The claimed invention relates to the field of plasmonics technology, impacting particular areas including, but not limited to, light-induced clinical therapeutic applications via the hyper-thermic effects of plasmonic nanoparticles and biological sensing applications via the near field enhancement effects of plasmonic nanoparticles.
Plasmonics technology relies upon the coupling of light into free electron plasma in metals to create a wave of surface charge oscillation called plasmon. Plasmon is typically associated with a highly concentrated electromagnetic field, which is a key feature in many of its applications.
Plasmon may exist only at or on the surface of a metal and is often referred to as surface plasmon. Thus, metal is an essential component of any plasmonic device. The optical properties of the metal used in a given plasmonic device will dictate the performance of the device. And since metals are often characterized by huge optical losses, this limits the performance of modern plasmonic devices.
Localized surface plasmon resonances occur in plasmonic nanoparticles with sizes smaller than, or comparable to, the wavelength of light. When the plasmonic nanoparticle is excited with light at resonance wavelength, collective oscillation of electrons provide large field enhancement and high local temperatures near the particle. Therapeutic applications which are based on the destruction of unwanted cells make use of local high temperatures provided by plasmonic nanostructures that are excited by a directed light source.
The amount of heat power delivered to the local medium is directly proportional to the power of illuminating light where the proportionality constant is the absorption cross-section of the plasmonic nanoparticle (Baffou, G. and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser & Photonics Reviews, 2013. 7(2): pp. 171-1871. The absorption cross-section of a nanoparticle is the amount of electromagnetic energy dissipated into heat inside the particle.
Conventionally, gold and silver have been the metals of choice for plasmonic devices, due to their lower optical losses. However, gold and silver are still not the best materials to fabricate and integrate into plasmonic devices because of several other problems associated with the metals. First, their optical losses are small but certainly not insignificant. In visible range, the losses are relatively high for gold due to interband absorption. Additionally, gold and silver do not have optical properties that may be tuned to suit a particular application. Second, gold and silver are difficult to fabricate into ultra-thin films, which are often necessary in plasmonic devices. Third, silver and gold are not thermally stable at high temperatures, especially when nanostructured. Fourth, silver is not chemically stable and causes problems in many applications such as sensing (Guler, U. and R. Turan, Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles. Opt Express, 2010. 18(16): p. 17322-38). Fifth, neither metal is CMOS compatible, hence posing challenges in the integration of plasmonic devices with nanoelectronic CMOS devices.
The problems associated with gold and silver severely limit the development of plasmonics as a science into a technology. Hence, alternative plasmonic materials are essential to the further development of this technology.
In one embodiment, a nanoparticle material is made of a one or more particles comprising a core material covered with a shell layer. The core is titanium nitride (TiN) and the shell layer is made of TiO2, the TiN providing localized surface plasmon resonances (LSPR) in a biological transparency window. The outer TiO2 layer provides both (1) a buffer layer for surfactant coupling; and (2) a mechanism for shifting a resonance of the nanoparticle, thus allowing for resonance control (or adjustment, tuning, change, etc.). In other embodiments, the material comprises a TiO2 core and a TiN shell layer for further improved resonance control.
The material making up each nanoparticle is capable of synthesis at temperatures above 300 degrees Celsius.
In some embodiments, the TiO2 shell layer is produced by an oxidation of the TiN. In other embodiments, the nanoparticle further comprises one or more surfactants coupled to the external surface of the shell layer in order to bind specific target sites.
One or more surfactants may have a shape which provides its attachment to a defective cell in a human body. The surfactant(s) may also provide drug delivery to a specific place in a human body. The particles may be simple geometric shapes (e.g., cube, spehere, etc.).
The size of a particle may be less than, about, or greater than 1 nm.
The material may be, fabricated using lithographic methods and creating an array of nanoparticles fixed on a substrate (e.g. a chip).
The material is not limited to titanium nitride or titanium oxide, and may further comprise transition metal nitrides, oxides, carbides, borides, sulfides, halides, or a combination thereof.
A method destroying a defective cell in a human body, employing local-heating clinical therapeutic application, is also disclosed herein. The method comprises chemically synthesizing titanium nitride nanoparticles (101), coupling surfactants to the nanoparticles (102), injecting said nanoparticles with coupled surfactants into a body having the defective cell (103), wherein the surfactants help bind said nanoparticles to the defective cell. Then, by directing an electromagnetic radiation at said nanoparticles from an external source of radiation, emitted at a resonant wavelength corresponding to a resonance of said nanoparticles, energy is delivered to the nanoparticles, thus raising a temperature of said nanoparticles to form a heat source (104). This heat source increases a temperature of the defective cell to destroy only the defective cell without affecting a surrounding tissue (105).
In some embodiments, the method destroys a cancer cell. In other embodiments, the method destroys fat cell. In yet other embodiments, the method employs particles which remain stable after multiple electromagnetically induced heatings to a temperature of 50 degrees Celsius or higher. The particles may comprise chemically synthesized titanium nitride nanoparticles surrounded by chemically synthesized TiO2 shell layers, or vice versa. Additionally, more surfactants may be coupled to said nanoparticles, the additional surfactants delivering a drug to the defective cells. The nanoparticles may further act as nanometer scale optical antennas for bin-imaging and bio-sensing.
This invention provides a new approach to nanoparticle-based plasmonic solutions to therapeutic applications by use of titanium nitride (TiN) as the plasmonic material. Employment of TiN nanoparticles in such applications enables usage of particles with simple geometries and small sizes. In addition, the broad resonance characteristics of TiN nanoparticles eliminate the size dispersion restrictions. In current applications where gold (Au) is employed as the plasmonic material, complex shapes and large particle sizes are considered in order to get plasmonic resonances in the biological window. Also, relatively narrower plasmonic peaks with Au create the requirement of having nanoparticles with a very narrow size dispersion. TiN nanoparticles provide plasmonic resonances occurring in the biological window even with small sizes. Local heating efficiencies of TiN nanoparticles outperform currently used Au nanoparticles. The use of smaller particles with simpler shapes and better heating efficiencies allows better diffusion properties into tumor regions, larger penetration depth of light into the biological tissue, and the ability to use excitation light with less power.
One of the alternatives that resemble the optical properties of gold is titanium nitride (TiN). Titanium nitride is one of the hardest materials with a very high melting point (>2700° C.). TiN is CMOS compatible, bio-compatible, and may be grown as high quality ultra-thin films or as nanostructured films. These advantages of TiN make it a better alternative plasmonic material. TiN was demonstrated to support surface plasmon-polaritons (SPPs), and TiN nanostructures exhibit localized surface plasmon resonance (LSPR) (Naik, G. V., et al., Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Optical Materials Express, 2012. 2(4): p. 478-489).
The strength of the LSPR in TiN nanoparticles is similar to that of gold nanoparticles, but occurring in a broad wavelength range around 850 nm (Guler, U., et al., Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications. Applied Physics B, 2012. 107(2): p. 285-291). This corresponds to the biological transparency window which most bio- and medical applications cover. Often, bio-and medical applications involving plasmons utilize LSPR in metal nanoparticles. LSPR enhances the electromagnetic field around the nanoparticle by many times, and it also causes the metal particle to absorb much more radiation than it would without LSPR. Such excessive absorption of optical radiation causes the nanoparticle to locally heat its surroundings. Local heating is useful in applications such as selective killing of unwanted cells including, but not limited to, cancer cells, fat cells, etc., as well as more efficient heating for energy harvesting including, but not limited to, solar steam generation, thermophotovoltaics, etc. TiN nanoparticles are a better substitute to gold nanoparticles given their bio-compatibility, thermal stability, comparable heating performance, and LSPR occurring in the biological transparency window. Both experimental and numerical results show that TiN performs better than gold in the biological window for heating applications.
TiN nanoparticles may be produced using several different methods, including both top-down and bottom-up approaches. Studies on lithographically fabricated TiN nanoparticles show superior plasmonic characteristics when compared to Au in the biological window of the electromagnetic spectrum. It has also been shown that TiN powders may be obtained by means of chemical synthesis with several different methods including both high and low temperature processes (D'Anna, E., et al., Oxidation interference in direct laser nitridation of titanium: relative merits of various ambient gases. Thin Solid Films 1992. 213(2): p. 197-204; Giordano, C., et al., Metal Nitride and Metal Carbide Nanoparticles by a Soft Urea Pathway. Chemistry of Materials, 2009. 21(21): p. 5136-5144; Gomathi, A. and C. N. R. Rao, Nanostructures of the binary nitrides, BN, TiN, and NbN, prepared by the urea-route. Materials Research Bulletin, 2006. 41(5): p. 941-947.; Hu, J., et al., Low-Temperature Synthesis of Nanocrystalline Titanium Nitride via a Benzene-Thermal Route. Journal of the American Ceramic Society, 2000. 83(2): p. 430-432; Li, J., et al., Synthesis of Nanocrystalline Titanium Nitride Powders by Direct Nitridation of Titanium Oxide. Journal of the American Ceramic Society, 2001. 84(12): p. 3045-3047; Yana, X., et al., Reduction-Nitridation Synthesis of Titanium Nitride Nanocrystals. Journal of the American Ceramic Society, 2003. 86(1): p. 206-208).
In addition to TiN and TiO2, the nanoparticle may further alternatively comprise other materials including but not limited to transition metal nitrides, oxides, carbides, borides, sulfides, halides, or a combination thereof.
In the preferred embodiment the nanoparticles are obtained by the following method. Direct nitridation of TiO2 nanoparticles at temperatures above 700° C. in a nitrogen rich environment such as NH3 is used as an efficient method for obtaining TiN nanoparticles with plasmonic properties that lead to feasible nanoparticle thermal therapy. Process duration varies between 1 and 15 hours depending on the desired batch size and properties as well as other process parameters. TiN nanoparticles with a cubic crystalline structure are obtained via nitridaton of TiO2 nanoparticles, see
In another embodiment, another method of producing plasmonic TiN nanoparticles is used: a plasma arc method, where Ti nanostructures are processed in a nitrogen rich environment.
It should additionally be noted, that the nanoparticles (or nanoparticle material) described herein may additionally be used as nanometer scale optical antenna for bio-imaging and bio-sensing applications. By similar injection into a human body, the nanoparticles' resonance or other properties may be monitored in order to obtain information of nanometer scale processes and components within a human or other target body.
The description of a preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Moreover, the words “example” or “exemplary” at used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the words “example” or “exemplary” is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
The present application claims priority to, and incorporates fully by reference, U.S. Provisional Patent Application No. 61/831,218, filed Jun. 5, 2013, U.S. Provisional Patent Application No. 61/883,764, filed Sep. 27, 2013, and U.S. Provisional Patent Application No. 61/934/758, filed Feb. 1, 2014.
Number | Date | Country | |
---|---|---|---|
61934758 | Feb 2014 | US | |
61883764 | Sep 2013 | US | |
61831218 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14896493 | Dec 2015 | US |
Child | 16665319 | US |