This invention relates to tissue-treatment methods.
Energy, such as RF energy, can be employed to degrade unhealthy or unwanted tissue, such as a wart, a mole, a cyst, scar tissue, and/or a tumor. In some cases, for example, an RF probe can be delivered into the unhealthy or unwanted tissue via a catheter. Once positioned within the tumor, RF-emitting tines can be deployed and activated. Upon activation, the tines can emit RF energy to degrade the tissue by, for example, heating the tissue.
The invention relates to polymer insulators and methods of using the same.
In one aspect, the invention features a method that includes separating a first portion of tissue of a subject from a second portion of tissue of the subject so that there is a space between the first and second portions of tissue. The method also includes disposing a material between the first and second portions of tissue, and exposing the first portion of tissue to energy to treat the first portion of tissue. The material disposed between the first and second portions of tissue can be one or more of the following: deionized water; a buffered saline solution; liquid polymers; gels; particles; foams; and/or gases.
In another aspect, the invention features a method that includes disposing a material between a first portion of tissue of a subject and a second portion of tissue of the subject. The method also includes exposing the first portion of tissue to energy to treat the first portion of tissue. The second portion of tissue can be substantially unexposed to the energy while the first portion of tissue is exposed to the energy. The distance between the first and second portions of tissue is at most about five centimeters, and the material disposed between the first and second portions of tissue can be one or more of the following: deionized water; a buffered saline solution; liquid polymers; gels; particles; foams; and/or gases.
The methods can include one or more of the following features.
In some embodiments, the second portion of tissue is substantially unexposed to the energy while the first portion of tissue is exposed to the energy.
In certain embodiments, the energy includes RF energy, microwave energy, ultrasonic energy, laser energy, and/or heat. In some embodiments, exposing the first portion of tissue to energy includes cooling the first portion of tissue.
In some embodiments, the first portion of tissue includes unhealthy tissue (e.g., cancerous tissue), and/or the second portion of tissue includes healthy tissue. Examples of tissue include bodily vessel tissue, bladder tissue, bone tissue, brain tissue, breast tissue, bronchi tissue, diaphragm tissue, esophagus tissue, gall bladder tissue, heart tissue, intestine tissue, kidney tissue, larynx tissue, liver tissue, lung tissue, lymph vessel tissue, lymph node tissue, nerve tissue, ovary tissue, pancreas tissue, prostate tissue, skin tissue, stomach tissue, and thyroid tissue, trachea tissue, urethra tissue, ureter tissue, uterus tissue, and vertebral disc tissue.
In certain embodiments, the material is formed of particles. The particles can have, for example, a size of at most about 10,000 microns. The particles can include one or more polymeric materials. The particles can include a material having a dielectric constant of at least about 2.1 and/or a dielectric strength of at least about 100 Kv/mm in some embodiments.
In some embodiments, the material is a liquid polymer.
In certain embodiments, the material is a foam.
In some embodiments, the material is a gas. Examples of gases include air, helium, neon, argon, krypton, xenon, nitrogen, and carbon dioxide.
In some embodiments, the material is deionized water and/or a buffered saline solution.
In certain embodiments, the material is a water soluble polysaccharide and/or an ionically cross-linkable polymer.
In certain embodiments, the material is a ceramic material.
In some embodiments, the material is capable of undergoing an endothermic reaction.
In some embodiments, the space between the first and second portions of tissue is at most about five centimeters.
The methods can provide one or more of the following advantages.
In some embodiments, the methods can protect healthy or desired tissue from damage, while treating (e.g., ablating, degrading, destroying) unhealthy or undesired tissue.
In certain embodiments, the methods can allow relatively small regions of desired or healthy tissue to be protected while treating (e.g., ablating, degrading, destroying) undesired or unhealthy tissue.
In certain embodiments, the methods can protect regions of desired or healthy tissue that are difficult to access.
Features and advantages are in the description, drawings, and claims.
Like reference symbols in the drawings indicate like elements.
The methods include disposing one or more materials between a region of unhealthy tissue and a region of healthy tissue, and exposing the unhealthy tissue to energy (e.g., RF energy) to damage or destroy the unhealthy tissue. The materials can include one or more of the following: deionized water; a buffered saline solution; liquid polymers; gels; particles; foams; and/or gases. The material disposed between the unhealthy and healthy tissue regions can protect the healthy tissue so that it is substantially unharmed by the energy.
For example,
For example, particles 150 can be formed of a material that is a poor conductor of certain types of energy (e.g., RF energy) relative to tissues 130 and 140 of the subject. Thus, when inserted between healthy and unhealthy tissues 130, 140, particles 150 substantially prevent energy applied to unhealthy tissue 140 from harming healthy tissue 130. As a result, healthy tissue 130 is substantially protected from harm when energy is applied to unhealthy tissue 140.
In some embodiments, particles 150 are at least partially formed from one or more polymers. Examples of polymers include polyvinyl alcohols, polyacrylic acids, polymethacrylic acids, poly vinyl sulfonates, carboxymethyl celluloses, hydroxyethyl celluloses, substituted celluloses, polyacrylamides, polyethylene glycols, polyamides, polyureas, polyurethanes, polyesters, polyethers, polystyrenes, polysaccharides, polylactic acids, polyethylenes, polymethylmethacrylates, polycaprolactones, polyglycolic acids, poly(lactic-co-glycolic) acids (e.g., poly(d-lactic-co-glycolic) acids), polypropylene, polytetrafluorethylene, polyethyleneterephthalate, polycarbonate, polyphenyleneoxide, polysulfone, polyhydantoine, polyamide-imide, polyimide, cellulose triacetate, cellulose acetate butyrate, and copolymers or mixtures thereof.
Additional examples of materials from which particles 150 can be at least partially formed include alginates (e.g., sodium alginate), alginate salts, xanthan gums, natural gum, agar, agarose, chitosan, carrageenan, fucoidan, furcellaran, laminaran, hypnea, eucheuma, gum arabic, gum ghatti, gum karaya, gum tragacanth, hyalauronic acid, locust beam gum, arabinogalactan, pectin, amylopectin, other water soluble polysaccharides and other ionically cross-linkable polymers.
In some embodiments, particles 150 are at least partially formed of a bio-absorbable and/or bio-erodible material, such as a polysaccharide (such as an alginate); a polysaccharide derivative; a water soluble polymer (such as a polyvinyl alcohol, e.g., that has not been cross-linked); biodegradable poly DL-lactide-poly ethylene glycol (PELA); a hydrogel (e.g., polyacrylic acid, haluronic acid, gelatin, carboxymethyl cellulose); a polyethylene glycol (PEG); chitosan; a polyester (e.g., a polycaprolactone); a poly(lactic-acid) (PLA); a poly(lactic-co-glycolic) acid (e.g., a poly(d-lactic-co-glycolic) acid); or a combination thereof.
In certain embodiments, particles 150 are at least partially formed of one or more ceramic materials. In general, a ceramic material contains one or more metallic elements and one or more non-metallic elements. Examples of ceramics include metal oxides, such as aluminum oxide, cerium oxide, copper oxide, iron oxide, magnesium oxide, and potassium oxide.
In some embodiments, particles 150 can be formed of a glass. Examples of glasses include oxides of silicon, beryllium, boron, germanium, phosphorous, vanadium, lead, tin, zinc, zirconium, and titanium, as well as such nonoxide compounds as germanium sulphide, metal fluorides, and iodites. Other examples of glasses include certain metallic selenides, tellurides, arsenides, phosphides, and obsidian.
In certain embodiments, particles 150 contain encapsulated air (e.g., to enhance the protective ability of particles 150). In some embodiments, particles 150 contain an encapsulated composition capable of undergoing an endothermic reaction. For example, particles 150 can encapsulate a ammonium nitrate and water composition. Consequently, particles 150 can absorb greater amounts of energy (e.g., heat) in some cases.
In some embodiments, particles 150 are formed from a material that has a relatively high dielectric constant. For example, particles 150 can have a dielectric constant that is higher than the dielectric constant of tissues 130 and 140. This can, for example, allow protective layer 145 to be a relatively poor conductor of RF energy. For example, particles 150 can be formed of a material having a dielectric constant of at least about 2.0 (e.g., at least about 2.1, at least about 2.7, at least about 3.1). In some embodiments, particles 150 can be formed of a material having a dielectric constant of from about 2.0 to about 4.5 (e.g., from about 2.1 to about 4.5, from about 2.7 to about 4.5, from about 3.1 to about 4.5). The term dielectric constant, as used herein, is measured by ASTM D150 at 50 Hz and 20° C.
In some embodiments, the material from which particles 150 are made has a relatively high dielectric strength. For example, particles 150 can have a dielectric strength that is higher than the dielectric strength of tissues 130 and 140. This can, for example, allow layer 145 to be a relatively poor conductor of RF energy. For example, particles 150 can be formed of a material having a dielectric strength of at least about 100 kV/mm (e.g., at least about 200 kV/mm, at least about 240 kV/mm, at least about 280 kV/mm). In some embodiments, particles 150 can be formed of a material having a dielectric strength of from about 50 kV/mm to about 350 kV/mm (e.g., from about 100 kV/mm to about 300 kV/mm, from about 200 kV/mm to about 300 kV/mm, from about 240 kV/mm to about 300 kV/mm, from about 280 kV/mm to about 300 kV/mm). The term dielectric strength, as used herein, is measured by ASTM D149.
In certain embodiments, particles 150 can be formed of a material having a relatively high dissipation factor. For example, particles 150 can have a dissipation factor that is higher than the dissipation factor of tissues 130 and 140. This can, for example, allow layer 145 to be a relatively poor conductor of RF energy. For example, particles 150 can be formed of a material having a dissipation factor of at least about 0.2 (e.g., at least about 0.7, at least about 1.5, at least about nine, at least about 21). The term dissipation factor, as used herein, is measured by ASTM D150 at 50 Hz and 20° C.
In some embodiments, particles 150 can be formed of a material having a relatively high volume resistivity. For example, particles 150 can have a volume resistivity that is higher than the volume resistivity of tissues 130 and 140. This can, for example, allow layer 145 to be a relatively poor conductor of RF energy. For example, particles 150 can be formed of a material having a volume resistivity of at least about 106 to about 1017 ohm-cm (e.g., at least about 1014 ohm-cm, at least about 1016 ohm-cm, at least about 1017 ohm-cm). As used herein, the volume resistivity of a particle is measured by ASTM D257-99.
In certain embodiments, particles 150 can be formed of a material having a relatively low surface resistivity. For example, particles 150 can have a surface resistivity that is lower than the surface resisitivity of tissues 130 and 140. For example, particles 150 can be formed of a material having a surface resistivity of at most about 1012 to about 1016 ohm-cm (e.g., at most about 1016 ohm-cm, at most about 1014 ohm-cm, at most about 1012 ohm-cm). The term surface resistivity, as used herein, is measured by ASTM D257-99.
In certain embodiments, the material from which particles 150 are made can be chosen based on the intensity and/or type of energy used to treat unhealthy tissue 140. As an example, in embodiments in which RF energy and/or microwave energy is used, it can be beneficial to use particles formed of a material with a higher dielectric constant and/or a higher dielectric strength. As an additional example, in embodiments in which ultrasonic energy is used, it can be beneficial to use particles formed of a material that can retard the transmission of ultrasonic energy therethrough. As another example, in embodiments in which laser energy is used, it can be beneficial to use particles formed of a material that is capable of absorbing and/or refracting laser energy.
In some embodiments, particles 150 have a diameter of no greater than about 10,000 microns (e.g., no greater than about 7,500 microns, no greater than about 5,000 microns, no greater than about 2,500 microns, no greater than about 2,000 microns, no greater than about 1,5000 microns, no greater than about 1,000 microns, no greater than about 500 microns, no greater than about 400 microns, no greater than about 300 microns, no greater than about 200 microns, no greater than about 100 microns). In some embodiments, particles 150 have a diameter of about 100 microns to about 10,000 microns (e.g., about 100 microns to about 1000 microns, about 100 microns to 500 microns, about 2,500 microns to about 5,000 microns, about 5,000 microns to about 10,000 microns, about 7,500 microns to about 10,000 microns).
Carrier fluid 180 can be a pharmaceutically acceptable carrier, such as a buffered saline solution, non-ionic contrast agent, therapeutic agent, or a combination of these carriers. In some embodiments, carrier fluid 180 includes deionized water, water for injection, liquid polymer, gel polymer, gas, or a combination of these carriers. Carrier fluid 180, in some cases, can contribute to the protection of healthy tissue 130. In certain embodiments, carrier fluid 180 includes one or more insulating materials, such as glass fibers. The insulating materials can enhance the ability of carrier fluid 180 to contribute to the protection of healthy tissue 130.
In some embodiments, particles 150 are not suspended in a carrier fluid. For example, particles 150 alone can be contained within syringe 170, and injected from syringe 170 into the gap between healthy tissue 130 and unhealthy tissue 140.
While embodiments have been described in which a needle is used to form the opening between healthy tissue 130 and unhealthy tissue 140, in some embodiments, other techniques can be used to form this opening. For example, the opening can be formed using an open procedure in which an incision is made in the subject to gain access to unhealthy tissue 140. As another example, blunt dissection techniques may be used to form the opening between healthy tissue 130 and unhealthy tissue 140. After forming the opening, healthy tissue 130 can be separated from unhealthy tissue 140 using any of various techniques. For example, a needle can be injected between healthy and unhealthy tissues 130, 140. As another example, one or more gases or liquids can be pumped into the region between healthy tissue 130 and unhealthy tissue 140. After separating healthy tissue 130 from unhealthy tissue 140, particles 150 can be implanted within a gap created between the separated healthy and unhealthy tissues 130, 140 using any of various techniques. For example, in some embodiments, particles 150 can be injected into the gap via a needle, directly from a syringe, or a catheter.
Protective layer 145 substantially prevents the RF energy from penetrating healthy tissue 130 when unhealthy tissue 140 is exposed to the RF energy. For example, the RF energy is prevented from penetrating healthy tissue 130 with a substantially harmful intensity. Thus, the method can be used to treat unhealthy tissue 140 without substantially harming healthy tissue 130.
The level of protection provided by protective layer 145 of particles 150 can be a function of the thickness of protective layer 145. As an example, in some embodiments, as the thickness of protective layer 145 increases, its ability to conduct energy (e.g., heat and/or RF energy) can decrease, and, as the thickness of protective layer 145 decreases, its ability to conduct energy (e.g., heat and/or RF energy) can decrease. In such embodiments, it can become more difficult for energy to be transported from unhealthy tissue 140 to healthy tissue 130 via protective layer 145 as the thickness of protective layer 145 increases, and it can become easier for energy to be transported from unhealthy tissue 140 to healthy tissue 130 via protective layer 145 as the thickness of protective layer 145 decreases. Thus, it may be beneficial to increase the thickness of protective layer 145 as the intensity of the energy used to treat unhealthy tissue 140 increases, and to decrease the thickness of protective layer 145 as the intensity of energy decreases (e.g., to obtain a desired degree of insulation while keeping the space between unhealthy tissue 140 and healthy tissue 130 relatively small to decrease possible trauma to the subject).
The thickness of protective layer 145 can be modified using any of various techniques. For example, the thickness of protective layer 145 can be increased or decreased by increasing or decreasing the size of particles 150, and/or by disposing a greater or lesser number of particles across a thickness of the gap between healthy and unhealthy tissues 130, 140. In certain embodiments, multiple layers of particles 150 are disposed between healthy tissue 130 and unhealthy tissue 140 in order to increase the thickness of protective layer 145.
In some embodiments, after separating healthy tissue 130 from unhealthy tissue 140, the gap between healthy and unhealthy tissues 130, 140 can be at most about five centimeters (e.g., at most about four centimeters, at most about three centimeters, at most about two centimeters, at most about one centimeter, at most about 0.5 centimeter, at most about 0.25 centimeter, or at most about 0.1 centimeter). For example, protective layer 145 of particles 150 can have a thickness of at most about five centimeters (e.g., at most about four centimeters, at most about three centimeters, at most about two centimeters, at most about one centimeter, at most about 0.5 centimeter, at most about 0.25 centimeter, or at most about 0.1 centimeter). In some embodiments the gap between healthy and unhealthy tissues 130, 140 can be about 0.1 centimeter to about five centimeters (e.g., about 0.1 centimeter to about three centimeters, about 0.1 centimeter to about one centimeter, about 0.1 centimeter to about 0.5 centimeter, about 0.1 centimeter to about 0.25 centimeter). For example, protective layer 145 of particles 150 can have a thickness of about 0.1 centimeter to about five centimeters (e.g., about 0.1 centimeter to about three centimeters, about 0.1 centimeter to about one centimeter, about 0.1 centimeter to about 0.5 centimeter, about 0.1 centimeter to about 0.25 centimeter).
In certain embodiments, particles 150 include one or more therapeutic agents (e.g., drugs) that can be delivered to healthy and/or unhealthy tissues 130, 140. The therapeutic agent(s) can be in and/or on the particle. Therapeutic agents include agents that are negatively charged, positively charged, amphoteric, or neutral. Therapeutic agents include genetic therapeutic agents, non-genetic therapeutic agents, and cells, and can be negatively charged, positively charged, amphoteric, or neutral. Therapeutic agents can be, for example, materials that are biologically active to treat physiological conditions; pharmaceutically active compounds; gene therapies; nucleic acids with and without carrier vectors; oligonucleotides; gene/vector systems; DNA chimeras; compacting agents (e.g., DNA compacting agents); viruses; polymers; hyaluronic acid; proteins (e.g., enzymes such as ribozymes); immunologic species; nonsteroidal anti-inflammatory medications; oral contraceptives; progestins; gonadotrophin-releasing hormone agonists; chemotherapeutic agents; and radioactive species (e.g., radioisotopes, radioactive molecules). Non-limiting examples of therapeutic agents include anti-thrombogenic agents; antioxidants; angiogenic and anti-angiogenic agents and factors; anti-proliferative agents (e.g., agents capable of blocking smooth muscle cell proliferation); calcium entry blockers; and survival genes which protect against cell death.
Exemplary non-genetic therapeutic agents include: anti-thrombotic agents such as heparin, heparin derivatives, urokinase, and PPack (dextrophenylalanine proline arginine chloromethylketone); anti-inflammatory agents such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine and mesalamine; antineoplastic/antiproliferative/anti-mitotic agents such as paclitaxel, 5-fluorouracil, cisplatin, doxorubicin; vinblastine, vincristine, epothilones, endostatin, angiostatin, angiopeptin, monoclonal antibodies capable of blocking smooth muscle cell proliferation, and thymidine kinase inhibitors; anesthetic agents such as lidocaine, bupivacaine and ropivacaine; anti-coagulants such as D-Phe-Pro-Arg chloromethyl ketone, an RGD peptide-containing compound, heparin, hirudin, antithrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, aspirin, prostaglandin inhibitors, platelet inhibitors and tick antiplatelet peptides; vascular cell growth promoters such as growth factors, transcriptional activators, and translational promoters; vascular cell growth inhibitors such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin; protein kinase and tyrosine kinase inhibitors (e.g., tyrphostins, genistein, quinoxalines); prostacyclin analogs; cholesterol-lowering agents; angiopoietins; antimicrobial agents such as triclosan, cephalosporins, aminoglycosides and nitrofurantoin; cytotoxic agents, cytostatic agents and cell proliferation affectors; vasodilating agents; and agents that interfere with endogenous vasoactive mechanisms.
Exemplary genetic therapeutic agents include: anti-sense DNA and RNA; DNA coding for: anti-sense RNA, tRNA or rRNA to replace defective or deficient endogenous molecules, angiogenic factors including growth factors such as acidic and basic fibroblast growth factors, vascular endothelial growth factor, epidermal growth factor, transforming growth factor α and β, platelet-derived endothelial growth factor, platelet-derived growth factor, tumor necrosis factor a, hepatocyte growth factor and insulin like growth factor, cell cycle inhibitors including CD inhibitors, thymidine kinase (“TK”) and other agents useful for interfering with cell proliferation, and the family of bone morphogenic proteins (“BMP's”), including BMP2, BMP3, BMP4, BMP5, BMP6 (Vgr1), BMP7 (OP1), BMP8, BMP9, BMP10, BM11, BMP12, BMP13, BMP14, BMP15, and BMP16. Currently preferred BMP's are any of BMP2, BMP3, BMP4, BMP5, BMP6 and BMP7. These dimeric proteins can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules. Alternatively or, in addition, molecules capable of inducing an upstream or downstream effect of a BMP can be provided. Such molecules include any of the “hedgehog” proteins, or the DNA's encoding them.
Vectors of interest for delivery of genetic therapeutic agents include: Plasmids, Viral vectors such as adenovirus (AV), adenoassociated virus (AAV) and lentivirus, Non-viral vectors such as lipids, liposomes and cationic lipids.
Cells include cells of human origin (autologous or allogeneic), including stem cells, or from an animal source (xenogeneic), which can be genetically engineered if desired to deliver proteins of interest.
Several of the above and numerous additional therapeutic agents appropriate for the practice of the present invention are disclosed in U.S. Pat. No. 5,733,925, which is incorporated herein by reference. Therapeutic agents disclosed in this patent include the following: “Cytostatic agents” (i.e., agents that prevent or delay cell division in proliferating cells, for example, by inhibiting replication of DNA or by inhibiting spindle fiber formation). Representative examples of cytostatic agents include modified toxins, methotrexate, adriamycin, radionuclides (e.g., such as disclosed in Fritzberg et al., U.S. Pat. No. 4,897,255), protein kinase inhibitors, including staurosporin, a protein kinase C inhibitor of the following formula:
as well as diindoloalkaloids having one of the following general structures:
as well as stimulators of the production or activation of TGF-beta, including Tamoxifen and derivatives of functional equivalents (e.g., plasmin, heparin, compounds capable of reducing the level or inactivating the lipoprotein Lp(a) or the glycoprotein apolipoprotein(a)) thereof, TGF-beta or functional equivalents, derivatives or analogs thereof, suramin, nitric oxide releasing compounds (e.g., nitroglycerin) or analogs or functional equivalents thereof, paclitaxel or analogs thereof (e.g., taxotere), inhibitors of specific enzymes (such as the nuclear enzyme DNA topoisomerase II and DNA polymerase, RNA polymerase, adenyl guanyl cyclase), superoxide dismutase inhibitors, terminal deoxynucleotidyl-transferase, reverse transcriptase, antisense oligonucleotides that suppress smooth muscle cell proliferation and the like.
Other examples of “cytostatic agents” include peptidic or mimetic inhibitors (i.e., antagonists, agonists, or competitive or non-competitive inhibitors) of cellular factors that may (e.g., in the presence of extracellular matrix) trigger proliferation of smooth muscle cells or pericytes: e.g., cytokines (e.g., interleukins such as IL-1), growth factors (e.g., PDGF, TGF-alpha or -beta, tumor necrosis factor, smooth muscle- and endothelial-derived growth factors, i.e., endothelin, FGF), homing receptors (e.g., for platelets or leukocytes), and extracellular matrix receptors (e.g., integrins). Representative examples of useful therapeutic agents in this category of cytostatic agents addressing smooth muscle proliferation include: subfragments of heparin, triazolopyrimidine (trapidil; a PDGF antagonist), lovastatin, and prostaglandins E1 or I2.
Agents that inhibit the intracellular increase in cell volume (i.e., the tissue volume occupied by a cell) such as cytoskeletal inhibitors or metabolic inhibitors. Representative examples of cytoskeletal inhibitors include colchicine, vinblastin, cytochalasins, paclitaxel and the like, which act on microtubule and microfilament networks within a cell. Representative examples of metabolic inhibitors include staurosporin, trichothecenes, and modified diphtheria and ricin toxins, Pseudomonas exotoxin and the like. Trichothecenes include simple trichothecenes (i.e., those that have only a central sesquiterpenoid structure) and macrocyclic trichothecenes (i.e., those that have an additional macrocyclic ring), e.g., a verrucarins or roridins, including Verrucarin A, Verrucarin B, Verrucarin J (Satratoxin C), Roridin A, Roridin C, Roridin D, Roridin E (Satratoxin D), Roridin H.
Agents acting as an inhibitor that blocks cellular protein synthesis and/or secretion or organization of extracellular matrix (i.e., an “anti-matrix agent”). Representative examples of “anti-matrix agents” include inhibitors (i.e., agonists and antagonists and competitive and non-competitive inhibitors) of matrix synthesis, secretion and assembly, organizational cross-linking (e.g., transglutaminases cross-linking collagen), and matrix remodeling (e.g., following wound healing). A representative example of a useful therapeutic agent in this category of anti-matrix agents is colchicine, an inhibitor of secretion of extracellular matrix. Another example is tamoxifen for which evidence exists regarding its capability to organize and/or stabilize as well as diminish smooth muscle cell proliferation following angioplasty. The organization or stabilization may stem from the blockage of vascular smooth muscle cell maturation in to a pathologically proliferating form.
Agents that are cytotoxic to cells, particularly cancer cells. Preferred agents are Roridin A, Pseudomonas exotoxin and the like or analogs or functional equivalents thereof. A plethora of such therapeutic agents, including radioisotopes and the like, have been identified and are known in the art. In addition, protocols for the identification of cytotoxic moieties are known and employed routinely in the art.
A number of the above therapeutic agents and several others have also been identified as candidates for vascular treatment regimens, for example, as agents targeting restenosis. Such agents are appropriate for the practice of the present invention and include one or more of the following:
In some embodiments, particle 100 can include a combination of any of the above therapeutic agents.
Therapeutic agents are described, for example, in co-pending Published Patent Application No. US 2004/0076582 A1, published on Apr. 22, 2004, and entitled “Agent Delivery Particle”, which is incorporated herein by reference, and in Pinchuk et al., U.S. Pat. No. 6,545,097, which is incorporated herein by reference.
Particles 150 can be formed using any of various systems and techniques, such as emulsion polymerization and/or droplet polymerization techniques. Examples of such systems and techniques are described, for example, in co-pending Published Patent Application No. US 2003/0185896 A1, published Oct. 2, 2003, and entitled “Embolization,” and in co-pending Published Patent Application No. US 2004/0096662 A1, published May 20, 2004, and entitled “Embolization,” each of which is incorporated herein by reference.
While certain embodiments have been described, other embodiments are also possible.
As an example, particles 150 can include (e.g., encapsulate) diagnostic agent(s) such as a radiopaque material, an MRI-visible material, a ferromagnetic material, and/or an ultrasound contrast agent. For example, particle 150 can encapsulate a ferromagnetic material so that the position of the particle in a lumen can be manipulated with a magnetic field. The magnetic field can be created outside the subject or inside the subject (e.g., via a magnetic catheter). Particles containing diagnostic agents are described in U.S. patent application Ser. No. 10/651,475, filed on Aug. 29, 2003, and entitled “Embolization”, and magnetic devices are described in U.S. patent application Ser. No. 10/108,874, filed on Mar. 29, 2002, and entitled “Magnetically Enhanced Injection Catheter,” both of which are incorporated herein by reference.
As an additional example, while embodiments have been described in which protective layer 145 is formed of particles, in some embodiments, protective layer 145 is formed of one or more liquid polymers. Examples of polymers from which a liquid polymer can be formed include those noted above. In some embodiments, a liquid polymer can be a carrier fluid for particles. A liquid polymer can be disposed between two portions of tissue using the methods described above (e.g., via a needle, a syringe, or a catheter).
As another example, in some embodiments, protective layer 145 is formed of one or more gels. A gel can be formed of, for example, one or more polymers. Examples of polymers include those noted above. A gel can be disposed between two portions of tissue using the methods described above (e.g., via a needle, a syringe, or a catheter).
As a further example, in some embodiments, protective layer 145 is formed from one or more gases. Examples of gases include helium, neon, argon, krypton, xenon, air, nitrogen, and carbon dioxide. In some embodiments, a gas can be a carrier fluid for particles. A gas can be disposed between two portions of tissue using the methods described above (e.g., via a needle, a syringe, or a catheter).
As an additional example, in some embodiments, protective layer 145 is formed from one or more foams. A foam can be formed of, for example, one or more polymers. Examples of polymers include those noted above. A foam can be disposed between two portions of tissue using the methods described above (e.g., via a needle, a syringe, or a catheter).
As another example, protective layer 145 can be formed of deionized water and/or a buffered saline solution. The buffered saline solution, for example, can include a composition of saline solution and any of various buffers, such as phosphate. In certain embodiments, the deionized water can similarly include a buffer material, such as phosphate. In some embodiments, the deionized water and/or the buffered saline solution can provide an electrical resistance of about 175 kohms or greater (e.g., about 200 kohms or greater, about 225 kohms or greater, about 250 kohms or greater, about 275 kohms or greater, about 300 kohms or greater, about 325 kohms or greater, about 350 kohms or greater). As used herein, the electrical resistance is tested using ASTM D257-99.
As a further example, in certain embodiments, protective layer 145 can be formed of a combination of one or more of the following: deionized water; a buffered saline solution; particles; liquid polymers; gels; gases and/or foams.
As another example, while certain forms of energy have been described, other forms of energy can be used to treat medical conditions. Examples of forms of energy that can be used include microwave energy, ultrasonic energy, laser energy, and/or heat. Similarly, the unhealthy tissue can be cooled. The energy can be administered to the unhealthy tissue using any of various techniques. For example, a probe can be inserted into the unhealthy tissue and activated to release one or more types of energy.
In some embodiments particles including a relatively conductive material (e.g., a ferromagnetic material) can be disposed within the tissue of the subject to enhance the effects of the energy (e.g., RF energy) transmitted to unhealthy tissue 140. In certain embodiments in which particles including a ferromagnetic material have been disposed within the tissue, a magnetic field can be applied to the particles to affect the extent of conductivity. The magnetic field can be varied to adjust the conductivity of the particles (and, therefore, to adjust the extent of heating and ablation caused by the transmitted energy). In some embodiments, the particles can be used in an agitation ablation process. In such a process, a magnetic field can be used to agitate the particles, such that the particles heat and/or physically deform the surrounding tissue, thereby ablating the surrounding tissue. These and other tissue treatment techniques are described in U.S. Pub. Pat. App. No. US-2004-0101564-A1, which is incorporated herein by reference.
As an additional example, while embodiments have been described in which unhealthy liver tissue is treated, other types of unhealthy tissue can also be treated. Examples of other types of tissue that can be treated include bodily vessel tissue, bone tissue, brain tissue, breast tissue, kidney tissue, liver tissue, lung tissue, ovary tissue, prostate tissue, skin tissue, and thyroid tissue.
As a further example, in some embodiments, energy can be used to treat healthy tissue. In some embodiments, for example, the healthy tissue is undesired tissue. For example, energy can be used to treat (e.g., remove) various types of malformed tissue, such as tissue resulting in webbed fingers and/or toes. As a further example, energy can be used to treat various types of malfunctioning tissue. In embodiments in which healthy tissue is treated with energy, it may be desired, for example, to preserve adjacent regions of healthy tissue. Thus, protective layer 145 can be disposed between two regions of healthy tissue.
The medical treatments described herein can similarly be used to treat various other types of medical conditions. For example, in some embodiments, regions of brain tissue may be treated (e.g., destroyed) with electrical stimulation to treat epilepsy. Similarly, regions of nerve tissue may be treated (e.g., destroyed) to treat chronic pain. In certain embodiments, regions of bodily vessel tissue can be treated to occlude the vessel. This can be beneficial, for example, in treating fibroids (e.g., uterine fibroids), varicose veins, alterior venous malformations, and certain forms of trauma.
Other embodiments are in the claims.
Number | Name | Date | Kind |
---|---|---|---|
2275154 | Merrill et al. | Mar 1942 | A |
2609347 | Wilson | Sep 1952 | A |
3663470 | Nishimura et al. | May 1972 | A |
3737398 | Yamaguchi | Jun 1973 | A |
3957933 | Egli et al. | May 1976 | A |
4025686 | Zion | May 1977 | A |
4034759 | Haerr | Jul 1977 | A |
4055377 | Erickson et al. | Oct 1977 | A |
4076640 | Forgensi et al. | Feb 1978 | A |
4094848 | Naito | Jun 1978 | A |
4096230 | Haerr | Jun 1978 | A |
4098728 | Rosenblatt | Jul 1978 | A |
4110529 | Stoy | Aug 1978 | A |
4159719 | Haerr | Jul 1979 | A |
4191672 | Salome et al. | Mar 1980 | A |
4198318 | Stowell et al. | Apr 1980 | A |
4243794 | White et al. | Jan 1981 | A |
4246208 | Dundas | Jan 1981 | A |
4266030 | Tschang et al. | May 1981 | A |
4268495 | Muxfeldt et al. | May 1981 | A |
4271281 | Kelley et al. | Jun 1981 | A |
4402319 | Handa et al. | Sep 1983 | A |
4413070 | Rembaum | Nov 1983 | A |
4427794 | Lange et al. | Jan 1984 | A |
4428869 | Munteanu et al. | Jan 1984 | A |
4429062 | Pasztor et al. | Jan 1984 | A |
4442843 | Rasor et al. | Apr 1984 | A |
4444961 | Timm | Apr 1984 | A |
4452773 | Molday | Jun 1984 | A |
4456693 | Welsh | Jun 1984 | A |
4459145 | Elsholz | Jul 1984 | A |
4472552 | Blouin | Sep 1984 | A |
4477255 | Pasztor et al. | Oct 1984 | A |
4492720 | Moiser | Jan 1985 | A |
4515906 | Friesen et al. | May 1985 | A |
4522953 | Barby et al. | Jun 1985 | A |
4542178 | Zimmermann et al. | Sep 1985 | A |
4551132 | Pasztor et al. | Nov 1985 | A |
4551436 | Johnson et al. | Nov 1985 | A |
4573967 | Hargrove et al. | Mar 1986 | A |
4622362 | Rembaum | Nov 1986 | A |
4623706 | Timm et al. | Nov 1986 | A |
4629464 | Takata et al. | Dec 1986 | A |
4640807 | Afghan et al. | Feb 1987 | A |
4657756 | Rasor et al. | Apr 1987 | A |
4661137 | Garnier et al. | Apr 1987 | A |
4663358 | Hyon et al. | May 1987 | A |
4671954 | Goldberg et al. | Jun 1987 | A |
4671994 | Cochran, Jr. | Jun 1987 | A |
4674480 | Lemelson | Jun 1987 | A |
4675113 | Graves et al. | Jun 1987 | A |
4678710 | Sakimoto et al. | Jul 1987 | A |
4678814 | Rembaum | Jul 1987 | A |
4680320 | Uku et al. | Jul 1987 | A |
4681119 | Rasor et al. | Jul 1987 | A |
4695466 | Morishita et al. | Sep 1987 | A |
4713076 | Draenert | Dec 1987 | A |
4742086 | Masamizu et al. | May 1988 | A |
4743507 | Franses et al. | May 1988 | A |
4772635 | Mitschker et al. | Sep 1988 | A |
4782097 | Jain et al. | Nov 1988 | A |
4789501 | Day et al. | Dec 1988 | A |
4793980 | Torobin | Dec 1988 | A |
4795741 | Leshchiner et al. | Jan 1989 | A |
4801458 | Hidaka et al. | Jan 1989 | A |
4804366 | Zdeb et al. | Feb 1989 | A |
4819637 | Dormandy, Jr. et al. | Apr 1989 | A |
4822535 | Ekman et al. | Apr 1989 | A |
4833237 | Kawamura et al. | May 1989 | A |
4850978 | Dudar et al. | Jul 1989 | A |
4859711 | Jain et al. | Aug 1989 | A |
4863972 | Itagaki et al. | Sep 1989 | A |
4889129 | Dougherty et al. | Dec 1989 | A |
4897255 | Fritzberg et al. | Jan 1990 | A |
4929400 | Rembaum et al. | May 1990 | A |
4933372 | Feibush et al. | Jun 1990 | A |
4946899 | Kennedy et al. | Aug 1990 | A |
4954399 | Tani et al. | Sep 1990 | A |
4981625 | Rhim et al. | Jan 1991 | A |
4990340 | Hidaka et al. | Feb 1991 | A |
4999188 | Solodovnik et al. | Mar 1991 | A |
5007940 | Berg | Apr 1991 | A |
5011677 | Day et al. | Apr 1991 | A |
H915 | Gibbs | May 1991 | H |
5015423 | Eguchi et al. | May 1991 | A |
5032117 | Motta | Jul 1991 | A |
5034324 | Shinozaki et al. | Jul 1991 | A |
5047438 | Feibush et al. | Sep 1991 | A |
5079274 | Schneider et al. | Jan 1992 | A |
5091205 | Fan | Feb 1992 | A |
5106903 | Vanderhoff et al. | Apr 1992 | A |
5114421 | Polak | May 1992 | A |
5116387 | Berg | May 1992 | A |
5120349 | Stewart et al. | Jun 1992 | A |
5125892 | Drudik | Jun 1992 | A |
5147631 | Glajch et al. | Sep 1992 | A |
5147937 | Frazza et al. | Sep 1992 | A |
5149543 | Cohen et al. | Sep 1992 | A |
5151096 | Khoury | Sep 1992 | A |
5158573 | Berg | Oct 1992 | A |
5171214 | Kolber et al. | Dec 1992 | A |
5171217 | March et al. | Dec 1992 | A |
5181921 | Makita et al. | Jan 1993 | A |
5190760 | Baker | Mar 1993 | A |
5190766 | Ishihara | Mar 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5202352 | Okada et al. | Apr 1993 | A |
5216096 | Hattori et al. | Jun 1993 | A |
5236410 | Granov et al. | Aug 1993 | A |
5253991 | Yokota et al. | Oct 1993 | A |
5260002 | Wang | Nov 1993 | A |
5262176 | Palmacci et al. | Nov 1993 | A |
5263992 | Guire | Nov 1993 | A |
5288763 | Li et al. | Feb 1994 | A |
5292814 | Bayer et al. | Mar 1994 | A |
5302369 | Day et al. | Apr 1994 | A |
5314974 | Ito et al. | May 1994 | A |
5316774 | Eury et al. | May 1994 | A |
RE34640 | Kennedy et al. | Jun 1994 | E |
5320639 | Rudnick | Jun 1994 | A |
5328936 | Leifholtz et al. | Jul 1994 | A |
5336263 | Ersek et al. | Aug 1994 | A |
5344452 | Lemperle | Sep 1994 | A |
5344867 | Morgan et al. | Sep 1994 | A |
5354290 | Gross | Oct 1994 | A |
5369133 | Ihm et al. | Nov 1994 | A |
5369163 | Chiou et al. | Nov 1994 | A |
5382260 | Dormandy, Jr. et al. | Jan 1995 | A |
5384124 | Courteille et al. | Jan 1995 | A |
5397303 | Sancoff et al. | Mar 1995 | A |
5398851 | Sancoff et al. | Mar 1995 | A |
5403870 | Gross | Apr 1995 | A |
5417982 | Modi | May 1995 | A |
5431174 | Knute | Jul 1995 | A |
5435645 | Faccioli et al. | Jul 1995 | A |
5441746 | Chagnon | Aug 1995 | A |
5443495 | Buscemi et al. | Aug 1995 | A |
5456693 | Conston et al. | Oct 1995 | A |
5468801 | Antonelli et al. | Nov 1995 | A |
5469854 | Unger et al. | Nov 1995 | A |
5472441 | Edwards et al. | Dec 1995 | A |
5476472 | Dormandy, Jr. et al. | Dec 1995 | A |
5484584 | Wallace et al. | Jan 1996 | A |
5490984 | Freed | Feb 1996 | A |
5494682 | Cohen et al. | Feb 1996 | A |
5494940 | Unger et al. | Feb 1996 | A |
5512604 | Demopolis | Apr 1996 | A |
5514090 | Kriesel et al. | May 1996 | A |
5525334 | Ito et al. | Jun 1996 | A |
5534589 | Hager et al. | Jul 1996 | A |
5541031 | Yamashita et al. | Jul 1996 | A |
5542935 | Unger et al. | Aug 1996 | A |
5553741 | Sancoff et al. | Sep 1996 | A |
5556391 | Cercone et al. | Sep 1996 | A |
5556610 | Yan et al. | Sep 1996 | A |
5558255 | Sancoff et al. | Sep 1996 | A |
5558822 | Gitman et al. | Sep 1996 | A |
5558856 | Klaveness et al. | Sep 1996 | A |
5559266 | Klaveness et al. | Sep 1996 | A |
5567415 | Porter | Oct 1996 | A |
5569193 | Hofstetter et al. | Oct 1996 | A |
5569449 | Klaveness et al. | Oct 1996 | A |
5569468 | Modi | Oct 1996 | A |
5571182 | Ersek et al. | Nov 1996 | A |
5580575 | Unger et al. | Dec 1996 | A |
5583162 | Li et al. | Dec 1996 | A |
5585112 | Unger et al. | Dec 1996 | A |
5595821 | Hager et al. | Jan 1997 | A |
5622657 | Takada et al. | Apr 1997 | A |
5624685 | Takahashi et al. | Apr 1997 | A |
5635215 | Boschetti et al. | Jun 1997 | A |
5637087 | O'Neil et al. | Jun 1997 | A |
5639710 | Lo et al. | Jun 1997 | A |
5648095 | Illum et al. | Jul 1997 | A |
5648100 | Boschetti et al. | Jul 1997 | A |
5650116 | Thompson | Jul 1997 | A |
5651990 | Takada et al. | Jul 1997 | A |
5653922 | Li et al. | Aug 1997 | A |
5657756 | Vrba | Aug 1997 | A |
5681576 | Henry | Oct 1997 | A |
5695480 | Evans et al. | Dec 1997 | A |
5695740 | Porter | Dec 1997 | A |
5698271 | Liberti et al. | Dec 1997 | A |
5701899 | Porter | Dec 1997 | A |
5715824 | Unger et al. | Feb 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5718884 | Klaveness et al. | Feb 1998 | A |
5723269 | Akagi et al. | Mar 1998 | A |
5725522 | Sinofsky | Mar 1998 | A |
5725534 | Rasmussen | Mar 1998 | A |
5733925 | Kunz et al. | Mar 1998 | A |
5741331 | Pinchuk | Apr 1998 | A |
5746734 | Dormandy, Jr. et al. | May 1998 | A |
5752974 | Rhee et al. | May 1998 | A |
5756127 | Grisoni et al. | May 1998 | A |
5760097 | Li et al. | Jun 1998 | A |
5766147 | Sancoff et al. | Jun 1998 | A |
5770222 | Unger et al. | Jun 1998 | A |
5779668 | Grabenkort | Jul 1998 | A |
5785642 | Wallace et al. | Jul 1998 | A |
5785682 | Grabenkort | Jul 1998 | A |
5792478 | Lawin et al. | Aug 1998 | A |
5795562 | Klaveness et al. | Aug 1998 | A |
5797953 | Tekulve | Aug 1998 | A |
5807323 | Kriesel et al. | Sep 1998 | A |
5813411 | Van Bladel et al. | Sep 1998 | A |
5823198 | Jones et al. | Oct 1998 | A |
5827502 | Klaveness et al. | Oct 1998 | A |
5827531 | Morrison et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5833361 | Funk | Nov 1998 | A |
5840387 | Berlowitz-Tarrant et al. | Nov 1998 | A |
5846518 | Yan et al. | Dec 1998 | A |
5853752 | Unger et al. | Dec 1998 | A |
5855615 | Bley et al. | Jan 1999 | A |
5863957 | Li et al. | Jan 1999 | A |
5876372 | Grabenkort et al. | Mar 1999 | A |
5877224 | Brocchini et al. | Mar 1999 | A |
5885216 | Evans, III et al. | Mar 1999 | A |
5885547 | Gray | Mar 1999 | A |
5888546 | Ji et al. | Mar 1999 | A |
5888930 | Smith et al. | Mar 1999 | A |
5891155 | Irie | Apr 1999 | A |
5894022 | Ji et al. | Apr 1999 | A |
5895398 | Wensel et al. | Apr 1999 | A |
5895411 | Irie | Apr 1999 | A |
5899877 | Leibitzki et al. | May 1999 | A |
5902832 | Van Bladel et al. | May 1999 | A |
5902834 | Porrvik | May 1999 | A |
5922025 | Hubbard | Jul 1999 | A |
5922304 | Unger | Jul 1999 | A |
5928626 | Klaveness et al. | Jul 1999 | A |
5935553 | Unger et al. | Aug 1999 | A |
5951160 | Ronk | Sep 1999 | A |
5957848 | Sutton et al. | Sep 1999 | A |
5959073 | Schlameus et al. | Sep 1999 | A |
6003566 | Thibault et al. | Dec 1999 | A |
6015546 | Sutton et al. | Jan 2000 | A |
6027472 | Kriesel et al. | Feb 2000 | A |
6028066 | Unger | Feb 2000 | A |
6047861 | Vidal et al. | Apr 2000 | A |
6048908 | Kitagawa | Apr 2000 | A |
6051247 | Hench et al. | Apr 2000 | A |
6056721 | Shulze | May 2000 | A |
6056844 | Guiles et al. | May 2000 | A |
6059766 | Greff | May 2000 | A |
6063068 | Fowles et al. | May 2000 | A |
6071495 | Unger et al. | Jun 2000 | A |
6071497 | Steiner et al. | Jun 2000 | A |
6073759 | Lamborne et al. | Jun 2000 | A |
6090925 | Woiszwillo et al. | Jul 2000 | A |
6096344 | Liu et al. | Aug 2000 | A |
6099864 | Morrison et al. | Aug 2000 | A |
6100306 | Li et al. | Aug 2000 | A |
6139963 | Fujii et al. | Oct 2000 | A |
6149623 | Reynolds | Nov 2000 | A |
6160084 | Langer et al. | Dec 2000 | A |
6162377 | Ghosh et al. | Dec 2000 | A |
6165193 | Greene, Jr. et al. | Dec 2000 | A |
6167313 | Gray et al. | Dec 2000 | A |
6179817 | Zhong | Jan 2001 | B1 |
6191193 | Lee et al. | Feb 2001 | B1 |
6214331 | Vanderhoff et al. | Apr 2001 | B1 |
6214384 | Pallado et al. | Apr 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6224794 | Amsden et al. | May 2001 | B1 |
6235224 | Mathiowitz et al. | May 2001 | B1 |
6238403 | Greene, Jr. et al. | May 2001 | B1 |
6245090 | Gilson et al. | Jun 2001 | B1 |
6251661 | Urabe et al. | Jun 2001 | B1 |
6258338 | Gray | Jul 2001 | B1 |
6261585 | Sefton et al. | Jul 2001 | B1 |
6264861 | Tavernier et al. | Jul 2001 | B1 |
6267154 | Felicelli et al. | Jul 2001 | B1 |
6268053 | Woiszwillo et al. | Jul 2001 | B1 |
6277392 | Klein | Aug 2001 | B1 |
6280457 | Wallace et al. | Aug 2001 | B1 |
6291605 | Freeman et al. | Sep 2001 | B1 |
6296604 | Garibaldi et al. | Oct 2001 | B1 |
6296622 | Kurz et al. | Oct 2001 | B1 |
6296632 | Luscher et al. | Oct 2001 | B1 |
6306418 | Bley | Oct 2001 | B1 |
6306419 | Vachon et al. | Oct 2001 | B1 |
6306425 | Tice et al. | Oct 2001 | B1 |
6306427 | Annonier et al. | Oct 2001 | B1 |
6312407 | Zadno-Azizi et al. | Nov 2001 | B1 |
6312942 | Plüss-Wenzinger et al. | Nov 2001 | B1 |
6315709 | Garibaldi et al. | Nov 2001 | B1 |
6335384 | Evans et al. | Jan 2002 | B1 |
6344182 | Sutton et al. | Feb 2002 | B1 |
6355275 | Klein | Mar 2002 | B1 |
6368658 | Schwarz et al. | Apr 2002 | B1 |
6379373 | Sawhney et al. | Apr 2002 | B1 |
6388043 | Langer et al. | May 2002 | B1 |
6394965 | Klein | May 2002 | B1 |
6410508 | Isales et al. | Jun 2002 | B1 |
6423332 | Huxel et al. | Jul 2002 | B1 |
6432437 | Hubbard | Aug 2002 | B1 |
6436112 | Wensel et al. | Aug 2002 | B2 |
6443941 | Slepian et al. | Sep 2002 | B1 |
6458296 | Heinzen et al. | Oct 2002 | B1 |
6476069 | Krall et al. | Nov 2002 | B2 |
6495155 | Tice et al. | Dec 2002 | B1 |
6544503 | Vanderhoff et al. | Apr 2003 | B1 |
6544544 | Hunter et al. | Apr 2003 | B2 |
6545097 | Pinchuk et al. | Apr 2003 | B2 |
6547794 | Auge', II | Apr 2003 | B2 |
6565887 | Gray et al. | May 2003 | B1 |
6575896 | Silverman et al. | Jun 2003 | B2 |
6586364 | Kubota et al. | Jul 2003 | B2 |
6602261 | Greene, Jr. et al. | Aug 2003 | B2 |
6602524 | Batich et al. | Aug 2003 | B2 |
6605111 | Bose et al. | Aug 2003 | B2 |
6629947 | Sahatjian et al. | Oct 2003 | B1 |
6632531 | Blankenship | Oct 2003 | B2 |
6652883 | Goupil et al. | Nov 2003 | B2 |
6680046 | Boschetti | Jan 2004 | B1 |
6699222 | Jones et al. | Mar 2004 | B1 |
6706394 | Kuehnle et al. | Mar 2004 | B2 |
6899723 | Chen | May 2005 | B2 |
20010001835 | Greene, Jr. et al. | May 2001 | A1 |
20010016210 | Mathiowitz et al. | Aug 2001 | A1 |
20010036451 | Goupil et al. | Nov 2001 | A1 |
20010051670 | Goupil et al. | Dec 2001 | A1 |
20020054912 | Kim et al. | May 2002 | A1 |
20020061954 | Davis et al. | May 2002 | A1 |
20020160109 | Yeo et al. | Oct 2002 | A1 |
20020182190 | Naimark et al. | Dec 2002 | A1 |
20020197208 | Ruys et al. | Dec 2002 | A1 |
20030007928 | Gray | Jan 2003 | A1 |
20030032935 | Damiano et al. | Feb 2003 | A1 |
20030108614 | Volkonsky et al. | Jun 2003 | A1 |
20030163187 | Weber | Aug 2003 | A1 |
20030183962 | Buiser et al. | Oct 2003 | A1 |
20030185895 | Lanphere et al. | Oct 2003 | A1 |
20030185896 | Buiser et al. | Oct 2003 | A1 |
20030187320 | Freyman | Oct 2003 | A1 |
20030194390 | Krall et al. | Oct 2003 | A1 |
20030203985 | Baldwin et al. | Oct 2003 | A1 |
20030206864 | Mangin | Nov 2003 | A1 |
20030215519 | Schwarz et al. | Nov 2003 | A1 |
20030233150 | Bourne et al. | Dec 2003 | A1 |
20040076582 | DiMatteo et al. | Apr 2004 | A1 |
20040091543 | Bell et al. | May 2004 | A1 |
20040092883 | Casey, III et al. | May 2004 | A1 |
20040096662 | Lanphere et al. | May 2004 | A1 |
20040101564 | Rioux et al. | May 2004 | A1 |
20040186377 | Zhong et al. | Sep 2004 | A1 |
20050025800 | Tan | Feb 2005 | A1 |
20050037047 | Song | Feb 2005 | A1 |
20050095428 | DiCarlo et al. | May 2005 | A1 |
20050129775 | Lanphere et al. | Jun 2005 | A1 |
20050196449 | DiCarlo et al. | Sep 2005 | A1 |
20050226935 | Kamath et al. | Oct 2005 | A1 |
20050238870 | Buiser et al. | Oct 2005 | A1 |
20050263916 | Lanphere et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
A-7618698 | Oct 1998 | AU |
3834705 | Apr 1990 | DE |
42 01 461 | Jul 1993 | DE |
94 14 868.6 | Dec 1994 | DE |
297 24 255 | Oct 2000 | DE |
100 26 620 | Mar 2002 | DE |
0 067 459 | Dec 1982 | EP |
0 122 624 | Oct 1984 | EP |
0 123 235 | Oct 1984 | EP |
0 243 165 | Oct 1987 | EP |
0 294 206 | Dec 1988 | EP |
0 402 031 | Dec 1990 | EP |
0 422 258 | Apr 1991 | EP |
0 458 079 | Nov 1991 | EP |
0 458 745 | Nov 1991 | EP |
0 470 569 | Feb 1992 | EP |
0 547 530 | Jun 1993 | EP |
0 600 529 | Jun 1994 | EP |
0 623 012 | Nov 1994 | EP |
0 706 376 | Apr 1996 | EP |
0 730 847 | Sep 1996 | EP |
0 744 940 | Dec 1996 | EP |
0 764 047 | Mar 1997 | EP |
0 797 988 | Oct 1997 | EP |
0 993 337 | Apr 2000 | EP |
2 096 521 | Mar 1997 | ES |
59-196738 | Nov 1984 | JP |
62-45637 | Feb 1987 | JP |
4-74117 | Mar 1992 | JP |
6-57012 | Mar 1994 | JP |
9-110678 | Apr 1997 | JP |
9-165328 | Jun 1997 | JP |
9-316271 | Dec 1997 | JP |
10-130329 | May 1998 | JP |
2000189511 | Jul 2000 | JP |
2001079011 | Mar 2001 | JP |
2002-017848 | Jan 2002 | JP |
255409 | Feb 1997 | NZ |
517377 | Aug 2003 | NZ |
421658 | Feb 2001 | TW |
WO 9112823 | May 1991 | WO |
WO 9221327 | Dec 1992 | WO |
WO 9300063 | Jan 1993 | WO |
WO 9319702 | Oct 1993 | WO |
WO 9410936 | May 1994 | WO |
WO 9503036 | Feb 1995 | WO |
WO 9522318 | Aug 1995 | WO |
WO 9533553 | Dec 1995 | WO |
WO 9637165 | Nov 1996 | WO |
WO 9639464 | Dec 1996 | WO |
WO 9804616 | Feb 1998 | WO |
WO 9810798 | Mar 1998 | WO |
WO 9826737 | Jun 1998 | WO |
WO 9847532 | Oct 1998 | WO |
WO 9900187 | Jan 1999 | WO |
WO 9912577 | Mar 1999 | WO |
WO 9943380 | Sep 1999 | WO |
WO 9951278 | Oct 1999 | WO |
WO 9957176 | Nov 1999 | WO |
WO 0023054 | Apr 2000 | WO |
WO 0032112 | Jun 2000 | WO |
WO 0040259 | Jul 2000 | WO |
WO 0066183 | Nov 2000 | WO |
WO 0071196 | Nov 2000 | WO |
WO 0074633 | Dec 2000 | WO |
WO 0112359 | Feb 2001 | WO |
WO 0166016 | Sep 2001 | WO |
WO 0170291 | Sep 2001 | WO |
WO 0172281 | Oct 2001 | WO |
WO 0176845 | Oct 2001 | WO |
WO 0193920 | Dec 2001 | WO |
WO 0211696 | Feb 2002 | WO |
WO 0234298 | May 2002 | WO |
WO 0234299 | May 2002 | WO |
WO 0234300 | May 2002 | WO |
WO 0243580 | Jun 2002 | WO |
WO 03013552 | Feb 2003 | WO |
WO 03016364 | Feb 2003 | WO |
WO 03051451 | Jun 2003 | WO |
WO 03082359 | Oct 2003 | WO |
WO 2004019999 | Mar 2004 | WO |
WO 2004020042 | Mar 2004 | WO |
WO 2004040972 | May 2004 | WO |
WO 2004073688 | Sep 2004 | WO |
WO 2004075989 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060247610 A1 | Nov 2006 | US |