Frequently very hard TiC powders are “cemented” or liquid phase sintered using binders made of nickel, molybdenum, niobium and tungsten which in combination may total 41% of the weight with the balance 59% lightweight TiC. Nickel with a density of 8.9 g/cc may be as much as 25% of the binder material. All the metals used have high weights, molybdenum 10.22 g/cc, niobium 8.57 g/cc and tungsten 19.3 g/cc, resulting in a density of 6.15 g/cc for the composite TiC alloy. The hardness of the TiC alloy is attractive for armor applications. However, binder systems that use elements that are relatively heavy create a weight disadvantage for certain applications.
To avoid limitations of other systems, it would be good to have a hard TiC based alloy that is lighter in weight than 6.15 grams/cc and/or to have an alloy system that will bond with titanium and ceramics thereby creating composite structures. It would be particularly advantageous to have an alloy that will form bonds to titanium and other materials such as alumina ceramics allowing the production of composite structures offering advantages in attachment methods, weight, ductility and ballistics properties.
The present disclosure relates to alloy systems that contain TiC and are made by using a green binder system of titanium sponge granules or titanium powders and a binder system comprising titanium, nickel, and aluminum provided either as a master alloy or as elemental powders.
Unique features may include substitution of titanium in the liquid phase binder and the use of soft titanium sponge granules as a green binder.
In the drawings:
A new composite alloy includes titanium, aluminum, carbon, and nickel, and may include lesser amounts of other elements including iron and silicon.
The composite alloy may be formed from a mixture comprising titanium sponge granules (TSGs), a master alloy containing nickel, titanium, aluminum and iron, and TiC powder in the following amounts:
Titanium sponge granules from 20 wt. % to 54 wt. %,
NiTiAl master alloy from 12.5 wt. % to 25 wt. %, and
TiC from 32 wt. % to 55% wt. %.
A master alloy is a composition made for the purpose of melting and/or bonding with other metals to form alloys. Master alloys are used to overcome the problems of alloying metals of widely differing melting points, or to facilitate closer control over the final composition. Such a master alloy is made by melting or exothermic reaction of the metals making up the composition; and the resulting mixture which is very friable is reduced to the desired particle size by mechanical methods before blending with other components of the product alloy.
For the purposes of this disclosure, titanium sponge granules (TSGs) are defined as irregular shaped particles of sponge fines from titanium metal reduction processes using sodium, magnesium or calcium as the reducing agent to extract the titanium and where the titanium sponge granules have not been melted. For the procedures described herein, best results are achieved using TSGs made with a process using sodium as the reducing agent, although other soft, non-melted titanium sponge granules could be used. TSGs have a low apparent density, below 1.50 g/cc, and a low tap density, specifically a tap density of less than 1.90 g/cc.
“Hard powder” as referred to herein, includes powders, particles and/or granules, such as TiC powder, having yield strengths above 100,000 psi. Hard powders are so hard that a volume of hard powder will not stick together when compacted in a die to form a compact for subsequent processing by the application of heat and/or pressure such as sintering, hot pressing, and hot isostatic pressing, without contamination of the base material or subsequently formed alloy.
The starting materials and alloys described in this disclosure typically will contain small amounts of other elements, sometimes referred to herein as “trace elements,” including residuals, impurities, dopants, and the like. Commercially available component materials typically contain small amounts of one or more of O, H, N, Na, Cl, Co, Cr, Cu, Mg, Mn, Mo, Nb, Pd, Sb, Sn, Ta, V, W, Zr, and S. The exact amounts of such elements in starting materials typically is not known because commercially available component materials are not routinely assayed for all possible included elements. Therefore the main elements, i.e. titanium and nickel, are normally established by subtracting the elements analyzed for from 100%. Industry specifications for titanium alloys vary widely in the number of elements analyzed for. Best results are achieved if such other elements do not constitute more than 1% of a product alloy system.
The titanium sponge granules serve to bind together the very hard TiC powders and the very hard NiTiAl master alloy so that the blend can be compacted by normal powder metal techniques in closed die mechanical and hydraulic presses to form green compacts. In this way, relatively high production rates can be achieved without scoring of a die with the very hard TiC.
By one method, NiTiAl master alloy is combined with other materials to form a new alloy.
The master alloy comprises:
24 wt. % to 28 wt. % titanium,
7 wt. % to 12 wt. % aluminum,
0 wt. % to 0.1 wt. % carbon,
0 wt. % to 4.5 wt. % iron,
0 wt. % to 4 wt. % silicon,
with the balance being nickel and trace elements.
This master alloy is friable and can be milled to fine powder of various sizes.
To complete formation of the new alloy, the mixture is compacted at forces ranging from 40,000 psi to 120,000 psi to form a green compact. The pressed green compact is sintered in a vacuum furnace at temperatures from 900° C. to 1400° C. depending on the ratios of nickel, TiC and TSG in the final alloy. The compact may also be processed by hot isostatic pressing (HIP) either before or after vacuum sintering.
Good results are achieved with powder sizes of −40 US Standard mesh and down. However, it is best to use finer mesh sizes such as −325 mesh, especially for the NiTiAl master alloy and the TiC. The size of each powder used can be varied to produce different green compacts and sintered structures depending on the desired properties, pressing and sintering parameters.
The composition of the resulting alloy will vary within ranges depending on the variations in the input materials and the allowable variations in the elements in the master alloy. According to the tests shown in Table I, the composition will fall with the following ranges where the ingredient materials are adjusted to produce a final composition that is equal to 100% within the limitations shown below.
71 wt. % to 84 wt. % titanium,
6.5 wt. % to 16 wt. % nickel,
1 wt. % to 4 wt. % aluminum,
0 wt. % to 1 wt. % iron,
0 wt. % to 1 wt. % silicon,
6 wt % to 11 wt % carbon
0 wt. % to 1.5 wt. % other elements.
The density of the composite alloy will vary depending on the ratios of the input materials and can be as high as 5.0 grams/cc. Measured densities of experimental alloys have ranged from 3.63 grams/cc to 4.42 grams/cc.
The degree to which the alloy system becomes liquid during the sintering cycle can be varied by changes in the ratios of each ingredient and the sintering time and temperature. Some of these conditions are shown in Table I where increasing the TiC and decreasing the NiTiAl master alloy resulted in less melting, and no melting. Other experiments and tests have demonstrated those conditions.
In this instance, the objective is to produce a final “net shape part” which requires control of the liquid phase in order to retain the desired shape and dimensions.
The tests in columns 2 and 3 numbered from the left of Table I are considered failures with regard to the powder metallurgy method described above, because the green bodies at least partially melted and did not keep their shape. Useful alloy compositions may, however, also be made by melting with the molten metal poured into a solid mold such as an ingot or a mold to produce a specific final or preform configuration such as would be done by investment casting or permanent mold casting technology.
Elemental Powders
Elemental powders may be substituted for all or a portion of the NiTiAl master alloy in the procedure discussed above, but use of the master alloy typically is superior.
The composition of the resulting composite will vary depending on the ratio of each input material with the main ingredients consisting of the following ranges where the ingredient materials are adjusted to equal 100% which produces a final composition that is equal to 100% within the limitations show.
71 wt. % to 84 wt. % titanium,
6.5 wt. % to 16 wt. % nickel,
1 wt. % to 4 wt. % aluminum,
0 wt. % to 1 wt. % iron,
0 wt. % to 1 wt. % silicon,
6 wt. % to 11 wt. % carbon, and
0 wt. % to 1.5 wt. % other elements.
Results
Table I is a summary of the results of tests made on various alloy systems as described herein.
From the data in Table I the actual wt % of each element can be calculated which will depend on the actual chemistry of the NiTiAl master alloy and ratio of input materials with the total chemistry being equal to 100%.
The TiC—Ti alloy may be used by itself depending on the application. Composite structures with layers of titanium and TiC—Ti alloy have been demonstrated as workable as shown in Table I. These composite structures can be produced with single or multiple layers of many different thicknesses and combinations that will produce different densities and properties. Such composite structures can be made either by placing loose titanium powders and TiC—Ti alloy powders in a die in the desired thickness ratios, followed by pressing and sintering as described herein. Or preformed wafers of one or each of the components could be used to form the composite structure. It is logical to assume that well known alloys of titanium can be used with the TiC—Ti alloy to form such composite structures to meet special application needs.
The resulting two-layer wafer was shot with an AR-15, 16 inch barrel, full metal jacket, standard NATO round. The TiC—Ti alloy was cracked and broken loose from the substrate but the bullet did not penetrate the substrate as shown in the photo of the back side of the two-layer wafer. The same type of bullet fully penetrated a 0.25 inch thick mild steel target.
The tile shown in
Armor tiles may also be made by adhering the TiC—Ti alloy to other substrate materials such as ceramics, including those made from alumina, boron carbide and silicon carbide by sintering the TiC—Ti alloy onto the ceramic material. One example showing good results is shown in
Results indicate diffusion of aluminum from the ceramic to the alloy. The diffusion suggests a chemical, perhaps ionic, rather than a simple mechanical bond. It is a logical extension to assume that similar bonds may be formed with ceramics substrates containing boron and silicon.
Limited Vickers microhardness data appears in
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the accompanying claims. For example although specific examples of armor tiles are described herein, it should be appreciated that certain properties of an armor tile, notably size and thickness, will be dictated by the nature of the threat, what areal density is to be achieved, weight, cost, and other system requirements.
And more generally, described herein is a method for forming a reduced density alloy system wherein titanium, aluminum, or a mixture thereof is substituted for at least a portion of one or more of the heavy elements nickel, molybdenum, niobium and tungsten of a known alloy system for cementing carbide powder, such as TiC or WC powder, with the titanium, aluminum, or mixture thereof being substituted in an amount sufficient to reduce the density of the resulting alloy system containing cemented carbide to not more than 5.0 g/cc.
Also more generally described herein is a method for forming an alloy system suitable for bonding to a substrate wherein titanium, aluminum, or a mixture thereof is substituted for at least a portion of one or more of the heavy elements nickel, molybdenum, niobium and tungsten of a known alloy system for cementing carbide powder, such as TiC or WC powder, with the titanium, aluminum, or mixture thereof being substituted in an amount sufficient that components of the resulting alloy system containing cemented carbide better can bond to titanium structures and ceramic structures by sintering.
This claims the benefit of U.S. Provisional Application No. 60/787,841, filed Mar. 31, 2006, which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2751668 | Turner, Jr. et al. | Jun 1956 | A |
2753261 | Goetzel et al. | Jul 1956 | A |
2929126 | Bollack et al. | Mar 1960 | A |
3052538 | Jech et al. | Sep 1962 | A |
3676161 | Yates | Jul 1972 | A |
3865586 | Volin et al. | Feb 1975 | A |
4194910 | Mal et al. | Mar 1980 | A |
4731115 | Abkowitz et al. | Mar 1988 | A |
4915903 | Brupbacher et al. | Apr 1990 | A |
4919718 | Tiegs et al. | Apr 1990 | A |
4946643 | Dunmead et al. | Aug 1990 | A |
4987033 | Abkowitz et al. | Jan 1991 | A |
5015290 | Tiegs et al. | May 1991 | A |
5409518 | Saito et al. | Apr 1995 | A |
5520879 | Saito et al. | May 1996 | A |
6117204 | Saito et al. | Sep 2000 | A |
6387196 | Yamaguchi et al. | May 2002 | B1 |
6551371 | Furuta et al. | Apr 2003 | B1 |
6607693 | Saito et al. | Aug 2003 | B1 |
6849230 | Feichtinger | Feb 2005 | B1 |
7354548 | Liu | Apr 2008 | B2 |
Number | Date | Country |
---|---|---|
03-044431 | Feb 1991 | JP |
Number | Date | Country | |
---|---|---|---|
60787841 | Mar 2006 | US |