Titanium alloy

Abstract
A titanium base alloy powder is formed by subsurface reduction of a chloride vapor with a molten alkali metal or molten alkaline earth metal to form reaction products comprising pre-alloy particles and a salt of the alkali metal or the alkaline earth metal. A majority of the pre-alloy particles have a composition of at least 50% by weight of titanium, about 5.38% to 6.95% by weight of aluminum, and about 3% to 5% by weight of vanadium. The pre-alloy particles are recovered from the reaction products to produce a titanium base alloy powder containing less than about 200 ppm alkali or alkaline earth metal.
Description
FIELD OF THE INVENTION

This invention relates to alloys of titanium having at least 50% titanium and most specifically to an alloy of titanium particularly useful in the aerospace and defense industries known as 6/4 which is about 6% by weight aluminum and about 4% by weight vanadium with the balance titanium and trace materials as made by the Armstrong process.


BACKGROUND OF THE INVENTION

The ASTM B265 grade 5 chemical specifications for 6/4 require that vanadium is present in the amount of 4%±1% by weight and aluminum is present in the range of from about 5.5% to about 6.75% by weight. The alloy of the invention is produced by the Armstrong Process as previously disclosed in U.S. Pat. Nos. 5,779,761; 5,958,106 and 6,409,797, the entire disclosures of which are herein incorporated by reference. The aforementioned patents teach the Armstrong Process as it relates to the production of various materials including alloys. The Armstrong Process includes the subsurface reduction of halides by a molten metal alkali or alkaline earth element or alloy. The development of the Armstrong Process has occurred from 1994 through the present, particularly as it relates to the production of titanium and its alloys using titanium tetrachloride as a source of titanium and using sodium as the reducing agent. Although this invention is described particularly with respect to titanium tetrachloride, aluminum trichloride and vanadium tetrachloride and sodium as a reducing metal, it should be understood that various halides other than chlorine can be used and various reductants other than sodium can be used and the invention is broad enough to include those materials.


However, because the Armstrong Process over the past eleven years has been developed using molten sodium and chlorides, it is these materials which are referenced herein. During the production of titanium by the Armstrong Process, as disclosed in the previous patents, the steady state temperature of the reaction can be controlled by the amount of reductant metal and the amount of chloride being introduced. Although it is feasible to control the reaction temperature by varying the chloride concentration while keeping the amount of molten metal constant, the preferred method is to control the temperature of the reactant products by varying the amount of excess (over stoichiometric) reductant metal introduced into the reaction chamber. Preferably, the reaction is maintained at a steady state temperature of about 400° C. and at this temperature, as previously disclosed, the reaction can be maintained for very long periods of time without damage to the equipment while producing a relatively uniform product.


Heretofore, commercially pure (CP) titanium ASTM 8265 grades 1, 2, 3 and 4 have been produced in over two hundred runs using the Armstrong Process and although a wide variety of operating parameters have been tested, certain results are inherent in the process. The ASTM B 265 spec sheet follows:









TABLE 1







Chemical Requirements









Composition %



Grade

















Element
1
2
3
4
5
6
7
8
9
10





Nitrogen max
0.03
0.03
0.05
0.05
0.05
0.05
0.03
0.02
0.03
0.03


Carbon max
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.08


HydrogenB max
 0.015
 0.015
 0.015
 0.015
 0.015
 0.020
 0.015
 0.015
 0.015
 0.015


Iron Max
0.20
0.30
0.30
0.50
0.40
0.50
0.30
0.25
0.20
0.30


Oxygen max
0.18
0.25
0.35
0.40
0.20
0.20
0.25
0.15
0.18
0.25


Aluminum




5.5 to
4.0 to

2.5 to









6.75
6.0

3.5




Vanadium




3.5 to



2.0 to







4.5



3.0


Tin





2.0 to












3.0






Palladium






0.12 to

0.12 to










0.25

0.25


Molybdenum









0.2 to 0.4


Zirconium












Nickel









0.6 to 0.9


Residuals C.D.E.
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 


(each), max


Residuals C.D.E.
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 


(total) max


TitaniumF
remainder
remainder
remainder
remainder
remainder
remainder
remainder
remainder
remainder
remainder






A Analysis shall be completed for all elements listed in this Table for each grade. The analysis results for the elements not quantified in the Table need not be reported unless the concentration level is greater than 0.1% each or 0.4% total.




BLower hydrogen may be obtained by negotiation with the manufacturer.




C Need not be reported.




D A residual is an element present in a metal or an alloy in small quantities inherent to the manufacturing process but not added intentionally.




E The purchaser may, in his written purchase order, request analysis for specific residual elements not listed in this specification. The maximum allowable concentration for residual elements shall be 0.1% each and 0.4% maximum total.




FThe percentage of titanium is determined by difference.







Production of titanium powder by the Armstrong Process inherently produces powder in which the average diameter of individual particle is less than a micron. During distillation at 500 to 600° C., the particles agglomerate and have an average agglomerated particle diameter in the range of from about 3.3 to about 1.3 microns. Particle diameters are based on a calculated size of a sphere from a surface area, such as BET. For agglomerated particles, the calculated average diameters were based on surface are measurements in a range of from about 0.4 to about 1.0 m2 per gram. In over two hundred runs, the titanium powder produced by the Armstrong Process always has a packing fraction in the range of from about 4% to about 11% which also may also be expressed as tap density. Tap density is a well known characteristic and is determined by introducing the powder into a graduated test tube and tapping the tube until the powder is fully settled. Thereafter, the weight of the powder is measured and the packing fraction or percent of theoretical density is calculated.


Moreover, during the production of CP titanium by the Armstrong Process, a certain amount of sodium has always been retained even after extensive distillation, including vacuum distillation, and this retained sodium has been present on average of about 500-700 ppm, and has rarely been below about 400 ppm. From a commercial point of view, significant effort is and has been expended in order to reduce the sodium content of CP titanium made by the Armstrong Process.


Prior to the Armstrong Process, CP titanium powder and titanium alloy powder traditionally have been made by two methods, hydride-dehydride and spheridization, resulting in powders having very different morphologies than the powder made by the Armstrong method. Hydride-dehydride powders are angular and flake-like, while spheridized powders are spheres.


Fines made during the Hunter process are available and these also have very different morphology than CP titanium produced by the Armstrong Process. SEMs of CP powder made by the hydride-dehydride process and the spheridization process and Hunter fines are illustrated in FIGS. 1 to 3, respectively. The CP powder made by the Armstrong Process is not spherical nor is it angular and flake-like. Hunter fines have “large inclusions” which do not appear in the Armstrong powder, differentiating FIGS. 1-3 from Armstrong powder shown in FIGS. 4-9. Moreover, Hunter fines have large concentrations of chlorine while Armstrong CP powder has low concentrations of chlorine; chlorine is an undesirable contaminant.


6/4 powder is made by hydride-dehydride and spherization processes, but not by the Hunter process. A calcium reduction hydride-dehydride process used in Tula, Russia was identified by Moxson et al. in an article in The International Journal Of Powder Metallurgy, Vol. 34, No. 5, 1998. Moxson et al which also discloses SEMs of both CP and 6/4 in the Journal Of Metallurgy, May, 2000, both articles, the disclosures of which are incorporated by reference, taken together showing that 6/4 powder made by methods other than the Armstrong process result in powders that are very different from Armstrong 6/4 powder, both in size distribution and/or morphology and/or chemistry. In some cases, such as the calcium reduction process in Tula, Russia there are very significant differences in chemistry as well as the other differences previously mentioned. Both the hydride-dehydride and spheridization methods require Ti, Al and V to be mixed as liquids and thereafter formed into powder. Only the Armstrong Process produces alloy powder directly from gas mixtures of the alloy constituents.


Because 6/4 titanium is the most common titanium alloy used by the Department of Defense (DOD) as well as the aerospace industry and other significant industries, the production of 6/4 by the Armstrong Process is an important commercial goal.


SUMMARY OF THE INVENTION

Accordingly, a principal object of the present invention is to provide a titanium base alloy powder having lesser amounts of aluminum and vanadium with unique morphological and chemical properties.


Another object of the present invention to provide a titanium base alloy powder having about 6 percent by weight aluminum and about 4 percent by weight vanadium within current ASTM specifications.


Yet another object of the invention is to make a 6/4 alloy as set forth in which sodium is present in significantly smaller amounts than is present in CP titanium powder made by the Armstrong Process.


Still another object of the present invention is to provide a titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or alkaline earth metal being present in an amount less than about 200 ppm and the alloy powder being neither spherical nor angular or flake shaped.


A further object of the present invention is to provide a titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or alkaline earth metal being present in an amount less than about 200 ppm and having a tap density or packing fraction in the range of from about 4% to about 11%.


Yet another object of the present invention is to provide a titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or an alkaline earth metal being present in an amount less than about 200 ppm made by the subsurface reduction of chloride vapor with molten alkali metal or molten alkaline earth metal.


A final object of the present invention is to provide an agglomerated titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or alkaline earth metal being present in an amount less than about 100 ppm substantially as seen in the SEMs of FIGS. 10-12.


The invention consists of certain novel features and a combination of parts hereinafter fully described, illustrated in the accompanying drawings, and particularly pointed out in the appended claims, it being understood that various changes in the details may be made without departing from the spirit, or sacrificing any of the advantages of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of facilitating an understanding of the invention, there is illustrated in the accompanying drawings a preferred embodiment thereof, from an inspection of which, when considered in connection with the following description, the invention, its construction and operation, and many of its advantages should be readily understood and appreciated.



FIG. 1 is a SEM of CP powder made by the hydride-dehydride method;



FIG. 2 is a SEM of CP powder made by the spheridization method;



FIG. 3 is a SEM of CP powder from the Hunter Process;



FIG. 4-6 are SEMs of Armstrong CP distilled, dried and passivated;



FIG. 7-9 are SEMs of Armstrong CP distilled, dried, passivated and held at 750° C. for 48 hours; and



FIG. 10-12 are SEMs of Armstrong 6/4 distilled, dried, passivated and held at 750° C. for 48 hours.





DETAILED DESCRIPTION OF THE INVENTION

As used herein, a “titanium base alloy” means any alloy having 50% or more by weight titanium. Although 6/4 is used as a specific example, other titanium base alloys are included in this invention. As seen from the previous discussion, Armstrong CP titanium powder is different from spheridized titanium powder and from hydride-dehydride titanium powder in both morphology and packing fraction or tap density. There are also differences in certain of the chemical constituents. For instance, Armstrong CP titanium powder has sodium present in the 400-700 ppm range while spheridized and hydride-dehydride powder should have none or only trace amounts. Armstrong CP titanium has little chloride concentration, on the order of <50 ppm, while Hunter fines have much larger concentrations of chlorides, on the order of 0.12-0.15 wt. %.


The equipment used to produce the 6/4 alloy is substantially as disclosed in the aforementioned patents disclosing the Armstrong Process with the exception that instead of only having a titanium tetrachloride boiler 22 as illustrated in those patents, there is also a vanadium tetrachloride boiler and an aluminum trichloride boiler which are connected to the reaction chamber by suitable valves. The piping acts as a manifold so that the gases are completely mixed as they enter the reaction chamber and are introduced subsurface to the flowing liquid sodium. It was determined during production of the 6/4 alloy that aluminum trichloride is corrosive and required special materials not required for handling either titanium tetrachloride or vanadium tetrachloride. Therefore, Hastelloy C-276 was used for the aluminum trichloride boiler and the piping to the reaction chamber.


During most of the runs the steady state temperature of the reactor was maintained at about 400° C. by the use of sufficient excess sodium. Other operating conditions for the production of the alloy were as follows:


A device similar to that described in the incorporated Armstrong patents was used except that a VCl4 boiler and AlCl3 boiler were provided and both gases were fed into the line feeding TiCl4 into the liquid Na. The boiler pressures and system parameters are listed hereafter.


EXPERIMENTAL PROCEDURE

TiCl4 Boiler Pressure=500 kPa


VCl4 Boiler Pressure=630 kPa


AlCl3 Boiler Pressure=830 kPa


Inlet Na temperature=240° C.


Reactor Outlet Temperature=510 C.


Na Flowrate=40 kg/min


TiCl4 Flowrate=2.6 kg/min


For this specific experiment, a 7/32″ nozzle was used in the reactor to meter the mix of metal chloride vapors. A 0.040″ nozzle was used to meter the AlCl3 and a 0.035″ nozzle was used to meter the VCl4 into the TiCl4 stream. The reactor was operated for approximately 250 seconds injecting approximately 11 kg of TiCl4. The salt and titanium alloy solids were captured on a wedge wire filter and free sodium metal was drained away. The product cake containing titanium alloy, sodium chloride and sodium was distilled at approximately 100 milli-torr at 550 to 575° C. vessel wall temperatures for 20 hours. Once all the sodium metal was removed via distillation, the trap was re-pressurized with argon gas and heated to 750° C. and held at temperature for 48 hours. The vessel containing the salt and titanium alloy cake was cooled and the cake was passivated with a 0.7 wt % oxygen/argon mixture. After passivation, the cake was washed with deionized water and subsequently dried in a vacuum oven at less than 100° C.


Table 2 below sets forth a chemical analysis of various runs for 6/4 alloy from an experimental loop running the Armstrong Process.









TABLE 2







Ti 6/4 FROM EXPERIMENTAL LOOP

















Run
Size
Oxygen
Sodium
Nitrogen
Hydrogen
Chloride
Vanadium
Aluminum
Carbon
Iron




















N-269-
*
0.187
0.019
0.006
0.0029
0.001
5.58
5.58
0.019
0.014


N-269-
+
0.113
0.0015
0.008
0.003
0.001
5.33
5.38
0.03
0.021


N-269-
+
0.128
0.0006
0.005
0.0037
0.001
5.84
5.47
0.039
0.02


N-271-
+
0.124
0.002
0.001
0.0066
0.0016
4.87
6.95
0.033
0.037


N-276
+
0.111
0.0018



4.44
6.04


N-276
+
0.121
0.0018
0.005
0.0043
0.0005
4.12
6.35
0.012
0.016


N-276
+
0.131
0.0019
0.003
0.0057
0.0011
4.03
5.67
0.012
0.016


N-276
+
0.169
0.0026



4.1
6.02


N-276
+
0.128
0.0015
0.003
0.0042
0.0005
3.8
6.02
0.012
0.019


N-277
+
0.155
0.0018
0.003
0.0053
0.0006
3.45
5.73
0.014
0.015


N-277
+
0.135
0.0023



3.49
5.49


N-276
*
0.121
0.0041
0.005
0.0052
0.0005
4.31
6.53
0.02
0.015


N-276
*
0.134
0.0075



3.81
5.92


N-276
*
0.175
0.014
0.012
0.0066
0.0005
3.96
6.01


N-276
*
0.187
0.046
0.007
0.0081
0.0005
3.95
6.05


N-277
*
0.141
0.0022
0.004
0.0038
0.0026
3.65
5.42


Mean

0.14125
0.0069125
0.0051667
0.00495
0.00095
4.295625
5.914375
0.0212222
0.0192222


Stand dev.

0.0253811
0.0116064
0.0028868
0.0015952
0.000626
0.7343838
0.4335892
0.0102808
0.0071024





* = BULK


+ = SMALL






As seen from the above Table 2, the sodium levels for 6/4 are very low on the order of 69 ppm and for certain runs, sodium levels have been undetectable. This result was unexpected because over two hundred runs of CP titanium have been made using the Armstrong Process, and sodium has always been present in the range of from about 400-700 ppm. Therefore, the lack of sodium in the 6/4 alloy was not only unexpected but an important consideration since sodium may adversely affect the welds of CP titanium.


Other important aspects shown in Table 2 are the percentages of vanadium and aluminum in the 6/4 showing an average of about 5.91% aluminum and about 4.29% vanadium for all of the runs. The runs reported in Table 2 were made with an experimental loop and the valving and control systems for metering the appropriate amount of both vanadium and aluminum were rudimentary. Advanced valving systems have now been installed to control more closely the amount of vanadium and aluminum in the 6/4 produced from the Armstrong Process, although even with the rudimentary control system, the 6/4 alloy was within ASTM specifications. Also of significance is the low iron and chloride content of the 6/4 alloy.


An additional unexpected feature of the 6/4 alloy compared to the CP titanium is the surface area, as determined using BET Specific Surface Area analysis with krypton as the adsorbate. In general, the specific surface area of the 6/4 alloy is much larger than the CP titanium and this also was unexpected. Surface analysis of CP particles which were distilled overnight (about 8-12 hours) between 500-575° C. were 0.534 square meters/gram whereas 6/4 alloy measured 3.12 square meters/gram, indicating that the alloy is significantly smaller than the CP.


The SEMs show that the 6/4 powder is “frillier” than CP powder, see FIGS. 4-9 and 10-12. As reported by Moxson et al., Innovations in Titanium Powder Processing in the Journal of Metallurgy May 2000, it is clear that by-product fines from the Kroll or Hunter Processes contain large amounts of undesirable chlorine which is not present in the CP titanium powder made by the Armstrong Process (see Table 1). Moreover, the morphology of the Hunter and Kroll fines, as previously discussed, is different from the CP powder made by the Armstrong Process. Neither the Kroll nor the Hunter process has been adapted to produce 6/4 alloy. Alloy powders have been produced by melting prealloyed stock and thereafter using either gas atomization or a hydride-dehydride process (MHR). The Moxson et al. article discloses 6/4 powder made in Tula, Russia and as seen from FIG. 2 in that article, particularly FIGS. 2c and 2d the powders made by Tula Hydride Reduction process are significantly different than those made by the Armstrong Process. Moreover, referring to the Moxson et al. article in the 1998 issue of the International Journal of Powder Metallurgy, Vol. 4, No. 5, pages 45-47, it is seen that the chemical analysis for the pre-alloy 6/4 powder produced by the metal-hydride reduction (MHD) process contains exceptional amounts of calcium and also is not within ASTM specifications for aluminum.


Because the 6/4 alloy made by the Armstrong Process is made without the presence of either calcium or magnesium, these metals should be present, if at all, only in trace amounts and certainly much less than 100 ppm. Sodium which would be expected to be present in significant quantities based on the operation of the Armstrong Process to produce CP titanium in fact is present only at minimum quantities in the 6/4 alloy. Specifically, sodium in the 6/4 alloy made by the Armstrong Process is almost always present less than 200 ppm and generally less than 100 ppm. In some instances, 6/4 alloy has been produced using the Armstrong Process in which sodium is undetectable so that this is a great and unexpected advantage of the 6/4 alloy vis a vis CP titanium made by the Armstrong Process.


Both the Armstrong CP titanium and 6/4 alloy have tap densities or packing fractions in the range of from about 4% to 11%. This tap density or packing fraction is unique and inherent in the Armstrong Process and, while not advantageous particularly with respect to powder metallurgical processing, distinguishes the CP powder and the 6/4 powder made by the Armstrong Process from all other known powders.


As is well known in the art, solid objects can be made by forming 6/4 or CP titanium into a near net shapes and thereafter sintering, see the Moxson et al. article and can also be formed by hot isostatic pressing, laser deposition, metal injecting molding, direct powder rolling or various other well known techniques. Therefore, the titanium alloy powder made by the Armstrong method may be formed into a sintered product or may be formed into a solid object by well known methods in the art and the subject invention is intended to cover all such products made from the powder of the subject invention.


While the invention has been particularly shown and described with reference to a preferred embodiment hereof, it will be understood by those skilled in the art that several changes in form and detail may be made without departing from the spirit and scope of the invention which includes titanium base alloys having lesser amounts of aluminum and vanadium and is specifically not limited to the specific alloys disclosed.

Claims
  • 1. A method of forming a titanium base alloy powder, the method comprising: subsurface reduction of a chloride vapor with a molten alkali metal or molten alkaline earth metal to form reaction products comprising pre-alloy particles and a salt of the alkali metal or the alkaline earth metal, a majority of the pre-alloy particles having a composition of at least 50% by weight of titanium, 5.38% or more by weight of aluminum, and 3.45% or more by weight of vanadium, wherein the total amount of aluminum and vanadium is less than about 20% by weight; andrecovering the pre-alloy particles from the reaction products to produce a titanium base alloy powder containing less than about 200 ppm alkali or alkaline earth metal and a surface area as determined by BET analysis of at least about 3 square meters per gram after distillation of the powder at temperatures between about 500° C. and about 575° C. for about 8 to about 12 hours.
  • 2. The method of claim 1, wherein the titanium base alloy powder meets ASTM B265 grade 5 chemical specifications.
  • 3. The method of claim 1, wherein the alkali metal is Na, K or mixtures thereof and the alkaline earth metal is Mg, Ca, Ba or mixtures thereof.
  • 4. The method of claim 1, wherein the titanium alloy powder is in agglomerates having an average mean diameter as measured by sieve analysis greater than about 50 microns.
  • 5. The method of claim 1, wherein the titanium alloy powder contains less than about 100 ppm sodium, magnesium, calcium.
  • 6. The method of claim 1, further comprising forming the titanium alloy powder into a sintered product.
  • 7. A method of forming a titanium base alloy powder, the method comprising: subsurface reduction of a chloride vapor with a molten alkali metal or molten alkaline earth metal to form reaction products comprising pre-alloy particles and a salt of the alkali metal or the alkaline earth metal, a majority of the pre-alloy particles having a composition of at least 50% by weight of titanium, about 5.38% to 6.95% by weight of aluminum, and about 3% to 5% by weight of vanadium; andrecovering the pre-alloy particles from the reaction products to produce a titanium base alloy powder containing less than about 200 ppm alkali or alkaline earth metal and a surface area as determined by BET analysis of at least about 3 square meters per gram after distillation of the powder at temperatures between about 500° C. and about 575° C. for about 8 to about 12 hours.
  • 8. The method of claim 7, wherein the titanium base alloy powder meets ASTM B265 grade 5 chemical specifications.
  • 9. The method of claim 7, wherein the alkali metal is Na, K or mixtures thereof and the alkaline earth metal is Mg, Ca, Ba or mixtures thereof.
  • 10. The method of claim 7, wherein the titanium alloy powder is in agglomerates having an average mean diameter as measured by sieve analysis greater than about 50 microns.
  • 11. The method of claim 7, wherein the titanium alloy powder contains less than about 100 ppm sodium, magnesium, calcium.
  • 12. The method of claim 7, further comprising forming the titanium alloy powder into a sintered product.
CROSS REFERENCE TO RELATED APPLICATIONS/INCORPORATION BY REFERENCE STATEMENT

The present application is a continuation of U.S. Ser. No. 12/879,598, filed Sep. 10, 2010; which is a continuation of U.S. Ser. No. 11/186,724, filed Jul. 21, 2005, now abandoned. The entire contents of each of the above-referenced patent applications are hereby expressly incorporated herein by reference.

US Referenced Citations (168)
Number Name Date Kind
1771928 Jung Jul 1930 A
2205854 Kroll Jun 1940 A
2607675 Gross Aug 1952 A
2647826 Jordan Aug 1953 A
2816828 Benedict et al. Dec 1957 A
2823991 Kamlet Feb 1958 A
2827371 Quin Mar 1958 A
2835567 Willcox May 1958 A
2846303 Keller et al. Aug 1958 A
2846304 Keller et al. Aug 1958 A
2882143 Schmidt Apr 1959 A
2882144 Follows et al. Apr 1959 A
2890112 Winter Jun 1959 A
2895823 Lynskey Jul 1959 A
2915382 Hellier et al. Dec 1959 A
2941867 Maurer Jun 1960 A
2944888 Quin Jul 1960 A
3058820 Whitehurst Oct 1962 A
3067025 Chisholm Dec 1962 A
3085871 Griffiths Apr 1963 A
3085872 Kenneth Apr 1963 A
3113017 Homme Dec 1963 A
3331666 Robinson et al. Jul 1967 A
3519258 Ishizuka Jul 1970 A
3535109 Ingersoll Oct 1970 A
3650681 Sugahara et al. Mar 1972 A
3825415 Johnston et al. Jul 1974 A
3836302 Kaukeinen Sep 1974 A
3847596 Holland et al. Nov 1974 A
3867515 Bohl et al. Feb 1975 A
3919087 Brumagim Nov 1975 A
3927993 Griffin Dec 1975 A
3943751 Akiyama et al. Mar 1976 A
3966460 Spink Jun 1976 A
4007055 Whittingham Feb 1977 A
4009007 Fry Feb 1977 A
4017302 Bates et al. Apr 1977 A
4070252 Bonsack Jan 1978 A
4128421 Marsh et al. Dec 1978 A
4141719 Hakko Feb 1979 A
4149876 Rerat Apr 1979 A
4190442 Patel Feb 1980 A
4331477 Kubo et al. May 1982 A
4373947 Buttner Feb 1983 A
4379718 Grantham et al. Apr 1983 A
4401467 Jordan Aug 1983 A
4402741 Pollet et al. Sep 1983 A
4414188 Becker Nov 1983 A
4423004 Ross Dec 1983 A
4425217 Beer Jan 1984 A
4432813 Williams Feb 1984 A
4445931 Worthington May 1984 A
4454169 Hinden et al. Jun 1984 A
4518426 Murphy May 1985 A
4519837 Down May 1985 A
4521281 Kadija Jun 1985 A
4555268 Getz Nov 1985 A
4556420 Evans et al. Dec 1985 A
4604368 Reeve Aug 1986 A
4606902 Ritter Aug 1986 A
RE32260 Fry Oct 1986 E
4687632 Hurd Aug 1987 A
4689129 Knudsen Aug 1987 A
4725312 Seon et al. Feb 1988 A
4828008 White et al. May 1989 A
4830665 Winand May 1989 A
4839120 Baba et al. Jun 1989 A
4877445 Okudaira et al. Oct 1989 A
4897116 Scheel Jan 1990 A
4902341 Okudaira et al. Feb 1990 A
4915729 Boswell et al. Apr 1990 A
4923577 McLaughlin et al. May 1990 A
4940490 Fife et al. Jul 1990 A
4941646 Stelts et al. Jul 1990 A
4985069 Traut Jan 1991 A
5028491 Huang et al. Jul 1991 A
5032176 Kametani et al. Jul 1991 A
5055280 Nakatani et al. Oct 1991 A
5064463 Ciomek Nov 1991 A
5082491 Rerat Jan 1992 A
5147451 Leland Sep 1992 A
5149497 McKee et al. Sep 1992 A
5160428 Kuri Nov 1992 A
5164346 Giunchi et al. Nov 1992 A
5167271 Lange et al. Dec 1992 A
5176741 Bartlett et al. Jan 1993 A
5176810 Volotinen et al. Jan 1993 A
5211741 Fife May 1993 A
5259862 White et al. Nov 1993 A
5338379 Kelly Aug 1994 A
5356120 König et al. Oct 1994 A
5427602 DeYoung et al. Jun 1995 A
5437854 Walker et al. Aug 1995 A
5439750 Ravenhall et al. Aug 1995 A
5448447 Chang Sep 1995 A
5460642 Leland Oct 1995 A
5498446 Axelbaum et al. Mar 1996 A
5580516 Kumar Dec 1996 A
H1642 Jenkins Apr 1997 H
5637816 Schneibel Jun 1997 A
5779761 Armstrong et al. Jul 1998 A
5897830 Abkowitz et al. Apr 1999 A
5914440 Celik et al. Jun 1999 A
5948495 Stanish et al. Sep 1999 A
5951822 Knapick et al. Sep 1999 A
5954856 Pathare et al. Sep 1999 A
5958106 Armstrong et al. Sep 1999 A
5986877 Pathare et al. Nov 1999 A
5993512 Pargeter et al. Nov 1999 A
6010661 Abe et al. Jan 2000 A
6027585 Patterson et al. Feb 2000 A
6040975 Mimura Mar 2000 A
6099664 Davies Aug 2000 A
6103651 Leitzel Aug 2000 A
6136062 Loffeholz et al. Oct 2000 A
6180258 Klier Jan 2001 B1
6193779 Reichert et al. Feb 2001 B1
6210461 Elliott Apr 2001 B1
6238456 Wolf et al. May 2001 B1
6309570 Fellabaum Oct 2001 B1
6309595 Rosenberg et al. Oct 2001 B1
6409797 Armstrong et al. Jun 2002 B2
6432161 Oda et al. Aug 2002 B1
6488073 Blenkinsop et al. Dec 2002 B1
6502623 Schmitt Jan 2003 B1
6602482 Kohler et al. Aug 2003 B2
6689187 Oda Feb 2004 B2
6727005 Gimondo et al. Apr 2004 B2
6745930 Schmitt Jun 2004 B2
6824585 Joseph et al. Nov 2004 B2
6861038 Armstrong et al. Mar 2005 B2
6884522 Adams et al. Apr 2005 B2
6902601 Nie et al. Jun 2005 B2
6921510 Ott et al. Jul 2005 B2
6955703 Zhou et al. Oct 2005 B2
7041150 Armstrong et al. May 2006 B2
7351272 Armstrong et al. Apr 2008 B2
7410610 Woodfield et al. Aug 2008 B2
7435282 Armstrong et al. Oct 2008 B2
7445658 Armstrong et al. Nov 2008 B2
7501007 Anderson et al. Mar 2009 B2
7501089 Armstrong et al. Mar 2009 B2
20020005090 Armstrong et al. Jan 2002 A1
20020050185 Oda May 2002 A1
20020152844 Armstrong et al. Oct 2002 A1
20020194953 Rosenberg et al. Dec 2002 A1
20030061907 Armstrong et al. Apr 2003 A1
20030145682 Anderson et al. Aug 2003 A1
20030230170 Woodfield Dec 2003 A1
20040123700 Zhou et al. Jul 2004 A1
20050081682 Armstrong et al. Apr 2005 A1
20050150576 Venigalla Jul 2005 A1
20050225014 Armstrong et al. Oct 2005 A1
20050284824 Anderson et al. Dec 2005 A1
20060086435 Anderson et al. Apr 2006 A1
20060102255 Woodfield et al. May 2006 A1
20060107790 Anderson et al. May 2006 A1
20060123950 Anderson et al. Jun 2006 A1
20060150769 Armstrong et al. Jul 2006 A1
20060230878 Anderson et al. Oct 2006 A1
20070017319 Jacobsen et al. Jan 2007 A1
20070079908 Jacobsen et al. Apr 2007 A1
20070180951 Armstrong et al. Aug 2007 A1
20070180952 Lanin et al. Aug 2007 A1
20080031766 Kogut et al. Feb 2008 A1
20080152533 Ernst et al. Jun 2008 A1
20080187455 Armstrong et al. Aug 2008 A1
20080199348 Armstrong et al. Aug 2008 A1
Foreign Referenced Citations (43)
Number Date Country
587782 Nov 1985 AU
2003263081 Jun 2004 AU
2196534 Feb 1996 CA
0298698 Jan 1989 EP
0299791 Jan 1989 EP
1441039 Jul 2004 EP
1657317 May 2006 EP
722184 Jan 1955 GB
778021 Jul 1957 GB
31007808 Sep 1956 JP
49042518 Apr 1974 JP
51010803 Apr 1976 JP
60255300 Dec 1985 JP
6112837 Jan 1986 JP
62065921 Mar 1987 JP
64047823 Feb 1989 JP
4116161 Apr 1992 JP
05078762 Mar 1993 JP
10502418 Mar 1998 JP
11090692 Apr 1999 JP
2001279345 Oct 2001 JP
90840 Jan 1958 NO
411962 Jan 1974 SU
WO9604407 Feb 1996 WO
WO9824575 Jun 1998 WO
WO2004022269 Mar 2004 WO
WO2004022797 Mar 2004 WO
WO2004022798 Mar 2004 WO
WO2004022799 Mar 2004 WO
WO2004022800 Mar 2004 WO
WO2004026511 Apr 2004 WO
WO2004028655 Apr 2004 WO
WO2004033736 Apr 2004 WO
WO2004033737 Apr 2004 WO
WO2004048622 Oct 2004 WO
WO2005019485 Mar 2005 WO
WO2005021807 Mar 2005 WO
WO2005023725 Mar 2005 WO
WO2005042792 May 2005 WO
WO2007044635 Apr 2007 WO
WO2007089400 Aug 2007 WO
WO2008013518 Jan 2008 WO
WO2008079115 Jul 2008 WO
Non-Patent Literature Citations (19)
Entry
Kelto et al. “Titanium Powder Metallurgy—A Perspective”; Conference: Powder Metallurgy of Titanium Alloys, Las Vegas, Nevada, Feb. 1980, pp. 1-19.
Mahajan et al. “Microstructure Property Correlation in Cold Pressed and Sintered Elemental Ti-6A1-4V Powder Compacts”; Conference: Powder Metallurgy of Titanium Alloys, Las Vegas, Nevada, Feb. 1980, pp. 189-202.
DeKock et al. “Attempted Preparation of Ti-6-4 Alloy Powders from TiCl4, Al, VCl4, and Na”; Metallurgical Transactions B, vol. 18B, No. 1, Process Metallurgy, Sep. 1987, pp. 511-517.
Upadhyaya “Metal Powder Compaction”, Powder Metallurgy Technology, Published by Cambridge International Science Publishing, 1997; pp. 42-67.
Moxson et al. “Production and Applications of Low Cost Titanium Powder Products”; The international Journal of Powder Metallurgy, vol. 34, No. 5, 1998, pp. 45-47.
Alt “Solid-Liquid Separation, Introduction”; Ulmann's Encyclopedia of Industrial Chemistry, © 2002 by Wiley-VCH Verlag GmbH & Co., Online Posting Date: Jun. 15, 2000, pp. 1-7.
Gerdemann et al. “Characterization of a Titanium Powder Produced Through a Novel Continuous Process”; Published by Metal Powder Industries Federation, 2000, pp. 12.41-12.52.
Moxson et al. “Innovations in Titanium Powder Processing”; Titanium Overview, JOM, May 2000, p. 24.
Gerdemann “Titanium Process Technologies”; Advanced Materials & Processes, Jul. 2001, pp. 41-43.
Lü et al. “Laser-Induced Materials and Processes for Rapid Prototyping” Published by Springer, 2001, pp. 153-154.
Lee et al. “Synthesis of Nano-Structured Titanium Carbide by Mg-Thermal Reduction”; Scripta Materialia, 2003, pp. 1513-1518.
Chandran et al. “TiBw-Reinforced Ti Composites: Processing, Properties, Application Prospects, and Research Needs”; Ti—B Alloys and Composites Overview, JOM, May 2004, pp. 42-48.
Chandran et al. “Titanium-Boron Alloys and Composites: Processing, Properties, and Applications”; Ti—B Alloys and Composites Commentary, JOM, May 2004 pp. 32 and 41.
Hanusiak et al. “The Prospects for Hybrid Fiber-Reinforced Ti—TiB-Matrix Composites”; Ti—B Alloys and Composites Overview, JOM, May 2004, pp. 49-50.
Kumari et al. “High-Temperature Deformation Behavior of Ti—TiBw In-Situ Metal-Matrix Composites”; Ti—B Alloys and Composites Research Summary, JOM, May 2004, pp. 51-55.
Saito “The Automotive Application of Discontinuously Reinforced TiB—Ti Composites”; Ti—B Alloys and Composites Overview, JOM, May 2004, pp. 33-36.
Yolton “The Pre-Alloyed Powder Metallurgy of Titanium with Boron and Carbon Additions”; Ti—B Alloys and Composites Research Summary, JOM, May 2004, pp. 56-59.
Research Report; P/M Technology News, Crucible Research, Aug. 2005, vol. 1, Issue 2, 2 pages.
Peter et al, “Structure and properties of titanium and titanium alloys”, book edited by Leyens et al, Titanium and titanium alloys, Wiley-VCHGmbH&Co. KGaA, copyright 2003, pp. 1-23.
Related Publications (1)
Number Date Country
20150040726 A1 Feb 2015 US
Continuations (2)
Number Date Country
Parent 12879598 Sep 2010 US
Child 14521646 US
Parent 11186724 Jul 2005 US
Child 12879598 US