Titanium boride

Information

  • Patent Grant
  • 8821611
  • Patent Number
    8,821,611
  • Date Filed
    Thursday, December 6, 2012
    12 years ago
  • Date Issued
    Tuesday, September 2, 2014
    10 years ago
Abstract
A titanium metal or a titanium alloy having submicron titanium boride substantially uniformly dispersed therein and a method of making same is disclosed. Ti power of Ti alloy powder has dispersed within the particles forming the powder titanum boride which is other than whisker-shaped or spherical substantially uniformly dispersed therein.
Description
BACKGROUND OF THE INVENTION

Relatively small boron additions to conventional titanium alloys provide important improvements in strength, stiffness and microstructural stability. Because boron is essentially insoluble in titanium at all temperatures of interest, the titanium boride is formed for even very small boron additions. The density of titanium boride is nearly equal to those of conventional Ti alloys, but its stiffness is over four times higher than conventional titanium alloys. Thus, titanium boride offers significant improvements in stiffness, tensile strength, creep, and fatigue properties. Since titanium boride is in thermodynamic equilibrium with titanium alloys, there are no interfacial reactions to degrade properties at elevated temperature. Further, because the coefficient of thermal expansion of titanium boride is nearly equal to values for titanium alloys, residual stresses are nearly eliminated” Taken from JOM Article May 2004 “Powder Metallurgy Ti-6Al-4V Alloys: Processing, Microstructure, and Properties”, the entire disclosure of which is incorporated by reference.


Currently two approaches appear to be used to accomplish boron addition; 1) Blended elemental addition of TiB2 and solid state reaction to produce the titanium boride which usually forms as whiskers with a 10 to 1 aspect ratio and 2) Pre-alloyed powders from a melt process.


Negatives of the blended elemental approach are the added effort to blend the powders to obtain a uniform distribution (which is never perfect) and the added time and temperature it takes the solid state reaction to transform TiB2 to TiB (1300 C for 6 hours). Also, this approach has the potential to form larger Titanium boride particles or have residual titanium boride particles that adversely affect properties. The titanium boride whiskers that are formed can lead to anisotropic properties of the part depending on the type of process used to make the part.


A negative of the pre-alloyed approach is that it has a tendency to leave large primary borides in the pre-alloyed materials that cause low fracture toughness.


Representative examples of patents related to producing metal alloys with titanium boride are the Davies et al. U.S. Pat. No. 6,099,664 issued to Davies et al. Aug. 8, 2000, in which titanium boride particles in the 1-10 micron size range are produced in a molten reaction zone. The Blenkinsop et al. U.S. Pat. No. 6,488,073 issued Dec. 3, 2002 teaches the addition of an alloy in which tantalum boride or tungsten boride particles are added to a molten alloy material to form a molten mixture which upon cooling has the boride distributed therein. Another method of making boride containing titanium alloys is disclosed in the Abkowitz U.S. Pat. No. 5,897,830 in which titanium boride powders are mixed with the powders of various constituents to form a consumable billet which is thereafter cast or melted to form the article of manufacture. Each of these processes as described in the above-mentioned patents has a variety of shortcomings, not the least of which is the imperfect distribution of the boride as well as the size of the boride particles.


SUMMARY OF THE INVENTION

The Armstrong Process as disclosed in U.S. Pat. Nos. 5,779,761, 5,958,106 and 6,409,797, the entire disclosures of which are herein incorporated by reference appears very unexpectedly to give uniform distribution of very fine submicron titanium boride within the Ti or Ti alloy powder. This eliminates the need for blending and solid state reaction to form titanium boride; it also eliminates concerns regarding larger particles that can adversely affect fracture toughness and other mechanical properties. Because of the fineness of the titanium boride particles and the uniform distribution in most if not substantially all of the particles forming the powder, more isotropic mechanical properties may be achievable. None of the current approaches to boron addition to Ti powder can achieve this type of distribution of titanium boride, particularly in the submicron size ranges.


Accordingly, it is a principal object of the present invention to provide a titanium metal or a titanium alloy having submicron titanium boride substantially uniformly dispersed therein.


Another object of the invention is to provide a Ti powder or a Ti base alloy powder having submicron titanium boride substantially uniformly dispersed therein, wherein the Ti powder or Ti base alloy powder and titanium boride are made by the subsurface reduction of TiCI4 and a boron halide and other chlorides and/or halides of the Ti base alloy constituents, if present, with liquid alkali or alkaline earth metal or mixtures thereof in a reaction zone.


A further object of the invention is to provide a Ti powder or a Ti base alloy powder having submicron titanium boride which is other than whisker-shaped or spherical substantially uniformly dispersed therein.


A final object of the invention is to provide a product having an SEM substantially as shown in one or more of FIGS. 1-8.


The invention consists of certain novel features and a combination of parts hereinafter fully described, illustrated in the accompanying drawings, and particularly pointed out in the appended claims, it being understood that various changes in the details may be made without departing from the spirit, or sacrificing any of the advantages of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of facilitating an understanding of the invention, there is illustrated in the accompanying drawings a preferred embodiment thereof, from an inspection of which, when considered in connection with the following description, the invention, its construction and operation, and many of its advantages should be readily understood and appreciated.



FIG. 1 is an SEM of a titanium powder having submicron titanium boride substantially uniformly dispersed therethrough at a magnification of 50;



FIG. 2 is another SEM of a titanium powder having submicron titanium boride substantially uniformly dispersed therethrough at a magnification of 50;



FIG. 3 is a similar SEM of a titanium powder having submicron titanium boride substantially uniformly dispersed therethrough at a magnification of 3000;



FIG. 4 is another SEM of a titanium powder having submicron titanium boride substantially uniformly dispersed therethrough at a magnification of 3000;



FIG. 5 is a titanium base alloy having about 10% total of aluminum and vanadium with titanium boride with submicron titanium borides substantially uniformly dispersed throughout the particles forming the powder at a 40 magnification;



FIG. 6 is a titanium base alloy having about 10% total of aluminum and vanadium with titanium boride with submicron titanium borides substantially uniformly dispersed throughout the particles forming the powder at a 50 magnification;



FIG. 7 is a titanium base alloy having about 10% total of aluminum and vanadium with titanium boride with submicron titanium borides substantially uniformly dispersed throughout the particles forming the powder at a 3000 magnification;



FIG. 8 is a titanium base alloy having about 10% total of aluminum and vanadium with titanium boride with submicron titanium borides substantially uniformly dispersed throughout the particles forming the powder at a 3000 magnification (a different portion of the same sample as FIG. 7).





DETAILED DESCRIPTION OF THE INVENTION

Using the Armstrong method described in the above three identified patents and application Ser. No. 11/186,724 filed Jul. 21, 2005, the entire application is herein incorporated by reference.


The equipment used to produce the 6/4 alloy with submicron titanium boride substantially uniformly dispersed therein is similar to that disclosed in the aforementioned patents disclosing the Armstrong Process with the exception that instead of only having a titanium tetrachloride boiler 22 as illustrated in those patents, there is also a boiler for each constituent of the alloy connected to the reaction chamber by suitable valves. Boron addition is from a boiler for BCl3. The piping acts as a manifold so that the gases are completely mixed as they enter the reaction chamber and are introduced subsurface to the flowing liquid sodium, preferably at least at sonic velocity, as disclosed in the incorporated patents. Upon subsurface contact with the liquid metal the halides immediately and completely react exothermically to form a reaction zone in which the reaction products are produced. The flowing liquid metal preferably sodium, sweeps the reaction products away from the reaction zone maintaining the reaction products at a temperature below the sintering temperatures of the reaction products. It was determined during production of the 6/4 alloy that aluminum trichloride is corrosive and required special materials not required for handling either titanium tetrachloride or vanadium tetrachloride. Therefore, Hastelloy C-276 was used for the aluminum trichloride boiler and the piping to the reaction chamber. The BCl3 is not as corrosive as AlCl3.


During most of the runs the steady state temperature of the reactor was maintained at about 400° C. by the use of sufficient excess sodium. Other operating conditions for the production of the 6/4 alloy powder with submicron titanium boride dispersed in most, if not substantially all, of the particles forming the powder were as follows:


A device similar to that described in the incorporated Armstrong patents was used except that a VCl4 boiler, a AlCl3 boiler and a BCl3 boiler were provided and all three gases were fed into the line feeding TiCl4 into the liquid Na. The typical boiler pressures and system parameters are listed hereafter in Table 1.






















TABLE 1










TiCl4




Boron


Bake







Noz.
TiCl4
TiCl4
VCl4
AlCl3
Noz.
Boron
Distill
Temp(C.)/



Boron
Aluminum
Vanadium
Oxygen
Dia.
Press.
Flow
Press.
Press.
Dia.
Press.
Temp
Time


Run#
Wt %
Wt %
Wt %
Wt %
(in)
(Kpa)
(Kg/min)
(Kpa)
(Kpa)
(in)
(Kpa)
(C.)
(hrs)




























NR285
.82


.485
7/32
540
2.4


.040
640
575
750/24



.89


.477



.9


.605



.82


.578


NR286
2.21


.874
7/32
500
2.3


.040
1400-1600
575
775/24



3.17


.875



3.15


.985



3.18


.969


NR291
.25
7.08
2.84
.346
7/32
500
2.9
640
860
.040
600
575
775/24



.38
6.91
2.5 
.494


NR292
2.58
7.46
3.79
1.06
7/32
510
2.2
620
850
.040
1500 
575
775/24



2.49
7.72
3.59
1.33


A-308
.71


.304
7/32
500
2.5


.040
450-525
575
790/30



.64


.303


A-328
1.24


.31
5/32
550
1.23


.040
570
575
790/36





Inlet Na temperature about 240° C.


Reactor Outlet Temperature about 510° C.


Na Flowrate about 40 kg/min






The reactor was generally operated for approximately 250 seconds injecting approximately 11 kg of TiCl4. The salt and titanium alloy solids were captured on a wedge wire filter and free sodium metal was drained away. The product cake containing titanium alloy, sodium chloride and sodium was distilled at approximately 100 milli-torr at 550 to 575° C. vessel wall temperatures for 20 hours. Once all the sodium metal was removed via distillation, the trap was re-pressurized with argon gas and heated to 750° C. and held at temperature for 48 hours. The vessel containing the salt and titanium alloy cake was cooled and the cake was passivated with a 0.7 wt % oxygen/argon mixture. After passivation, the cake was washed with deionized water and subsequently dried in a vacuum oven at less than 100° C.


Table 2 below sets forth a chemical analysis of various runs for both Ti as well as 6/4 alloy with submicron titanium boride substantially uniformly dispersed therein from an experimental loop running the Armstrong Process. As used herein, titanium boride means principally TiB but does not exclude minor amounts of TiB2 or other borides.


Similarly, the process described herein produces a novel powder in which most, if not substantially all, of the particles forming the powder have submicron titanium boride dispersed therein. While the boride dispersion may not always be perfect in every particle, the titanium boride is very small, submicron, and generally uniformly dispersed within the particles forming the powder, whether the powder is titanium or a titanium alloy.


As seen from Table 2 below, the sodium levels for 6/4 with submicron titanium boride are very low while the sodium level for Ti with submicron titanium boride are somewhat higher, but still less than commercially pure titanium, without submicron titanium boride dispersed therein, made by the Armstrong Process, as described in the incorporated application.


As stated in the referenced application, the surface area of the 6/4 alloy compared to the CP titanium, as determined using BET Specific Surface Area analysis with krypton as the adsorbate is much larger than the CP titanium. The surface area of the 6/4 alloy with titanium boride is even greater, that is the alloy powder with titanium boride was smaller in average diameter and more difficult to grow into larger particles than Ti alloy without titanium boride.














TABLE 2







Al % by weight
V % by weight
B % by weight
Na





















9
5

0.0039



10
5

0.0026



8
5

0.001



7
2.2

0.017



8
1.8

0.0086



5.4
5.3

0.0015



7.3
4.7

0.002



14
3

0.018



7.75
5.2

0.009



9.6
6.8

0.0078



13
6.7

0.0092



9.2
0.009

0.014



6
4

0.0018



5.7
3.5

0.0018



5
2.2

0.0018



5.3
3.6

0.0052



7.2
4

0.014





0.82
0.018





0.89
0.023





0.9
0.0047





0.82
0.0028





2.21
0.0047





3.17
0.0076





3.15
0.013





3.2
0.012



7.08
2.84
0.25
0.0025



6.91
2.5
0.38
0.0024



7.46
3.79
2.58
0.0023



7.72
3.59
2.49
0.0077










The SEMs of FIGS. 1-8 show that the 6/4 powder and/or Ti powder with submicron titanium boride distributed therein is “frillier” than the previously made 6/4 powder in the referenced application. Each of the figures references a run disclosed in Table 1 and represents samples taken from that run at different magnifications. As stated in the referenced application and as reported by Moxson et al., Innovations in Titanium Powder Processing in the Journal of Metallurgy May 2000, it is clear that by-product fines from the Kroll or Hunter Processes contain large amounts of undesirable chlorine which is not present in the CP titanium powder or alloy made by the Armstrong Process. Moreover, the morphology of the Hunter and Kroll fines, as previously discussed, is different from the CP powder or the 6/4 alloy powder or either with submicron titanium boride therein made by the Armstrong Process. Neither the Kroll nor the Hunter process has been adapted to produce 6/4 alloy or any alloy. Alloy powders have been produced by melting prealloyed stock and thereafter using either gas atomization or a hydride-dehydride process (MHR). The Moxson et al. article discloses 6/4 powder made in Tula, Russia and as seen from FIG. 2 in that article, particularly FIGS. 2c and 2d the powders made by Tula Hydride Reduction process are significantly different than those made by the Armstrong Process. Moreover, referring to the Moxson et al. article in the 1998 issue of the International Journal of Powder Metallurgy, Vol. 4, No. 5, pages 45-47, it is seen that the chemical analysis for the pre-alloy 6/4 powder produced by the metal-hydride reduction (MHD) process contains exceptional amounts of calcium and also is not within ASTM specifications for aluminum.


As is well known in the art, solid objects can be made by forming 6/4 or CP titanium powders into a near net shapes and thereafter sintering, see the Moxson et al. article and can also be formed by hot isostatic pressing, laser deposition, metal injecting molding, direct powder rolling or various other well known techniques. Therefore, the titanium alloy powder or titanium powder with submicron titanium boride dispersed substantially uniformly therein made by the Armstrong method may be formed into a consolidated or a consolidated and sintered product or may be formed into a solid object by well known methods in the art and the subject invention is intended to cover all such products made from the powder of the subject invention.


There has been disclosed herein a titanium metal powder or a titanium base alloy powder having submicron titanium boride substantially uniformly dispersed therein.


The specific titanium alloy of the type set forth wherein Al and V are present in a minor amount by weight, but preferably ASTM Grade 5, as well as commercially pure titanium, ASTM Grade 2, both as disclosed in the incorporated patent application, Table 1 therein, with submicron titanium boride substantially uniformly dispersed therein have been disclosed, wherein boron is present up to about 4% by weight. The invention however, includes any weight of boron added. Preferably, alloys have at least 50% by weight titanium with titanium boride, preferably TiB, present in any required amount.


Any halide may be used in the process, as previously described, but chlorides are preferred because they are readily available and less expensive than other halides. Various alkali or alkaline earth metals may be used, i.e. Na, K, Mg, Ca, but Na is preferred.


Solid products are routinely made by a variety of processes from the powders described herein. Products made from powder produced by the Armstrong method including BCl3 introduced into flowing liquid reducing metal prod uce superior hardness and other desirable physical properties are within the scope of this invention.


While the invention has been particularly shown and described with reference to a preferred embodiment thereof, it will be understood by those skilled in the art that several changes in form and detail may be made without departing from the spirit and scope of the invention.

Claims
  • 1. A method of forming a titanium metal powder, the method comprising: subsurfacely introducing a vapor mixture of titanium tetrachloride and a boron halide into a flowing stream of a liquid metal comprising an alkali metal, an alkaline earth metal, or a mixture thereof, to produce the reaction products comprising titanium metal powder having submicron titanium boride substantially uniformly dispersed therein, wherein the liquid metal is present in a sufficient amount to (i) reduce the vapor mixture to form the reaction products, and (ii) maintain the reaction products below a sintering temperature of the titanium metal powder; andrecovering the titanium metal powder from the reaction products.
  • 2. The method of claim 1 wherein the titanium metal powder comprises boron in an amount greater than 0% by weight up to 3.2% by weight of the titanium metal powder.
  • 3. The method of claim 1 wherein the titanium metal powder comprises boron in an amount greater than 0% by weight up to about 4% by weight of the titanium metal powder.
  • 4. The method of claim 1, wherein the titanium boride is other than whisker-shaped or spherical shaped.
  • 5. The method of claim 1, further comprising forming the titanium metal powder into a consolidated powder.
  • 6. The method of claim 1, further comprising sintering the titanium metal powder to form a sintered powder.
  • 7. The method of claim 1, wherein the titanium boride is principally in the form of TiB.
  • 8. The method of claim 1, wherein the alkali metal is at least one of sodium and potassium.
  • 9. The method of claim 1, wherein the alkaline earth metal is at least one of magnesium or calcium.
  • 10. The method of claim 1, wherein the vapor mixture is introduced into the flowing stream of liquid metal at at least sonic velocity.
  • 11. The method of claim 1, wherein the boron halide substantially comprises BCl3.
  • 12. The method of claim 1, wherein at least half of the particles forming the titanium metal powder contain titanium boride.
  • 13. The method of claim 1, wherein the titanium boride is dispersed within substantially all of the particles of the titanium metal powder.
  • 14. The method of claim 1, further comprising subsurfacely introducing at least one of Al and V to form a titanium alloy of at least one of Al and V.
  • 15. The method of claim 1, comprising the step of consolidating the titanium metal powder into a solid object.
  • 16. A method of forming a titanium metal powder, the method comprising: subsurfacely introducing a vapor mixture of titanium tetrachloride and a boron halide into a flowing stream of a liquid metal comprising an alkali metal, an alkaline earth metal, or a mixture thereof, to produce the reaction products comprising titanium metal powder having submicron titanium boride substantially uniformly dispersed therein, wherein the titanium metal powder comprises boron in an amount greater than 0% by weight up to about 4% by weight of the titanium metal powder, and wherein the liquid metal is present in a sufficient amount to (i) reduce the vapor mixture to form the reaction products, and (ii) maintain the reaction products below a sintering temperature of the titanium metal powder; andrecovering the titanium metal powder from the reaction products.
  • 17. The method of claim 16 wherein the titanium metal powder comprises boron in an amount greater than 0% by weight up to 3.2% by weight of the titanium metal powder.
  • 18. The method of claim 16, wherein the titanium boride is other than whisker-shaped or spherical shaped.
  • 19. The method of claim 16, wherein the titanium boride is principally in the form of TiB.
  • 20. The method of claim 16, wherein the boron halide substantially comprises BCl3.
  • 21. The method of claim 16, further comprising subsurfacely introducing at least one of Al and V to form a titanium alloy of at least one of Al and V.
Parent Case Info

This application is a continuation of U.S. Ser. No. 11/544,820, filed on Oct. 6, 2006, now abandoned, which, pursuant to 37 C.F.R. 1.78(c), claims priority based on provisional application Ser. No. 60/724,166 filed Oct. 6, 2005. Each cited application is expressly incorporated by reference herein in its entirety.

US Referenced Citations (172)
Number Name Date Kind
1771928 Jung Jul 1930 A
2205854 Kroll Jun 1940 A
2607675 Gross Aug 1952 A
2647826 Jordan Aug 1953 A
2816828 Benedict et al. Dec 1957 A
2823991 Kamlet Feb 1958 A
2827371 Quin Mar 1958 A
2835567 Wilcox May 1958 A
2846303 Keller et al. Aug 1958 A
2846304 Keller et al. Aug 1958 A
2882143 Schmidt Apr 1959 A
2882144 Follows et al. Apr 1959 A
2890112 Winter Jun 1959 A
2895823 Lynskey Jul 1959 A
2915382 Hellier et al. Dec 1959 A
2941867 Maurer Jun 1960 A
2944888 Quin Jul 1960 A
3058820 Whitehurst Oct 1962 A
3067025 Chrisholm Dec 1962 A
3085871 Griffiths Apr 1963 A
3085872 Kenneth Apr 1963 A
3113017 Homme Dec 1963 A
3331666 Robinson et al. Jul 1967 A
3379522 Vordahl Apr 1968 A
3519258 Ishizuka Jul 1970 A
3535109 Ingersoll Oct 1970 A
3650681 Sugahara et al. Mar 1972 A
3825415 Johnston et al. Jul 1974 A
3836302 Kaukeinen Sep 1974 A
3847596 Holland et al. Nov 1974 A
3867515 Bohl et al. Feb 1975 A
3919087 Brumagim Nov 1975 A
3927993 Griffin Dec 1975 A
3943751 Akiyama et al. Mar 1976 A
3966460 Spink Jun 1976 A
4007055 Whittingham Feb 1977 A
4009007 Fry Feb 1977 A
4017302 Bates et al. Apr 1977 A
4070252 Bonsack Jan 1978 A
4128421 Marsh et al. Dec 1978 A
4141719 Hakko Feb 1979 A
4149876 Rerat Apr 1979 A
4190442 Patel Feb 1980 A
4331477 Kubo et al. May 1982 A
4379718 Grantham et al. Apr 1983 A
4401467 Jordan Aug 1983 A
4402741 Pollet et al. Sep 1983 A
4414188 Becker Nov 1983 A
4423004 Ross Dec 1983 A
4425217 Beer Jan 1984 A
4432813 Williams Feb 1984 A
4445931 Worthington May 1984 A
4454169 Hinden et al. Jun 1984 A
4518426 Murphy May 1985 A
4519837 Down May 1985 A
4521281 Kadija Jun 1985 A
4555268 Getz Nov 1985 A
4556420 Evans et al. Dec 1985 A
4604368 Reeve Aug 1986 A
4606902 Ritter Aug 1986 A
RE32260 Fry Oct 1986 E
4687632 Hurd et al. Aug 1987 A
4689129 Knudsen Aug 1987 A
4725312 Seon et al. Feb 1988 A
4828008 White et al. May 1989 A
4830665 Winand May 1989 A
4839120 Baba et al. Jun 1989 A
4877445 Okudaira et al. Oct 1989 A
4897116 Scheel Jan 1990 A
4902341 Okudaira et al. Feb 1990 A
4915729 Boswell et al. Apr 1990 A
4915905 Kampe et al. Apr 1990 A
4923577 McLaughlin et al. May 1990 A
4940490 Fife et al. Jul 1990 A
4941646 Stelts et al. Jul 1990 A
4985069 Traut Jan 1991 A
5028491 Huang et al. Jul 1991 A
5032176 Kametani et al. Jul 1991 A
5055280 Nakatani et al. Oct 1991 A
5064463 Ciomek Nov 1991 A
5082491 Rerat Jan 1992 A
5147451 Leland Sep 1992 A
5149497 McKee et al. Sep 1992 A
5160428 Kuri Nov 1992 A
5164346 Giunchi et al. Nov 1992 A
5167271 Lange et al. Dec 1992 A
5176741 Bartlett et al. Jan 1993 A
5176810 Volotinen et al. Jan 1993 A
5211741 Fife May 1993 A
5259862 White et al. Nov 1993 A
5338379 Kelly Aug 1994 A
5356120 König et al. Oct 1994 A
5427602 DeYoung et al. Jun 1995 A
5437854 Walker et al. Aug 1995 A
5439750 Ravenhall et al. Aug 1995 A
5448447 Chang Sep 1995 A
5460642 Leland Oct 1995 A
5498446 Axelbaum et al. Mar 1996 A
5580516 Kumar Dec 1996 A
H1642 Jenkins Apr 1997 H
5637816 Schneibel Jun 1997 A
5779761 Armstrong et al. Jul 1998 A
5897830 Abkowitz et al. Apr 1999 A
5914440 Celik et al. Jun 1999 A
5948495 Stanish et al. Sep 1999 A
5951822 Knapick et al. Sep 1999 A
5954856 Pathare et al. Sep 1999 A
5958106 Armstrong et al. Sep 1999 A
5986877 Pathare et al. Nov 1999 A
5993512 Pargeter et al. Nov 1999 A
6010661 Abe et al. Jan 2000 A
6027585 Patterson et al. Feb 2000 A
6040975 Mimura Mar 2000 A
6099664 Davies Aug 2000 A
6103651 Leitzel Aug 2000 A
6136062 Loffelholz et al. Oct 2000 A
6180258 Klier Jan 2001 B1
6193779 Reichert et al. Feb 2001 B1
6210461 Elliott Apr 2001 B1
6238456 Wolf et al. May 2001 B1
6309570 Fellabaum Oct 2001 B1
6309595 Rosenberg et al. Oct 2001 B1
6409797 Armstrong et al. Jun 2002 B2
6432161 Oda et al. Aug 2002 B1
6488073 Blenkinsop et al. Dec 2002 B1
6502623 Schmitt Jan 2003 B1
6602482 Kohler et al. Aug 2003 B2
6689187 Oda Feb 2004 B2
6727005 Gimondo et al. Apr 2004 B2
6745930 Schmitt Jun 2004 B2
6824585 Joseph et al. Nov 2004 B2
6861038 Armstrong et al. Mar 2005 B2
6884522 Adams et al. Apr 2005 B2
6902601 Nie et al. Jun 2005 B2
6921510 Ott et al. Jul 2005 B2
6955703 Zhou et al. Oct 2005 B2
7041150 Armstrong et al. May 2006 B2
7351272 Armstrong et al. Apr 2008 B2
7410610 Woodfield et al. Aug 2008 B2
7435282 Armstrong et al. Oct 2008 B2
7445658 Armstrong et al. Nov 2008 B2
7501007 Anderson et al. Mar 2009 B2
7501089 Armstrong et al. Mar 2009 B2
7531021 Woodfield et al. May 2009 B2
20020050185 Oda May 2002 A1
20020152844 Armstrong et al. Oct 2002 A1
20030061907 Armstrong et al. Apr 2003 A1
20030145682 Anderson et al. Aug 2003 A1
20030230170 Woodfield et al. Dec 2003 A1
20030231974 Woodfield et al. Dec 2003 A1
20040123700 Zhou et al. Jul 2004 A1
20040141869 Ott et al. Jul 2004 A1
20040208773 Woodfield et al. Oct 2004 A1
20050081682 Armstrong et al. Apr 2005 A1
20050150576 Venigalla Jul 2005 A1
20050225014 Armstrong et al. Oct 2005 A1
20050284824 Anderson et al. Dec 2005 A1
20060057017 Woodfield Mar 2006 A1
20060086435 Anderson et al. Apr 2006 A1
20060102255 Woodfield et al. May 2006 A1
20060107790 Anderson et al. May 2006 A1
20060123950 Anderson et al. Jun 2006 A1
20060150769 Armstrong et al. Jul 2006 A1
20060230878 Anderson et al. Oct 2006 A1
20070017319 Jacobsen et al. Jan 2007 A1
20070079908 Jacobsen et al. Apr 2007 A1
20070180951 Armstrong et al. Aug 2007 A1
20070180952 Lanin et al. Aug 2007 A1
20080031766 Kogut et al. Feb 2008 A1
20080152533 Ernst et al. Jun 2008 A1
20080187455 Armstrong et al. Aug 2008 A1
20080199348 Armstrong et al. Aug 2008 A1
Foreign Referenced Citations (46)
Number Date Country
587782 Nov 1985 AU
2003263081 Jun 2004 AU
2196534 Feb 1996 CA
006615 Feb 2006 EA
007634 Dec 2006 EA
0298698 Jan 1989 EP
0299791 Jan 1989 EP
1441039 Jul 2004 EP
1657317 May 2006 EP
722184 Jan 1955 GB
778021 Jul 1957 GB
31007808 Sep 1956 JP
49042518 Apr 1974 JP
51010803 Apr 1976 JP
60255300 Dec 1985 JP
6112837 Jan 1986 JP
62065921 Mar 1987 JP
64047823 Feb 1989 JP
4116161 Apr 1992 JP
05078762 Mar 1993 JP
10502418 Mar 1998 JP
11090692 Apr 1999 JP
2001279345 Oct 2001 JP
90840 Jan 1958 NO
411962 Jan 1974 RU
WO9604407 Feb 1996 WO
WO9824575 Jun 1998 WO
WO03106080 Dec 2003 WO
WO2004022269 Mar 2004 WO
WO2004022797 Mar 2004 WO
WO2004022798 Mar 2004 WO
WO2004022799 Mar 2004 WO
WO2004022800 Mar 2004 WO
WO2004026511 Apr 2004 WO
WO2004028655 Apr 2004 WO
WO2004033736 Apr 2004 WO
WO2004033737 Apr 2004 WO
WO2004048622 Oct 2004 WO
WO2005019485 Mar 2005 WO
WO2005021807 Mar 2005 WO
WO2005023725 Mar 2005 WO
WO2005042792 May 2005 WO
WO2007044635 Apr 2007 WO
WO2007089400 Aug 2007 WO
WO2008013518 Jan 2008 WO
WO2008079115 Jul 2008 WO
Non-Patent Literature Citations (21)
Entry
Kelto et al. “Titanium Powder Metallurgy—A Perspective”; Conference: Powder Metallurgy of Titanium Alloys, Las Vegas, Nevada, Feb. 1980, pp. 1-19.
Mahajan et al, “Microstructure Property Correlation in Cold Pressed and Sintered Elemental Ti-6A 1-4V Powder Compacts”; Conference: Powder Metallurgv of Titanium Alloys, Las Vegas Nevada, Feb. 1980 pp. 189-202.
DeKock et al. “Attempted Preparation of Ti-6-4 Alloy Powders from TiCl4, Al, VCl4, and Na”; Metallurgical Transactions B, vol. 18B, No. 1, Process Metallurgy, Sep. 1987. pp. 511-517.
Upadhyaya “Metal Powder Compaction”, Powder Metallurgy Technology, Published by Cambridge International Science Publishing, 1997, pp. 42-67.
Moxson et al. “Production and Applications of Low Cost Titanium Powder Products”; The International Journal of Powder Metallurgy, vol. 34, No. 5, 1998, pp. 45-47.
ALT “Solid-Liquid Separation, Introduction”; Ulmann's Encyclopedia of Industrial Chemistry, @2002 by Wiley-VCH Verlag GmbH & Co., Online Posting Date: Jun. 15, 2000, pp. 1-7.
Gerdemann et al, “Characterization of a Titanium Powder Produced Through a Novel Continuous Process”; Published by Metal Powder Industries Federation, 2000, pp. 12.41-12.52.
Moxson et al. “Innovations in Titanium Powder Processing”; Titanium Overview, JOM, May 2000, p. 24.
Gerdemann “Titanium Process Technologies”; Advanced Materials & Processes, Jul. 2001, pp. 41-43.
Lü et al. “Laser-Induced Materials and Processes for Rapid Prototyping” Published by Springer 2001, pp. 153-154.
Lee et al. “Synthesis of Nano-Structured Titanium Carbide by Mg-Thermal Reduction”; Scripta Materialia, 2003, pp. 1513-1518.
Chandran et al. “TiBw-Reinforced Ti Composites: Processing, Properties, Application Prospects, and Research Needs”; Ti—B Alloys and Composites Overview, JOM, May 2004, pp. 42-48.
Chandran et al. Titanium—Boron Alloys and Composites: Processing, Properties, and Applications•; Ti—B Alloys and Composites Commentary, JOM, May 2004, pp. 32 and 41.
Hanusiak et al. “The Prospects for Hybrid Fiber-Reinforced Ti—TiB-Matrix Composites”; Ti—B Alloys and Composites Overview, JOM, May 2004, pp. 49-50.
Kumari et al. “High-Temperature Deformation Behavior of Ti—TiBw In-Situ Metal-Matrix composites”; Ti—B Alloys and Composites Research Summary, JOM, May 2004, pp. 51-55.
Saito “The Automotive Application of Discontinuously Reinforced TiB—Ti Composites”; Ti—B Alloys and Composites Overview, JOM. May 2004, pp. 33-36.
Yolton “The Pre-Alloyed Powder Metallurgy of Titanium with Boron and Carbon Additions”; Ti—B Alloys and Composites Research Summary, JOM, May 2004, pp. 56-59.
Woodfield et al., “Prospects for a New Generation of Titanium Alloys and Structures,” AeroMat 2005, Jun. 2005, 30 pp. (1 p. of Abstract and 29 pgs. ppt).
Research Report; P/M Technology News, Crucible Research, Aug. 2005, vol. 1, Issue 2, 2 pages.
AU Patent Application No. 2006302273—Opposition filed by Christopher Carter Feb. 18, 2011.
AU Patent Application No. 2006302273—Amendment and Statuary Declaration in Response to Opposition, filed Jan. 29, 2013.
Related Publications (1)
Number Date Country
20130343945 A1 Dec 2013 US
Provisional Applications (1)
Number Date Country
60724166 Oct 2005 US
Continuations (1)
Number Date Country
Parent 11544820 Oct 2006 US
Child 13706946 US