Relatively small boron additions to conventional titanium alloys provide important improvements in strength, stiffness and microstructural stability. Because boron is essentially insoluble in titanium at all temperatures of interest, the titanium boride is formed for even very small boron additions. The density of titanium boride is nearly equal to those of conventional Ti alloys, but its stiffness is over four times higher than conventional titanium alloys. Thus, titanium boride offers significant improvements in stiffness, tensile strength, creep, and fatigue properties. Since titanium boride is in thermodynamic equilibrium with titanium alloys, there are no interfacial reactions to degrade properties at elevated temperature. Further, because the coefficient of thermal expansion of titanium boride is nearly equal to values for titanium alloys, residual stresses are nearly eliminated” Taken from JOM Article May 2004 “Powder Metallurgy Ti-6Al-4V Alloys: Processing, Microstructure, and Properties”, the entire disclosure of which is incorporated by reference.
Currently two approaches appear to be used to accomplish boron addition; 1) Blended elemental addition of TiB2 and solid state reaction to produce the titanium boride which usually forms as whiskers with a 10 to 1 aspect ratio and 2) Pre-alloyed powders from a melt process.
Negatives of the blended elemental approach are the added effort to blend the powders to obtain a uniform distribution (which is never perfect) and the added time and temperature it takes the solid state reaction to transform TiB2 to TiB (1300 C for 6 hours). Also, this approach has the potential to form larger Titanium boride particles or have residual titanium boride particles that adversely affect properties. The titanium boride whiskers that are formed can lead to anisotropic properties of the part depending on the type of process used to make the part.
A negative of the pre-alloyed approach is that it has a tendency to leave large primary borides in the pre-alloyed materials that cause low fracture toughness.
Representative examples of patents related to producing metal alloys with titanium boride are the Davies et al. U.S. Pat. No. 6,099,664 issued to Davies et al. Aug. 8, 2000, in which titanium boride particles in the 1-10 micron size range are produced in a molten reaction zone. The Blenkinsop et al. U.S. Pat. No. 6,488,073 issued Dec. 3, 2002 teaches the addition of an alloy in which tantalum boride or tungsten boride particles are added to a molten alloy material to form a molten mixture which upon cooling has the boride distributed therein. Another method of making boride containing titanium alloys is disclosed in the Abkowitz U.S. Pat. No. 5,897,830 in which titanium boride powders are mixed with the powders of various constituents to form a consumable billet which is thereafter cast or melted to form the article of manufacture. Each of these processes as described in the above-mentioned patents has a variety of shortcomings, not the least of which is the imperfect distribution of the boride as well as the size of the boride particles.
The Armstrong Process as disclosed in U.S. Pat. Nos. 5,779,761, 5,958,106 and 6,409,797, the entire disclosures of which are herein incorporated by reference appears very unexpectedly to give uniform distribution of very fine submicron titanium boride within the Ti or Ti alloy powder. This eliminates the need for blending and solid state reaction to form titanium boride; it also eliminates concerns regarding larger particles that can adversely affect fracture toughness and other mechanical properties. Because of the fineness of the titanium boride particles and the uniform distribution in most if not substantially all of the particles forming the powder, more isotropic mechanical properties may be achievable. None of the current approaches to boron addition to Ti powder can achieve this type of distribution of titanium boride, particularly in the submicron size ranges.
Accordingly, it is a principal object of the present invention to provide a titanium metal or a titanium alloy having submicron titanium boride substantially uniformly dispersed therein.
Another object of the invention is to provide a Ti powder or a Ti base alloy powder having submicron titanium boride substantially uniformly dispersed therein, wherein the Ti powder or Ti base alloy powder and titanium boride are made by the subsurface reduction of TiCI4 and a boron halide and other chlorides and/or halides of the Ti base alloy constituents, if present, with liquid alkali or alkaline earth metal or mixtures thereof in a reaction zone.
A further object of the invention is to provide a Ti powder or a Ti base alloy powder having submicron titanium boride which is other than whisker-shaped or spherical substantially uniformly dispersed therein.
A final object of the invention is to provide a product having an SEM substantially as shown in one or more of
The invention consists of certain novel features and a combination of parts hereinafter fully described, illustrated in the accompanying drawings, and particularly pointed out in the appended claims, it being understood that various changes in the details may be made without departing from the spirit, or sacrificing any of the advantages of the present invention.
For the purpose of facilitating an understanding of the invention, there is illustrated in the accompanying drawings a preferred embodiment thereof, from an inspection of which, when considered in connection with the following description, the invention, its construction and operation, and many of its advantages should be readily understood and appreciated.
Using the Armstrong method described in the above three identified patents and application Ser. No. 11/186,724 filed Jul. 21, 2005, the entire application is herein incorporated by reference.
The equipment used to produce the 6/4 alloy with submicron titanium boride substantially uniformly dispersed therein is similar to that disclosed in the aforementioned patents disclosing the Armstrong Process with the exception that instead of only having a titanium tetrachloride boiler 22 as illustrated in those patents, there is also a boiler for each constituent of the alloy connected to the reaction chamber by suitable valves. Boron addition is from a boiler for BCl3. The piping acts as a manifold so that the gases are completely mixed as they enter the reaction chamber and are introduced subsurface to the flowing liquid sodium, preferably at least at sonic velocity, as disclosed in the incorporated patents. Upon subsurface contact with the liquid metal the halides immediately and completely react exothermically to form a reaction zone in which the reaction products are produced. The flowing liquid metal preferably sodium, sweeps the reaction products away from the reaction zone maintaining the reaction products at a temperature below the sintering temperatures of the reaction products. It was determined during production of the 6/4 alloy that aluminum trichloride is corrosive and required special materials not required for handling either titanium tetrachloride or vanadium tetrachloride. Therefore, Hastelloy C-276 was used for the aluminum trichloride boiler and the piping to the reaction chamber. The BCl3 is not as corrosive as AlCl3.
During most of the runs the steady state temperature of the reactor was maintained at about 400° C. by the use of sufficient excess sodium. Other operating conditions for the production of the 6/4 alloy powder with submicron titanium boride dispersed in most, if not substantially all, of the particles forming the powder were as follows:
A device similar to that described in the incorporated Armstrong patents was used except that a VCl4 boiler, a AlCl3 boiler and a BCl3 boiler were provided and all three gases were fed into the line feeding TiCl4 into the liquid Na. The typical boiler pressures and system parameters are listed hereafter in Table 1.
The reactor was generally operated for approximately 250 seconds injecting approximately 11 kg of TiCl4. The salt and titanium alloy solids were captured on a wedge wire filter and free sodium metal was drained away. The product cake containing titanium alloy, sodium chloride and sodium was distilled at approximately 100 milli-torr at 550 to 575° C. vessel wall temperatures for 20 hours. Once all the sodium metal was removed via distillation, the trap was re-pressurized with argon gas and heated to 750° C. and held at temperature for 48 hours. The vessel containing the salt and titanium alloy cake was cooled and the cake was passivated with a 0.7 wt % oxygen/argon mixture. After passivation, the cake was washed with deionized water and subsequently dried in a vacuum oven at less than 100° C.
Table 2 below sets forth a chemical analysis of various runs for both Ti as well as 6/4 alloy with submicron titanium boride substantially uniformly dispersed therein from an experimental loop running the Armstrong Process. As used herein, titanium boride means principally TiB but does not exclude minor amounts of TiB2 or other borides.
Similarly, the process described herein produces a novel powder in which most, if not substantially all, of the particles forming the powder have submicron titanium boride dispersed therein. While the boride dispersion may not always be perfect in every particle, the titanium boride is very small, submicron, and generally uniformly dispersed within the particles forming the powder, whether the powder is titanium or a titanium alloy.
As seen from Table 2 below, the sodium levels for 6/4 with submicron titanium boride are very low while the sodium level for Ti with submicron titanium boride are somewhat higher, but still less than commercially pure titanium, without submicron titanium boride dispersed therein, made by the Armstrong Process, as described in the incorporated application.
As stated in the referenced application, the surface area of the 6/4 alloy compared to the CP titanium, as determined using BET Specific Surface Area analysis with krypton as the adsorbate is much larger than the CP titanium. The surface area of the 6/4 alloy with titanium boride is even greater, that is the alloy powder with titanium boride was smaller in average diameter and more difficult to grow into larger particles than Ti alloy without titanium boride.
The SEMs of
As is well known in the art, solid objects can be made by forming 6/4 or CP titanium powders into a near net shapes and thereafter sintering, see the Moxson et al. article and can also be formed by hot isostatic pressing, laser deposition, metal injecting molding, direct powder rolling or various other well known techniques. Therefore, the titanium alloy powder or titanium powder with submicron titanium boride dispersed substantially uniformly therein made by the Armstrong method may be formed into a consolidated or a consolidated and sintered product or may be formed into a solid object by well known methods in the art and the subject invention is intended to cover all such products made from the powder of the subject invention.
There has been disclosed herein a titanium metal powder or a titanium base alloy powder having submicron titanium boride substantially uniformly dispersed therein.
The specific titanium alloy of the type set forth wherein Al and V are present in a minor amount by weight, but preferably ASTM Grade 5, as well as commercially pure titanium, ASTM Grade 2, both as disclosed in the incorporated patent application, Table 1 therein, with submicron titanium boride substantially uniformly dispersed therein have been disclosed, wherein boron is present up to about 4% by weight. The invention however, includes any weight of boron added. Preferably, alloys have at least 50% by weight titanium with titanium boride, preferably TiB, present in any required amount.
Any halide may be used in the process, as previously described, but chlorides are preferred because they are readily available and less expensive than other halides. Various alkali or alkaline earth metals may be used, i.e. Na, K, Mg, Ca, but Na is preferred.
Solid products are routinely made by a variety of processes from the powders described herein. Products made from powder produced by the Armstrong method including BCl3 introduced into flowing liquid reducing metal prod uce superior hardness and other desirable physical properties are within the scope of this invention.
While the invention has been particularly shown and described with reference to a preferred embodiment thereof, it will be understood by those skilled in the art that several changes in form and detail may be made without departing from the spirit and scope of the invention.
This application is a continuation of U.S. Ser. No. 11/544,820, filed on Oct. 6, 2006, now abandoned, which, pursuant to 37 C.F.R. 1.78(c), claims priority based on provisional application Ser. No. 60/724,166 filed Oct. 6, 2005. Each cited application is expressly incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1771928 | Jung | Jul 1930 | A |
2205854 | Kroll | Jun 1940 | A |
2607675 | Gross | Aug 1952 | A |
2647826 | Jordan | Aug 1953 | A |
2816828 | Benedict et al. | Dec 1957 | A |
2823991 | Kamlet | Feb 1958 | A |
2827371 | Quin | Mar 1958 | A |
2835567 | Wilcox | May 1958 | A |
2846303 | Keller et al. | Aug 1958 | A |
2846304 | Keller et al. | Aug 1958 | A |
2882143 | Schmidt | Apr 1959 | A |
2882144 | Follows et al. | Apr 1959 | A |
2890112 | Winter | Jun 1959 | A |
2895823 | Lynskey | Jul 1959 | A |
2915382 | Hellier et al. | Dec 1959 | A |
2941867 | Maurer | Jun 1960 | A |
2944888 | Quin | Jul 1960 | A |
3058820 | Whitehurst | Oct 1962 | A |
3067025 | Chrisholm | Dec 1962 | A |
3085871 | Griffiths | Apr 1963 | A |
3085872 | Kenneth | Apr 1963 | A |
3113017 | Homme | Dec 1963 | A |
3331666 | Robinson et al. | Jul 1967 | A |
3379522 | Vordahl | Apr 1968 | A |
3519258 | Ishizuka | Jul 1970 | A |
3535109 | Ingersoll | Oct 1970 | A |
3650681 | Sugahara et al. | Mar 1972 | A |
3825415 | Johnston et al. | Jul 1974 | A |
3836302 | Kaukeinen | Sep 1974 | A |
3847596 | Holland et al. | Nov 1974 | A |
3867515 | Bohl et al. | Feb 1975 | A |
3919087 | Brumagim | Nov 1975 | A |
3927993 | Griffin | Dec 1975 | A |
3943751 | Akiyama et al. | Mar 1976 | A |
3966460 | Spink | Jun 1976 | A |
4007055 | Whittingham | Feb 1977 | A |
4009007 | Fry | Feb 1977 | A |
4017302 | Bates et al. | Apr 1977 | A |
4070252 | Bonsack | Jan 1978 | A |
4128421 | Marsh et al. | Dec 1978 | A |
4141719 | Hakko | Feb 1979 | A |
4149876 | Rerat | Apr 1979 | A |
4190442 | Patel | Feb 1980 | A |
4331477 | Kubo et al. | May 1982 | A |
4379718 | Grantham et al. | Apr 1983 | A |
4401467 | Jordan | Aug 1983 | A |
4402741 | Pollet et al. | Sep 1983 | A |
4414188 | Becker | Nov 1983 | A |
4423004 | Ross | Dec 1983 | A |
4425217 | Beer | Jan 1984 | A |
4432813 | Williams | Feb 1984 | A |
4445931 | Worthington | May 1984 | A |
4454169 | Hinden et al. | Jun 1984 | A |
4518426 | Murphy | May 1985 | A |
4519837 | Down | May 1985 | A |
4521281 | Kadija | Jun 1985 | A |
4555268 | Getz | Nov 1985 | A |
4556420 | Evans et al. | Dec 1985 | A |
4604368 | Reeve | Aug 1986 | A |
4606902 | Ritter | Aug 1986 | A |
RE32260 | Fry | Oct 1986 | E |
4687632 | Hurd et al. | Aug 1987 | A |
4689129 | Knudsen | Aug 1987 | A |
4725312 | Seon et al. | Feb 1988 | A |
4828008 | White et al. | May 1989 | A |
4830665 | Winand | May 1989 | A |
4839120 | Baba et al. | Jun 1989 | A |
4877445 | Okudaira et al. | Oct 1989 | A |
4897116 | Scheel | Jan 1990 | A |
4902341 | Okudaira et al. | Feb 1990 | A |
4915729 | Boswell et al. | Apr 1990 | A |
4915905 | Kampe et al. | Apr 1990 | A |
4923577 | McLaughlin et al. | May 1990 | A |
4940490 | Fife et al. | Jul 1990 | A |
4941646 | Stelts et al. | Jul 1990 | A |
4985069 | Traut | Jan 1991 | A |
5028491 | Huang et al. | Jul 1991 | A |
5032176 | Kametani et al. | Jul 1991 | A |
5055280 | Nakatani et al. | Oct 1991 | A |
5064463 | Ciomek | Nov 1991 | A |
5082491 | Rerat | Jan 1992 | A |
5147451 | Leland | Sep 1992 | A |
5149497 | McKee et al. | Sep 1992 | A |
5160428 | Kuri | Nov 1992 | A |
5164346 | Giunchi et al. | Nov 1992 | A |
5167271 | Lange et al. | Dec 1992 | A |
5176741 | Bartlett et al. | Jan 1993 | A |
5176810 | Volotinen et al. | Jan 1993 | A |
5211741 | Fife | May 1993 | A |
5259862 | White et al. | Nov 1993 | A |
5338379 | Kelly | Aug 1994 | A |
5356120 | König et al. | Oct 1994 | A |
5427602 | DeYoung et al. | Jun 1995 | A |
5437854 | Walker et al. | Aug 1995 | A |
5439750 | Ravenhall et al. | Aug 1995 | A |
5448447 | Chang | Sep 1995 | A |
5460642 | Leland | Oct 1995 | A |
5498446 | Axelbaum et al. | Mar 1996 | A |
5580516 | Kumar | Dec 1996 | A |
H1642 | Jenkins | Apr 1997 | H |
5637816 | Schneibel | Jun 1997 | A |
5779761 | Armstrong et al. | Jul 1998 | A |
5897830 | Abkowitz et al. | Apr 1999 | A |
5914440 | Celik et al. | Jun 1999 | A |
5948495 | Stanish et al. | Sep 1999 | A |
5951822 | Knapick et al. | Sep 1999 | A |
5954856 | Pathare et al. | Sep 1999 | A |
5958106 | Armstrong et al. | Sep 1999 | A |
5986877 | Pathare et al. | Nov 1999 | A |
5993512 | Pargeter et al. | Nov 1999 | A |
6010661 | Abe et al. | Jan 2000 | A |
6027585 | Patterson et al. | Feb 2000 | A |
6040975 | Mimura | Mar 2000 | A |
6099664 | Davies | Aug 2000 | A |
6103651 | Leitzel | Aug 2000 | A |
6136062 | Loffelholz et al. | Oct 2000 | A |
6180258 | Klier | Jan 2001 | B1 |
6193779 | Reichert et al. | Feb 2001 | B1 |
6210461 | Elliott | Apr 2001 | B1 |
6238456 | Wolf et al. | May 2001 | B1 |
6309570 | Fellabaum | Oct 2001 | B1 |
6309595 | Rosenberg et al. | Oct 2001 | B1 |
6409797 | Armstrong et al. | Jun 2002 | B2 |
6432161 | Oda et al. | Aug 2002 | B1 |
6488073 | Blenkinsop et al. | Dec 2002 | B1 |
6502623 | Schmitt | Jan 2003 | B1 |
6602482 | Kohler et al. | Aug 2003 | B2 |
6689187 | Oda | Feb 2004 | B2 |
6727005 | Gimondo et al. | Apr 2004 | B2 |
6745930 | Schmitt | Jun 2004 | B2 |
6824585 | Joseph et al. | Nov 2004 | B2 |
6861038 | Armstrong et al. | Mar 2005 | B2 |
6884522 | Adams et al. | Apr 2005 | B2 |
6902601 | Nie et al. | Jun 2005 | B2 |
6921510 | Ott et al. | Jul 2005 | B2 |
6955703 | Zhou et al. | Oct 2005 | B2 |
7041150 | Armstrong et al. | May 2006 | B2 |
7351272 | Armstrong et al. | Apr 2008 | B2 |
7410610 | Woodfield et al. | Aug 2008 | B2 |
7435282 | Armstrong et al. | Oct 2008 | B2 |
7445658 | Armstrong et al. | Nov 2008 | B2 |
7501007 | Anderson et al. | Mar 2009 | B2 |
7501089 | Armstrong et al. | Mar 2009 | B2 |
7531021 | Woodfield et al. | May 2009 | B2 |
20020050185 | Oda | May 2002 | A1 |
20020152844 | Armstrong et al. | Oct 2002 | A1 |
20030061907 | Armstrong et al. | Apr 2003 | A1 |
20030145682 | Anderson et al. | Aug 2003 | A1 |
20030230170 | Woodfield et al. | Dec 2003 | A1 |
20030231974 | Woodfield et al. | Dec 2003 | A1 |
20040123700 | Zhou et al. | Jul 2004 | A1 |
20040141869 | Ott et al. | Jul 2004 | A1 |
20040208773 | Woodfield et al. | Oct 2004 | A1 |
20050081682 | Armstrong et al. | Apr 2005 | A1 |
20050150576 | Venigalla | Jul 2005 | A1 |
20050225014 | Armstrong et al. | Oct 2005 | A1 |
20050284824 | Anderson et al. | Dec 2005 | A1 |
20060057017 | Woodfield | Mar 2006 | A1 |
20060086435 | Anderson et al. | Apr 2006 | A1 |
20060102255 | Woodfield et al. | May 2006 | A1 |
20060107790 | Anderson et al. | May 2006 | A1 |
20060123950 | Anderson et al. | Jun 2006 | A1 |
20060150769 | Armstrong et al. | Jul 2006 | A1 |
20060230878 | Anderson et al. | Oct 2006 | A1 |
20070017319 | Jacobsen et al. | Jan 2007 | A1 |
20070079908 | Jacobsen et al. | Apr 2007 | A1 |
20070180951 | Armstrong et al. | Aug 2007 | A1 |
20070180952 | Lanin et al. | Aug 2007 | A1 |
20080031766 | Kogut et al. | Feb 2008 | A1 |
20080152533 | Ernst et al. | Jun 2008 | A1 |
20080187455 | Armstrong et al. | Aug 2008 | A1 |
20080199348 | Armstrong et al. | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
587782 | Nov 1985 | AU |
2003263081 | Jun 2004 | AU |
2196534 | Feb 1996 | CA |
006615 | Feb 2006 | EA |
007634 | Dec 2006 | EA |
0298698 | Jan 1989 | EP |
0299791 | Jan 1989 | EP |
1441039 | Jul 2004 | EP |
1657317 | May 2006 | EP |
722184 | Jan 1955 | GB |
778021 | Jul 1957 | GB |
31007808 | Sep 1956 | JP |
49042518 | Apr 1974 | JP |
51010803 | Apr 1976 | JP |
60255300 | Dec 1985 | JP |
6112837 | Jan 1986 | JP |
62065921 | Mar 1987 | JP |
64047823 | Feb 1989 | JP |
4116161 | Apr 1992 | JP |
05078762 | Mar 1993 | JP |
10502418 | Mar 1998 | JP |
11090692 | Apr 1999 | JP |
2001279345 | Oct 2001 | JP |
90840 | Jan 1958 | NO |
411962 | Jan 1974 | RU |
WO9604407 | Feb 1996 | WO |
WO9824575 | Jun 1998 | WO |
WO03106080 | Dec 2003 | WO |
WO2004022269 | Mar 2004 | WO |
WO2004022797 | Mar 2004 | WO |
WO2004022798 | Mar 2004 | WO |
WO2004022799 | Mar 2004 | WO |
WO2004022800 | Mar 2004 | WO |
WO2004026511 | Apr 2004 | WO |
WO2004028655 | Apr 2004 | WO |
WO2004033736 | Apr 2004 | WO |
WO2004033737 | Apr 2004 | WO |
WO2004048622 | Oct 2004 | WO |
WO2005019485 | Mar 2005 | WO |
WO2005021807 | Mar 2005 | WO |
WO2005023725 | Mar 2005 | WO |
WO2005042792 | May 2005 | WO |
WO2007044635 | Apr 2007 | WO |
WO2007089400 | Aug 2007 | WO |
WO2008013518 | Jan 2008 | WO |
WO2008079115 | Jul 2008 | WO |
Entry |
---|
Kelto et al. “Titanium Powder Metallurgy—A Perspective”; Conference: Powder Metallurgy of Titanium Alloys, Las Vegas, Nevada, Feb. 1980, pp. 1-19. |
Mahajan et al, “Microstructure Property Correlation in Cold Pressed and Sintered Elemental Ti-6A 1-4V Powder Compacts”; Conference: Powder Metallurgv of Titanium Alloys, Las Vegas Nevada, Feb. 1980 pp. 189-202. |
DeKock et al. “Attempted Preparation of Ti-6-4 Alloy Powders from TiCl4, Al, VCl4, and Na”; Metallurgical Transactions B, vol. 18B, No. 1, Process Metallurgy, Sep. 1987. pp. 511-517. |
Upadhyaya “Metal Powder Compaction”, Powder Metallurgy Technology, Published by Cambridge International Science Publishing, 1997, pp. 42-67. |
Moxson et al. “Production and Applications of Low Cost Titanium Powder Products”; The International Journal of Powder Metallurgy, vol. 34, No. 5, 1998, pp. 45-47. |
ALT “Solid-Liquid Separation, Introduction”; Ulmann's Encyclopedia of Industrial Chemistry, @2002 by Wiley-VCH Verlag GmbH & Co., Online Posting Date: Jun. 15, 2000, pp. 1-7. |
Gerdemann et al, “Characterization of a Titanium Powder Produced Through a Novel Continuous Process”; Published by Metal Powder Industries Federation, 2000, pp. 12.41-12.52. |
Moxson et al. “Innovations in Titanium Powder Processing”; Titanium Overview, JOM, May 2000, p. 24. |
Gerdemann “Titanium Process Technologies”; Advanced Materials & Processes, Jul. 2001, pp. 41-43. |
Lü et al. “Laser-Induced Materials and Processes for Rapid Prototyping” Published by Springer 2001, pp. 153-154. |
Lee et al. “Synthesis of Nano-Structured Titanium Carbide by Mg-Thermal Reduction”; Scripta Materialia, 2003, pp. 1513-1518. |
Chandran et al. “TiBw-Reinforced Ti Composites: Processing, Properties, Application Prospects, and Research Needs”; Ti—B Alloys and Composites Overview, JOM, May 2004, pp. 42-48. |
Chandran et al. Titanium—Boron Alloys and Composites: Processing, Properties, and Applications•; Ti—B Alloys and Composites Commentary, JOM, May 2004, pp. 32 and 41. |
Hanusiak et al. “The Prospects for Hybrid Fiber-Reinforced Ti—TiB-Matrix Composites”; Ti—B Alloys and Composites Overview, JOM, May 2004, pp. 49-50. |
Kumari et al. “High-Temperature Deformation Behavior of Ti—TiBw In-Situ Metal-Matrix composites”; Ti—B Alloys and Composites Research Summary, JOM, May 2004, pp. 51-55. |
Saito “The Automotive Application of Discontinuously Reinforced TiB—Ti Composites”; Ti—B Alloys and Composites Overview, JOM. May 2004, pp. 33-36. |
Yolton “The Pre-Alloyed Powder Metallurgy of Titanium with Boron and Carbon Additions”; Ti—B Alloys and Composites Research Summary, JOM, May 2004, pp. 56-59. |
Woodfield et al., “Prospects for a New Generation of Titanium Alloys and Structures,” AeroMat 2005, Jun. 2005, 30 pp. (1 p. of Abstract and 29 pgs. ppt). |
Research Report; P/M Technology News, Crucible Research, Aug. 2005, vol. 1, Issue 2, 2 pages. |
AU Patent Application No. 2006302273—Opposition filed by Christopher Carter Feb. 18, 2011. |
AU Patent Application No. 2006302273—Amendment and Statuary Declaration in Response to Opposition, filed Jan. 29, 2013. |
Number | Date | Country | |
---|---|---|---|
20130343945 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
60724166 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11544820 | Oct 2006 | US |
Child | 13706946 | US |