1. Field
This specification relates generally to tissue treatment systems and more particularly, but without limitation, to a reduced pressure tissue treatment system having a porous substrate with a compressed region and an expanded region.
2. Description of Related Art
Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but one particular application of reduced pressure involves treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, including migration of epithelial and subcutaneous tissues, improved blood flow, and micro-deformation of tissue at the wound site. Together these benefits result in increased development of granulation tissue and faster healing times. Typically, reduced pressure is applied by a reduced pressure source to tissue through a porous pad or other manifold device. The porous pad contains cells or pores that are capable of distributing reduced pressure to the tissue and channeling fluids that are drawn from the tissue. The porous pad often is incorporated into a dressing having other components that facilitate treatment.
The problems presented by existing reduced pressure treatment systems are solved by the systems and methods of the illustrative embodiments described herein. In one illustrative embodiment, a system for treating a tissue site of a patient is provided. The system includes a dressing filler adapted to be positioned at the tissue site. The dressing filler is comprised of a porous substrate having at least one compressed region and at least one expanded region. The compressed region of the porous substrate is held in a compressed state by a first coating capable of dissolving in the presence of a fluid, and the expanded region of the porous substrate is held in an expanded state by a second coating.
In another embodiment, a system for treating a tissue site of a patient includes a dressing filler adapted to be positioned at the tissue site. The dressing filler is comprised of a porous foam having a textured wound-facing surface, the wound-facing surface having at least one compressed region in which the foam is held in a compressed state by a first coating. The wound-facing surface includes at least one relaxed region in which the foam is neither compressed nor expanded but rather is in a relaxed state. The porous foam includes at least one expanded region positioned above the at least one relaxed region. The expanded region is held in an expanded state by a second coating.
In yet another embodiment, a system for treating a tissue site of a patient includes a dressing filler adapted to be positioned at the tissue site. The dressing filler is comprised of a porous substrate having at least one compressed region held in a compressed state by a coating capable of being removed in the presence of a fluid. The system further includes a cover adapted for positioning over the dressing filler to create a sealed space beneath the cover and a reduced pressure source configured for fluid communication with the sealed space.
Other objects, features, and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.
In the following detailed description of several illustrative embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the subject matter of this specification may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosed subject matter, and it is understood that other embodiments may be utilized and that logical, structural, mechanical, electrical, and chemical changes may be made without departing from the scope of this specification. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims. Unless otherwise indicated, as used herein, “or” does not require mutual exclusivity.
The term “reduced pressure” as used herein generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure associated with tissue at the tissue site. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure reduction applied to the tissue site may be significantly less than the pressure reduction normally associated with a complete vacuum. Reduced pressure may initially generate fluid flow in the area of the tissue site. As the hydrostatic pressure around the tissue site approaches the desired reduced pressure, the flow may subside, and the reduced pressure is then maintained. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Similarly, references to increases in reduced pressure typically refer to a decrease in absolute pressure, while decreases in reduced pressure typically refer to an increase in absolute pressure.
The tissue treatment systems and methods described herein improve the treatment of a tissue site by providing a porous substrate that is used in conjunction with reduced pressure tissue treatment. The porous substrate includes a wound-facing surface that is capable of contacting the tissue site and creating microstrain at the tissue site. The microstrain is created by the force applied to the tissue site by the wound-facing surface of the porous substrate. When the porous substrate is an open-celled foam, the force is transmitted to the tissue site by the cell walls or struts of the foam. The application of force to the porous substrate produces a force distribution that provides forces to the tissue site at any point that is contacted by the porous substrate. This force distribution therefore results in a particular microstrain distribution, which of course will vary based on the porosity and other characteristics of the porous substrate, as well as how the porous substrate is positioned at the tissue site. Since microstrain at the tissue site assists in the development of new granulation tissue, it is beneficial to vary the distribution of force and microstrain during treatment such that a more even development of granulation tissue is obtained.
Referring to
The dressing 102 is configured to promote the growth of new tissue at the tissue site 101 and includes a dressing filler 106 positioned adjacent to or, in some embodiments, in contact with the tissue site 101. The dressing 102 may further include a cover 110 or drape positioned over the dressing filler 106 to secure the dressing filler 106 at the tissue site 101 and to seal a space that is located beneath the cover and that is at least partially occupied by the dressing filler 106. In one embodiment, the cover 110 extends beyond a perimeter of the tissue site 101 and is placed either in contact with or otherwise in proximity to a patient's epidermis 113 to create a fluid seal between the cover 110 and the epidermis 113. The cover 110 may include an adhesive 115 or bonding agent to secure the cover 110 to the epidermis 113. In one embodiment, the adhesive 115 may be used to create a seal between the cover 110 and the epidermis 113 to prevent leakage of reduced pressure from the tissue site 101. In another embodiment, a seal layer (not shown) such as, for example, a hydrogel or other material may be disposed between the cover 110 and the epidermis 113 to augment or substitute for the sealing properties of the adhesive 115. As used herein, “fluid seal” means a seal adequate to maintain reduced pressure at a desired site given the particular reduced pressure source involved and the particular treatment desired. In one embodiment, the cover 110 and the bonding characteristics of the cover 110 provide sealing sufficient to prevent leakage greater than 0.5 L/min at 125 mmHg reduced pressure.
The dressing 102 further may include a reduced pressure adapter or interface 116 fluidly coupled to the space beneath the cover 110. In one embodiment, the interface 116 may be positioned adjacent to or coupled to the cover 110 to provide fluid access to the dressing filler 106 and the tissue site 101. The cover 110 includes an aperture 118 for providing fluid access to the interface 116. A conduit 120 fluidly couples the therapy unit 104 and the interface 116. The interface 116 is capable of delivering reduced pressure to the tissue site 101.
In one embodiment, the therapy unit 104 includes a fluid containment member 122 in fluid communication with a reduced pressure source 124. In the embodiment illustrated in
The conduit 120 may be a multi-lumen tube that is capable of providing one or more conduits to deliver reduced pressure to the dressing 102 and one or more conduits to sense the amount of pressure at the tissue site 101. Liquids or exudates communicated from the dressing filler 106 through the conduit 120 are removed from the conduit 120 and retained within the collection canister 122.
Referring still to
In the embodiment illustrated in
The porous substrate preferably includes a plurality of openings or other flow channels that facilitate movement of fluids and distribution of reduced pressure in the sealed space beneath the cover. In an embodiment employing a foam such as the reticulated, polyurethane foam, the flow channels are provided by openings 125 or cells within the foam. The foam further may include cell walls or struts 126 that form a framework for the openings 125 (see
Referring still to
While the phrase “compressed region” has been used to describe certain regions of the dressing filler 106 that are in some cases compressed, the phrase also is capable of describing a region that has assumed a relaxed state from a compressed state. In some situations, due to the compression of the dressing filler 106 during reduced pressure tissue treatment, as is described more fully herein, certain compressed regions may actually experience expansion in certain directions when compared to the original compressed state. Similarly, the “expanded region” is capable of existing in multiple states, at least two of which are the expanded state and the relaxed state. Again, it is conceivable during the application of reduced pressure to the dressing filler 106 that certain expanded regions may undergo some compression beneath the cover 110.
In general, the description of the dressing filler 106 as having a compressed state or an expanded state is meant to describe the forces acting on the foam. When a region of the dressing filler 106 is in the compressed state, the forces acting on the region, which are represented by arrows 150 in
Referring still to
The coatings may be positioned on the exterior surfaces of the dressing filler 106 or alternatively may be used to coat both exterior surfaces and the inner passages of the dressing filler 106. In one embodiment, it may be desirable to uniformly coat the dressing filler 106 both externally and internally. Delivery of the coating to the dressing filler 106 may be accomplished by dipping the dressing filler 106 in the coating, or by spraying, brushing, rolling, or otherwise applying the coating. In one embodiment, the coating may be applied to a unitary dressing filler 106 that includes regions that have been compressed and expanded. Alternatively, the coating may be applied to separate pieces of compressed or expanded material that are then assembled to build the dressing filler 106. The attachment of multiple pieces to build the dressing filler 106 may be accomplished by bonding, mechanical fastening, welding, or any other attachment means.
Referring to
As an alternative to the coating, a removable sheath or other covering may be placed around the dressing filler 106 when the various regions have been charged to their appropriate compressed or expanded states. The sheath may be a dissolvable or bioabsorbable substance such as a woven or non-woven fabric, polyvinyl pyrrolidone, carboxy methyl cellulose (CMC) and its salts and esters, alginates, gums such as guar and xanthan, polyvinyl alcohol, polycaprolactam, poly lactic acid and their copolymers or blends, or other polymers or materials. In one embodiment, if a sheath or other covering is used, the sheath may surround the dressing filler 106 completely, or may partially surround a portion of the dressing filler 106. If a dissolvable or bioabsorbable sheath is employed, the particular material used and its thickness may be chosen to provide release based on a desired time period. For example, a sheath that will dissolve within 12 hours may be chosen to provide treatment for up to 12 hours with the regions of dressing filler 106 in the compressed and expanded states. In this particular example, following dissolution of the sheath at or around 12 hours allows the regions of the dressing filler 106 to change to a relaxed state, thereby changing the microstrain profile at the tissue site 101. In another embodiment, the sheath may instead be manually removable from the dressing filler 106 by a care giver or the patient when the change in microstrain profile is desired.
Referring to
Referring to
As more specifically illustrated in
Following the movement of the racks 622 in the directions indicated by arrows 640, 644 the compressed region 610 is in the compressed state and the expanded region 614 is in the expanded sate (see
Referring to
The porous substrate preferably includes a plurality of openings or other flow channels that facilitate movement of fluids and distribution of reduced pressure in the sealed space beneath the cover. In an embodiment employing a foam such as the reticulated, polyurethane foam, the flow channels are provided by openings or cells within the foam similar to those described previously with reference to
The dressing filler 906 includes a plurality of first, or compressed regions 930 and a plurality of second, or expanded regions 934 arranged in horizontally-oriented layers located between a wound-facing surface 938 of the porous dressing filler 906 and an opposing surface 942. The compressed regions 930 illustrated in
The forces acting on the compressed region 930 in the compressed state are represented by arrows 950 in
Referring still to
The coatings may be positioned on the exterior surfaces of the dressing filler 906 or alternatively may be used to coat both exterior surfaces and the inner passages of the dressing filler 906. In one embodiment, it may be desirable to uniformly coat the dressing filler 906 both externally and internally. Delivery of the coating to the dressing filler 906 may be accomplished by dipping the dressing filler 906 within the coating, or by spraying, brushing, rolling, or otherwise applying the coating. In one embodiment, the coating may be applied to a unitary dressing filler 906 that includes regions that have been compressed and expanded. Alternatively, the coating may be applied to separate pieces of compressed or expanded material that is then assembled to build the dressing filler 906. The attachment of multiple pieces to build the dressing filler 906 may be accomplished by bonding, mechanical fastening, welding, or any other attachment means.
Prior to removal of the coating, the wound-facing surface 938 of the dressing filler 906 is irregular or non-planar, with indentations 962 created by the compression of the compressed regions 930. The wound-facing surface 938 further includes protrusions 966 created by the expansion of the expanded regions 934. The location of the indentations 962 and protrusions 966 along the wound-facing surface may form a regular grid-type or other pattern, or may instead be more random in nature. While the compressed regions 930 are located adjacent to and incorporate the wound-facing surface 938, the compressed regions 930 could instead be spaced apart from the wound-facing surface 938 and located closer to opposing surface 942. Similarly, while the expanded regions 934 are spaced apart from the wound-facing surface 938 and are located closer to the opposing surface 942, the expanded regions 934 could instead be positioned adjacent to and may even incorporate the wound-facing surface 938.
Referring to
As an alternative to the coating, a removable sheath or other covering may be placed around the dressing filler 906 when the various regions have been charged to their respective compressed or expanded states. The sheath may be a dissolvable or bioabsorbable substance such as a woven or non-woven fabric, polyvinyl pyrrolidone, carboxy methyl cellulose (CMC) and its salts and esters, alginates, gums such as guar and xanthan, polyvinyl alcohol, polycaprolactam, poly lactic acid and their copolymers or blends, or other polymers or materials. In one embodiment, if a sheath or other covering is used, the sheath may surround the dressing filler 906 completely, or may partially surround a portion of the dressing filler 906. If a dissolvable or bioabsorbable sheath is employed, the particular material used and its thickness may be chosen to provide release based on a desired time period. In another embodiment, the sheath may instead be manually removable from the dressing filler 906 by a care giver or the patient when the change in microstrain profile is desired.
Referring to
The porous substrate preferably includes a plurality of openings or other flow channels that facilitate movement of fluids and distribution of reduced pressure in the sealed space beneath the cover. In an embodiment employing a foam such as the reticulated, polyurethane foam, the flow channels are provided by openings or cells within the foam similar to those described previously with reference to
The dressing filler 1106 includes one or more compressed regions 1130 arranged in horizontally-oriented layers located between a wound-facing surface 1138 of the porous dressing filler 1106 and an opposing surface 1142. The compressed region 1130 illustrated in
Referring still to
The coatings may be positioned on the exterior surfaces of the dressing filler 1106 or alternatively may be used to coat both exterior surfaces and the inner passages of the dressing filler 1106. In one embodiment, it may be desirable to uniformly coat the dressing filler 1106 both externally and internally. Delivery of the coating to the dressing filler 1106 may be accomplished by dipping the dressing filler 1106 within the coating, or by spraying, brushing, rolling, or otherwise applying the coating. In one embodiment, the coating may be applied to a unitary dressing filler 1106 that includes regions that have been compressed. Alternatively, the coating may be applied to separate pieces of compressed material that is then assembled to build the dressing filler 1106. The attachment of multiple pieces to build the dressing filler 1106 may be accomplished by bonding, mechanical fastening, welding, or any other attachment means.
Referring to
Unlike dressing filler 106 in which there may be zero net volume gain, the presence of the compressed region 1130 with no expanded region in the dressing filler 1106 results in a positive net volume gain when the compressed region 1130 moves to the relaxed state. When the dressing filler 1106 is sealed beneath a cover similar to cover 110 during tissue treatment, the change in height of the compressed region, and thus the increase in volume of the dressing filler 1106, results in an increase in the force applied to the tissue site. This increase in force could be used to ensure patient comfort by gradually increasing the force applied to the tissue site as treatment begins. Alternatively, the increase in force may allow a wider range of treatment regimens that promote new tissue growth.
As an alternative to the coating, a removable sheath or other covering may be placed around the dressing filler 1106 when the compressed region has been charged to its compressed state. The sheath may be a dissolvable or bioabsorbable substance such as a woven or non-woven fabric, polyvinyl pyrrolidone, carboxy methyl cellulose (CMC) and its salts and esters, alginates, gums such as guar and xanthan, polyvinyl alcohol, polycaprolactam, poly lactic acid and their copolymers or blends, or other polymers or materials. In one embodiment, if a sheath or other covering is used, the sheath may surround the dressing filler 1106 completely, or may partially surround a portion of the dressing filler 1106. If a dissolvable or bioabsorbable sheath is employed, the particular material used and its thickness may be chosen to provide release based on a desired time period. In another embodiment, the sheath may instead be manually removed from the dressing filler 1106 by a care giver or the patient when the change in treatment force is desired.
Each of the dressing fillers 106, 406, 606, 906, 1106 described herein may be used with the reduced pressure treatment system 100 of
The systems and methods described herein allow modification of the microstrain experienced by a tissue site without changing the dressing at the tissue site. In some cases, the microstrain modification involves simply a redistribution of the microstrain profile, while in other cases, the amplitude of the microstrain may be increased or decreased. The dressings described herein each incorporate nodes, struts, or other strain-inducing structures that include at least one compressed region that is selectively held in a compressed state or expanded region that is selectively held in an expanded state. When released, the compressed or expanded regions move to a relaxed state, which changes the distribution or amount of microstrain applied to the tissue site. Each of the dressings described herein is therefore believed to improve the treatment of a tissue site using reduced pressure tissue treatment, since changing the microstrain profile during reduced pressure treatment will result in more even formation of granulation tissue and will prevent adhesion of new tissue to the dressing.
While many of the systems described herein have been illustrated in use with tissue sites or wounds that are at or near the epidermis of a patient, the systems and methods may similarly be used to treat subcutaneous tissue sites, tunnel wounds, or other undermined areas of tissue.
While a number of discrete embodiments have been described, aspects of each embodiment may not be specific to only that embodiment and it is specifically contemplated that features of embodiments may be combined with features of other embodiments. While the subject matter of this specification is shown in only a few of its forms, it is susceptible to various changes and modifications without departing from the scope thereof.
Variations on the embodiments described herein comprising both a compressed and expanded region may be provided utilizing only an expanded or only a compressed region. For example, the embodiment of
Where reference is made to a dimension, part, or region being horizontal this is with reference to a plane substantially parallel with the wound-facing surface of the dressing. Similarly, vertical is referenced to this plane and so describes a plane running substantially perpendicular to the wound-facing surface. Where reference is made to one part being ‘above’ or ‘below’ another part, this is made with reference to the wound-facing surface being the ‘bottom’ of the dressing.
The coatings securing the compressed and expanded regions may be different such that the first and second coatings may be removed at a different time. For example, the coatings may be of different materials, or configured to dissolve over differing periods of time.
This application is a Divisional of U.S. patent application Ser. No. 13/678,459, filed Nov. 15, 2012, which claims priority to U.S. Provisional Patent Application No. 61/561,631 filed Nov. 18, 2011, entitled TISSUE TREATMENT SYSTEMS AND METHODS HAVING A POROUS SUBSTRATE WITH A COMPRESSED REGION AND AN EXPANDED REGION, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6241747 | Ruff | Jun 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
7846141 | Weston | Dec 2010 | B2 |
8062273 | Weston | Nov 2011 | B2 |
8143472 | Bragd et al. | Mar 2012 | B1 |
8216198 | Heagle et al. | Jul 2012 | B2 |
8251979 | Malhi | Aug 2012 | B2 |
8257327 | Blott et al. | Sep 2012 | B2 |
8398614 | Blott et al. | Mar 2013 | B2 |
8449509 | Weston | May 2013 | B2 |
8529548 | Blott et al. | Sep 2013 | B2 |
8535296 | Blott et al. | Sep 2013 | B2 |
8551060 | Schuessler et al. | Oct 2013 | B2 |
8568386 | Malhi | Oct 2013 | B2 |
8679081 | Heagle et al. | Mar 2014 | B2 |
8834451 | Blott et al. | Sep 2014 | B2 |
8926592 | Blott et al. | Jan 2015 | B2 |
9017302 | Vitaris et al. | Apr 2015 | B2 |
9198801 | Weston | Dec 2015 | B2 |
9211365 | Weston | Dec 2015 | B2 |
9289542 | Blott et al. | Mar 2016 | B2 |
9655807 | Locke | May 2017 | B2 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20060029675 | Ginther | Feb 2006 | A1 |
20080113574 | Neron et al. | May 2008 | A1 |
20080208147 | Argenta et al. | Aug 2008 | A1 |
20100160877 | Kagan et al. | Jun 2010 | A1 |
20110092871 | Fabo et al. | Apr 2011 | A1 |
20140163491 | Schuessler et al. | Jun 2014 | A1 |
20150080788 | Blott et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Mar 2002 | AU |
755496 | Dec 2002 | AU |
2005436 | Jun 1990 | CA |
101018533 | Aug 2007 | CN |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
29 504 378 | Sep 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0358302 | Mar 1990 | EP |
1018967 | Jul 2000 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
4129536 | Aug 2008 | JP |
71559 | Apr 2002 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
90010424 | Sep 1990 | WO |
93009727 | May 1993 | WO |
94020041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
2006014917 | Feb 2006 | WO |
Entry |
---|
International Search Report and Written Opinion for corresponding PCT/US2012/065342, dated Feb. 5, 2013. |
Louis C. Argenta, MS and Michael J. Morykwas, PHD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery. |
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 198, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997. |
Dattilo, Philip P., JR., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct. 1988, pp: 48-52, and 8 page English translation thereof. |
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., MD., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (copy and certified translation). |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinovi?, V. ?uki?, {hacek over (Z)}. Maksimovi?, ?. Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A. A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513. |
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I). |
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.Sr. 1988) (“Solovev Abstract”). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007. |
Number | Date | Country | |
---|---|---|---|
20170216100 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
61561631 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13678459 | Nov 2012 | US |
Child | 15488156 | US |