesh adopts a shape of increased resistance to retraction of the fixation means from the surrounding tissue.


In particular embodiments the terminal ends of mesh extension portions may be expanded to provide a bulbous or T shaped terminus.


In one embodiment of the implant, the fixation means comprise a generally planar sheet comprising a series of truncated triangular sections extending proximally from a substantially blunt tip.


More preferably the triangular sections increase in surface area from the tip of the fixation means furthest from the support towards the support such that the fixation means are inwardly tapered in the direction of insertion to facilitate insertion and maximise the force required for retraction of the fixation means following insertion i.e. the point of the triangle is inserted in the tissue before the base.


As discussed above in relation to the triangular shaped polymer tape embodiment of fixation means, the triangular sections may be rolled or folded such that insertion of the triangular sections and their bidirectional movement in the tissue during suitable positioning of the fixation means causes minimal tissue disruption, whilst on release of the fixation means from the deformed shape the multiple triangular sections provide multiple sites of fixation at a plurality of layers of tissue such that additive fixation in the pelvic paravaginal fibro-fatty tissue is achieved. Although each fixation point may be weak, overall, it is possible to provide sufficient anchorage to provide sufficient support to the vaginal wall.


Preferably the fixation means provide multiple levels of fixation within the pelvic paravaginal fibro-fatty tissue tissue. In embodiments of fixation means comprising adhesive, preferably the adhesive provides multiple sites of fixation at a plurality of tissue layers.


The fixation means may be held in a deformed arrangement during insertion and positioning in the pelvic paravaginal fibro-fatty tissue by an insertion tool.


In the deformed arrangement the position of the fixation means in the fibro-fatty tissue and/or the tension provided to the vaginal support member may be adjusted whilst only causing minimal tissue disruption.


A plurality of fixation means may be provided on each extension portion.


Thus in one embodiment, the total number of fixation sites in each implant is 4 or more, eg 6 or more, 8 or more, 10 or more, or 12 or more.


Preferably each fixation means is less than or equal to 2 cm in length and 1 cm in width.


In particular embodiments of the implant the extension portions are provided by polymer mesh. Optionally the extension portions may be provided by sutures or by a flat or filiform means.


Preferably the extension portions are flexible.


This is advantageous as an extension portion will be able to bend without breaking as it is inserted into the paravaginal fibro-fatty tissue and the extension portion will minimally disrupt the fibro-fatty pelvic paravaginal tissue during insertion. In addition, there will be only a minimal chance of damage being caused to tissues in the paravaginal or pelvic region.


Preferably the implant comprises a plurality of extension portions. For example, the implant can comprise 3, 4, 5, 6, 7, 8, 9, 10 or more extension portions. Each extension portion may comprise a single fixation means or a plurality of fixation means,


A plurality of extension portions are advantageous as they can each be used to provide an additive amount of support to the vaginal support member. As the total amount of support required to be provided by a vaginal support member will be relatively constant, in embodiments of the implant comprising a plurality of extension portions, each of the extension portions and fixation means are required to provide less support. Thus, either one of or both of the extension portions and fixation means may be smaller and comprise less mass.


This may be advantageous in reducing the foreign body response of the body against the implant.


Preferably multiple pairs of extension portions may be provided.


In a first embodiment at least 2 extension portions are provided on the implant. In an alternative embodiment at least 4 extension portions are provided. In a further alternative embodiment at least 6 extension portions are provided. In a further alternative embodiment at least 8 extension portions are provided.


Multiple pairs of extension portions which project from the support member are advantageous as they allow the vaginal support member to be placed over the tissue to be repaired and the extension portions to be more easily inserted around the repair site in a balanced manner to suitably locate the support member on the vaginal wall.


In particular embodiments of the implant comprising a plurality of extension portions, each of the multiple extension portions may be joined at any point or region along their length to another extension portion. The point or region where the extension portions are joined may be used to move the extension portions into the tissue during insertion.


For example two extension portions may project from two distinct points or regions of the support member, the two extension portions each joining one another at a point or region distinct from the support. This is advantageous as it allows insertion of more than one extension portion using only one insertion point and thus minimises disruption to the tissue during insertion.


In particular embodiments of the implant the extension portions include loops of material which, in use, are used to push the extension portions into the tissue. Alternatively the extension portions comprise slots in which an insertion tool can be inserted.


In such embodiments, in use, the slots or loops aid positioning of the extension portions in the pelvic paravaginal tissue, via an insertion tool.


Preferably the extension portions are less than or equal to 500 μm in thickness. This has the advantage that minimal tissue disruption occurs on insertion of the extension portions.


Further, using extension portions of less than or equal to 500 μm in thickness minimal foreign body mass is introduced into the body of the patient, reducing the likelihood of infection and erosion of surrounding tissues.


Preferably the distance from the support member to the tip of the extension portion, not including the width of the support, is in the range of 1 cm to 10 cm. More preferably the distance from the support member to the tip of the extension portion, not including the width of the support, is in the range of 1 cm to 8 cm, more preferably 4 cm to 8 cm.


These ranges of lengths are advantageous as they ensure that an extension portion cannot be inserted too far into the body and penetrate structurally defined tissues such as the rectus sheath or highly innervated and/or vascularised tissues close to the abdominal wall or perineum. Thus, pain and visceral damage to the patient are minimised.


In a particular embodiments of the implant, an extension portion has a width of less than or equal to 15 mm, more preferably the width of an extension portion is in the range 8 to 10 mm.


In embodiments of the implant wherein, for example, an extension portion is provided by a suture the width of an extension portion is equal to or less than 0.5 mm.


Different widths of extension portions may be used in one implant in combination as required.


In particular embodiments of the implant the utero/vaginal support member is elliptical in shape. This may be advantageous in the support of anterior prolapse, as the support will therefore more closely resemble the shape of the tissue of the anterior vaginal wall. Alternatively, the vaginal support may be an ellipse or a truncated ellipse. In alternative embodiments, the support member is ovoid in shape. This may be advantageous in the treatment of posterior prolapse as the support will more closely resemble the shape of the tissue of the rectocoele.


In a further alternative embodiment the support member may be bifurcated, H or frog shaped such that it comprises at least two zones which, when the implant is in use, can be positioned on the vaginal wall such that the zones are arranged to pass around the urethra. This shape may be advantageous to provide support to tissue on either side of the urethra.


It will be understood that the support member may be, for example square, rectangular, elliptical, or of any other suitable shape as required to repair the weakened tissue.


In preferred embodiments of the implant the vaginal support member has a width in the range 3 cm to 8 cm.


In preferred embodiments of the implant the vaginal support member has a length in the range 4 cm to 12 cm.


The vaginal support member requires to be a sufficient size that support is substantially provided across the area of the prolapse.


A wide variety of materials may be used to form the implant. Suitable materials include, but are not limited to, tissue grafts, suitable synthetic material, including plastics, polypropylene, MINIMESH™ (Mpathy Medical Devices Limited, Glasgow), or polyester. The material may be absorbable, resorbable or non-absorbable. Optionally some portions of the implant may be absorbable or resorbable and other portions non-absorbable. The implant may be integral or a composite of different parts. The whole implant may be formed from the same material or alternatively different parts of the implant may be formed from different materials.


In particular embodiments the implant is formed from materials, or use technologies, which provide temporary substance to the implant to improve its surgical handling characteristics, for example, reducing any rough edges on the implant and improving its tackiness to assist in positioning of the support on the vaginal wall. This includes absorbable coatings or a layer applied to at least one face of the implant which may add bulk to the implant and make it easier to handle. Suitable absorbable coatings or layers can be manufactured from or comprise plastics, hydrogels, gelatin, starch or cellulose based hydrogels, alginate, polylactic acid, polyglycolic acid or hyaluronic acid. As an alternative, or in addition to the coating or layer, the implant may be formed from biocomponent microfibres which include a core material and surface material, for example a polypropylene core and polylactic or polyglycolic acid surface. In particular the implant may be formed with DUAL PHASE TECHNOLOGY™ provided by Mpathy Medical Devices Limited (Glasgow, UK).


In particular embodiments the fixation means and/or the extension portions and/or the support member of the implant are formed from absorbable material. Resorbtion or absorption of the implant or at least part of the implant, for example the support member, into the surrounding tissues preferably takes at least 3 months, more preferably at least 6 months, most preferably at least 12 months.


Resorption or absorption of the implant over time is advantageous, as the amount of foreign material in the body is reduced, thus minimising the likelihood of the patient developing complications associated with the presence of foreign material in the body.


It is advantageous if the material from which the support and/or the extension portions is formed has a low mass density to minimise the amount of foreign material in the body such that the risk of infection and discomfort to the patient is reduced.


In preferred embodiments the support member and/or the extension portions comprises a mesh material.


Preferably the support member comprises mesh material having a mass density of less than 50 g/m2, more preferably less than 30 g/m2, more preferably less than 25 g/m2 and most t preferably less than 20 g/m2.


In a particularly preferred embodiment the support member comprises strands and includes major spaces and pores. In one embodiment the strands of the mesh may be formed by at least two filaments, the major spaces formed between the strands which provide the surgical implant with the necessary strength, the filaments arranged such that pores are formed in the strands of the mesh. In an alternative embodiment the strands may be formed by monofilaments which form loops which give rise to the pores.


Preferably the strands are spaced apart to form major spaces of between 1 mm to 10 mm. This is advantageous as such spaces help to reduce the mass of the mesh whilst providing the mesh with sufficient tensile strength to secure the tissue defect being repaired by the mesh. More preferably the strands are spaced apart to form major spaces of between 2 mm to 8 mm. Preferably the strands have a diameter of less than 600 μm.


The strands and filaments are preferably warp knit. In a particular embodiment the strands are arranged to form a diamond net mesh. In an alternative embodiment the strands are arranged to form a hexagonal net mesh. Preferably the strands are arranged to form a net mesh which has isotropic or near isotropic tensile strength and elasticity.


Preferably the filaments have a diameter of between 0.02 mm to 0.15 mm. More preferably the filaments of the mesh are of a diameter 0.06 mm to 0.1 mm.


As tissue may be slow to grow into an implant comprised of mesh which includes narrow members spaced apart by relatively wide gaps or major spaces, it is desirable to provide pores in the strands of the mesh to which tissue may more easily adhere and aid tissue in growth. These pores may be provided by at least two filaments being interwoven/knitted to produce strands of the mesh comprising pores. Alternatively, one filament can be knotted or twisted to form pores of suitable dimensions.


Preferably the pores in the strands are between 50 to 200 μm in diameter. More preferably the pores are of between 50 to 75 μm in diameter. These pore sizes enable efficient fibroblast through growth and ordered collagen laydown in order to provide optimal integration into the body.


Preferably the perimeter of a mesh implant is bound by a member such that, for example, when in use the support member is positioned on the vaginal wall, the strands of the mesh do not protrude into the surrounding tissue which may be delicate and sensitive. This is advantageous as any such protrusions may cause discomfort to the patient.


In particular embodiments, the implant is comprised of mesh material as described in International Application WO 02/078568 (e.g. MINIMESH™ (Mpathy Medical Devices Limited, Glasgow)).


The extension portions may be formed from different material to the support member. Alternatively, the extension portion may be comprised of the same material as the support member.


In preferred embodiments the extension portions of the implant are absorbable. Preferably the extension portions are comprised of a carbohydrate or starch material which can be absorbed into the body over a defined time period.


In particular embodiments the support member and/or the extension portions of the implant comprises medicament. For example the support and/or the extension portions may be provided with an antimicrobial medicament. In a particular example the support or extension portions are coated with a medicament, for example an antimicrobial.

    • According to a second aspect of the invention there is provided a method of supporting all or part of a vaginal wall comprising the steps of
      • positioning a surgical implant comprising a first aspect of the invention on the vaginal wall,
      • inserting the first extension portion into a paravaginal fibro-fatty tissue without extending through or being fixed into defined structural tissue or having skin exit wounds,
      • inserting the second extension portion into a paravaginal fibro-fatty tissue without extending through or being fixed into defined structural tissue or having skin exit wounds, such that the vaginal support member is suspended from the first and second extension portions and supports the vaginal wall.


In particular embodiments of the method at least one or both of said first or second extension portion(s) is inserted into the tissues of the retropubic space, paraurethral space, pararectal space and/or ischio-rectal fossa.


The method may include further steps of adjustment of the placement of the fixation means in the tissue. Such movement may be bi-directional in an insertion direction and a retraction direction.


In particular embodiments of the implant comprising more than two extension portions, the method comprises additional steps to insert each of the extension portions into the pelvic paravaginal fibro-fatty tissue without extending through or being fixed into defined structural tissue or having skin exit wounds.


For anterior vaginal wall prolapse or cystourethracoele, where the bladder and urethra are the prolapsing organs, the extension portions are positioned into the tissues of the retropubic space.


For posterior prolapse, especially rectocoele, where the prolapsing organ is the rectum, the extension portions extend into the pararectal space and ischio-rectal fossa. For high posterior prolapse (enterocoele) or vault prolapse the extension portions extend into the pararectal space. In addition, a more cephalad course towards, but not ending in, the sacrospinous ligaments may be employed.


Preferably at least one extension portion is located above the endopelvic fascia if the implant is positioned in an anterior position.


Preferably when the implant is positioned at a posterior position at least one extension portion is located in the pararectal space.


It is advantageous in the treatment of anterior prolapse to locate the extension portions above the endopelvic fascia and/or into the abdominal pressure compartment as then during periods of raised abdominal pressure, for example coughing or sneezing, the increase in pressure is transmitted to the implant such that the implant is more able to provide support to the utero/vaginal tissues.


Preferably the extension portion is inserted into the pelvic paravaginal soft tissue using an insertion tool.


According to a third aspect of the invention there is provided the use of an implant of the present invention for treatment of utero/vaginal prolapse and/or pelvic floor reconstruction.


According to a fourth aspect of the invention there is provided a kit comprising an implant for use in vaginal wall support comprising a vaginal support member substantially sized and/or shaped to the portion of the vaginal wall to be supported and at least two extension portions projecting from the support member, wherein at least one extension portion has fixation means for anchoring the extension portion into pelvic paravaginal fibro-fatty tissue without being fixed into defined structural tissues and an insertion tool.


Typically the insertion tool is a needle shaped surgical steel tool to which the extension portions can be releasably mounted. The insertion tool may be curved and have handle means to aid positioning of the extension portions in the body.


The insertion tool can be of various lengths and curvatures as required for insertion of the anchors of the implant into the tissue.


Preferably the tool comprises jaw means between which the fixation means of the implant can be releasably held, the jaw means being moveable by the surgeon when the fixation means are in position. Alternatively, the tool may comprise a collar which shields the surrounding tissue from the fixation means during insertion of the fixation means into the pelvic paravaginal tissue.


In a further alternative embodiment the tool may comprise a collar which constrains the deformed arrangement of the fixation means during insertion of the fixation means into the pelvic paravaginal tissue.


The tool typically comprises an elongate shaft of length 6 to 15 cm which may include a semi-blunt or sharp point at a first end and a handle at a second end and holding means to releasably attach the shaft to the implant. The tool can be used to releasably hold the fixation means of the implant in a deformed arrangement during insertion and placement of the fixation means. To releasably hold the fixation means, the tool may be provided with a releasable collar or jaw means which can be actuated by the surgeon to release the fixation means from their deformed arrangement.


The elongate shaft of the tool may be curved or bent, through an angle of approximately 30°. In particular embodiments of the tool, the tool has a length of 8 cm. In embodiments of the tool, the elongate shaft of the tool is between 2 to 4 mm in diameter.


The tool may be formed from any suitable material such as plastics material or surgical steel and may be for single patient use or for repeated use with multiple patients





Embodiments of the present invention will now be described by way of example only, with reference to the accompanying drawings in which



FIG. 1 is a plan view of a first embodiment of an implant of the present invention;



FIG. 2 is a plan view of a second embodiment of an implant of the present invention;



FIG. 3 is a plan view of a third embodiment of a bifurcated implant of the present invention;



FIG. 4 is an illustration of an implant of the present invention in use to treat an anterior (front) vaginal wall prolapse (cystouethrocoele) (A), an implant of the present invention in use to treat rectocoele (B) and an implant of the present invention in use to treat a enterocoele (C);



FIG. 5 is an illustration of the position of A—urethrocoele, B—cystocoele, C—cystourethrocoele, D—rectocoele and E—enterocoele.





As shown in FIG. 1 (not to scale), in one embodiment the implant 10 comprises a thin flexible vaginal support member 12, which is sized and/or shaped to the portion of the vaginal wall to be supported, for example, as shown, the support member may be substantially circular shaped and be of width in the range 3 to 8 cm and length in the range 4 to 12 cm.


Although in the embodiment shown in FIG. 1 the vaginal support member is substantially circular, the support can be of any suitable shape for application to the tissue to be repaired. For example, in another embodiment the support may be substantially rectangular as in FIG. 2. In another embodiment the implant is H or frog shaped as in FIG. 3 to allow the implant to extend around the urethra 20. The implant may be elliptical or ovoid shape as shown in FIG. 4. Different shapes of support member are advantageous depending on the position of vaginal tissue being supported, for example depending on whether the vaginal tissue is in front of the cervix 21 or posterior prolapse to support the back vaginal wall.


Extension portions 14 project from the vaginal support member 12.


The extension portions may be provided by any suitable means, for example by polymer tape, in particular polypropylene tape or by sutures. An extension portion (shown by X in FIG. 1) is less than 12 cm in length such that the extension portions and fixation means do not extend into defined anatomical structures or exit the body. However, the extension portions may be shorter depending on the depth of fixation desired, for example less than 8 cm, less than 6 cm, less than 4 cm or less than 2 cm.


The extension portions comprise fixation means 15 which allow fixation of the fixation means to the pelvic paravaginal fibro-fatty tissue without requiring penetration of structurally defined anatomical structures,


The fixation means may extend along the longitudinal axis of the extension portions as illustrated in FIG. 1 or the fixation means may be angled from the longitudinal axis 23 of the extension portions as illustrated in FIG. 2.


In the embodiments of the implant illustrated in FIGS. 1 and 2, the fixation means are provided by polymer tape shaped as a series of truncated triangular sections extending proximally from a substantially blunt tip 16. The triangular sections of the polymer tape may be of equal size as illustrated or increase in surface area from the blunt tip 16 of the extension portion furthest from the support member towards the support member such that the extension portions are inwardly tapered in the direction of insertion to facilitate insertion and minimise retraction of the extension portions following insertion i.e. the blunt tip 16 of the triangle is inserted in the tissue before the base of the triangle 18.


It is important that minimal disruption of the pelvic paravaginal fibro-fatty tissue for example of the retropubic, paraurethral, or pararectal space or ischio-rectal fossa around the fixation means and extension means occurs during insertion of the fixation means. To aid insertion and positioning, which typically requires bi-directional movement of the fixation means in insertion and retraction directions, the fixation means in the embodiments shown are resiliently deformable such that they adopt, and can be held in a deformed arrangement during insertion and positioning of the fixation means. In the embodiment shown, the points 17 along the edges of the triangular sections of the fixation means are folded or rolled towards the centreline of the fixation means, indicated by the dashed line 19, such the deformed arrangement of the fixation means when inserted into the tissue promotes minimal tissue disruption. When suitably located in the tissue, the fixation means are actively released to adopt a second arrangement in which, due to the resilient nature of the deformation, they uncurl or unfold into the surrounding tissue and grip the tissue. As the fibro-fatty tissue is of sponge or foam like consistency there is no requirement for the fixation means to be sharp to penetrate the surrounding tissue or for high force to be used to allow the fixation means to penetrate the tissue.


The released fixation means inhibit the retraction of the fixation means from the tissue due to the resistance provided by the fixation means in the fibro-fatty tissue.


In use, the implant of the present invention is inserted by

    • exposing, through a vaginal incision alone, without abdominal or perineal exit wounds or organ damage, the segment of vaginal wall and secondary organ prolapse,
    • placing the appropriately shaped and/or sized vaginal support member on the vaginal wall,
    • inserting said first extension portion into pelvic paravaginal fibro-fatty tissue without being fixed into defined structural tissue,
    • inserting said second extension portion into pelvic parvaginal fibro-fatty tissue without being fixed into defined structural tissue,
    • inserting any further extension portions into pelvic paravaginal tissue without being fixed into defined structural tissue, adjustment of fixation means of the above extension portions by means of bi-directional movement of the fixation means in the tissue to obtain suitable placement and tension, and
    • closure of the vaginal skin and appropriate suture repair of the defect.


The method may optionally include the step of suture fixation of the support member, for example to the vaginal wall.


To treat anterior vaginal prolapse the extension portions can be placed in the retropubic soft tissue along the paraurethral tunnel or more laterally, along a similar initial route as taken during a trans-obturator approach, towards the obturator foramen. However, whichever route the extension portions take they are not located into structurally defined tissues comprising dense organised collagen, they do not exit the body or fix to bone.


In use, to treat posterior vaginal prolapse the support is positioned on the vaginal tissue to be repaired and then the support is secured by inserting the extension portions into the soft tissue of the pararectal or ischiorectal fossa. Unlike conventional posterior IntraVaginal Slingplasty (posterior IVS) the extension portions do not require to be fixed in defined anatomical structures and thus do not require incisions near the anus 22 or in the perineum to be made. Thus, the chance of infection i.e. anaerobic infection from the colon and other associated problems relating to these incisions when used for posterior IVS do not apply to the present invention,


Thus, in contrast to anchors described in the art for anchoring an implant in defined anatomical structures such as fascia, bone or skin which bite into the structurally defined tissue to resist retraction, the extension portions of the present invention do not cut into the tissue, but provide a resistive force in the tissue. As previously described, this resistive force is typically provided a multiplicity of levels in the tissue to provide additive traction.


Insertion and positioning of the implant may be performed using an insertion tool. When a tool is used, the method may include a step of releasing the fixation means from the tool.


Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art will appreciate that various modifications can be made without departing from the scope of the invention.

Claims
  • 1. A tissue supported implantable device comprising: a support member; andan extension portion projecting from the support member and having a barbed fixation section that is adapted to anchor the extension portion into pelvic paravaginal tissue, the barbed fixation section provided to allow bi-directional adjustment of the barbed fixation section relative to the pelvic paravaginal tissue, and when suitably located, the barbed fixation section engages the pelvic paravaginal tissue.
  • 2. The implantable device of claim 1, wherein the pelvic paravaginal tissue is fibro-fatty tissue.
  • 3. The implantable device of claim 1, wherein the pelvic paravaginal tissue is tissue of the retropubic space.
  • 4. The implantable device of claim 1, wherein the pelvic paravaginal tissue is tissue of the paraurethral space.
  • 5. The implantable device of claim 1, wherein the pelvic paravaginal tissue is tissue of the pararectal space.
  • 6. The implantable device of claim 1, wherein the pelvic paravaginal tissue is tissue of the ischiorectal fossa.
  • 7. The implantable device of claim 1, wherein the pelvic paravaginal tissue is fibro-fatty tissue alongside of the vagina.
  • 8. The implantable device of claim 1, wherein the barbed fixation section is adapted for anchoring the extension portion into pelvic paravaginal tissue without a skin exit wound.
  • 9. The implantable device of claim 1, comprising multiple extension portions, each extension portion projecting from the support member and each extension portion having a barbed fixation section.
  • 10. The implantable device of claim 1, wherein the support member comprises a mesh material having a mass density of less than 50 g/m2.
  • 11. The implantable device of claim 1, wherein the support member comprises a mesh material having a mass density of less than 30 g/m2.
  • 12. The implantable device of claim 1, wherein the support member comprises a mesh material having a mass density of less than 25 g/m2.
  • 13. The implantable device of claim 1, wherein the support member comprises a mesh material having a mass density of less than 20 g/m2.
  • 14. A tissue supported implantable device comprising: a support member; anda first extension portion projecting from a first side of the support member and a second extension portion projecting from a second side of the support member, each of the first extension portion and the second extension portion including a barbed fixation section that is configured to secure a respective one of said extension portions into pelvic paravaginal tissue;wherein the barbed fixation section is configured to allow bi-directional adjustment of the barbed fixation section relative to the pelvic paravaginal tissue, and when suitably located, the barbed fixation section engages the pelvic paravaginal tissue.
  • 15. A tissue supported implantable device comprising: a support member comprising a mesh material having a mass density in a range between 20 g/m2 and 50 g/m2; anda first extension portion projecting from a first side of the support member and a second extension portion projecting from a second side of the support member, each of the first extension portion and the second extension portion including a barbed fixation section that is configured to secure a respective one of said extension portions into pelvic paravaginal tissue;wherein the barbed fixation section is configured to allow bi-directional adjustment of the barbed fixation section relative to the pelvic paravaginal tissue, and when suitably located, the barbed fixation section engages the pelvic paravaginal tissue.
Priority Claims (1)
Number Date Country Kind
0411360.1 May 2004 GB national
US Referenced Citations (418)
Number Name Date Kind
2738790 Todt, Sr. et al. Mar 1956 A
3054406 Usher Sep 1962 A
3124136 Usher Mar 1964 A
3182662 Shirodkar May 1965 A
3311110 Singerman et al. Mar 1967 A
3384073 Winkle, Jr. May 1968 A
3472232 Pendleton Oct 1969 A
3580313 McKnight May 1971 A
3763860 Clarke Oct 1973 A
3789828 Schulte Feb 1974 A
3858783 Kapitanov et al. Jan 1975 A
3888975 Ramwell Jun 1975 A
3911911 Scommegna Oct 1975 A
3913573 Gutnick Oct 1975 A
3916899 Theeuwes et al. Nov 1975 A
3924633 Cook et al. Dec 1975 A
3993058 Hoff Nov 1976 A
3995619 Glatzer Dec 1976 A
4019499 Fitzgerald Apr 1977 A
4037603 Wendorff Jul 1977 A
4128100 Wendorff Dec 1978 A
4172458 Pereyra Oct 1979 A
4233968 Shaw, Jr. Nov 1980 A
4235238 Ogiu et al. Nov 1980 A
4246660 Wevers Jan 1981 A
4441497 Paudler Apr 1984 A
4444933 Columbus et al. Apr 1984 A
4509516 Richmond Apr 1985 A
4632100 Somers et al. Dec 1986 A
4633873 Dumican et al. Jan 1987 A
4646731 Brower Mar 1987 A
4655221 Devereux Apr 1987 A
4775380 Seedhom et al. Oct 1988 A
4857041 Annis et al. Aug 1989 A
4865031 O'Keeffe Sep 1989 A
4873976 Schreiber Oct 1989 A
4920986 Biswas May 1990 A
4938760 Burton et al. Jul 1990 A
5013292 Lemay May 1991 A
5053043 Gottesman et al. Oct 1991 A
5085661 Moss Feb 1992 A
5112344 Petros May 1992 A
5123428 Schwarz Jun 1992 A
5149329 Richardson Sep 1992 A
5188636 Fedotov Feb 1993 A
5207694 Broome May 1993 A
5209756 Seedhom et al. May 1993 A
5250033 Evans et al. Oct 1993 A
5256133 Spitz Oct 1993 A
5259835 Clark et al. Nov 1993 A
5281237 Gimpelson Jan 1994 A
5328077 Lou Jul 1994 A
5336239 Gimpelson Aug 1994 A
5337736 Reddy Aug 1994 A
5342376 Ruff Aug 1994 A
5362294 Seitzinger Nov 1994 A
5368595 Lewis Nov 1994 A
5383904 Totakura et al. Jan 1995 A
5386836 Biswas Feb 1995 A
5403328 Shallman Apr 1995 A
5413598 Moreland May 1995 A
5434146 Labrie et al. Jul 1995 A
5439467 Benderev et al. Aug 1995 A
5456711 Hudson Oct 1995 A
5486197 Le et al. Jan 1996 A
5507754 Green et al. Apr 1996 A
5507796 Hasson Apr 1996 A
5520700 Beyar et al. May 1996 A
5522896 Prescott Jun 1996 A
5544664 Benderev et al. Aug 1996 A
5549619 Peters et al. Aug 1996 A
5562685 Mollenauer et al. Oct 1996 A
5562689 Green et al. Oct 1996 A
5569273 Titone et al. Oct 1996 A
5571139 Jenkins, Jr. Nov 1996 A
5591163 Thompson Jan 1997 A
5611515 Benderev et al. Mar 1997 A
5628756 Barker, Jr. et al. May 1997 A
5645568 Chervitz et al. Jul 1997 A
5647836 Blake, III et al. Jul 1997 A
5669935 Rosenman et al. Sep 1997 A
5683349 Makower et al. Nov 1997 A
5695525 Mulhauser et al. Dec 1997 A
5697931 Thompson Dec 1997 A
5697978 Sgro Dec 1997 A
5720766 Zang et al. Feb 1998 A
5749884 Benderev et al. May 1998 A
5766221 Benderev et al. Jun 1998 A
5807403 Beyar et al. Sep 1998 A
5816258 Jervis Oct 1998 A
5836314 Benderev et al. Nov 1998 A
5836315 Benderev et al. Nov 1998 A
5840011 Landgrebe et al. Nov 1998 A
5842478 Benderev et al. Dec 1998 A
5851229 Lentz et al. Dec 1998 A
5860425 Benderev et al. Jan 1999 A
5899909 Claren et al. May 1999 A
5904692 Steckel et al. May 1999 A
5919232 Chaffringeon et al. Jul 1999 A
5922026 Chin Jul 1999 A
5934283 Willem et al. Aug 1999 A
5935122 Fourkas et al. Aug 1999 A
5944732 Raulerson et al. Aug 1999 A
5954057 Li Sep 1999 A
5972000 Beyar et al. Oct 1999 A
5988171 Sohn et al. Nov 1999 A
5997554 Thompson Dec 1999 A
6010447 Kardjian Jan 2000 A
6030393 Corlew Feb 2000 A
6031148 Hayes et al. Feb 2000 A
6039686 Kovac Mar 2000 A
6042534 Gellman et al. Mar 2000 A
6042536 Tihon et al. Mar 2000 A
6042583 Thompson et al. Mar 2000 A
6048306 Spielberg Apr 2000 A
6048351 Gordon et al. Apr 2000 A
6050937 Benderev Apr 2000 A
6053935 Brenneman et al. Apr 2000 A
6056688 Benderev et al. May 2000 A
6068591 Bruckner et al. May 2000 A
6071290 Compton Jun 2000 A
6074341 Anderson et al. Jun 2000 A
6077216 Benderev et al. Jun 2000 A
6090116 D'Aversa et al. Jul 2000 A
6106545 Egan Aug 2000 A
6110101 Tihon et al. Aug 2000 A
6117067 Gil-Vernet Sep 2000 A
5633286 Chen Oct 2000 A
6159207 Yoon Dec 2000 A
6162962 Hinsch et al. Dec 2000 A
6168611 Rizvi Jan 2001 B1
6190401 Green et al. Feb 2001 B1
6197036 Tripp et al. Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6221005 Bruckner et al. Apr 2001 B1
6231496 Wilk et al. May 2001 B1
6245082 Gellman et al. Jun 2001 B1
6264676 Gellman et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6273852 Lehe et al. Aug 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6292700 Morrison et al. Sep 2001 B1
6302840 Benderev Oct 2001 B1
6306079 Trabucco Oct 2001 B1
6319264 Tormala et al. Nov 2001 B1
6328686 Kovac Dec 2001 B1
6328744 Harari et al. Dec 2001 B1
6334446 Beyar Jan 2002 B1
6352553 van der Burg et al. Mar 2002 B1
6355065 Gabbay Mar 2002 B1
6382214 Raz et al. May 2002 B1
6387041 Harari et al. May 2002 B1
6406423 Scetbon Jun 2002 B1
6406480 Beyar et al. Jun 2002 B1
6408656 Ory et al. Jun 2002 B1
6418930 Fowler Jul 2002 B1
6443964 Ory et al. Sep 2002 B1
6461332 Mosel et al. Oct 2002 B1
6475139 Miller Nov 2002 B1
6478727 Scetbon Nov 2002 B2
6478791 Carter et al. Nov 2002 B1
6482214 Sidor, Jr. et al. Nov 2002 B1
6491703 Ulmsten Dec 2002 B1
6494887 Kaladelfos Dec 2002 B1
6494906 Owens Dec 2002 B1
6502578 Raz et al. Jan 2003 B2
6506190 Walshe Jan 2003 B1
6527802 Mayer Mar 2003 B1
6530943 Hoepffner et al. Mar 2003 B1
6544273 Harari et al. Apr 2003 B1
6575897 Ory et al. Jun 2003 B1
6575998 Beyar Jun 2003 B2
6582443 Cabak et al. Jun 2003 B2
6592515 Thierfelder et al. Jul 2003 B2
6596001 Stormby et al. Jul 2003 B2
6599235 Kovac Jul 2003 B2
6599318 Gabbay Jul 2003 B1
6599323 Melican et al. Jul 2003 B2
6612977 Staskin et al. Sep 2003 B2
6638210 Berger Oct 2003 B2
6638211 Suslian et al. Oct 2003 B2
6638284 Rousseau et al. Oct 2003 B1
6641524 Kovac Nov 2003 B2
6652450 Neisz et al. Nov 2003 B2
6652595 Nicolo Nov 2003 B1
6666817 Li Dec 2003 B2
6669706 Schmitt et al. Dec 2003 B2
6669735 Pelissier Dec 2003 B1
6673010 Skiba et al. Jan 2004 B2
6679896 Gellman et al. Jan 2004 B2
6689047 Gellman Feb 2004 B2
6691711 Raz et al. Feb 2004 B2
6695855 Gaston Feb 2004 B1
6702827 Lund et al. Mar 2004 B1
6737371 Planck et al. May 2004 B1
6755781 Gellman Jun 2004 B2
6786861 Pretorius Sep 2004 B1
6830052 Carter et al. Dec 2004 B2
6884212 Thierfelder et al. Apr 2005 B2
6911003 Anderson et al. Jun 2005 B2
6932759 Kammerer et al. Aug 2005 B2
6936052 Gellman et al. Aug 2005 B2
6960160 Browning Nov 2005 B2
7025063 Snitkin et al. Apr 2006 B2
7070556 Anderson et al. Jul 2006 B2
7070558 Gellman et al. Jul 2006 B2
7094199 Petros et al. Aug 2006 B2
7112171 Rocheleau et al. Sep 2006 B2
7112210 Ulmsten et al. Sep 2006 B2
7140956 Korovin et al. Nov 2006 B1
7156858 Schuldt Hempe et al. Jan 2007 B2
7204802 De Leval Apr 2007 B2
7229404 Bouffier Jun 2007 B2
7288063 Petros et al. Oct 2007 B2
7290410 Meneghin et al. Nov 2007 B2
7297102 Smith et al. Nov 2007 B2
7326213 Benderev et al. Feb 2008 B2
7347812 Mellier Mar 2008 B2
7387634 Benderev Jun 2008 B2
7395822 Burton et al. Jul 2008 B1
7410460 Benderev Aug 2008 B2
7500945 Cox et al. Mar 2009 B2
7517313 Thierfelder et al. Apr 2009 B2
7527633 Rioux May 2009 B2
7559885 Merade et al. Jul 2009 B2
7594921 Browning Sep 2009 B2
7601118 Smith et al. Oct 2009 B2
7611454 De Leval Nov 2009 B2
7614258 Cherok et al. Nov 2009 B2
7621864 Suslian et al. Nov 2009 B2
7628156 Astani et al. Dec 2009 B2
7673631 Astani et al. Mar 2010 B2
7686760 Anderson et al. Mar 2010 B2
7691050 Gellman et al. Apr 2010 B2
7713188 Bouffier May 2010 B2
7722528 Arnal et al. May 2010 B2
7740576 Hodroff et al. Jun 2010 B2
7766926 Bosley, Jr. et al. Aug 2010 B2
7789821 Browning Sep 2010 B2
7794385 Rosenblatt Sep 2010 B2
7815662 Spivey et al. Oct 2010 B2
7927342 Rioux Apr 2011 B2
7975698 Browning Jul 2011 B2
7981022 Gellman et al. Jul 2011 B2
8007430 Browning Aug 2011 B2
8016741 Weiser et al. Sep 2011 B2
8016743 Maroto Sep 2011 B2
8047983 Browning Nov 2011 B2
8092366 Evans Jan 2012 B2
8118727 Browning Feb 2012 B2
8118728 Browning Feb 2012 B2
8123673 Browning Feb 2012 B2
8128554 Browning Mar 2012 B2
8162818 Browning Apr 2012 B2
8167785 Browning May 2012 B2
8182412 Browning May 2012 B2
8182413 Browning May 2012 B2
8215310 Browning Jul 2012 B2
8273011 Browning Sep 2012 B2
8449450 Browning May 2013 B2
8454492 Browning Jun 2013 B2
8469877 Browning Jun 2013 B2
8512223 Browning Aug 2013 B2
8574148 Browning et al. Nov 2013 B2
8668635 Browning Mar 2014 B2
20010000533 Kovac Apr 2001 A1
20010018549 Scetbon Aug 2001 A1
20010039423 Skiba et al. Nov 2001 A1
20010049467 Lehe et al. Dec 2001 A1
20010049538 Trabucco Dec 2001 A1
20010051815 Esplin Dec 2001 A1
20010053916 Rioux Dec 2001 A1
20020005204 Benderev et al. Jan 2002 A1
20020007222 Desai Jan 2002 A1
20020022841 Kovac Feb 2002 A1
20020028980 Thierfelder et al. Mar 2002 A1
20020042658 Tyagi Apr 2002 A1
20020049503 Milbocker Apr 2002 A1
20020052612 Schmitt et al. May 2002 A1
20020052654 Darois et al. May 2002 A1
20020055748 Gellman et al. May 2002 A1
20020058959 Gellman May 2002 A1
20020068948 Stormby et al. Jun 2002 A1
20020072694 Snitkin et al. Jun 2002 A1
20020077526 Kammerer et al. Jun 2002 A1
20020078964 Kovac et al. Jun 2002 A1
20020082619 Cabak et al. Jun 2002 A1
20020083949 James Jul 2002 A1
20020091298 Landgrebe Jul 2002 A1
20020091373 Berger Jul 2002 A1
20020099258 Staskin et al. Jul 2002 A1
20020099259 Anderson et al. Jul 2002 A1
20020099260 Suslian et al. Jul 2002 A1
20020103542 Bilbo Aug 2002 A1
20020107430 Neisz et al. Aug 2002 A1
20020107525 Harari et al. Aug 2002 A1
20020115906 Miller Aug 2002 A1
20020119177 Bowman et al. Aug 2002 A1
20020128670 Ulmsten et al. Sep 2002 A1
20020138025 Gellman et al. Sep 2002 A1
20020147382 Neisz et al. Oct 2002 A1
20020151762 Rocheleau et al. Oct 2002 A1
20020151909 Gellman et al. Oct 2002 A1
20020151910 Gellman et al. Oct 2002 A1
20020156487 Gellman et al. Oct 2002 A1
20020156488 Gellman et al. Oct 2002 A1
20020161382 Neisz et al. Oct 2002 A1
20020183588 Fierro Dec 2002 A1
20020188169 Kammerer et al. Dec 2002 A1
20030004395 Therin Jan 2003 A1
20030009181 Gellman et al. Jan 2003 A1
20030023136 Raz et al. Jan 2003 A1
20030023137 Gellman Jan 2003 A1
20030023138 Luscombe Jan 2003 A1
20030036676 Scetbon Feb 2003 A1
20030050530 Neisz et al. Mar 2003 A1
20030065246 Inman et al. Apr 2003 A1
20030065402 Anderson et al. Apr 2003 A1
20030069469 Li Apr 2003 A1
20030078468 Skiba et al. Apr 2003 A1
20030100954 Schuldt Hempe et al. May 2003 A1
20030130670 Anderson et al. Jul 2003 A1
20030149440 Kammerer et al. Aug 2003 A1
20030171644 Anderson et al. Sep 2003 A1
20030176875 Anderson et al. Sep 2003 A1
20030191360 Browning Oct 2003 A1
20030199732 Suslian et al. Oct 2003 A1
20030212305 Anderson et al. Nov 2003 A1
20030220538 Jacquetin Nov 2003 A1
20040029478 Planck et al. Feb 2004 A1
20040034373 Schuldt-Hempe et al. Feb 2004 A1
20040039453 Anderson et al. Feb 2004 A1
20040059356 Gingras Mar 2004 A1
20040097974 De Leval May 2004 A1
20040106847 Benderev Jun 2004 A1
20040144395 Evans et al. Jul 2004 A1
20040172048 Browning Sep 2004 A1
20040231678 Fierro Nov 2004 A1
20040243166 Odermatt et al. Dec 2004 A1
20040249240 Goldmann et al. Dec 2004 A1
20040249373 Gronemeyer et al. Dec 2004 A1
20040249397 Delorme et al. Dec 2004 A1
20040249473 Delorme et al. Dec 2004 A1
20050000524 Cancel et al. Jan 2005 A1
20050004576 Benderev Jan 2005 A1
20050080317 Merade Apr 2005 A1
20050107805 Bouffier et al. May 2005 A1
20050240076 Neisz et al. Oct 2005 A1
20050277806 Cristalli Dec 2005 A1
20050278037 Delorme et al. Dec 2005 A1
20050283040 Greenhalgh Dec 2005 A1
20060025649 Smith et al. Feb 2006 A1
20060025783 Smith et al. Feb 2006 A1
20060041185 Browning Feb 2006 A1
20060058578 Browning Mar 2006 A1
20060089524 Chu Apr 2006 A1
20060089525 Mamo et al. Apr 2006 A1
20060130848 Carey Jun 2006 A1
20060205995 Browning Sep 2006 A1
20060264698 Kondonis et al. Nov 2006 A1
20070015953 MacLean Jan 2007 A1
20070020311 Browning Jan 2007 A1
20070032695 Weiser Feb 2007 A1
20070032881 Browning Feb 2007 A1
20070059199 Labuschagne Mar 2007 A1
20070149555 Kase et al. Jun 2007 A1
20070219606 Moreci et al. Sep 2007 A1
20080021263 Escude et al. Jan 2008 A1
20080161837 Toso et al. Jul 2008 A1
20080167518 Burton et al. Jul 2008 A1
20080196729 Browning Aug 2008 A1
20080200751 Browning Aug 2008 A1
20090123522 Browning May 2009 A1
20090137862 Evans et al. May 2009 A1
20090171377 Intoccia et al. Jul 2009 A1
20090221868 Evans Sep 2009 A1
20090287229 Ogdahl Nov 2009 A1
20100022822 Walshe Jan 2010 A1
20100056856 Suslian et al. Mar 2010 A1
20100113869 Goldman May 2010 A1
20100130814 Dubernard May 2010 A1
20100198002 O'Donnell Aug 2010 A1
20100222794 Browning Sep 2010 A1
20100256442 Ogdahl et al. Oct 2010 A1
20100274074 Khamis et al. Oct 2010 A1
20100280308 Browning Nov 2010 A1
20100298630 Wignall Nov 2010 A1
20110021868 Browning Jan 2011 A1
20110034759 Ogdahl et al. Feb 2011 A1
20110105833 Gozzi et al. May 2011 A1
20110124954 Ogdahl et al. May 2011 A1
20110124956 Mujwid et al. May 2011 A1
20110201872 Browning Aug 2011 A1
20110230705 Browning Sep 2011 A1
20110230708 Browning Sep 2011 A1
20110230709 Browning Sep 2011 A1
20110237865 Browning Sep 2011 A1
20110237866 Browning Sep 2011 A1
20110237867 Browning Sep 2011 A1
20110237868 Browning Sep 2011 A1
20110237869 Browning Sep 2011 A1
20110237870 Browning Sep 2011 A1
20110237873 Browning Sep 2011 A1
20110237874 Browning Sep 2011 A1
20110237875 Browning Sep 2011 A1
20110237876 Browning Sep 2011 A1
20110237877 Browning Sep 2011 A1
20110237878 Browning Sep 2011 A1
20110237879 Browning Sep 2011 A1
20110238095 Browning Sep 2011 A1
20110245594 Browning Oct 2011 A1
20110282136 Browning Nov 2011 A1
20120143000 Browning Jun 2012 A1
20120149977 Browning Jun 2012 A1
20140039244 Browning Feb 2014 A1
20140039247 Browning Feb 2014 A1
20140039248 Browning Feb 2014 A1
20140051917 Browning Feb 2014 A1
Foreign Referenced Citations (107)
Number Date Country
2305815 Aug 1974 DE
4220283 Dec 1993 DE
4304353 Apr 1994 DE
10019604 Jun 2002 DE
0009072 Apr 1980 EP
0024781 Aug 1984 EP
0024780 Oct 1984 EP
0248544 Apr 1991 EP
0139286 Aug 1991 EP
0470308 Feb 1992 EP
0557964 Sep 1993 EP
0632999 Jan 1995 EP
0650703 May 1995 EP
0706778 Apr 1996 EP
1093758 Apr 2001 EP
0719527 Aug 2001 EP
0643945 Mar 2002 EP
1060714 Aug 2006 EP
1274370 Sep 2006 EP
1296614 Sep 2006 EP
0797962 Sep 2009 EP
1274370 Oct 1961 FR
2712177 May 1995 FR
2732582 Oct 1997 FR
2735015 Feb 1998 FR
2811218 Nov 2000 FR
2787990 Apr 2001 FR
0378288 Aug 1932 GB
2353220 Feb 2001 GB
2187251 Aug 2002 RU
2196518 Jan 2003 RU
1225547 Apr 1986 SU
1342486 Oct 1987 SU
1475607 Apr 1989 SU
WO9100714 Jan 1991 WO
WO9317635 Sep 1993 WO
WO9319678 Oct 1993 WO
WO9533454 Dec 1995 WO
WO9603091 Feb 1996 WO
WO9606567 Mar 1996 WO
WO9713465 Apr 1997 WO
WO9722310 Jun 1997 WO
WO9743982 Nov 1997 WO
WO9819606 May 1998 WO
WO9835606 Aug 1998 WO
WO9835616 Aug 1998 WO
WO9835632 Aug 1998 WO
WO9857590 Dec 1998 WO
WO9916381 Apr 1999 WO
WO9952450 Oct 1999 WO
WO9959477 Nov 1999 WO
WO0007520 Feb 2000 WO
WO0013601 Mar 2000 WO
WO0015141 Mar 2000 WO
WO0018319 Apr 2000 WO
WO0038784 Jul 2000 WO
WO0057812 Oct 2000 WO
WO0064370 Nov 2000 WO
WO0074594 Dec 2000 WO
WO0074613 Dec 2000 WO
WO0074633 Dec 2000 WO
WO0106951 Feb 2001 WO
WO0126581 Apr 2001 WO
WO0139670 Jun 2001 WO
WO0145589 Jun 2001 WO
WO0152729 Jul 2001 WO
WO0156499 Aug 2001 WO
WO0180773 Nov 2001 WO
WO0202031 Jan 2002 WO
WO0226108 Apr 2002 WO
WO0228312 Apr 2002 WO
WO0230293 Apr 2002 WO
WO0232284 Apr 2002 WO
WO0232346 Apr 2002 WO
WO0234124 May 2002 WO
WO0239890 May 2002 WO
WO02060371 Aug 2002 WO
WO02065921 Aug 2002 WO
WO02065944 Aug 2002 WO
WO02069781 Sep 2002 WO
WO02071953 Sep 2002 WO
WO02078548 Oct 2002 WO
WO02078552 Oct 2002 WO
WO02078568 Oct 2002 WO
WO02078571 Oct 2002 WO
WO02098340 Dec 2002 WO
WO03002027 Jan 2003 WO
WO03013392 Feb 2003 WO
WO03057074 Jul 2003 WO
WO03022260 Oct 2003 WO
WO03086205 Oct 2003 WO
WO03092546 Nov 2003 WO
WO03094781 Nov 2003 WO
WO2004002370 Jan 2004 WO
WO2004002379 Jan 2004 WO
WO2004004600 Jan 2004 WO
WO2004012626 Feb 2004 WO
WO2004098461 Nov 2004 WO
WO2005018494 Mar 2005 WO
WO2005112842 Dec 2005 WO
WO2006015031 Feb 2006 WO
WO2006015042 Feb 2006 WO
WO2006136625 Dec 2006 WO
WO2007059199 May 2007 WO
WO2007149555 Dec 2007 WO
WO2008007086 Jan 2008 WO
WO2008018494 Feb 2008 WO
Non-Patent Literature Citations (177)
Entry
Abdel-fattah, Mohamed et al. Evaluation of transobturator tapes (E-TOT) study: randomised prospective single-blinded study comparing inside-out vs. outside-in transobturator tapes in management of urodynamic stress incontinence: Short term outcomes, European Journal of Obstetrics & Gynecology and Reproductive Biology (2009).
Aldridge, “Transplantation of Fascia for Relief of Urinary Stress Incontinence,” Am. J. Obstet. Gynecol., 1942, 44:398-411.
Araki et al., “The Loop-Loosening Procedure for Urination Difficulties After Stamey Suspension of the Vesical Neck,” J. Urol., 1990, 144:319-323.
Asmussen and Ulmsten, “Simultaneous Urethro-Cystometry with a New Technique,” Scand. J. Urol. Nephrol., 1976, 10:7-11.
Beck and McCormick, “Treatment of Urinary Stress Incontinence with Anterior Colporrhaphy,” Obstetrics and Gynecology, 1982, 59(3):271-274.
Benderev, “A Modified Percutaneous Outpatient Bladder Neck Suspension System,” J. Urol., 1994, 152:2316-2320.
Benderev, “Anchor Fixation and Other Modifications of Endoscopic Bladder Neck Suspension,” Urology, 1992, 40(5):409-418.
Bergman and Elia, “Three surgical procedures for genuine stress incontinence: Five-year follow-up of a prospective randomized study,” Am. J. Obstet. Gynecol., 1995, 173:66-71.
Blaivas and Jacobs, “Pubovaginal Fascial Sling for the Treatment of Complicated Stress Urinary Incontinence,” J. Urol., 1991, 145:1214-1218.
Blaivas and Salinas, “Type III Stress Urinary Incontinence: Importance of Proper Diagnosis and Treatment,” American College of Surgeons Surgical Forum, 1984, 70.sup.th Annual Clinical Congress, San Francisco, CA, vol. XXXV, pp. 473-474.
Botros, Cystocele and Rectocele Repair: More Success With Mesh? Jun. 2006.
Bryans, “Marlex gauze hammock sling operation with Cooper's ligament attachment in the management of recurrent urinary stress incontinence,” Am. J. Obstet. Gynecol., 1979, 133(3):292-294.
Burch, “Urethrovaginal fixation to Cooper's ligament for correction of stress incontinence, cystocele, and prolapse,” Am. J. Obstet. Gynecol., 1961, 81(2):281-290.
Certified priority document for GB Application No. 0025068.8, filed Oct. 12, 2000, 38 pages.
Certified priority document for GB Application No. 0208359.0, filed Apr. 11, 2002, 50 pages.
Certified priority document for GB Application No. 0411360.1, filed May 21, 2004, 31 pages.
Chen, Biologic Grafts and Synthetic Meshes in Pelvic Reconstructive Surgery, Jun. 2007.
Choe and Staskin, “Gore-Tex Patch Sling: 7 Years Later,” Urology, 1999, 54:641-646.
Chopra et al., “Technique of Rectangular Fascial Sling,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 34, pp. 392-394.
Dargent, D. et al., Pose d'un ruban sous uretral oblique par voie obturatrice dans le traitement de L'incontinence urinary feminine [English “Insertion of a transobturator oblique suburethral sling in the treatment of female urinary incontinence”], Gynecol. Obstet. Ferril. 14, pp. 576-582 (2002) [including English translation at the beginning of document].
Das and Palmer, “Laparoscopic Colpo-Suspension,” J. Urol., 1995, 154:1119-1121.
de Leval, J., “Novel Surgical Technique for the Treatment of Female Stress Urinary Continence: Transobturator Vaginal Tape Inside-Out,” European Urology, 2003, 44:724-730.
DeBord, James R., (1998), “The Historical Development of Prosthetics in Hernia Surgery,” Surgical Clinics of North America, 78(6): 973-1006.
Decter, “Use of the Fascial Sling for Neurogenic Incontinence: Lessons Learned,” J. Urol., 1993, 150:683-686.
Delmore, E. et al., La bandelette trans-obturatrice: Un procede mini-invasif pour traiter l'incontinence urinaire d'effort de la femme, Progres en Urologie, vol. 11, pp. 1306-1313 (2001) [including English translation at the beginning of document].
deTayrac, et al. Prolapse repair by vaginal route using . . . Int. Urogynecol. J. (published online May 13, 2006).
Dwyer, Transvaginal repair of anterior and posterior compartment prolapse with Atrium polypropylene mesh, BJOG: An International Journal of Obstetrics & Gynaecology, Aug. 2004.
Enzelsberger et al., “Urodynamic and Radiologic Parameters Before and After Loop Surgery for Recurrent Urinary Stress Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69:51-54.
Eriksen et al., “Long-Term Effectiveness of the Burch Colposuspension in Female Urinary Stress Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69:45-50.
Falconer et al., “Clinical Outcome and Changes in Connective Tissue Metabolism After Intravaginal Slingplasty in Stress Incontinent Women,” Int. Urogynecol. J., 1996, 7:133-137.
Falconer et al., “Influence of Different Sling Materials on Connective Tissue Metabolism in Stress Urinary Incontinent Women,” Int. Urogynecol. J., 2001, (Suppl. 2):S19-S23.
Gilja et al., “A Modified Raz Bladder Neck Suspension Operation (Transvaginal Burch),” J. Urol., 1995, 153:1455-1457.
Gittes and Loughlin, “No-Incision Pubovaginal Suspension for Stress Incontinence,” J. Urol., 1987, 138:568-570.
Gruss, “The Obturator Bypass. Indications. Techniques. Outcomes,” Chirurgie, 1971, 97:220-226.
Guida and Moore, “The Surgeon At Work. Obturator Bypass Technique,” Surgery, Gynecology & Obstetrics, 1969, pp. 1307-1315.
Handa et al., “Banked Human Fascia Lata for the Suburethral Sling Procedure: A Preliminary Report,” Obstet. Gynecol., 1996, 88:1045-1049.
Hardiman, et al. Cystocele repair using polypropylene mesh. Br. J. Obstet. Gynaecol. 107: 825-26 (2000).
Henriksson and Ulmsten, “A urodynamic evaluation of the effects of abdominal urethrocystopexy and vaginal sling urethroplasty in women with stress incontinence,” Am. J. Obstet. Gynecol., 1978, 131:77-82.
Hodgkinson and Kelly, “Urinary Stress Incontinence in the Female. III. Round-ligament technique for retropubic suspension of the urethra,” Obstet. Gynecol., 1957, 10:493-499.
Hohenfellner and Petri, “Sling Procedures,” Surgery of Female Incontinence, 2nd edition, SpringerVeriag, pp. 105-113, 1986.
Holschneider et al., “The Modified Pereyra Procedure in Recurrent Stress Urinary Incontinence: A 15-Year Review,” Obstet. Gynecol., 1994, 83:573-578.
Horbach et al., “A Suburethral Sling Procedure with Polytetrafluoroethylene for the Treatment of Genuine Stress Incontinence in Patients with Low Urethral Closure Pressure,” Obstet. Gynecol., 1988, 71:648-652.
Horbach, “Suburethral Sling Procedures,” Urogynecology and Urodynamics-Theory and Practice, 1996, Williams & Wilkins, pp. 569-579.
Ingelman-Sundberg and Ulmsten, “Surgical Treatment of Female Urinary Stress Incontinence,” Contr. Gynec. Obstet., 1983, 10:51-69.
International Preliminary Examination Report issued in PCT/GB01/04554, completed Nov. 22, 2002, 6 pages.
International Search Report for PCT/GB2009/050174, mailed Jun. 24, 2009.
International Search Report issued in PCT/GB01/04554, mailed Jan. 29, 2002, 3 pages.
International Search Report issued in PCT/GB2007/002589, mailed Jan. 22, 2008, 5 pages.
Jacquetin, Bernard, “2. Utilisation du “TVT” dans la chirurgie de l'incontinence urinaire feminine”, J. Gynecol. Obstet. Biol. Reprod. 29: 242-47 (2000).
Jeffcoate, “The Results of the Aldridge Sling Operation for Stress Incontinence,” The Journal of Obstetrics and Gynaecology of the British Empire, 1956, 63:36-39.
Ulmsten et al., “An Ambulatory Surgical Procedure Under Local Anesthesia for Treatment of Female Urinary Incontinence,” Int. Urogynecol. J., 1996, 7:81-86.
Ulmsten et al., “Different Biochemical Composition of Connective Tissue in Continent and Stress Incontinent Women,” Acta Obstet. Gynecol. Scand., 1987, 66:455-457.
Ulmsten et al., “The unstable female urethra,” Am. J. Obstet. Gynecol., 1982, 144:93-97.
Ulmsten, “Female Urinary Incontinence—A Symptom, Not a Urodynamic Disease. Some Theoretical and Practical Aspects on the Diagnosis and Treatment of Female Urinary Incontinence,” Int. Urogynecol. J., 1995, 6:2-3.
Ulstem et al., “A Multicenter Study of Tension-Free Vaginal Tape (TVT) for Surgical Treatment of Stress Urinary Incontinence,” Int. Urogynecol. J., 1998, 9:210-213.
U.S. Appl. No. 13/149,994, filed Jun. 1, 2011.
U.S. Appl. No. 10/106,086, filed Mar. 25, 2002.
U.S. Appl. No. 11/199,061, filed Aug. 8, 2005.
U.S. Appl. No. 60/279,794, filed Mar. 29, 2001.
U.S. Appl. No. 60/302,929, filed Jul. 3, 2001.
U.S. Appl. No. 60/307,836, filed Jul. 25, 2001.
U.S. Appl. No. 60/322,309, filed Sep. 14, 2001.
U.S. Appl. No. 60/362,806, filed Mar. 7, 2002.
U.S. Appl. No. 60/380,797, filed May 14, 2002.
U.S. Appl. No. 60/393,969, filed Jul. 5, 2002.
U.S. Appl. No. 60/402,007, filed Aug. 8, 2002.
U.S. Appl. No. 60/414,865, filed Sep. 30, 2002.
Webster and Kreder, “Voiding Dysfunction Following Cystourethropexy: Its Evaluation and Management,” J. Urol., 1990, 144:670-673.
Weidemann, Small Intestinal Submucosa for Pubourethral Sling Suspension for the Treatment of Stress Incontinence: First Histopathological Results in Humans, Jul. 2004.
Winter, “Peripubic Urethropexy for Urinary Stress Incontinence in Women,” Urology, 1982, 20(4):408-411.
Woodside and Borden, “Suprapubic Endoscopic Vesical Neck Suspension for the Management of Urinary Incontinence in Myelodysplastic Girls,” J. Urol., 1986, 135:97-99.
Written Opinion for PCT/GB2009/050174, mailed Jun. 24, 2009.
Written Opionion issued in PCT/GB2007/002589, mailed Jan. 22, 2008, 5 pages.
Zacharin and Hamilton, “Pulsion Enterocele: Long-Term Results of an Abdominoperineal Technique,” Obstet. Gynecol., 1980, 55(2):141-148.
Zacharin, “The suspensory mechanism of the female urethra,” J. Anat., 1963, 97(3):423-427.
Pereyra et al., “Pubourethral Supports in Perspective: Modified Pereyra Procedure for Urinary Incontinence,” Obstet Gynecol., 1982, 59:643-648.
Petros and Konsky, “Anchoring the midurethra restores bladder-neck anatomy and continence,” The Lancet, 1999, 354:997-998.
Petros and Ulmsten, “An analysis of rapid pad testing and the history for the diagnosis of stress incontinence,” Acta Obstet. Gynecol. Scand., 1992, 71:529-536.
Petros and Ulmsten, “An Anatomical Basis for Success and Failure of Female Incontinence Surgery,” Scand. J. Urol. Nephrol., 1993, (Suppl. 3):55-60.
Petros and Ulmsten, “An Integral Theory and Its Method for the Diagnosis and Management of Female Urinary Incontinence,” 153 Scand. J. Urol. Nephrol. 1, 64 (1993).
Petros and Ulmsten, “An Integral Theory of Female Urinary Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69(Supp1.153):7-31.
Petros and Ulmsten, “Bladder Instability in Women: A Premature Activation of the Micturition Reflex,” Neurourology and Urodynamics, 1993, 12:235-239.
Petros and Ulmsten, “Cough Transmission Ratio: An Indicator of Suburethral Vaginal Wall Tension Rather than Urethral Closure?” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153):37-38.
Petros and Ulmsten, “Cure of Stress Incontinence by Repair of External Anal Sphincter,” Acta. Obstet. Gynecol Scand., 1990, 69(Suppl. 153):75.
Petros and Ulmsten, “Cure of Urge Incontinence by the Combined Intravaginal Sling and Tuck Operation,” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153)61-62.
Petros and Ulmsten, “Further Development of the Intravaginal Slingplasty Procedure—IVS III—(with midline “tuck”),” Scand. J. Urol. Nephrol., 1993, Suppl. 153:69-71.
Petros and Ulmsten, “Non Stress Non Urge Female Urinary Incontinence—Diagnosis and Cure: A Preliminary Report,” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153):69-70.
Petros and Ulmsten, “Part I: Theoretical, Morphological, Radiographical Correlations and Clinical Perspective,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:5-28.
Petros and Ulmsten, “Part II:The Biomechanics of Vaginal Tissue and supporting Ligaments with Special Relevance to the Pathogenesis of Female Urinary Incontinence,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:29-40.
Petros and Ulmsten, “Part III: Surgical Principles Deriving from the Theory,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:41-52.
Petros and Ulmsten, “Part IV: Surgical Applications of the Theory—Development of the Intravaginal Sling Plasty (IVS) Procedure,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:53-54.
Petros and Ulmsten, “Pinch Test for Diagnosis of Stress Urinary Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69(Supp1.153):33-35.
Petros and Ulmsten, “Pregnancy Effects on the Intravaginal Sling Operation,” Acta Obstet. Gynecol. Scand., 1990, 69(Supp1.153):77-78.
Petros and Ulmsten, “The Combined Intravaginal Sling and Tuck Operation. An Ambulatory Procedure for Cure of Stress and Urge Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153):53-59.
Petros and Ulmsten, “The Development of the Intravaginal Slingplasty Procedure: IVS II—(with bilateral “tucks”),” Scand. J. Urol. Nephrol., 1993, Suppl. 153:61-67.
Petros and Ulmsten, “The Free Graft Procedure for Cure of the Tethered Vagina Syndrome,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:85-87.
Petros and Ulmsten, “The Further Development of the Intravaginal Slingplasty Procedure: IVS IV—(with “double-breasted” unattached vaginal flap repair and “free” vaginal tapes),” Scand. J. Urol. Nephrol., 1993, Suppl. 153:73-79.
Petros and Ulmsten, “The Intravaginal Slingplasty Procedure: Ivs V1—further development of the “double-breasted” vaginal flap repair—attached flap,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:81-84.
Petros and Ulmsten, “The Posterior Fornix Syndrome: A Multiple Symptom Complex of Pelvin Pain and Abnormal Urinary Symptoms Deriving from Laxity in the Posterior Fornix of Vagina,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:89-93.
Petros and Ulmsten, “The Role of a Lax Posterior Vaginal Fornix in the Causation of Stress and Urgency Symptoms: a Preliminary Report,” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153):71-73.
Petros and Ulmsten, “The Tethered Vagina Syndrome, Post Surgical Incontinence and I-Plasty Operation for Cure,” Acta Obstet. Gynecol Scand., 1990, 69(Supp1.153):63-67.
Petros and Ulmsten, “The Tuck Procedure: A Simplified Vaginal Repair for Treatment of Female Urinary Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69(Supp1.153):41-42.
Petros and Ulmsten, “Urethral Pressure Increase on Effort Originates From Within the Urethra, and Continence From Musculovaginal Closure,” Neurourology and Urodynamics, 1995, 14:337-350.
Petros et al., “The Autogenic Ligament Procedure: A Technique for Planned Formation of an Artificial Neo-Ligament,” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153):43-51.
Petros, “Development of Generic Models for Ambulatory Vaginal Surgery—a Preliminary Report,” Int. Urogynecol. J., 1998, 9:19-27.
Product Monograph for Aris Transobturator Tape for the Treatment of Female Stress Urinary Incontinence, 2004, 40 pages.
Rackley et al., “Tension-free Vaginal Tape and Percutaneous Vaginal Tape Sling Procedures,” Techniques in Urology, 2001, 7(2):90-100.
Rackley, “Synthetic slings: Five steps for successful placement—Follow these steps to insert Transvaginal/Percutaneous slings using vaginal approach alone,” Urology Times, 2000, 28:46-49.
Raz et al., “Urological Neurology and Urodynamics,” J. Urol., 1992, 148:845-850.
Raz, “Modified Bladder Neck Suspension for Female Stress Incontinence,” Urology, 1981, 17(1):82-85.
Richardson et al., “Delayed Reaction to the Dacron Buttress Used in Urethropexy,” J. Reproductive Med., 1984, 29(9):689-692.
Ridley, “Appraisal of the Goebell-Frangenheim-Stoeckel sling procedure,” Am. J. Obstet. Gynecol., 1966, 95(5):714-721.
Schumpelick, V. et at., “Minimized polypropylene mesh for preperitoneal net plasty (PNP) of incisional hernias,” Chirurg 70:422-430 (1999).
Shaw, W., “An Operation for the Treatment of Stress Incontinence,” Br. Med. J. 1949:1070-1073.
Sheiner et al., “An unusual complication of obturator foramen arterial bypass,” J. Cardiovasc. Surg., 1969, 10(4):324-328.
Sirls and Leach, “Use of Fascia Lata for Pubovaginal Sling,” Female Urology, 1996, Raz (ed.). W.B. Saunders Company, Chapter 32, pp. 376-381.
Sloan and Barwin, “Stress Incontinence of Urine: A Retrospective Study of the Complications and Late Results of Simple Suprapubic Suburethral Fascial Slings,” J. Urol., 1973, 110:533-536.
Spencer et al., “A Comparison of Endoscopic Suspension of the Vesical Neck with Suprapubic Vesicourethropexy for Treatment of Stress Urinary Incontinence,” J. Urol., 1987, 137:411-415.
Spinosa, JP et al., Transobturator surgery for female stress incontinence: a comparative anatomical study of outside-in vs. inside-out techniques, BJU Intl., 100(5), pp. 1097-1102 (Nov. 2007).
Stamey, “Endoscopic Suspension of the Vesical Neck for Urinary Incontinence in Females,” Annals of Surgery, 1980, 192(4):465-471.
Stanton, “Suprapubic Approaches for Stress Incontinence in Women,” J. Am. Geriatrics Soc., 1990, 38(3):348-351.
Staskin et al., “The Gore-tex sling procedure for female sphincteric incontinence: indications, technique, and results,” World J. Urol., 1997, 15:295-299.
Stothers et al., “Anterior Vaginal Wall Sling,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 35, pp. 395-398.
Ulmsten and Petros, “Intravaginal Slingplasty (IVS): An Ambulatory Surgical Procedure for Treatment of Female Urinary Incontinence,” Scand. J. Urol. Nephrol., 1995, 29:75-82.
Ulmsten et al., “A three-year follow up of tension free vaginal tape for surgical treatment of female stress urinary incontinence,” Br. J. Obstet. Gynecol., 1999, 106:345-350.
International Search Report and Written Opinion issued in PCT/GB2004/001390, mailed Sep. 3, 2004, 12 pages.
BioArc(R) SP Sling Kit: 12 Step Procedure, American Medical Systems Inc. Online Brochure 2006, 2 pages.
Jeter, “The Social Impact of Urinary Incontinence,” Female Urology, Raz (ed.), W. B. Saunders Company, 1996, Chapter 7, pp. 80-86.
Karram and Bhatia, “Patch Procedure: Modified Transvaginal Fascia Lata Sling for Recurrent or Severe Stress Urinary Incontinence,” Obstet Gynecol., 1990, 75:461-463.
Kerdiles et al., “Bypass via the Obturator Foramen in Reconstructive Arterial Surgery of the Lower Extremities,” Ann. Chir. Thorac. Cardio-Vasc., 1974, 13(4):335-341.
Kerr and Staskin, “The Use of Artificial Material for Sling Surgery in the Treatment of Female Stress Urinary Incontinence,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 33, pp. 382-391.
Kersey, “The gauze hammock sling operation in the treatment of stress incontinence,” Br. J. Obstet. Gynecol., 1983, 90:945-949.
Klinge et al., “Functional and Morphological Evaluation of a Low-Weight, Monofilament Polypropylene Mesh for Hernia Repair,” Journal of Biomedical Material Research, Jan. 24, 2002, pp. 129-137.
Klinge, U. et al., “Influence of polyglactin-coating on functional and morphological parameters of polypropylene-mesh modifications for abnormal wall repair,” Biomaterials 20 (1999), pp. 613-623.
Klinge, U. et al., “Modified Mesh for Hernia Repair that is Adapted to the Physiology of the Abdominal Wall,” Eur J Surg 164:951-960 (1998).
Klinge, U. et al., “Pathophysiology of the abdominal wall,” Der Chirurg, (1996),67: 229-233.
Klosterhalfen, B, et al., “Functional and morphological evaluation of different polypropylene-mesh modifications for abdominal wall repair,” Biomaterials 19:2235-2246 (1998).
Klosterhalfen, B. et al., “Morphological correlation of the functional mechanics of the abdominal wall after mesh implantation,” Langenbecks Arch Chir 382:87-94 (1997).
Klutke et al., “The Anatomy of Stress Incontinence: Magnetic Resonance Imaging of the Female Bladder Neck and Urethra,” J. Urol., 1990, 143:563-566.
Klutke et al., “Transvaginal Bladder Neck Suspension to Cooper's Ligament: A Modified Pereyra Procedure,” Obstet. GynecoL, 1996, 88:294-297.
Korda et al., “Experience with Silastic Slings for Female Urinary Incontinence,” Aust. Nz J. Obstet. Gynaecol., 1989, 29:150-154.
Kovac and Cruikshank, “Pubic Bone Suburethral Stabilization Sling for Recurrent Urinary Incontinence,” Obstet. GynecoL, 1997, 89:624-62T.
Kovac and Cruikshank, “Pubic bone suburethral stabilization sling: a long-term cure for SUI?” Contemporary OB/GYN, 1998, 43(2):51-72.
Kovac, “Follow-up of the Pubic Bone Suburethral Stabilization Sling Operation for Recurrent Urinary Incontinence (Kovac Procedure),” J. Pelvic Surgery, 1999, 5(3):156-160.
Lazarevski, M.B., Suburethral Duplication of the Vaginal Wal—An Original Operation for Urinary Stress Incontinence in Women, 6 Int'l Urogynecol. J. 73 -79 (1995).
Leach et al., “Female Stress Urinary Incontinence Clinical Guidelines Panel Summary Report on Surgical Management of Female Stress Urinary Incontinence,” J. Urol., 1997, 158:875-880.
Leach, “Bone Fixation Technique for Transvaginal Needle Suspension,” Urology, 1988, 31(5):388-390.
Lichtenstein et al., “The Tension-Free Hernioplasty,” Am. J. Surgery, 1989, 157:188-193.
Lipton, S. And Estrin, J., “A Biomechanical Study of the Aponeurotic Iguinal Hernia Repair,” Journal of the American College of Surgeons, Jun. 1994, vol. 178, pp. 595-599.
Loughlin et al., “Review of an 8-Year Experience with Modifications of Endoscopic Suspension of the Bladder Neck for Female Stress Urinary Incontinence,” J. Urol., 1990, 143:44-45.
Maher, Surgical Management of Anterior Vaginal Wall Prolapse: An Evidence Based Literature Review, 2006.
Mahoney and Whelan, “Use of Obturator Foramen in Iliofemoral Artery Grafting: Case Reports,” Annals of Surgery, 1966, 163(2):215-220.
Marshall et al., “The Correction of Stress Incontinence by Simple Vesicourethral Suspension,” J. Urol., 2002, 168:1326-1331.
McGuire and Gormley, “Abdominal Fascial Slings,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 31, pp. 369-375.
McGuire and Lytton, “Pubovaginal Sling Procedure for Stress Incontinence,” J. Urol., 1978, 119:82-84.
McGuire et al., “Experience with Pubovaginal Slings for Urinary Incontinence at the University of Michigan,” J. Urol., 1987, 138:525-526.
McGuire, “Abdominal Procedures for Stress Incontinence,” Urologic Clinics of North America, 1985, 12(2):285-290.
Mclndoe et al., “The Aldridge Sling Procedure in the Treatment of Urinary Stress Incontinence,” Aust. NZ J. Obstet. Gynaecol., 1987, 27:238-239.
McKiel, Jr. et al., “Marshall-Marchetti Procedure: Modification,” J. Urol., 1966, 96:737-739.
Miklos, Mini Sling Incontinence Treatment—Vagina Plastic Surgery, http://www.miklosandmoore.com/mini—sling.php, Feb. 28, 2011.
MiniArc Single-Incision Sling http://www.americanmedicalsystems.com Mar. 4, 2011.
Moir, “The Gauze-Hammock Operation,” the Journal of Obstetrics and Gynaecology of the British Commonwealth, 1968, 75(1):1-9.
Monseur, J., Anatomie Chirurgicale: Les Ligaments Du Perinee Feminin, Sep. 4, 2008.
Moore et al. “Single-Center Retrospective Study of the Technique, Safety, and 12 Month Efficacy or the MiniArc™ Single Incision Sling: A New Minimally Invasive Procedure for Treatment of Female SUI” [Online] 2009, 18, pp. 175-81.
Morgan et al., “The Marlex sling operation for the treatment of recurrent stress urinary incontinence: A 16-year review,” Am. J. Obstet. Gynecol., 1985, 151:224-226.
Morgan, “A sling operation, using Marlex polypropylene mesh, for treatment of recurrent stress incontinence,” Am. J. Obstet. GynecoL, 1970, 106(3):369-376.
Narik and Palmrich, “A simplified sling operation suitable for routine use,” Am. J. Obstet. Gynecol., 1962, 84:400-405.
Nichols, “The Mersilene Mesh Gauze-Hammock for Severe Urinary Stress Incontinence,” Obstet. Gynecol., 1973, 41(1):88-93.
Nicita, Giulio, (1998), “A New Operation for Genitourinary Prolapse,” The Journal of Urology, 160:741-745.
Nickel et al., “Evaluation of a Transpelvic Sling Procedure With and Without Colpolsuspension for Treatment of Female Dogs With Refractory Urethral Sphincter Mechanism Incompetence,” Veterinary Surgery, 1998, 27:94-104.
Norris et al., “Use of Synthetic Material in Sling Surgery: A Minimally Invasive Approach,” J. Endocrinology, 1996, 10 (3):227-230.
Novak, “Abdonomovaginal Techniques,” Gynecological Surgical Technique, 1977, Piccin Editore, Padua, 5 pages.
O'Donnell, “Combined Raz Urethral Suspension and McGuire Pubovaginal Sling for Treatment of Complicated Stress Urinary Incontinence,” J. Arkansas Medical Society, 1992, 88(8):389.
Parra and Shaker, “Experience with a Simplified Technique for the Treatment of Female Stress Urinary Incontinence,” British Journal of Urology, 1990, 66:615-617.
Pelosi II and Pelosi III, “New transobturator sling reduces risk of injury,” Obg Management, 2003, pp. 17-37.
Pelosi III and Pelosi, “Pubic Bone Suburethral Stabilization Sling: Laparoscopic Assessment of a Transvaginal Operation for the Treatment of Stress Urinary Incontinence,” Journal of Laparoendoscopic & Advanced Surgical Techniques, 1999, 9(1):45-50.
Penson and Raz, “Why Anti-incontinence Surgery Succeeds or Fails,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 41, pp. 435-442.
Related Publications (1)
Number Date Country
20120199133 A1 Aug 2012 US
Continuations (2)
Number Date Country
Parent 13096582 Apr 2011 US
Child 13451590 US
Parent 11597018 US
Child 13096582 US