This invention relates to tissue-treatment methods.
Energy, such as RF energy, can be employed to degrade unhealthy or unwanted tissue, such as a wart, a mole, a cyst, scar tissue, and/or a tumor. In some cases, for example, an RF probe can be delivered into the unhealthy or unwanted tissue via a catheter. Once positioned within the tumor, RF-emitting tines can be deployed and activated. Upon activation, the tines can emit RF energy to degrade the tissue by, for example, heating the tissue.
The invention relates to polymer insulators and methods of using the same.
In one aspect, the invention features a method that includes separating a first portion of tissue of a subject from a second portion of tissue of the subject so that there is a space between the first and second portions of tissue. The method also includes disposing a material between the first and second portions of tissue, and exposing the first portion of tissue to energy to treat the first portion of tissue. The material disposed between the first and second portions of tissue can be one or more of the following: deionized water; a buffered saline solution; liquid polymers; gels; particles; foams; and/or gases.
In another aspect, the invention features a method that includes disposing a material between a first portion of tissue of a subject and a second portion of tissue of the subject. The method also includes exposing the first portion of tissue to energy to treat the first portion of tissue. The second portion of tissue can be substantially unexposed to the energy while the first portion of tissue is exposed to the energy. The distance between the first and second portions of tissue is at most about five centimeters, and the material disposed between the first and second portions of tissue can be one or more of the following: deionized water; a buffered saline solution; liquid polymers; gels; particles; foams; and/or gases.
The methods can include one or more of the following features.
In some embodiments, the second portion of tissue is substantially unexposed to the energy while the first portion of tissue is exposed to the energy.
In certain embodiments, the energy includes RF energy, microwave energy, ultrasonic energy, laser energy, and/or heat. In some embodiments, exposing the first portion of tissue to energy includes cooling the first portion of tissue.
In some embodiments, the first portion of tissue includes unhealthy tissue (e.g., cancerous tissue), and/or the second portion of tissue includes healthy tissue. Examples of tissue include bodily vessel tissue, bladder tissue, bone tissue, brain tissue, breast tissue, bronchi tissue, diaphragm tissue, esophagus tissue, gall bladder tissue, heart tissue, intestine tissue, kidney tissue, larynx tissue, liver tissue, lung tissue, lymph vessel tissue, lymph node tissue, nerve tissue, ovary tissue, pancreas tissue, prostate tissue, skin tissue, stomach tissue, and thyroid tissue, trachea tissue, urethra tissue, ureter tissue, uterus tissue, and vertebral disc tissue.
In certain embodiments, the material is formed of particles. The particles can have, for example, a size of at most about 10,000 microns. The particles can include one or more polymeric materials. The particles can include a material having a dielectric constant of at least about 2.1 and/or a dielectric strength of at least about 100 Kv/mm in some embodiments.
In some embodiments, the material is a liquid polymer.
In certain embodiments, the material is a foam.
In some embodiments, the material is a gas. Examples of gases include air, helium, neon, argon, krypton, xenon, nitrogen, and carbon dioxide.
In some embodiments, the material is deionized water and/or a buffered saline solution.
In certain embodiments, the material is a water soluble polysaccharide and/or an ionically cross-linkable polymer.
In certain embodiments, the material is a ceramic material.
In some embodiments, the material is capable of undergoing an endothermic reaction.
In some embodiments, the space between the first and second portions of tissue is at most about five centimeters.
The methods can provide one or more of the following advantages.
In some embodiments, the methods can protect healthy or desired tissue from damage, while treating (e.g., ablating, degrading, destroying) unhealthy or undesired tissue.
In certain embodiments, the methods can allow relatively small regions of desired or healthy tissue to be protected while treating (e.g., ablating, degrading, destroying) undesired or unhealthy tissue.
In certain embodiments, the methods can protect regions of desired or healthy tissue that are difficult to access.
Features and advantages are in the description, drawings, and claims.
Like reference symbols in the drawings indicate like elements.
The methods include disposing one or more materials between a region of unhealthy tissue and a region of healthy tissue, and exposing the unhealthy tissue to energy (e.g., RF energy) to damage or destroy the unhealthy tissue. The materials can include one or more of the following: deionized water; a buffered saline solution; liquid polymers; gels; particles; foams; and/or gases. The material disposed between the unhealthy and healthy tissue regions can protect the healthy tissue so that it is substantially unharmed by the energy.
For example,
For example, particles 150 can be formed of a material that is a poor conductor of certain types of energy (e.g., RF energy) relative to tissues 130 and 140 of the subject. Thus, when inserted between healthy and unhealthy tissues 130, 140, particles 150 substantially prevent energy applied to unhealthy tissue 140 from harming healthy tissue 130. As a result, healthy tissue 130 is substantially protected from harm when energy is applied to unhealthy tissue 140.
In some embodiments, particles 150 are at least partially formed from one or more polymers. Examples of polymers include polyvinyl alcohols, polyacrylic acids, polymethacrylic acids, poly vinyl sulfonates, carboxymethyl celluloses, hydroxyethyl celluloses, substituted celluloses, polyacrylamides, polyethylene glycols, polyamides, polyureas, polyurethanes, polyesters, polyethers, polystyrenes, polysaccharides, polylactic acids, polyethylenes, polymethylmethacrylates, polycaprolactones, polyglycolic acids, poly(lactic-co-glycolic) acids (e.g., poly(d-lactic-co-glycolic) acids), polypropylene, polytetrafluorethylene, polyethyleneterephthalate, polycarbonate, polyphenyleneoxide, polysulfone, polyhydantoine, polyamide-imide, polyimide, cellulose triacetate, cellulose acetate butyrate, and copolymers or mixtures thereof.
Additional examples of materials from which particles 150 can be at least partially formed include alginates (e.g., sodium alginate), alginate salts, xanthan gums, natural gum, agar, agarose, chitosan, carrageenan, fucoidan, furcellaran, laminaran, hypnea, eucheuma, gum arabic, gum ghatti, gum karaya, gum tragacanth, hyalauronic acid, locust beam gum, arabinogalactan, pectin, amylopectin, other water soluble polysaccharides and other ionically cross-linkable polymers.
In some embodiments, particles 150 are at least partially formed of a bio-absorbable and/or bio-erodible material, such as a polysaccharide (such as an alginate); a polysaccharide derivative; a water soluble polymer (such as a polyvinyl alcohol, e.g., that has not been cross-linked); biodegradable poly DL-lactide-poly ethylene glycol (PELA); a hydrogel (e.g., polyacrylic acid, haluronic acid, gelatin, carboxymethyl cellulose); a polyethylene glycol (PEG); chitosan; a polyester (e.g., a polycaprolactone); a poly(lactic-acid) (PLA); a poly(lactic-co-glycolic) acid (e.g., a poly(d-lactic-co-glycolic) acid); or a combination thereof.
In certain embodiments, particles 150 are at least partially formed of one or more ceramic materials. In general, a ceramic material contains one or more metallic elements and one or more non-metallic elements. Examples of ceramics include metal oxides, such as aluminum oxide, cerium oxide, copper oxide, iron oxide, magnesium oxide, and potassium oxide.
In some embodiments, particles 150 can be formed of a glass. Examples of glasses include oxides of silicon, beryllium, boron, germanium, phosphorous, vanadium, lead, tin, zinc, zirconium, and titanium, as well as such nonoxide compounds as germanium sulphide, metal fluorides, and iodites. Other examples of glasses include certain metallic selenides, tellurides, arsenides, phosphides, and obsidian.
In certain embodiments, particles 150 contain encapsulated air (e.g., to enhance the protective ability of particles 150). In some embodiments, particles 150 contain an encapsulated composition capable of undergoing an endothermic reaction. For example, particles 150 can encapsulate a ammonium nitrate and water composition. Consequently, particles 150 can absorb greater amounts of energy (e.g., heat) in some cases.
In some embodiments, particles 150 are formed from a material that has a relatively high dielectric constant. For example, particles 150 can have a dielectric constant that is higher than the dielectric constant of tissues 130 and 140. This can, for example, allow protective layer 145 to be a relatively poor conductor of RF energy. For example, particles 150 can be formed of a material having a dielectric constant of at least about 2.0 (e.g., at least about 2.1, at least about 2.7, at least about 3.1). In some embodiments, particles 150 can be formed of a material having a dielectric constant of from about 2.0 to about 4.5 (e.g., from about 2.1 to about 4.5, from about 2.7 to about 4.5, from about 3.1 to about 4.5). The term dielectric constant, as used herein, is measured by ASTM D150 at 50 Hz and 20° C.
In some embodiments, the material from which particles 150 are made has a relatively high dielectric strength. For example, particles 150 can have a dielectric strength that is higher than the dielectric strength of tissues 130 and 140. This can, for example, allow layer 145 to be a relatively poor conductor of RF energy. For example, particles 150 can be formed of a material having a dielectric strength of at least about 100 kV/mm (e.g., at least about 200 kV/mm, at least about 240 kV/mm, at least about 280 kV/mm). In some embodiments, particles 150 can be formed of a material having a dielectric strength of from about 50 kV/mm to about 350 kV/mm (e.g., from about 100 kV/mm to about 300 kV/mm, from about 200 kV/mm to about 300 kV/mm, from about 240 kV/mm to about 300 kV/mm, from about 280 kV/mm to about 300 kV/mm). The term dielectric strength, as used herein, is measured by ASTM D149.
In certain embodiments, particles 150 can be formed of a material having a relatively high dissipation factor. For example, particles 150 can have a dissipation factor that is higher than the dissipation factor of tissues 130 and 140. This can, for example, allow layer 145 to be a relatively poor conductor of RF energy. For example, particles 150 can be formed of a material having a dissipation factor of at least about 0.2 (e.g., at least about 0.7, at least about 1.5, at least about nine, at least about 21). The term dissipation factor, as used herein, is measured by ASTM D150 at 50 Hz and 20° C.
In some embodiments, particles 150 can be formed of a material having a relatively high volume resistivity. For example, particles 150 can have a volume resistivity that is higher than the volume resistivity of tissues 130 and 140. This can, for example, allow layer 145 to be a relatively poor conductor of RF energy. For example, particles 150 can be formed of a material having a volume resistivity of at least about 106 to about 1017 ohm-cm (e.g., at least about 1014 ohm-cm, at least about 1016 ohm-cm, at least about 1017 ohm-cm). As used herein, the volume resistivity of a particle is measured by ASTM D257-99.
In certain embodiments, particles 150 can be formed of a material having a relatively low surface resistivity. For example, particles 150 can have a surface resistivity that is lower than the surface resistivity of tissues 130 and 140. For example, particles 150 can be formed of a material having a surface resistivity of at most about 1012 to about 1016 ohm-cm (e.g., at most about 1016 ohm-cm, at most about 1014 ohm-cm, at most about 1012 ohm-cm). The term surface resistivity, as used herein, is measured by ASTM D257-99.
In certain embodiments, the material from which particles 150 are made can be chosen based on the intensity and/or type of energy used to treat unhealthy tissue 140. As an example, in embodiments in which RF energy and/or microwave energy is used, it can be beneficial to use particles formed of a material with a higher dielectric constant and/or a higher dielectric strength. As an additional example, in embodiments in which ultrasonic energy is used, it can be beneficial to use particles formed of a material that can retard the transmission of ultrasonic energy therethrough. As another example, in embodiments in which laser energy is used, it can be beneficial to use particles formed of a material that is capable of absorbing and/or refracting laser energy.
In some embodiments, particles 150 have a diameter of no greater than about 10,000 microns (e.g., no greater than about 7,500 microns, no greater than about 5,000 microns, no greater than about 2,500 microns, no greater than about 2,000 microns, no greater than about 1,5000 microns, no greater than about 1,000 microns, no greater than about 500 microns, no greater than about 400 microns, no greater than about 300 microns, no greater than about 200 microns, no greater than about 100 microns). In some embodiments, particles 150 have a diameter of about 100 microns to about 10,000 microns (e.g., about 100 microns to about 1000 microns, about 100 microns to 500 microns, about 2,500 microns to about 5,000 microns, about 5,000 microns to about 10,000 microns, about 7,500 microns to about 10,000 microns).
Carrier fluid 180 can be a pharmaceutically acceptable carrier, such as a buffered saline solution, non-ionic contrast agent, therapeutic agent, or a combination of these carriers. In some embodiments, carrier fluid 180 includes deionized water, water for injection, liquid polymer, gel polymer, gas, or a combination of these carriers. Carrier fluid 180, in some cases, can contribute to the protection of healthy tissue 130. In certain embodiments, carrier fluid 180 includes one or more insulating materials, such as glass fibers. The insulating materials can enhance the ability of carrier fluid 180 to contribute to the protection of healthy tissue 130.
In some embodiments, particles 150 are not suspended in a carrier fluid. For example, particles 150 alone can be contained within syringe 170, and injected from syringe 170 into the gap between healthy tissue 130 and unhealthy tissue 140.
While embodiments have been described in which a needle is used to form the opening between healthy tissue 130 and unhealthy tissue 140, in some embodiments, other techniques can be used to form this opening. For example, the opening can be formed using an open procedure in which an incision is made in the subject to gain access to unhealthy tissue 140. As another example, blunt dissection techniques may be used to form the opening between healthy tissue 130 and unhealthy tissue 140. After forming the opening, healthy tissue 130 can be separated from unhealthy tissue 140 using any of various techniques. For example, a needle can be injected between healthy and unhealthy tissues 130, 140. As another example, one or more gases or liquids can be pumped into the region between healthy tissue 130 and unhealthy tissue 140. After separating healthy tissue 130 from unhealthy tissue 140, particles 150 can be implanted within a gap created between the separated healthy and unhealthy tissues 130, 140 using any of various techniques. For example, in some embodiments, particles 150 can be injected into the gap via a needle, directly from a syringe, or a catheter.
Protective layer 145 substantially prevents the RF energy from penetrating healthy tissue 130 when unhealthy tissue 140 is exposed to the RF energy. For example, the RF energy is prevented from penetrating healthy tissue 130 with a substantially harmful intensity. Thus, the method can be used to treat unhealthy tissue 140 without substantially harming healthy tissue 130.
The level of protection provided by protective layer 145 of particles 150 can be a function of the thickness of protective layer 145. As an example, in some embodiments, as the thickness of protective layer 145 increases, its ability to conduct energy (e.g., heat and/or RF energy) can decrease, and, as the thickness of protective layer 145 decreases, its ability to conduct energy (e.g., heat and/or RF energy) can decrease. In such embodiments, it can become more difficult for energy to be transported from unhealthy tissue 140 to healthy tissue 130 via protective layer 145 as the thickness of protective layer 145 increases, and it can become easier for energy to be transported from unhealthy tissue 140 to healthy tissue 130 via protective layer 145 as the thickness of protective layer 145 decreases. Thus, it may be beneficial to increase the thickness of protective layer 145 as the intensity of the energy used to treat unhealthy tissue 140 increases, and to decrease the thickness of protective layer 145 as the intensity of energy decreases (e.g., to obtain a desired degree of insulation while keeping the space between unhealthy tissue 140 and healthy tissue 130 relatively small to decrease possible trauma to the subject).
The thickness of protective layer 145 can be modified using any of various techniques. For example, the thickness of protective layer 145 can be increased or decreased by increasing or decreasing the size of particles 150, and/or by disposing a greater or lesser number of particles across a thickness of the gap between healthy and unhealthy tissues 130, 140. In certain embodiments, multiple layers of particles 150 are disposed between healthy tissue 130 and unhealthy tissue 140 in order to increase the thickness of protective layer 145.
In some embodiments, after separating healthy tissue 130 from unhealthy tissue 140, the gap between healthy and unhealthy tissues 130, 140 can be at most about five centimeters (e.g., at most about four centimeters, at most about three centimeters, at most about two centimeters, at most about one centimeter, at most about 0.5 centimeter, at most about 0.25 centimeter, or at most about 0.1 centimeter). For example, protective layer 145 of particles 150 can have a thickness of at most about five centimeters (e.g., at most about four centimeters, at most about three centimeters, at most about two centimeters, at most about one centimeter, at most about 0.5 centimeter, at most about 0.25 centimeter, or at most about 0.1 centimeter). In some embodiments the gap between healthy and unhealthy tissues 130, 140 can be about 0.1 centimeter to about five centimeters (e.g., about 0.1 centimeter to about three centimeters, about 0.1 centimeter to about one centimeter, about 0.1 centimeter to about 0.5 centimeter, about 0.1 centimeter to about 0.25 centimeter). For example, protective layer 145 of particles 150 can have a thickness of about 0.1 centimeter to about five centimeters (e.g., about 0.1 centimeter to about three centimeters, about 0.1 centimeter to about one centimeter, about 0.1 centimeter to about 0.5 centimeter, about 0.1 centimeter to about 0.25 centimeter).
In certain embodiments, particles 150 include one or more therapeutic agents (e.g., drugs) that can be delivered to healthy and/or unhealthy tissues 130, 140. The therapeutic agent(s) can be in and/or on the particle. Therapeutic agents include agents that are negatively charged, positively charged, amphoteric, or neutral. Therapeutic agents include genetic therapeutic agents, non-genetic therapeutic agents, and cells, and can be negatively charged, positively charged, amphoteric, or neutral. Therapeutic agents can be, for example, materials that are biologically active to treat physiological conditions; pharmaceutically active compounds; gene therapies; nucleic acids with and without carrier vectors; oligonucleotides; gene/vector systems; DNA chimeras; compacting agents (e.g., DNA compacting agents); viruses; polymers; hyaluronic acid; proteins (e.g., enzymes such as ribozymes); immunologic species; nonsteroidal anti-inflammatory medications; oral contraceptives; progestins; gonadotrophin-releasing hormone agonists; chemotherapeutic agents; and radioactive species (e.g., radioisotopes, radioactive molecules). Non-limiting examples of therapeutic agents include anti-thrombogenic agents; antioxidants; angiogenic and anti-angiogenic agents and factors; anti-proliferative agents (e.g., agents capable of blocking smooth muscle cell proliferation); calcium entry blockers; and survival genes which protect against cell death.
Exemplary non-genetic therapeutic agents include: anti-thrombotic agents such as heparin, heparin derivatives, urokinase, and PPack (dextrophenylalanine proline arginine chloromethylketone); anti-inflammatory agents such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine and mesalamine; antineoplastic/antiproliferative/anti-mitotic agents such as paclitaxel, 5-fluorouracil, cisplatin, doxorubicin; vinblastine, vincristine, epothilones, endostatin, angiostatin, angiopeptin, monoclonal antibodies capable of blocking smooth muscle cell proliferation, and thymidine kinase inhibitors; anesthetic agents such as lidocaine, bupivacaine and ropivacaine; anti-coagulants such as D-Phe-Pro-Arg chloromethyl ketone, an RGD peptide-containing compound, heparin, hirudin, antithrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, aspirin, prostaglandin inhibitors, platelet inhibitors and tick antiplatelet peptides; vascular cell growth promoters such as growth factors, transcriptional activators, and translational promoters; vascular cell growth inhibitors such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin; protein kinase and tyrosine kinase inhibitors (e.g., tyrphostins, genistein, quinoxalines); prostacyclin analogs; cholesterol-lowering agents; angiopoietins; antimicrobial agents such as triclosan, cephalosporins, aminoglycosides and nitrofurantoin; cytotoxic agents, cytostatic agents and cell proliferation affectors; vasodilating agents; and agents that interfere with endogenous vasoactive mechanisms.
Exemplary genetic therapeutic agents include: anti-sense DNA and RNA; DNA coding for: anti-sense RNA, tRNA or rRNA to replace defective or deficient endogenous molecules, angiogenic factors including growth factors such as acidic and basic fibroblast growth factors, vascular endothelial growth factor, epidermal growth factor, transforming growth factor α and β, platelet-derived endothelial growth factor, platelet-derived growth factor, tumor necrosis factor a, hepatocyte growth factor and insulin like growth factor, cell cycle inhibitors including CD inhibitors, thymidine kinase (“TK”) and other agents useful for interfering with cell proliferation, and the family of bone morphogenic proteins (“BMP's”), including BMP2, BMP3, BMP4, BMP5, BMP6 (Vgr1), BMP7 (OP1), BMP8, BMP9, BMP10, BM11, BMP12, BMP13, BMP14, BMP15, and BMP16. Currently preferred BMP's are any of BMP2, BMP3, BMP4, BMP5, BMP6 and BMP7. These dimeric proteins can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules. Alternatively or, in addition, molecules capable of inducing an upstream or downstream effect of a BMP can be provided. Such molecules include any of the “hedgehog” proteins, or the DNA's encoding them.
Vectors of interest for delivery of genetic therapeutic agents include: Plasmids, Viral vectors such as adenovirus (AV), adenoassociated virus (AAV) and lentivirus, Non-viral vectors such as lipids, liposomes and cationic lipids.
Cells include cells of human origin (autologous or allogeneic), including stem cells, or from an animal source (xenogeneic), which can be genetically engineered if desired to deliver proteins of interest.
Several of the above and numerous additional therapeutic agents appropriate for the practice of the present invention are disclosed in U.S. Pat. No. 5,733,925, which is incorporated herein by reference. Therapeutic agents disclosed in this patent include the following: “Cytostatic agents” (i.e., agents that prevent or delay cell division in proliferating cells, for example, by inhibiting replication of DNA or by inhibiting spindle fiber formation). Representative examples of cytostatic agents include modified toxins, methotrexate, adriamycin, radionuclides (e.g., such as disclosed in Fritzberg et al., U.S. Pat. No. 4,897,255), protein kinase inhibitors, including staurosporin, a protein kinase C inhibitor of the following formula:
as well as diindoloalkaloids having one of the following general structures:
as well as stimulators of the production or activation of TGF-beta, including Tamoxifen and derivatives of functional equivalents (e.g., plasmin, heparin, compounds capable of reducing the level or inactivating the lipoprotein Lp(a) or the glycoprotein apolipoprotein(a)) thereof, TGF-beta or functional equivalents, derivatives or analogs thereof, suramin, nitric oxide releasing compounds (e.g., nitroglycerin) or analogs or functional equivalents thereof, paclitaxel or analogs thereof (e.g., taxotere), inhibitors of specific enzymes (such as the nuclear enzyme DNA topoisomerase II and DNA polymerase, RNA polymerase, adenyl guanyl cyclase), superoxide dismutase inhibitors, terminal deoxynucleotidyl-transferase, reverse transcriptase, antisense oligonucleotides that suppress smooth muscle cell proliferation and the like.
Other examples of “cytostatic agents” include peptidic or mimetic inhibitors (i.e., antagonists, agonists, or competitive or non-competitive inhibitors) of cellular factors that may (e.g., in the presence of extracellular matrix) trigger proliferation of smooth muscle cells or pericytes: e.g., cytokines (e.g., interleukins such as IL-1), growth factors (e.g., PDGF, TGF-alpha or -beta, tumor necrosis factor, smooth muscle- and endothelial-derived growth factors, i.e., endothelin, FGF), homing receptors (e.g., for platelets or leukocytes), and extracellular matrix receptors (e.g., integrins). Representative examples of useful therapeutic agents in this category of cytostatic agents addressing smooth muscle proliferation include: subfragments of heparin, triazolopyrimidine (trapidil; a PDGF antagonist), lovastatin, and prostaglandins E1 or I2.
Agents that inhibit the intracellular increase in cell volume (i.e., the tissue volume occupied by a cell) such as cytoskeletal inhibitors or metabolic inhibitors. Representative examples of cytoskeletal inhibitors include colchicine, vinblastin, cytochalasins, paclitaxel and the like, which act on microtubule and microfilament networks within a cell. Representative examples of metabolic inhibitors include staurosporin, trichothecenes, and modified diphtheria and ricin toxins, Pseudomonas exotoxin and the like. Trichothecenes include simple trichothecenes (i.e., those that have only a central sesquiterpenoid structure) and macrocyclic trichothecenes (i.e., those that have an additional macrocyclic ring), e.g., a verrucarins or roridins, including Verrucarin A, Verrucarin B, Verrucarin J (Satratoxin C), Roridin A, Roridin C, Roridin D, Roridin E (Satratoxin D), Roridin H.
Agents acting as an inhibitor that blocks cellular protein synthesis and/or secretion or organization of extracellular matrix (i.e., an “anti-matrix agent”). Representative examples of “anti-matrix agents” include inhibitors (i.e., agonists and antagonists and competitive and non-competitive inhibitors) of matrix synthesis, secretion and assembly, organizational cross-linking (e.g., transglutaminases cross-linking collagen), and matrix remodeling (e.g., following wound healing). A representative example of a useful therapeutic agent in this category of anti-matrix agents is colchicine, an inhibitor of secretion of extracellular matrix. Another example is tamoxifen for which evidence exists regarding its capability to organize and/or stabilize as well as diminish smooth muscle cell proliferation following angioplasty. The organization or stabilization may stem from the blockage of vascular smooth muscle cell maturation in to a pathologically proliferating form.
Agents that are cytotoxic to cells, particularly cancer cells. Preferred agents are Roridin A, Pseudomonas exotoxin and the like or analogs or functional equivalents thereof. A plethora of such therapeutic agents, including radioisotopes and the like, have been identified and are known in the art. In addition, protocols for the identification of cytotoxic moieties are known and employed routinely in the art.
A number of the above therapeutic agents and several others have also been identified as candidates for vascular treatment regimens, for example, as agents targeting restenosis. Such agents are appropriate for the practice of the present invention and include one or more of the following:
In some embodiments, particle 100 can include a combination of any of the above therapeutic agents.
Therapeutic agents are described, for example, in co-pending Published Patent Application No. US 2004/0076582 A1, published on Apr. 22, 2004, and entitled “Agent Delivery Particle”, which is incorporated herein by reference, and in Pinchuk et al., U.S. Pat. No. 6,545,097, which is incorporated herein by reference.
Particles 150 can be formed using any of various systems and techniques, such as emulsion polymerization and/or droplet polymerization techniques. Examples of such systems and techniques are described, for example, in co-pending Published Patent Application No. US 2003/0185896 A1, published Oct. 2, 2003, and entitled “Embolization,” and in co-pending Published Patent Application No. US 2004/0096662 A1, published May 20, 2004, and entitled “Embolization,” each of which is incorporated herein by reference.
While certain embodiments have been described, other embodiments are also possible.
As an example, particles 150 can include (e.g., encapsulate) diagnostic agent(s) such as a radiopaque material, an MRI-visible material, a ferromagnetic material, and/or an ultrasound contrast agent. For example, particle 150 can encapsulate a ferromagnetic material so that the position of the particle in a lumen can be manipulated with a magnetic field. The magnetic field can be created outside the subject or inside the subject (e.g., via a magnetic catheter). Particles containing diagnostic agents are described in U.S. patent application Ser. No. 10/651,475, filed on Aug. 29, 2003, and entitled “Embolization”, and magnetic devices are described in U.S. patent application Ser. No. 10/108,874, filed on Mar. 29, 2002, and entitled “Magnetically Enhanced Injection Catheter,” both of which are incorporated herein by reference.
As an additional example, while embodiments have been described in which protective layer 145 is formed of particles, in some embodiments, protective layer 145 is formed of one or more liquid polymers. Examples of polymers from which a liquid polymer can be formed include those noted above. In some embodiments, a liquid polymer can be a carrier fluid for particles. A liquid polymer can be disposed between two portions of tissue using the methods described above (e.g., via a needle, a syringe, or a catheter).
As another example, in some embodiments, protective layer 145 is formed of one or more gels. A gel can be formed of, for example, one or more polymers. Examples of polymers include those noted above. A gel can be disposed between two portions of tissue using the methods described above (e.g., via a needle, a syringe, or a catheter).
As a further example, in some embodiments, protective layer 145 is formed from one or more gases. Examples of gases include helium, neon, argon, krypton, xenon, air, nitrogen, and carbon dioxide. In some embodiments, a gas can be a carrier fluid for particles. A gas can be disposed between two portions of tissue using the methods described above (e.g., via a needle, a syringe, or a catheter).
As an additional example, in some embodiments, protective layer 145 is formed from one or more foams. A foam can be formed of, for example, one or more polymers. Examples of polymers include those noted above. A foam can be disposed between two portions of tissue using the methods described above (e.g., via a needle, a syringe, or a catheter).
As another example, protective layer 145 can be formed of deionized water and/or a buffered saline solution. The buffered saline solution, for example, can include a composition of saline solution and any of various buffers, such as phosphate. In certain embodiments, the deionized water can similarly include a buffer material, such as phosphate. In some embodiments, the deionized water and/or the buffered saline solution can provide an electrical resistance of about 175 kohms or greater (e.g., about 200 kohms or greater, about 225 kohms or greater, about 250 kohms or greater, about 275 kohms or greater, about 300 kohms or greater, about 325 kohms or greater, about 350 kohms or greater). As used herein, the electrical resistance is tested using ASTM D257-99.
As a further example, in certain embodiments, protective layer 145 can be formed of a combination of one or more of the following: deionized water; a buffered saline solution; particles; liquid polymers; gels; gases and/or foams.
As another example, while certain forms of energy have been described, other forms of energy can be used to treat medical conditions. Examples of forms of energy that can be used include microwave energy, ultrasonic energy, laser energy, and/or heat. Similarly, the unhealthy tissue can be cooled. The energy can be administered to the unhealthy tissue using any of various techniques. For example, a probe can be inserted into the unhealthy tissue and activated to release one or more types of energy.
In some embodiments particles including a relatively conductive material (e.g., a ferromagnetic material) can be disposed within the tissue of the subject to enhance the effects of the energy (e.g., RF energy) transmitted to unhealthy tissue 140. In certain embodiments in which particles including a ferromagnetic material have been disposed within the tissue, a magnetic field can be applied to the particles to affect the extent of conductivity. The magnetic field can be varied to adjust the conductivity of the particles (and, therefore, to adjust the extent of heating and ablation caused by the transmitted energy). In some embodiments, the particles can be used in an agitation ablation process. In such a process, a magnetic field can be used to agitate the particles, such that the particles heat and/or physically deform the surrounding tissue, thereby ablating the surrounding tissue. These and other tissue treatment techniques are described in U.S. Pub. Pat. App. No. US-2004-0101564-A1, which is incorporated herein by reference.
As an additional example, while embodiments have been described in which unhealthy liver tissue is treated, other types of unhealthy tissue can also be treated. Examples of other types of tissue that can be treated include bodily vessel tissue, bone tissue, brain tissue, breast tissue, kidney tissue, liver tissue, lung tissue, ovary tissue, prostate tissue, skin tissue, and thyroid tissue.
As a further example, in some embodiments, energy can be used to treat healthy tissue. In some embodiments, for example, the healthy tissue is undesired tissue. For example, energy can be used to treat (e.g., remove) various types of malformed tissue, such as tissue resulting in webbed fingers and/or toes. As a further example, energy can be used to treat various types of malfunctioning tissue. In embodiments in which healthy tissue is treated with energy, it may be desired, for example, to preserve adjacent regions of healthy tissue. Thus, protective layer 145 can be disposed between two regions of healthy tissue.
The medical treatments described herein can similarly be used to treat various other types of medical conditions. For example, in some embodiments, regions of brain tissue may be treated (e.g., destroyed) with electrical stimulation to treat epilepsy. Similarly, regions of nerve tissue may be treated (e.g., destroyed) to treat chronic pain. In certain embodiments, regions of bodily vessel tissue can be treated to occlude the vessel. This can be beneficial, for example, in treating fibroids (e.g., uterine fibroids), varicose veins, alterior venous malformations, and certain forms of trauma.
Other embodiments are in the claims.
This application is a continuation of and claims the benefit of priority under 35 U.S.C. §120 to U.S. application Ser. No. 11/117,156, filed Apr. 28, 2005, now U.S. Pat. No. 7,963,287, the entire contents of which is hereby fully incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2275154 | Merrill | Mar 1942 | A |
2609347 | Wilson | Sep 1952 | A |
3663470 | Nishimura | May 1972 | A |
3737398 | Yamaguchi | Jun 1973 | A |
3957933 | Egli | May 1976 | A |
4025686 | Zion | May 1977 | A |
4034759 | Haerr | Jul 1977 | A |
4055377 | Erickson | Oct 1977 | A |
4076640 | Forgensi | Feb 1978 | A |
4094848 | Naito | Jun 1978 | A |
4096230 | Haerr | Jun 1978 | A |
4098728 | Rosenblatt | Jul 1978 | A |
4110529 | Stoy | Aug 1978 | A |
4159719 | Haerr | Jul 1979 | A |
4191672 | Salome | Mar 1980 | A |
4198318 | Stowell | Apr 1980 | A |
4243794 | White | Jan 1981 | A |
4246208 | Dundas | Jan 1981 | A |
4266030 | Tschang | May 1981 | A |
4268495 | Muxfeldt | May 1981 | A |
4271281 | Kelley | Jun 1981 | A |
4402319 | Handa | Sep 1983 | A |
4413070 | Rembaum | Nov 1983 | A |
4427794 | Lange | Jan 1984 | A |
4428869 | Munteanu | Jan 1984 | A |
4429062 | Pasztor | Jan 1984 | A |
4442843 | Rasor | Apr 1984 | A |
4444961 | Timm | Apr 1984 | A |
4452773 | Molday | Jun 1984 | A |
4456693 | Welsh | Jun 1984 | A |
4459145 | Elsholz | Jul 1984 | A |
4472552 | Blouin | Sep 1984 | A |
4477255 | Pasztor | Oct 1984 | A |
4492720 | Mosier | Jan 1985 | A |
4515906 | Friesen | May 1985 | A |
4522953 | Barby | Jun 1985 | A |
4542178 | Zimmermann | Sep 1985 | A |
4551132 | Pasztor | Nov 1985 | A |
4551436 | Johnson | Nov 1985 | A |
4573967 | Hargrove | Mar 1986 | A |
4622362 | Rembaum | Nov 1986 | A |
4623706 | Timm | Nov 1986 | A |
4629464 | Takata | Dec 1986 | A |
4640807 | Afghan | Feb 1987 | A |
4657756 | Rasor | Apr 1987 | A |
4661137 | Gamier | Apr 1987 | A |
4663358 | Hyon | May 1987 | A |
4671954 | Goldberg | Jun 1987 | A |
4671994 | Cochran | Jun 1987 | A |
4674480 | Lemelson | Jun 1987 | A |
4675113 | Graves | Jun 1987 | A |
4678710 | Sakimoto | Jul 1987 | A |
4678814 | Rembaum | Jul 1987 | A |
4680320 | Uku | Jul 1987 | A |
4681119 | Rasor | Jul 1987 | A |
4695466 | Morishita | Sep 1987 | A |
4713076 | Draenert | Dec 1987 | A |
4742086 | Masamizu | May 1988 | A |
4743507 | Franses | May 1988 | A |
4772635 | Mitschker | Sep 1988 | A |
4782097 | Jain | Nov 1988 | A |
4789501 | Day | Dec 1988 | A |
4793980 | Torobin | Dec 1988 | A |
4795741 | Leshchiner | Jan 1989 | A |
4801458 | Hidaka | Jan 1989 | A |
4804366 | Zdeb | Feb 1989 | A |
4819637 | Dormandy | Apr 1989 | A |
4822535 | Ekman | Apr 1989 | A |
4833237 | Kawamura | May 1989 | A |
4850978 | Dudar | Jul 1989 | A |
4859711 | Jain | Aug 1989 | A |
4863972 | Itagaki | Sep 1989 | A |
4889129 | Dougherty | Dec 1989 | A |
4897255 | Fritzberg | Jan 1990 | A |
4929400 | Rembaum | May 1990 | A |
4933372 | Feibush | Jun 1990 | A |
4946899 | Kennedy | Aug 1990 | A |
4954399 | Tani | Sep 1990 | A |
4981625 | Rhim | Jan 1991 | A |
4990340 | Hidaka | Feb 1991 | A |
4999188 | Solodovnik | Mar 1991 | A |
5007940 | Berg | Apr 1991 | A |
5011677 | Day | Apr 1991 | A |
5015423 | Eguchi | May 1991 | A |
5032117 | Motta | Jul 1991 | A |
5034324 | Shinozaki | Jul 1991 | A |
5047438 | Feibush | Sep 1991 | A |
5079274 | Schneider | Jan 1992 | A |
5091205 | Fan | Feb 1992 | A |
5106903 | Vanderhoff | Apr 1992 | A |
5114421 | Polak | May 1992 | A |
5116387 | Berg | May 1992 | A |
5120349 | Stewart | Jun 1992 | A |
5125892 | Drudik | Jun 1992 | A |
5147631 | Glajch | Sep 1992 | A |
5147937 | Frazza | Sep 1992 | A |
5149543 | Cohen | Sep 1992 | A |
5151096 | Khoury | Sep 1992 | A |
5158573 | Berg | Oct 1992 | A |
5171214 | Kolber | Dec 1992 | A |
5171217 | March | Dec 1992 | A |
5181921 | Makita | Jan 1993 | A |
5190760 | Baker | Mar 1993 | A |
5190766 | Ishihara | Mar 1993 | A |
5192301 | Kamiya | Mar 1993 | A |
5202352 | Okada | Apr 1993 | A |
5216096 | Hattori | Jun 1993 | A |
5236410 | Granov | Aug 1993 | A |
5253991 | Yokota | Oct 1993 | A |
5260002 | Wang | Nov 1993 | A |
5262176 | Palmacci | Nov 1993 | A |
5263992 | Guire | Nov 1993 | A |
5288763 | Li | Feb 1994 | A |
5292814 | Bayer | Mar 1994 | A |
5302369 | Day | Apr 1994 | A |
5314974 | Ito | May 1994 | A |
5316774 | Eury | May 1994 | A |
RE34640 | Kennedy | Jun 1994 | E |
5320639 | Rudnick | Jun 1994 | A |
5328936 | Leifholtz | Jul 1994 | A |
5336263 | Ersek | Aug 1994 | A |
5344452 | Lemperle | Sep 1994 | A |
5344867 | Morgan | Sep 1994 | A |
5354290 | Gross | Oct 1994 | A |
5369133 | Ihm | Nov 1994 | A |
5369163 | Chiou | Nov 1994 | A |
5382260 | Dormandy | Jan 1995 | A |
5384124 | Courteille | Jan 1995 | A |
5397303 | Sancoff | Mar 1995 | A |
5398851 | Sancoff | Mar 1995 | A |
5403870 | Gross | Apr 1995 | A |
5417982 | Modi | May 1995 | A |
5431174 | Knute | Jul 1995 | A |
5435645 | Faccioli | Jul 1995 | A |
5441746 | Chagnon | Aug 1995 | A |
5443495 | Buscemi | Aug 1995 | A |
5456693 | Conston | Oct 1995 | A |
5468801 | Antonelli | Nov 1995 | A |
5469854 | Unger | Nov 1995 | A |
5472441 | Edwards | Dec 1995 | A |
5476472 | Dormandy | Dec 1995 | A |
5484584 | Wallace | Jan 1996 | A |
5490984 | Freed | Feb 1996 | A |
5494682 | Cohen | Feb 1996 | A |
5494940 | Unger | Feb 1996 | A |
5512604 | Demopolis | Apr 1996 | A |
5514090 | Kriesel | May 1996 | A |
5525334 | Ito | Jun 1996 | A |
5534589 | Hager | Jul 1996 | A |
5541031 | Yamashita | Jul 1996 | A |
5542935 | Unger | Aug 1996 | A |
5553741 | Sancoff | Sep 1996 | A |
5556610 | Yan | Sep 1996 | A |
5556931 | Imura | Sep 1996 | A |
5558255 | Sancoff | Sep 1996 | A |
5558822 | Gitman | Sep 1996 | A |
5558856 | Klaveness | Sep 1996 | A |
5559266 | Klaveness | Sep 1996 | A |
5567415 | Porter | Oct 1996 | A |
5569193 | Hofstetter | Oct 1996 | A |
5569449 | Klaveness | Oct 1996 | A |
5569468 | Modi | Oct 1996 | A |
5571182 | Ersek | Nov 1996 | A |
5580575 | Unger | Dec 1996 | A |
5583162 | Li | Dec 1996 | A |
5585112 | Unger | Dec 1996 | A |
5595821 | Hager | Jan 1997 | A |
5622657 | Takada | Apr 1997 | A |
5624685 | Takahashi | Apr 1997 | A |
5635215 | Boschetti | Jun 1997 | A |
5637087 | O'Neil | Jun 1997 | A |
5639710 | Lo | Jun 1997 | A |
5648095 | Illum | Jul 1997 | A |
5648100 | Boschetti | Jul 1997 | A |
5650116 | Thompson | Jul 1997 | A |
5651990 | Takada | Jul 1997 | A |
5653922 | Li | Aug 1997 | A |
5657756 | Vrba | Aug 1997 | A |
5681576 | Henry | Oct 1997 | A |
5695480 | Evans | Dec 1997 | A |
5695740 | Porter | Dec 1997 | A |
5698271 | Liberti | Dec 1997 | A |
5701899 | Porter | Dec 1997 | A |
5715824 | Unger | Feb 1998 | A |
5716981 | Hunter | Feb 1998 | A |
5718884 | Klaveness | Feb 1998 | A |
5723269 | Akagi | Mar 1998 | A |
5725522 | Sinofsky | Mar 1998 | A |
5725534 | Rasmussen | Mar 1998 | A |
5733925 | Kunz | Mar 1998 | A |
5741331 | Pinchuk | Apr 1998 | A |
5746734 | Dormandy | May 1998 | A |
5752974 | Rhee | May 1998 | A |
5756127 | Grisoni | May 1998 | A |
5760097 | Li | Jun 1998 | A |
5766147 | Sancoff | Jun 1998 | A |
5770222 | Unger | Jun 1998 | A |
5779668 | Grabenkort | Jul 1998 | A |
5785642 | Wallace | Jul 1998 | A |
5785682 | Grabenkort | Jul 1998 | A |
5792478 | Lawin | Aug 1998 | A |
5795562 | Klaveness | Aug 1998 | A |
5797953 | Tekulve | Aug 1998 | A |
5807323 | Kriesel | Sep 1998 | A |
5813411 | Van Bladel | Sep 1998 | A |
5823198 | Jones | Oct 1998 | A |
5827502 | Klaveness | Oct 1998 | A |
5827531 | Morrison | Oct 1998 | A |
5830178 | Jones | Nov 1998 | A |
5833361 | Funk | Nov 1998 | A |
5840387 | Berlowitz-Tarrant | Nov 1998 | A |
5846518 | Yan | Dec 1998 | A |
5853752 | Unger | Dec 1998 | A |
5855615 | Bley | Jan 1999 | A |
5863957 | Li | Jan 1999 | A |
5876372 | Grabenkort | Mar 1999 | A |
5877224 | Brocchini | Mar 1999 | A |
5885216 | Evans | Mar 1999 | A |
5885547 | Gray | Mar 1999 | A |
5888546 | Ji | Mar 1999 | A |
5888930 | Smith | Mar 1999 | A |
5891155 | Irie | Apr 1999 | A |
5894022 | Ji | Apr 1999 | A |
5895398 | Wensel | Apr 1999 | A |
5895411 | Irie | Apr 1999 | A |
5899877 | Leibitzki | May 1999 | A |
5902832 | Van Bladel | May 1999 | A |
5902834 | Porrvik | May 1999 | A |
5922025 | Hubbard | Jul 1999 | A |
5922304 | Unger | Jul 1999 | A |
5928626 | Klaveness | Jul 1999 | A |
5935553 | Unger | Aug 1999 | A |
5951160 | Ronk | Sep 1999 | A |
5957848 | Sutton | Sep 1999 | A |
5959073 | Schlameus | Sep 1999 | A |
6003566 | Thibault | Dec 1999 | A |
6015546 | Sutton | Jan 2000 | A |
6027472 | Kriesel | Feb 2000 | A |
6028066 | Unger | Feb 2000 | A |
6047861 | Vidal | Apr 2000 | A |
6048908 | Kitagawa | Apr 2000 | A |
6051247 | Hench | Apr 2000 | A |
6056721 | Shulze | May 2000 | A |
6056844 | Guiles | May 2000 | A |
6059766 | Greff | May 2000 | A |
6063068 | Fowles | May 2000 | A |
6071495 | Unger | Jun 2000 | A |
6071497 | Steiner | Jun 2000 | A |
6073759 | Lamborne | Jun 2000 | A |
6090925 | Woiszwillo | Jul 2000 | A |
6096344 | Liu | Aug 2000 | A |
6099864 | Morrison | Aug 2000 | A |
6100306 | Li | Aug 2000 | A |
6139963 | Fujii | Oct 2000 | A |
6149623 | Reynolds | Nov 2000 | A |
6160084 | Langer | Dec 2000 | A |
6162377 | Ghosh | Dec 2000 | A |
6165193 | Greene | Dec 2000 | A |
6167313 | Gray | Dec 2000 | A |
6179817 | Zhong | Jan 2001 | B1 |
6191193 | Lee | Feb 2001 | B1 |
6214331 | Vanderhoff | Apr 2001 | B1 |
6214384 | Pallado | Apr 2001 | B1 |
6224630 | Bao | May 2001 | B1 |
6224794 | Amsden | May 2001 | B1 |
6235224 | Mathiowitz | May 2001 | B1 |
6238403 | Greene | May 2001 | B1 |
6245090 | Gilson | Jun 2001 | B1 |
6251661 | Urabe | Jun 2001 | B1 |
6258338 | Gray | Jul 2001 | B1 |
6261585 | Sefton | Jul 2001 | B1 |
6264861 | Tavernier | Jul 2001 | B1 |
6267154 | Felicelli | Jul 2001 | B1 |
6268053 | Woiszwillo | Jul 2001 | B1 |
6277392 | Klein | Aug 2001 | B1 |
6280457 | Wallace | Aug 2001 | B1 |
6291605 | Freeman | Sep 2001 | B1 |
6296604 | Garibaldi | Oct 2001 | B1 |
6296622 | Kurz | Oct 2001 | B1 |
6296632 | Luscher | Oct 2001 | B1 |
6306418 | Bley | Oct 2001 | B1 |
6306419 | Vachon | Oct 2001 | B1 |
6306425 | Tice | Oct 2001 | B1 |
6306427 | Annonier | Oct 2001 | B1 |
6312407 | Zadno-Azizi | Nov 2001 | B1 |
6312942 | Pluss-Wenzinger | Nov 2001 | B1 |
6315709 | Garibaldi | Nov 2001 | B1 |
6335384 | Evans | Jan 2002 | B1 |
6344182 | Sutton | Feb 2002 | B1 |
6355275 | Klein | Mar 2002 | B1 |
6368658 | Schwarz | Apr 2002 | B1 |
6379373 | Sawhney | Apr 2002 | B1 |
6388043 | Langer | May 2002 | B1 |
6394965 | Klein | May 2002 | B1 |
6410508 | Isales | Jun 2002 | B1 |
6423332 | Huxel | Jul 2002 | B1 |
6432437 | Hubbard | Aug 2002 | B1 |
6436112 | Wensel | Aug 2002 | B2 |
6443941 | Slepian | Sep 2002 | B1 |
6458296 | Heinzen | Oct 2002 | B1 |
6476069 | Krall | Nov 2002 | B2 |
6495155 | Tice | Dec 2002 | B1 |
6544503 | Vanderhoff | Apr 2003 | B1 |
6544544 | Hunter | Apr 2003 | B2 |
6545097 | Pinchuk | Apr 2003 | B2 |
6547794 | Auge, II | Apr 2003 | B2 |
6565887 | Gray | May 2003 | B1 |
6575896 | Silverman | Jun 2003 | B2 |
6586364 | Kubota | Jul 2003 | B2 |
6602261 | Greene | Aug 2003 | B2 |
6602524 | Batich | Aug 2003 | B2 |
6605111 | Bose | Aug 2003 | B2 |
6629947 | Sahatjian | Oct 2003 | B1 |
6632531 | Blankenship | Oct 2003 | B2 |
6652883 | Goupil | Nov 2003 | B2 |
6680046 | Boschetti | Jan 2004 | B1 |
6699222 | Jones | Mar 2004 | B1 |
6706394 | Kuehnle | Mar 2004 | B2 |
6899723 | Chen | May 2005 | B2 |
7218962 | Freyman | May 2007 | B2 |
7727555 | DiCarlo | Jun 2010 | B2 |
7858183 | Anderson | Dec 2010 | B2 |
7963287 | Lanphere et al. | Jun 2011 | B2 |
20010016210 | Mathiowitz | Aug 2001 | A1 |
20010036451 | Goupil | Nov 2001 | A1 |
20010051670 | Goupil | Dec 2001 | A1 |
20020054912 | Kim | May 2002 | A1 |
20020061954 | Davis | May 2002 | A1 |
20020160109 | Yeo | Oct 2002 | A1 |
20020182190 | Naimark | Dec 2002 | A1 |
20020197208 | Ruys | Dec 2002 | A1 |
20030007928 | Gray | Jan 2003 | A1 |
20030032935 | Damiano | Feb 2003 | A1 |
20030108614 | Volkonsky | Jun 2003 | A1 |
20030163187 | Weber | Aug 2003 | A1 |
20030183962 | Buiser | Oct 2003 | A1 |
20030185895 | Lanphere | Oct 2003 | A1 |
20030185896 | Buiser | Oct 2003 | A1 |
20030187320 | Freyman | Oct 2003 | A1 |
20030194390 | Krall | Oct 2003 | A1 |
20030203985 | Baldwin | Oct 2003 | A1 |
20030206864 | Mangin | Nov 2003 | A1 |
20030215519 | Schwarz | Nov 2003 | A1 |
20030233150 | Bourne | Dec 2003 | A1 |
20040076582 | Dimatteo | Apr 2004 | A1 |
20040091543 | Bell | May 2004 | A1 |
20040092883 | Casey, II | May 2004 | A1 |
20040096662 | Lanphere | May 2004 | A1 |
20040101564 | Rioux | May 2004 | A1 |
20040186377 | Zhong | Sep 2004 | A1 |
20050025800 | Tan | Feb 2005 | A1 |
20050037047 | Song | Feb 2005 | A1 |
20050095428 | Dicarlo | May 2005 | A1 |
20050129775 | Lanphere | Jun 2005 | A1 |
20050196449 | Dicarlo | Sep 2005 | A1 |
20050226935 | Kamath | Oct 2005 | A1 |
20050238870 | Buiser | Oct 2005 | A1 |
20050263916 | Lanphere | Dec 2005 | A1 |
20060045900 | Richard | Mar 2006 | A1 |
20060116711 | Elliott | Jun 2006 | A1 |
20070110786 | Tenney | May 2007 | A1 |
Number | Date | Country |
---|---|---|
A7618698 | Oct 1998 | AU |
3834705 | Apr 1990 | DE |
4201461 | Jul 1993 | DE |
94148686 | Dec 1994 | DE |
29724255 | Oct 2000 | DE |
10026620 | Mar 2002 | DE |
0067459 | Dec 1982 | EP |
0122624 | Oct 1984 | EP |
0123235 | Oct 1984 | EP |
0243165 | Oct 1987 | EP |
0294206 | Dec 1988 | EP |
0402031 | Dec 1990 | EP |
0422258 | Apr 1991 | EP |
0458079 | Nov 1991 | EP |
0458745 | Nov 1991 | EP |
0470569 | Feb 1992 | EP |
0547530 | Jun 1993 | EP |
0600529 | Jun 1994 | EP |
0623012 | Nov 1994 | EP |
0706376 | Apr 1996 | EP |
0730847 | Sep 1996 | EP |
0744940 | Dec 1996 | EP |
0764047 | Mar 1997 | EP |
0797988 | Oct 1997 | EP |
0993337 | Apr 2000 | EP |
2096521 | Mar 1997 | ES |
59196738 | Nov 1984 | JP |
62045637 | Feb 1987 | JP |
4074117 | Mar 1992 | JP |
6057012 | Mar 1994 | JP |
9110678 | Apr 1997 | JP |
9112823 | May 1997 | JP |
9165328 | Jun 1997 | JP |
9316271 | Dec 1997 | JP |
10130329 | May 1998 | JP |
2000189511 | Jul 2000 | JP |
255409 | Feb 1997 | NZ |
517377 | Aug 2003 | NZ |
421658 | Feb 2001 | TW |
9112823 | Sep 1991 | WO |
9221327 | Dec 1992 | WO |
9300063 | Jan 1993 | WO |
9319702 | Oct 1993 | WO |
9410936 | May 1994 | WO |
9503036 | Feb 1995 | WO |
9522318 | Aug 1995 | WO |
9533553 | Dec 1995 | WO |
9637165 | Nov 1996 | WO |
9639464 | Dec 1996 | WO |
9804616 | Feb 1998 | WO |
9810798 | Mar 1998 | WO |
9826737 | Jun 1998 | WO |
9847532 | Oct 1998 | WO |
9900187 | Jan 1999 | WO |
9912577 | Mar 1999 | WO |
9943380 | Sep 1999 | WO |
9951278 | Oct 1999 | WO |
9957176 | Nov 1999 | WO |
0023054 | Apr 2000 | WO |
0032112 | Jun 2000 | WO |
0040259 | Jul 2000 | WO |
0066183 | Nov 2000 | WO |
0071196 | Nov 2000 | WO |
0074633 | Dec 2000 | WO |
0112359 | Feb 2001 | WO |
0179011 | Mar 2001 | WO |
0166016 | Sep 2001 | WO |
0170291 | Sep 2001 | WO |
0172281 | Oct 2001 | WO |
0176845 | Oct 2001 | WO |
0193920 | Dec 2001 | WO |
0217848 | Jan 2002 | WO |
0211696 | Feb 2002 | WO |
0234298 | May 2002 | WO |
0234299 | May 2002 | WO |
0234300 | May 2002 | WO |
0243580 | Jun 2002 | WO |
03013552 | Feb 2003 | WO |
03016364 | Feb 2003 | WO |
03051451 | Jun 2003 | WO |
03082359 | Oct 2003 | WO |
2004019999 | Mar 2004 | WO |
2004020042 | Mar 2004 | WO |
2004040972 | May 2004 | WO |
2004073688 | Sep 2004 | WO |
2004075989 | Sep 2004 | WO |
Entry |
---|
“Fibroid Treatment Collective Fibroid Embolization,” 2 pages, http://www.fibroids.org. |
“Injectable Tissue Implant Could Repair Ravages of Surgery”, Clemson University, Biotech Week, Oct. 22, 2003, p. 117. |
“Pulmonary artery pseudoaneurysm/aneurysm,” http://www.mamc.amedd.army.mil/williams/chest/vascular/paaneurysm/paaneyrysm.htm, 2 pages. |
“Smart Sutures Tie Themselves”, Apr. 26, 2002, http://www.sciam.com/article.cfm?articleID=00047706-121F-1CDO-B4A8809EC588, 2 pages. |
Abbara et al., “Transcervical Expulsion of a Fibroid as a Result of Uterine Artery Embolization for Leiomyomata”, JVIR, vol. 10, No. 4, pp. 409-411, 1999. |
Abrahams, J.M. et al., “Delivery of Human Vascular Endothelial Growth Factor with Platinum Coils Enhances Wall Thickening and Coil Impregnation in a Rat Aneurysm Model”, AJNR Am. J. Neuroradiol. 22:1410-1417, Aug. 2001. |
Abrahams, J.M. et al., “Topic Review: Surface Modifications Enhancing Biological Activity of Guglielmi Detachable Coils in Treating Intracranial Aneurysms”, Surg. Neurol. 54:34-41, 2000. |
Ahuja, A.A., “Platinum Coil Coatings to Increase Thrombogenicity: A Preliminary Study in Rabbits”, AJNR Am. J. Neuroradiol. 14:794-798; Jul./Aug. 1993. |
Antibody Labeling, http://www.altcorp.com/AffinityLabelinglablaeling.htm, pp. 1-6, May 20, 2003. |
Bachtsi, A.R. et al., “An Experimental Investigation of Enzyme Release from Poly (vinyl alcohol) crosslinked Microspheres”, J. Microencapsulation, vol. 12, No. 1, pp. 23-35; 1995. |
Barr, J.D., et al., “Polyvinyl Alcohol Foam Particles Sizes and Concentrations Injectable through Microcatheters”, JVIR, vol. 9, No. 1, pp. 113-118; 1998. |
Barton, P. et al., “Embolization of Bone Metastases,” Journal of Vascular and Interventional Radiology, 7(1):81-88 (Jan.-Feb. 1996). |
Battinelli, L. et al., “New Class of Poly(vinyl alcohol) Polymrs as Column-Chromatography Stationary Phases for Candida rugosa Lipase Isoforms Separation”, J. Chromatogr A, vol. 753, No. 1, pp. 47-55; 1996. |
Beaujeux, R. et al., “Trisacryl Gelatin Microspheres for Therapeutic Embolization, II: Preliminary Clinical Evaluation in Tumors and Arteriovenous Malformations,” AJNR Am. I Neuroradiol., 17:541-548, Mar. 1996. |
Berenstein, A. et al., “Catheter and Material Selection for Transarterial Embolization: Technical Considerations.”, Radiology, vol. 132, No. 3, pp. 631-639; 1979. |
Berenstein, A. et al., “Microembolization Techniques of Vascular Occlusion: Radiologic, Pathologic, and Clinical Correlation”, AJNR Am I Neuroradiol, vol. 2, No. 3, pp. 261-267; 1981. |
Berkowitz, R.P. et al., “Vaginal Expulsion of Submucosal Fibroids After Uterine Artery Embolization”, Journal of Reproductive Medicine, vol. 44, No. 4, pp. 373-376; Apr. 1999 http://www.reproductivemedicine.com. |
Bourke et al., “Protein Drug Release from Photocrosslinked Poly(vinyl alcohol) Hydrogels,” Society for Biomaterials 28th Annual Meeting Transactions, p. 144 (2002). |
Bradley, E.A. et al., “Transcatheter Uterine Artery Embolisation to Treat Large Uterine Fibroids”, British Journal of Obstetrics and Gynaecology, vol. 105, pp. 235-240; Feb. 1998. |
Brockmann, J. et al., “Radiolabeling of p-Bz-DOTA-CD-1 lc antibody with HY : Conjugation, Labeling, Biodistribution studies”, 2 pages, 2000 http://www.kernchemie.uni-mainz.de/downloads/jb2000/b14 brockmann.pdf. |
Bruix, J. et al., “Transarterial Embolization Versus Symptomatic Treatment in Patients With Advanced Hepatocellular Carcinoma: Results of a Randomized, Controlled Trial in a Single Institution”, Hepatology, Jun. 1998, vol. 27, No. 6, pp. 1578-1583, http://www.hepatitiscentral.com/hcv/hcc/embolization/references.html. |
Buhle, Jr. EL, “Re: Re: Hepatic Arterial Embolization”, UCLA Medicine Online, Mar. 10, 1996, http://www.meds.com/archive/mol-cancer/1996/msg00128.html, 2 pages. |
Burczak, et al., “Long-term in vivo performance and biocompatibility of poly (vinyl alcohol) hydrogel macrocapsules for hybrid-type artificial pancreas”, Biomaterials, vol. 17, No. 24, pp. 2351-2356, 1996. |
Burczak, et al., “Polymeric materials for biomedical purposes obtained by radiation methods. V. hybrid artificial pancreas”, Polim Med, vol. 24, No. 1-2, pp. 45-55, 1994 (Summary). |
Capozza et al., “Endoscopic treatment of vesico-ureteric reflux and urinary incontinence: technical problems in the paediatric patient,”British Journal of Urology, 75(4):538-542 (Apr. 1995). |
Carroll, B.A. et al., “Gelatin Encapsulated Nitrogen Microbubbles as Ultrasonic Contrast Agents”, Journal of Clinical and Laboratory Research, vol. 15, No. 1, pp. 260-266, Feb. 1980. |
Carroll, B.A. et al., “Microbubbles as Ultrasonic Contrast Agents”, Investigative Radiology, vol. 14, No. 3, p. 374, Supplement to May-Jun. 1979. |
Carstensen, E.L. et al., “Determination of the Acoustic Properties of Blood and its Components”, Journal of Acoustical Society of America, vol. 25, No. 2, pp. 286-289, Mar. 1953. |
Choe, et al., “An experimental study of embolic effect according to infusion rate and concentration of suspension in transarterial particulate embolization”, Invest Radiol, vol. 32, No. 5, pp. 260-270, 1997. |
Chuang et al., “Experimental Canine Hepatic Artery Embolization with Polyvinyl Alcohol Foam Particles”, Departments of Diagnostic Radiology and Veterinary Medicine, The University of Texas, M.D. Anderson Hospital and Tumor Institute at Houston, Texas, pp. 21-25, Oct. 1982. |
Cirkel, U. et al., “Experience with Leuprorelin Acetate Depot in the Treatment of Fibroids: A German Multicentre Study”, Clinical Therapeutics, vol. 14, Suppl. A, 1992. |
Clarian Health Methodist Indiana Lions Gamma Knife Center, “Arteriovenous Malformation,” http://www.clarian.com/tyhealth/gammaknife/cond arter.asp, 4 pages, Last Updated on Mar. 20, 2000. |
Colombo M, “Treatment of Hepatocellular Carcinoma”, Journal of Viral Hepatitis, 4 (Suppl. 1):125-130 (1997), http://home.texoma.net/moreland/stats/hcc-9.html. |
Concentric Medical, Inc.—Product Information (3 pages), 2002. |
Cruise et al., “In Vitro and In Vivo Characterization of a Hydrogel-Based Aneurysm Embolization System,” Society for Biomaterials 28th Annual Meeting Transactions, p. 203 (2002). |
de Gast, A.N. et al., “Transforming Growth Factor 2-coated Platinum Coils for Endovascular Treatment of Aneurysms: An Animal Study”, Neurosurgery, vol. 49, No. 3, pp. 690-696, Sep. 2001. |
Deasy, P. B., “Microencapsulation and Related Drug Processes”, New York, NY, Marcel Dekker, Inc., 345 pages, 1984 (Table of Contents only). |
Derdeyn, et al., “Collagen-coated acrylic microspheres for embolotherapy: in vivo and in vitro characteristics”, American Journal of Neuroradiology, vol. 18, No. 4, pp. 647-653, 1997. |
Derdeyn, et al., “Polyvinyl alcohol particle size and suspension characteristics”, American Journal of Neuroradiology, vol. 16, pp. 1335-1343, 1995. |
DiLuccio et al., “Sustained-Release Oral Delivery of Theophylline by Use of Polyvinyl Alcohol and Polyvinyl Alcohol-Methyl Acrylate Polymers”, Journal of Pharmaceutical Sciences, vol. 83, No. 1, pp. 104-106, Jan. 1994. |
Duckwiler et al., “Catheters, embolic agents spark neurointervention,” Diagnostic Imaging, 16(5):66-72 (May 1994). |
Ersek et al., “Bioplastique: A New Textured Copolymer Microparticle Promises Permanence in Soft-Tissue Augmentation,” Plastic and Reconstructive Surgery, 87(4):693-702 (Apr. 1991). |
Eskridge, “Interventional Neuroradiology,” Radiology, 172:991-1006 (Nov. 1989). |
Feldman, L. et al., “Transcatheter Vessel Occlusion: Angiographic Results Versus Clinical Successl”, Radiology, vol. 147, pp. 1-5, Apr. 1983. |
Ferrofluids, Physical Properties and Applications Ferrofluidics Corp., Nashua, NH, 5 pages, 1986. |
FeRx Incorporated, FERX Profile http://www.biotechshares.com/FERX.htm, 4 pages (Retrieved from the internet on Jun. 26, 2003). |
Fritzsch, T. et al., “SH U 508, A Transpulmonary Echocontrast Agent”, Investigative Radiology, vol. 25, Supplement 1, pp. S160-S161, Sep. 1990. |
Fujimoto, S. et al., “Biodegradable Mitomycin C Microspheres Given Intra-Arterially for Inoperable Hepatic Cancer”, Cancer, vol. 56, pp. 2404-2410, 1985. |
Gander, et al., “Effect of polymeric network structure on drug release from cross-linked poly(vinyl alcohol) micromatrices”, Pharm Res, vol. 6, No. 7,p. 578-584, 1989. |
Germano, et al., “Histopathological follow-up study of 66 cerebral arteriovenous malformations after therapeutic embolization with polyvinyl alcohol”, J Neurosurg, vol. 76, No. 4, pp. 607-614, 1992. |
Geschwind et al., “Chemoembolization of Liver Tumor in a Rabbit Model: Assessment of Tumor Cell Death with Diffusion-Weighted MR Imaging and Histologic Analysis”, Journal of Vascular and Interventional Radiology, vol. 11, No. 10, pp. 1244-1255, Dec. 2000. |
Gilbert, W.M. et al., “Angiographic Embolization in the Management of Hemorrhagic Complications of Pregnancy”, American Journal of Obstetrics and Gynecology, vol. 166, No. 2, pp. 493-497, Feb. 1992. |
Gohel, et al., “Formulation design and optimization of modified-release microspheres of diclofenac sodium”, Drug Dev Ind Pharm, vol. 25, No. 2, pp. 247-251, 1999. |
Goldberg, B.B., “Ultrasonic Cholangiography”, Radiology, vol. 118, pp. 401-404, Feb. 1976. |
Goodwin, et al., “Overview of embolic agents and their indications”, Eleventh Annual International Symposium on Endovascular Therapy, pp. 303-306, 1999. |
Goodwin, et al., “Preliminary experience with uterine artery embolization for uterine fibroids”, Journal of Vascular and Interventional Radiology, vol. 8, No. 4, pp. 517-526, 1997. |
Gramiak, R. et al., “Ultrasound Cardiography: Contrast Studies in Anatomy and Function”, Radiology, vol. 92, No. 5, pp. 939-948, Apr. 1969. |
Gramiak et al., “Echocardiography of the Aortic Root,” Investigative Radiology, 3 (5):356-366 (Sep.-Oct. 1968). |
Grandfils, et al., “Preparation of poly (D,L) lactide microspheres by emulsion solvent evaporation, and their clinical implications as a convenient embolic material”, J Biomed Mater Res, vol. 26, No. 4, pp. 467-479, 1992. |
Greenwood, L.H. et al., “Obstetric and Nonmalignant Gynecologic Bleeding: Treatment with Angiographic Embolization”, Radiology, vol. 164, No. 1, pp. 155-159, Jul. 1987. |
Gupta et al., “Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films,” Biomaterials, 23:863-871 (2002). |
Halstenberg et al., “Biologically Engineered Protein-graft-Poly(ethylene glycol) Hydrogels: A Cell Adhesive and Plasmin-Degradable Biosynthetic Material for Tissue Repair,” Biomacromolecules, 3(4):710-723 (2002). |
Hamada et al., “Embolization with Cellulose Porous Beads, II: Clinical Trial,” AJNR Am. J. Neuroradiol., 17:1901-1906 (Nov. 1996). |
Hirano et al., “Transcutaneous Intrafold Injection for Unilateral Vocal Fold Paralysis: Functional Results,” Ann. Otol. Rhinol Laryngol., 99(8):598-604 (Aug. 1990). |
Horak et al., “Hydrogels in endovascular embolization. I. Spherical particles of poly (2-hydroxyethyl methacrylate) and their medico-biological properties”, Biomaterials, 7 (3):188-192 (May 1986). |
Horak et al., “Hydrogels in endovascular embolization. II. Clinical use of spherical particles”, Biomaterials, 7(6):467-470 (Nov. 1986). |
Huang, et al., “Percutaneous endovascular embolization of intracerebral arteriovenous malformations. Experience in 72 cases”, Chin Med J, vol. 108, No. 6, pp. 413-419, 1995. |
Jack, et al., “Radiolabeled polyvinyl alcohol particles: a potential agent to monitor embolization procedures”, Int J Rad Appl Instrum B, vol. 13, No. 3, pp. 235-243, 1986. |
Jiaqi, Y. et al., “A New Embolic Material: Super Absorbent Polymer (SAP) Microsphere and Its Embolic Effects,” Nippon Acta Radiologica, 56:19-24 (1996) (Abstract). |
Jones, S.K. et al., “Experimental Examination of a Targeted Hyperthermia System Using Inductively Heated Ferromagnetic Microspheres in Rabbit Kidney”, Phys. Med. Biol., vol. 46, No. 2, pp. 385398, Feb. 2001, www.iop.org/Journals/pb. |
Joy C, et al., “Use of Preoperative Embolization in the Treatment of Vascular Metastatic Lesions of the Spine,” http://www.aaos.org/wordhtml/anmeet91/scipro/ppr472.htm, Mar. 12, 1991. |
Jung et al., “Sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)s facilitate the preparation of small negatively charged biodegradable nanospheres,” Journal of Controlled Release, 67:157-169 (2000). |
Kai, et al., “The utility of the microcrystalline cellulose sphere as a particulate embolic agent: an experimental study”, American Journal of Radiology, vol. 21, No. 6, pp. 1160-1163, 2000. |
Kallmes, D.F. et al., “In Vitro Proliferation and Adhesion of Basic Fibroblast Growth Factor-producing Fibroblasts on Platinum Coils”, Radiology, vol. 206, No. 1, pp. 237-243, Jan. 1998. |
Kan, et al., “In vivo microscopy of the liver after injection of lipiodol into the hepatic artery and portal vein in the rat”, Acta Radiologica, vol. 30, pp. 419-425, 1989. |
Kerber, “Flow-Controlled Therapeutic Embolization: A Physiologic and Safe Technique”, AJR, vol. 134, pp. 557-561, Mar. 1980. |
Kerber, C., “Balloon Catheter with a Calibrated Leak”, Radiology, vol. 120, pp. 547-550, Sep. 1976. |
Kerber et al., “Polyvinyl Alcohol Foam: Prepackaged Emboli for Therapeutic Embolization”, American Journal Roentgenol, vol. 130, pp. 1193-1194, Jun. 1978. |
Khankan et al., “Embolic Effects of Superabsorbent Polymer Microspheres in Rabbit Renal Model: Comparison with Tris-acryl Gelatin Microspheres and Polyvinyl Alcohol,” Radiation Medicine, 22(6):384-390 (2004). |
Kim, et al., “Composite poly(vinyl alcohol) beads for controlled drug delivery”, Pharm Res, vol. 9. No. 1, pp. 10-16, 1992. |
Kim et al., “Hollow Silica Spheres of Controlled Size and Porosity by Sol-Gel Processing,” J. Am. Ceram. Soc., 74(8):1987-1992 (Aug. 1991). |
Kim et al., “Poly(vinyl alcohol) beads with core-shell structure for drug delivery,” Cosmetic and Pharmaceutical Applications of Polymers, Plenum Press, New York, pp. 209-214 (1991). |
Kim et al., “Suspension polymerized poly(vinyl alcohol) beads for drug delivery,” Polymeric Materials: Science and Engineering, Proceedings of the ACS Division of Polymeric Materials: Science and Engineering, 63:64-67 (1990). |
Kochan, J.P. et al., “Interventional Neuroradiology: Current Practices and Techniques at Temple University Hospital,” http://www.temple.edu/radiology/stroke.html, 5 pages. |
Krinick et al., “A polymeric drug delivery system for the simultaneous delivery of drugs activatable by enzymes and/or light,” J. Biomater. Sci. Polymer Edn, 5 (4):303-324 (1994). |
Kuhn, R. et al., “Embolic Occlusion of the Blood Supply to Uterine Myomas: Report of 2 Cases”, Aust. NZ. J. Obstet. Gynaecol., vol. 39, No. 1, pp. 120-122, Feb. 1999. |
Kurata, et al., “Preoperative embolization for meningiomas using PVA particles”, No Shinkei Geka, vol. 20, No. 4, pp. 367-373, 1992 (Abstract). |
Kurbatova, G.T. et al., “Magnetically-guided Anesthetics Based on Highly Dispersed Iron Powders Coated by Polyacrylamide”, Biofizika, vol. 47, No. 2, pp. 331-337, Mar.-Apr. 2002 http://intapp.medscape.com/px/medlineapp (Abstract). |
Kurosaki et al., “Evaluation of PVA-Gel Spheres as GI-Transit Time Controlling Oral Drug Delivery System”, Proceedings of the 19th International Symposium on Controlled Release of Bioactive Materials, Orlando, Florida, pp. 273-274, Jul. 26-31, 1992. |
Kusano, et al., “Low-dose particulate polyvinylalcohol embolization in massive small artery intenstinal hemorrahage. Experimental and clinical results”, Invest Radiol, vol. 22, No. 5, pp. 388-392, 1987. |
Labarre et al., “Complement activation by substituted polyacrylamide hydrogels for embolisation and implantation”, Biomaterials, vol. 23, pp. 2319-2327, 2002. |
Lammer, et al., “Transcatheteral embolization with polyvinyl alcohol-technic and experimental investigations”, Rontgenblatter, vol. 36, No. 1, pp. 10-14, 1983 (Abstract). |
Latchaw et al., “Polyvinyl Foam Embolization of Vascular and Neoplastic Lesions of the Head, Neck, and Spine”, Radiology, vol. 131, pp. 669-679, Jun. 1979. |
Laurent, “Materials and biomaterials for interventional radiology,” Biomed. & Pharmacother., 52:76-88 (1998). |
Lemperle et al., “PMMA Microspheres for Intradermal Implantation: Part I. Animal Research,” Annals of Plastic Surgery, 26(1):56-63 (Jan. 1991). |
Lendlein, A. et al., “Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications”, Science, vol. 296, pp. 1673-1676, May 31, 2002. |
Leung et al., “Determinants of Postembolization Syndrome after Hepatic Chemoembolization”, Journal of Vascular and Interventional Radiology, vol. 12, No. 3, pp. 320-326, Mar. 2001. |
Leventon, William, “Hemocompatible Coatings for Blood-Contacting Devices”, Medical Device & Diagnostic Industry: Coating Technologies—New Methods to Ensure Blood Compatibility, vol. 25, No. 8, pp. 62-67, Aug. 2003. |
Levy et al., “Transcatheter Uterine Artery Embolization for the Treatment of Symptomatic Uterine Fibroid Tumors,”-Journal of Women's Imaging, 2(4):168-175 (2000). |
Lipman, “Uterine artery embolization for the treatment of symptomatic uterine fibroids: A review,” Applied Radiology, 29(7):15-20 (Jul. 2000). |
Lowery, C.L. et al., “Screening Tests for Intrauterine Growth Retardation: A Comparison of Umbilical Artery Doppler to Real-Time Ultrasound”, Echocardiography, vol. 7, No. 2, pp. 159-164, Mar. 1990. |
Marich, K.W. et al., “Real-Time Imaging with a New Ultrasonic Camera: Part I, In Vitro Experimental Studies on Transmission Imaging of Biological Structures”, Journal of Clinical Ultrasound, vol. 3, No. 1, pp. 5-16, Mar. 1975. |
Markoff, et al., “Uterine arteriovenous malformation successfully embolized with a liquid polymer, . isobutyl 2-cyanoacrylate”, Am. J. Obstet. Gynecol., 155:659-660 (Sep. 1986). |
Markus et al., “Experimental Aspects of High-Intensity Transient Signals in the Detection of Emboli,” J. Clin. Ultrasound., 23(2):81-87 (Feb. 1995). |
Maruhashi, “Modified Polyvinyl Alcohols I and II,” Polyvinyl Alcohol-Developments John Wiley & Sons, Chichester, England, pp. 160-161 and pp. 186-191 (1992). |
Marx, W. F. et al., “Endovascular Treatment of Experimental Aneurysms by Use of Biologically Modified Embolic Devices: Coil-mediated Intraaneurysmal Delivery of Fibroblast Tissue Allografts”, AJNR. Am. J. Neuroradiol., vol. 22, pp. 323-333, Feb. 2001. |
Mather, P.T., Research Group Homepage, Basic Goals and Methods, http:// www.ims.uconn.edu/--mather, 4 pages. |
Matsumaru, et al., “Embolic materials for endovascular treatment of cerebral lesions”, J Biomater Sci Polym Ed, vol. 8, No. 7, pp. 555-569, 1997. |
Matsumoto, H. et al., “Basic Fibroblast Growth Factor Released from a Platinum Coil with a Polyvinyl Alcohol Core Enhances Cellular Proliferation and Vascular Wall Thickness: An In Vitro and In Vivo Study”, Neurosurgery, vol. 53, No. 2, pp. 402-408; Aug. 2003. |
Matsumoto, Y. et al., “Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide”, Science, vol. 291, pp. 854-856, Feb. 2, 2001 www.sciencemag.org. |
Mavligit, G. et al., “Gastrointestinal Leiomyosarcoma Metastatic to the Liver,” Cancer, 75(8):2083-2088 (Apr. 15, 1995). |
McIvor, J. et al., “Pregnancy After Uterine Artery Embolization to Control Haemorrhage from Gestational Trophoblastic Tumour”, British Journal of Radiology, vol. 69, No. 823, pp. 624-629, Jul. 1996. |
MerocelXL Sponge with Hytrol http://www.xomed.cominewproducts/merocelxl/merocelxl—earwick.asp, 3 pages, 2001. |
Mid-America Interventional Radiological Society, “New Treatment for Uterine Fibroids Avoids Surgery,” http://www.mirs.org/fibroids.htm, 6 pages, Submitted in Oct. 1999. |
Moroz, P. et al., “Arterial Embolization Hyperthermia in Porcine Renal Tissue”, Journal of Surgical Research, vol. 105, No. 2, pp. 209-214, Jun. 15, 2002. |
Moroz, P. et al., “Hepatic Clearance of Arterially Infused Ferromagnetic Particles”, Int. J. |
Nakabayashi, et al., “Evaluation of particulate embolic materials with MR imaging, scanning electron microscopy, and phase-contrast microscopy”, American Journal of Neuroradiology, vol. 18, No. 3, pp. 485-491, 1997. |
Nakstad, et al., “Embolization of intracranial arteriovenous malformations and fistulas with polyvinyl alcohol particles and platinum fibre coils”, Neuroradiology, vol. 34, No. 4, pp. 348-351, 1992. |
Namiki, “Application of Teflon Paste for Urinary Incontinence—Report of 2 Cases,” Uro. Int., 39:280-282 (1984). |
Nash, et al., “Modifications of polystyrenic matrices for the purification of proteins. II. Effect of the degree of glutaraldehyde-poly(vinyl alcohol) crosslinking on various dye ligand chromatography systems”, J Chromatogr A, vol. 776, No. 1, pp. 55-63, 1997. |
Nikishin LF et al., “Interventional radiology in diffuse toxic goiter”, European Congress of Radiology, Abstract 9041, 1999, http://www.ecr.org/conferences/ecr1999/sciprg/abs/p090041.htm, 7 pages. |
Ophir, et al., “Ultrasonic backscatter from contrast producing collagen microspheres”, Ultrasonic Imaging, vol. 2, pp. 67-77, 1980. |
Oregon Health Sciences University, “Fibroid Embolization,” http://www.uhmc.edu/dotter-fibroid, 34 pages. |
Orienti et al., “Crosslinked Polyvinylalcohol Hydrogels as Vehicles for Hydrophilic Drugs,” Arch. Pharm. Pharm. Med. Chem., 333:421-424 (2000). |
Orsini, L. F. et al., “Pelvic Organs in Premenarcheal Girls: Real-Time Ultrasonography”, Radiology, vol. 153, No. 1, pp. 113-116, Oct. 1984. |
Parker, et al., “A particulate contrast agent with potential for ultrasound imaging of liver”, Ultrasound in Medicine and Biology, vol. 13, No. 9, pp. 555-566, 1987. |
Pedley et al., “Hydrogels in Biomedical Applications,” British Polymer Journal, 12:99-110 (Sep. 1980). |
Pesant A.C. et al., “Dural fistulas involving the cavernous sinus: Treatment by embolization—7 cases”, European Congress of Radiology, Abstract 3-088, 1997, http://www.ecr.org/conferences/ecr1997/sciprg/abs/9703088p.htm, 1 page. |
Phillips, D. R. et al., “Experience with Laparoscopic Leiomyoma Coagulation and Concomitant Operative Hysteroscopy”, J. Am. Assoc. Gynecol. Laparosc, vol. 4, No. 4, pp. 425-533,-Aug. 1997. |
Physicians' Desk Reference Family Guide to Women's Health, “Chapter 7—Common Disorders of the Reproductive System,” http://www.healthsquare.com/pdrfewhichapters/whlch01.htm, 24 pages. |
Pistel et al., “Brush-like branched biodegradable polyesters, part III Protein release from microspheres of poly(vinyl alcohol)-graft-poly(D,L-lactic-co-glycolic acid),” Journal of Controlled Release, 73:7-20 (2001). |
Politano et al., “Periurethral Teflon Injection for Urinary Incontinence,” The Journal of Urology, 111:1801183 (1974)-. |
Poppe, W. et al., “Pregnancy after Transcatheter Embolization of a Uterine Arteriovenous Malformation”, Am. I Obstet. Gynecol., vol. 156, No. 5, pp. 1179-1180, May 1987. |
Pritchard, et al., “Poly(Vinyl Alcohol): Basic Properties and Uses”, London, England: Gordon and Breach Science Publishers, pp. 95-97, 1970. |
Progelhof et al., “Table 4.21. Properties of electrical insulating films (101),” Polymer Engineering Principles: Properties, Processes, and Tests for Design, Hanser Publishers, Munich, p. 383 (1993). |
Pryor J. and Berenstein A., “Epistaxis (Nose-bleeds),” http://www.wehealny.org/inn/Radiology/nosebleeds.html, 1 page. |
Purdy, et al., “Arteriovenous malformations of the brain: choosing embolic materials to enhance safety and ease of excision”, J Neurosurg, vol. 77, No. 2, pp. 217-222, 1992. |
PVA Plus, AngioDynamics Inc., “Reliable PVA Foam Formulated for Consistency and Controlled Delivery Embolization Particles Ordering Information,” www.angiodynamics.com, 2 pages (Aug. 2002). |
Quisling, et al., “Histopathology analysis of intraarterial polyvinyl alcohol microemboli in rat cerebral cortex”, American Journal of Neuroradiology, vol. 5, pp. 101-104, 1984. |
Rajan et al., “Sarcomas Metastatic to the Liver: Response and Survial after Cisplatin, Doxorubicin, Mitomycin-C, Ethiodol, and Polyvinyl Alcohol Chemoembolization”, Journal of Vascular and Interventional Radiology, vol. 12, No. 2, pp. 187-193, Feb. 2001. |
Ramos, et al., “Tumor vascular signals in renal masses: detection with Doppler US”, Radiology, vol. 168, No. 3, pp. 633-637, 1988. |
Ravina, J.H. et al., “Advantage of Pre-Operative Embolization of Fibroids: About a Multicentric Set of 31 Cases”, Contracept. Fertil. Sex., vol. 23, No. 1, pp. 45-49, Jan. 1995 (abstract). |
Ravina, J.H. et al., “Arterial Embolisation to Treat Uterine Myomata”, Lancet, vol. 346, pp. 671-674, Sep. 9, 1995. |
Ravina, J.H. et al., “Interest of Particulate Arterial Embolization in the Treatment of Some Uterine Myoma”, Bull. Acad. Natle. Med., vol. 181, No. 2, pp. 233-246, Feb. 4, 1997 (Summary). |
Repa, I. et al., “Mortalities Associated with Use of a Commercial Suspension of Polyvinyl Alcohol,” Radiology, 170(2):395-399 (Feb. 1989). |
Rhine et al., “Polymers for Sustained Macromolecule Release: Procedures to Fabricate Reproducible Delivery Systems and Control Release Kinetics,” Journal of Pharmaceutical Sciences, 69(3):265-270 (Mar. 1980). |
Rump, A. et al., “Pharmacokinetics of Intraarterial Mitomycin C in the Chemoembolisation Treatment of Liver Metastases,” Gen. Pharmac., 27 (4):669-671 (1996). |
Schetky, “Shape-Memory Alloys,” Encyclopedia of Chemical Technology, Third Edition, vol. 20, John Wiley & Sons, New York, pp. 726-736 (1982). |
Schlief, R. et al., “Enhanced Color Doppler Echocardiography of the Left Heart After Intravenous Injection of a New Saccharide Based Agent in Humans”, Circulation, vol. 82, No. 2, p. 28, Oct. 1990 (Abstract). |
Schlief, R. et al., “Successful Opacification of the Left Heart Chamber on Echocardiographic Examination after Intravenous Injection of a New Saccharide Based Contrast Agent”, Echocardiography, vol. 7, No. 1, pp. 61-64, Jan. 1990. |
Schwarz et al., “The acoustic filter: An ultrasonic blood filter for the heart-lung machine,” J. Thorac. Cardiovasc. Surg., 104(6):1647-1653 (Dec. 1992). |
Shafik, “Intraesophageal Polytef injection for the treatment of reflux esophagitis,” Surg. Endosc., 10:329-331 (1996). |
Shape Shifters, http://www.sciam.com/tehbiz/050lscicit6.html, 3 pages, 2001. |
Shung, K.K. et al., “Scattering of Ultrasound by Blood”, IEEE Transactions on Biomedical Engineering, vol. BME-23, No. 6, pp. 460-467, Nov. 1976. |
Sigelmann, R.A. et al., “Analysis and Measurement of Ultrasound Backscattering from an Ensemble of Scatters Excited by Sine-Wave Bursts”, Journal of Acoustical Society of America, vol. 53, No. 4, pp. 1351-1355, Apr. 1973. |
SIR-Spheres, Radioactive Implant (Yttrium-90 Microspheres), Sirex Medical, Inc., San Diego, CA, Nov. 6, 2000, pp. 1-15. |
SIR-Spheres (Yttrium-90 Microspheres), pp. 1-12. |
Sirtex Medical Limited Product Description http://www.sirtex.comnp=72, 3 pages (Retrieved from the intemet on May 27, 2003). |
Sirtex Medical Limited Targeted Radiotherapy with SIR-Spheres http://www.sirtex.comnp=57, 2 pages (Retrieved from the intemet on May 27, 2003). |
Siskin et al., “Pathologic Evaluation of a Spherical Polyvinyl Alcohol Embolic Agent in a Porcine Renal Model,” J. Vasc. Interv. Radiol., 14:89-98 (2003). |
Skotland, T. et al., “In Vitro Stability Analyses as a Model for Metabolism of Ferromagnetic Particles (ClariscanTm), a Contrast Agent for Magnetic Resonance Imaging”, J. Pharm. Biomed. Anal., vol. 28, No. 2, pp. 323-329, Apr. 15, 2002. |
Smith et al., “Evaluation of Polydimethylsiloxane as an alternative in the Endoscopic Treatment of Vesicoureteral Reflux,” The Journal of Urology, 152:1221-1224 (Oct. 1994). |
Smith et al., “Left Heart Opacification with Peripheral Venous Injection of a New Saccharide Echo Contrast Agent in Dogs”, JACC, vol. 13, No. 7, pp. 1622-1628, Jun. 1989. |
Soppimath et al., “Controlled release of antihypertensive drug from the interpenetrating network poly(vinyl alcohol)-guar gum hydrogel microspheres,”.I Biomater. Sci. Polymer Edn, 11(1):27-43 (2000). |
Spickler, et al., “The MR appearance of endovascular embolic agents in vitro with clinical correlation”, Comput Med Imaging Graph, vol. 14, No. 6, pp. 415-423, 1990. |
Spies JB, “Georgetown University Medical Center. Uterine Fibroid Embolization (UFE). An alternative to surgery for patients with uterine fibroids. Literature Review,” http://www.fibroidoutions.com/pr-lit.htm, 6 pages, Sep. 1, 2001. |
Stancato-Pasik, A. et al., “Obstetric Embolotherapy: Effect on Menses and Pregnancy”, Radiology, vol. 204, No. 3, pp. 791-793, Sep. 1997. |
Stein, R. et al., “Targeting Human Cancer Xenografts with Monoclonal Antibodies Labeled Using Radioiodinated, Diethylenetriaminepentaacetic Acid-appended Peptides”, Clinical Cancer Research, vol. 5, No. 10, pp. 3079-3087, Oct. 1999 (Supplement). |
Strasnick et al., “Transcutaneous Teflon Injection for Unilateral Vocal Cord Paralysis: An Update,” The Laryngoscope, 101:785-787 (Jul. 1991). |
Stridbeck, H. et al, “Collateral Circulation Following Repeated Distal Embolization of the Hepatic Artery in Pigs,” Invest. Radiol., 19(3):179-183 (1984). |
Strunk, et al., “Treatment of congenital coronary arteriovenous malformations with microparticle embolization”, Cathet Cardiovasc Diagn, vol. 22, No. 2, pp. 133-136, 1991. |
Swanson DA et al., “The role of embolization and nephrectomy in the treatment of metastatic renal carcinoma”, Urologic Clinics of North America, 7(3):719-730, 1980. University of Pennsylvania Cancer Center—Oncolink, http://www.oncolink.upenn.edu/pdg—html/cites/00/00585.html. |
Tabata et al., “Tumor accumulation of poly(vinyl alcohol) of different sizes after intravenous injection”, Journal of Controlled Release, Voi. 50, pp. 123-133, Jan. 2, 1998. |
Tadavarthy et al., “Polyvinyl Alcohol (Ivalon)—A New Embolic Material”, The American Journal of Roentgenology Radium Therapy and Nuclear Medicine, vol. 125, No. 3, pp. 609-616, Nov. 1975. |
Tadavarthy et al., “Polyvinyl Alcohol (Ivalon) as an Embolizing Agent”, Seminars in Interventional Radiology, vol. 1, No. 2, pp. 101-109, Jun. 1984. |
Tamatani, S. et al., “Histological Interaction of Cultured Endothelial Cells and Endovascular Embolic Materials Coated with Extracellular Matrix”, J. Neurosurg., vol. 86, No. 1, pp. 109-112, Jan. 1997. |
Tao, et al., “Study of microspheres for embolization of hepatic artery”, (Translation) Acta Pharmaceutica Sinica, vol. 23, No. 1, pp. 55-60, 1988. |
Terada, et al., “Preoperative embolization of meningiomas fed by ophthalmic branch arteries”, Surg Neurol, vol. 45, No. 2, pp. 161-166, 1996. |
Thanoo, B. C. et al., “Preparation and Properties of Barium Sulphate and Methyl Iothalamate Loaded Poly(vinyl Alcohol) Microspheres as Radiopaque Particulate Emboli,” Journal of Applied Biomaterials,2:67-72(1991)-. |
Thanoo, et al., “Controlled release of oral drugs from cross-linked polyvinyl alcohol microspheres”, J Pharm Pharmacol, vol. 45, No. 1, pp. 16-20, 1993. |
Thanoo, et al., “Tantalum loaded silicone micropsheres as particulate emboli”, J Microencapsul, vol. 8, No. 1, pp. 95-101, 1991. |
The Fibroid Embolization Center of the New York United Hospital Medical Center, “Fibroid Facts,” http://www.uhmc.com/fibro2.htm, 9 pages. |
The Vanderbilt-Ingram Cancer Center, “Kidney Cancer,” http://www.mc.Vanderbilt.Edu/cancer/cancerinfo/kidney.html, 1 page, 2001. |
Thelen, V.M. et al., “Catheter Embolisation of Metastasising Renal Carcinomas Using Butyle-2-cyano-acrylate”, Fortschr. Rontgenstr., vol. 124, No. 3, pp. 232-235, Mar. 1976 (Abstract). |
Tian et al., “Design and synthesis of amphiphilic poly (ethylene glycol) derivatives as micellar drug delivery systems,” Polymer Preprints, 43(2):719-720 (Fall 2002). |
Tikkakoski, et al., “Preoperative embolization in the management of neck paragangliomas”, Laryngoscope, vol. 107, pp. 821-826, 1997. |
Toon, “Improving a Key Weapon Against Cancer,” Research Horizons, pp. 11-12, Spring/Summer 2001. |
Touho, et al., “Intravascular treatment of spinal arteriovenous malformations using a microcatheterwith special reference to serial xylocaine tests and intravascular pressure monitoring”, Surgical Neurology, vol. 42, No. 2, pp. 148-156, 1994. |
UCLA Radiological Sciences, “A summary of terms appearing in this text,” http://www.radsci.ucla.edu:8000/aneurysm/terms.html, 1 page. |
University Medical Center SUNY Stony Brook, Department of Urology, “Variococele and its treatment,” http://www.hsc.sunysb.edu/urology/male—inf...variocoele—and—its—treatment.html, 8 pages, Last Updated on Mar. 12, 2001. |
Vivas S et al., “Fistula arterioportal y hemobilia en ur paciente con trasplante hepatico” Gastroenterol Hepatol, 21(2):88-89, http://www.doyma.es/copiani/revistas/gastro/abstr/abs—p080.html, Feb. 1998 (Abstract). |
Vogel F, “Nonsurgical Management of Uterine Fibroids,” http://www.holyname.org/brochure/fibroids.html, 5 pages. |
Wakhloo, et al., “Extended preoperative polyvinyl alcohol microembolization of intracranial meningiomas: Assessment of two embolization techniques”, American Journal of Neuroradiology, vol. 14, pp. 571-582, 1993. |
Walker WJ, “Non Surgical Treatment of Fibroids in the UK by Uterine Artery Embolisation An Alternative to Hysterectomy, Myomectomy and Myolysis,” http://www.fibroids.co.uk/thepaper.html, 2 pages, 2002. |
Walsh RM et al., “Role of Angiography and Embolization for Acute Massive Upper Gastronintestinal Hemorrhage,” J. Gastrointest. Surg., 3:61-66 (1999). |
Waltman, A.C. et al., “Technique for Left Gastric Artery Catheterization”, Radiology, vol. 109, No. 3, pp. 732-734, Dec. 1973. |
White, Jr., “Embolotherapy in Vascular Disease,” American Journal of Roentgenology, 142:27-30—(JaritiaTy 1984). |
Widder, K. et al., “Magnetic Microspheres: Synthesis of a Novel Parenteral Drug Carrier”, Journal of Pharmaceutical Sciences, vol. 68, No. 1, pp. 79-82, Jan. 1979. |
Widder, K.J. et al., “Selective Targeting of Magnetic Microspheres Containing Adriamycin: Total Remission in Yoshida Sarcoma-Bearing Rats”, Proceedings of the 16th Annual Meeting of American Society of Clinical Oncology, May 26-27, 1980, San Diego, CA, p. 261. |
Wikholm G et al., “Embolization of Cerebral Arteriovenous Malformations: Part I Technique, Morphology, and Complications”, Neurosurgery, 39(3):448-459 (Sep. 1996). |
Winters et al., “Periurethral injection of collagen in the treatment of intrinsic sphincteric deficiency in the female patient,” The Urologic Clinics of North America, 22(3):673-678 (Aug. 1995). |
Worthington-Kirsch, et al., “Uterine arterial embolization for the management of leiomyomas: Quality-of-life assessment and clinical response”, Radiology, vol. 208, No. 3, 625-629, 1998. |
Worthington-Kirsch RL, “Interventionalists offer management option for uterine fibroids,” Diagnostic Imaging, 21(3):47-49, Mar. 1999, http://www.dimag.com/references/9903wortrefs.html. |
Wright, K.C. et al., “Partial Splenic Embolization Using Polyvinyl Alcohol Foam, Dextran, Polystyrene, or Silicone,” Radiology, 142:351-354, Feb. 1982. |
Wu, A.M., “Engineered Antibodies for Breast Cancer Imaging and Therapy,” http://www.cbcrp.org/research/PageGrant.asp?grant—id=111, 3 pages, 1996. |
Yamada, T. et al., “Extended Intraarterial Cisplatin Infusion for Treatment of Gynecologic Cancer After Altercation of Intrapelvic Blood Flow and Implantation of a Vascular Access Device”, Cardiovasc. Intervene. Radiol., vol. 19, pp. 139-145, 1996. |
Yamashita, Y. et al., “Transcatheter Arterial Embolization of Obstetric and Gynaecological Bleeding: Efficacy and Clinical Outcome”, British Journal of Radiology, vol. 67, pp. 530-534, Jun. 1994. |
Yoon et al., “Surface Immobilization of Galactose onto Aliphatic Biodegradable Polymers for Hepatocyte Culture,” Biotechnol. Bioeng., 78(1):1-10 (Apr. 5, 2002). |
Yusi et al., “Submuscosal Injection of Polyvinyl Alcohol in Artificially Created Vesico-Ureteral Reflux: A Preliminary Report,” Asian J. Surg., 18(2):122-127 (Apr. 1995). |
Zisch et al., “Covalently conjugated VEGF-fibrin matrices for endothelialization,” Journal of Controlled Release, 72:101-113 (2001). |
Ziskin, M.C. et al., “Contrast Agents for Diagnostic Ultrasound”, Investigative Radiology, vol. 7, No. 6, pp. 500-505, Nov.-Dec. 1972. |
Zou , Ying-hua, et al. ‘Experimental Canine Hepatic Artery Embolization with Polyvinyl Alcohol Microspheres,’ Zhong Hua Fang-She Xue ZaZhi, 23(6):330-332 (1989). |
Number | Date | Country | |
---|---|---|---|
20110213358 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11117156 | Apr 2005 | US |
Child | 13106563 | US |