This application claims the benefits of U.S. Provisional Application No. 60/763,170, filed Jan. 26, 2006, the disclosure of which is hereby incorporated by reference in its entirety including all figures, tables and drawings.
There is great demand for simplified titrations for applications in industry, medicine, environmental monitoring and academic research. Simplified titration systems provide advantages because they can be more easily automated, they can be used by inexperienced operators, and they are less expensive. Conventional titration methods use volumetric glassware or analytical balances to quantify sample and burets or pipets to dispense titrant. Titration methods that use flow injection analysis, sequential injection analysis (Fletcher and van Staden, 2003), continuous on-line endpoint monitoring (Tanaka et al., 2000; Watanabe et al., 2004) and a variety of unsegmented batch titrations (Almeida et al., 2000; Korn et al., 1995), do not use discrete volumetric or gravimetric measurements but require very precise control of flow rate. These titrations use peak width measurements with a time abscissa or directly incorporate flow rate into the endpoint calculation and are therefore sensitive to variations in flow rate. To obtain the best data, high precision pumps must be used with repeated introduction of standards to compensate for pump fluctuations. There are heretofore no titration methods that do not rely on volumetric (either as a flowing stream or discrete volumes) or gravimetric analysis.
All patents, patent applications, provisional patent applications and publications referred to or cited herein, are incorporated by reference in their entirety to the extent they are not inconsistent with the explicit teachings of the specification.
The titration method of the subject invention quantifies the amount of titrant added to a sample by using a chemical or physical tracer in the titrant or equivalently, the titrand (sample). The titrant, quantified in this way, is then used in any of the conventional forms of titration data analysis (e.g. endpoint, Gran) to determine analyte concentration. The subject method can be used for all forms of titrations including a simple acid-base titration. The tracer is a quantifiable chemical species or physical property (e.g. scattering) and can be either inert or act as an indicator of the progress of a titration. The method of the subject invention does not require accurate nor precise volumetric or gravimetric addition of titrant; and additionally does not require accurate nor precise volumetric or gravimetric quantification of the titrand (sample).
The titration method of the subject invention does not require quantitative volumetric or gravimetric measurement of titrant or titrand. The subject method uses a tracer to quantify the titrant added during the titration. Relative proportions of the tracer in the initial solution and in the titrant-titrand mixture are used to determine the reaction endpoint and analyte concentration.
A physical or chemical tracer in the titrant or titrand (sample) is used to quantify the amount of titrant added to the titrand. The phase of the tracer/titrant or titrand mixture can take any form (gas, liquid, solid), provided that the tracer and titrant/titrand are a homogeneous mixture. The titrant, titrand (sample) and titrant-titrand mixture are denoted with the subscripts ‘T’, ‘S’, and ‘mix’ respectively. During any point in a conventional titration, the excess of titrant over analyte is represented by the simple mass balance
where [titrant]T is the concentration of the titrant in the standardized titrant solution, [analyte]S is the analyte concentration in the sample, MT is mass or volume of titrant added, MS is sample mass or volume, and the subscript ‘mix’ denotes the equilibrium concentrations after mixing and neutralization. The equivalence point of a titration is the point where the equivalents of titrant added exactly equal the initial equivalents of analyte ([titrant]mix−[analyte]mix=0).
In a titration, titrant is added to sample to give a total mass or volume Mmix,
Mmix=MT+MS. (2)
Substitution of Mmix into the left side of Equation 1 gives
The mass or volume ratios in Equation 3 are the dilution factors of the titrant (fT) and sample (fS)
where M is mass or volume of titrant or titrand, [tracer]mix is the tracer concentration in the mixture, and [tracer]I is the initial tracer concentration in the titrant or titrand. Specifically, if the tracer is added to the titrant, the dilution factor fT is calculated from the ratio of titrant-based tracer concentration in the titration solution, [tracertitrant]mix, to the total tracer concentration in the titrant, [tracertitrant]T (Equation 5). Similarly, if the tracer is added to the sample or pre-exists in the sample, e.g. a spectator ion, the dilution factor fS is calculated from the ratio of the tracer concentration in the titration solution, [tracertitrand]mix, to the total tracer concentration in the titrand (i.e. the sample), [tracertitrand]S (Equation 5). Further, for either case the two dilution factors are related by fT+fS=1.
Equation 5 illustrates how a tracer determines the amount of titrant added, [titrant]mix. The dilution factor is determined by measurement of [tracer]mix and the known amount of tracer in the original titrant [tracertitrant]T (or titrand). [titrant]mix is quantified using the dilution factor and the known concentration of titrant [titrant]T.
Unlike the titrant and analyte, the tracer is neither consumed nor produced by chemical reaction. A tracer is defined as, but not necessarily limited to, 1) a single inert species that does not participate in the titration reaction, such as a spectator ion or molecule; 2) the sum of a family of chemical species, also referred to as the analytical concentration of a chemical; 3) any combination of chemical products and/or reactants that exhibits conservative behavior; 4) a physical property distinct to the titrant or sample, such as optical scattering by suspended particles.
Specifically, the tracer used in the method of the subject invention is a quantifiable chemical or physical species (e.g. an ion, an absorbing or fluorescent indicator or a light scattering particle) and can be either inert (e.g. a spectator ion) or act as an indicator of the progress of a titration (e.g. an acid-base indicator). For example, a spectrophotometric tracer can be either an inert chromophore or an indicator that is used to track the consumption of the analyte. If it is an indicator, all forms of that indicator must absorb light so that total indicator concentration can be quantified at any point in the titration from the sum of the different species (e.g. protonated+unprotonated; complexed+uncomplexed; reduced+oxidized). As an example, several redox indicators exhibit a color change from blue to red when reduced (Harris, 2007). Many metal ion indicators have light absorbing forms for both the free indicator and the indicator-metal ion complex (Harris, 2007).
If the tracer is inert, an alternative method for quantifying the equilibrium position of the titration is required. For example, an inert tracer can be detected using an ion-selective electrode to quantify the amount of titrant added while the pH of the titration solution is measured using a combination pH electrode. A physical mechanism such as turbidity could also function as a means to quantify titrant.
The initial tracer [tracer]I may be added to the titrant or titrand in a known amount (mass or volume) or can be quantified by measurement of the tracer concentration after addition of the tracer to the titrant or titrand or measurement of an existing natural tracer in the titrand (e.g. a spectator ion). If tracer is in the titrant, the measurement of [tracer]T is made when fT=1 (no titrand present). If the tracer is in the titrand, the measurement of [tracer]S is made when fS=1 (no titrant present). The measurements made when fT=1 or fS=1 are referred to as the chemical blank. In some titrands a natural tracer may exist and no tracer is added. In this case determination of [tracer]S when fS=1 is still required.
The method of the subject invention is applied to classical titration methodologies by substituting dilution factors for the typical volume or mass measurements in titration calculations. In most titrations, a titrant is added until an endpoint (ep) is achieved, as indicated by, for example, a change in a colored indicator. The endpoint corresponds approximately to the point where the equivalents of titrant added equal the equivalents of analyte in the titrand (the equivalence point), i.e. at the point where Equation 1 is equal to zero. In a classical titration, at the endpoint Equation 1 is solved for analyte concentration and the corresponding amount of titrant added, MT(ep), is used along with the known titrant concentration and sample mass (or volume):
For the subject method, the endpoint for Equation 3 is solved for analyte concentration and the corresponding dilution factor, fT(ep) is used with the known titrant concentration:
Equation 7 is the equivalent of Equation 6, given that fT+fS=1 for the method of the subject invention.
The following examples are offered to further illustrate but not limit the methods of the present invention.
The example given here uses a glass combination pH electrode to follow the extent of the reaction of the titration and a colorimeter operating at a wavelength of 640 nm to follow the addition of titrant. In the classic potentiometric titration of HCl by NaOH, an electrode is placed in a known volume or mass of HCl. Standardized NaOH is added dropwise with a volumetric buret and pH and volume of titrant added are recorded for each titrant addition until the endpoint is reached. In contrast, the method of the subject invention does not require a known volume or mass of sample nor measured quantity of titrant. In the classical titration, the solution pH is plotted versus volume or mass of titrant added and from this plot the endpoint can be determined in a number of different ways—in this example by the first derivative of the pH vs volume curve. The analogue of the subject method plots dilution factor (Equation 5) on the x-axis instead of volume (or mass) of titrant. In this example, dilution factor is determined from a tracer added to the titrant ([tracertitrant]T) and the tracer concentration in the titrant-titrand mixture ([tracertitrant]mix) (Equation 5).
After using a plot such as shown in
In the present example, a pH indicator assumes the dual role of both titrant tracer and pH detector eliminating the need for a potentiometric pH meter and electrode (see Example 1). While a single wavelength colorimeter is sufficient to track an inert tracer (see Example 1), at least two wavelengths are required for accurate indicator pH measurements (see e.g. Clayton and Byrne, 1993) and to quantify the total indicator concentration, [tracer]mix for use in Equation 5 (Martz et al., 2006). Therefore, when using an acid-base pH indicator in place of the pH electrode, spectrophotometry provides all measurements necessary to calculate the analyte concentration and solution pH.
In this example, the subject method was used to determine seawater total alkalinity (AT) (Martz et al., 2006). Because this application requires very good analytical precision and accuracy, more sophisticated data analysis was used than that described in Example 1. The analytical quantity, total alkalinity (AT), was determined from a set of pH and dilution factor data using a non-linear least squares calculation as done with classical seawater AT titrations (Dickson, 1981).
Individual concentrations of each form of the indicator were required for each titration point in order to calculate the total tracer concentration, dilution factors and pH of the solution. The indicator, bromocresol green (BCG), used for this example is a diprotic molecule with pKa1<<0.0 and pKa2˜4.5, where Ka1 and Ka2 are the first and second dissociation constants, respectively
HI−H++I2−. (8)
Above a pH of ˜0, only the second dissociation is important. The equilibrium and mass balance equations are
[tracer]=[HI−]+[I2−] (10)
where Ka is the second dissociation constant (Ka2), [tracer] is the total tracer concentration in either the titrant or titrant-titrand mixture, [HI−] is the singly protonated indicator concentration and [I2−] is the fully deprotonated indicator concentration. The titrant contained a known amount of BCG so [tracertitrant]T is known, and [tracertitrant]mix is calculated from absorbance data for each titration point.
Absorbance (A) at a particular wavelength (λ) is given by
λA=λεHIb[HI−]+λεIb[I2−] (11)
where ε is the molar absorptivity of each species at wavelength λ and b is the pathlength. In general, the indicator spectra overlap and therefore λA has contributions from both forms at each analytical wavelength. The indicator species were calculated using Equation 11 at two wavelengths (444 and 616 nm) corresponding to the absorbance maxima (λmax) of HI− and I2− (
Equations 12a and 12b are used with Equation 9 to calculate [H+] and with Equation 10 to calculate [tracertitrant]mix. [tracertitrant]mix and [tracertitrant]T are then used with Equation 5 to obtain the dilution factor, fT. These calculations require accurate Ka, ε, and optical pathlength.
Methods—Na2CO3 and NaOH test samples were prepared to AT˜0.0020-0.0026 mol kg-soln−1. Titrant was prepared to give [H+]˜2.4×10−3 mol kg-soln−1 and [BCG]T ˜6.5×10−5 mol kg-soln−1. Test samples and titrant were prepared with a background matrix of NaCl to give ionic strength equal to 0.700.
Solutions were titrated with the setup shown in
A three wavelength detection system was used. The optical system consists of a tungsten-halogen source, 1000 μm core fused silica fiber optics, a 3-way fiber optic bundle splitter, and a three channel spectrophotometer built from dual bandpass filters and Si photodiodes interfaced to a custom-built amplifier board. Optical interference filters were selected to match peak absorbance wavelengths of BCG as closely as possible (440 nm and 620 nm CWL filters for λmax at 444 nm and 616 nm, respectively;
Accuracy and precision were evaluated with the high salinity alkaline standards described above. The titration data were imported into Excel for calculation of AT.
Titration Data—
Total Alkalinity Replicates: Accuracy and Precision—
In this example, the subject method was used to obtain highly precise and accurate measurements with an automated titration system using low precision solenoid pumps. Rather than volume, mass or flow reproducibility, the titration performance depends instead upon spectrophotometric precision and stability. The performance of the method of the subject invention for this application currently approaches the performance of existing techniques for seawater AT titration but with a simplified apparatus.
The complexometric titration of Ca2+ is commonly carried out by EDTA titration using the metal ion indicator Calmagite, which exhibits colored complexed and uncomplexed forms (Harris, 2007). A titration analogous to Example 2 can be accomplished by adding a quantitative amount of Calmagite to standardized EDTA and titrating Ca2+. A dual wavelength measurement is used to quantify the absorbance of the complexed and uncomplexed forms of Calmagite. The total Calmagite concentration is determined from the absorbances and used in Equation 5 to determine the dilution factor. The dilution factor at the endpoint, fT(ep) is determined by titration curve analysis, as described in Example 1. The dilution factor is then used in Equation 7 to determine the calcium concentration of the sample, [Ca2+]S.
The tracer used in the method of the subject invention is not limited to chromophores and some applications may prohibit the use of spectral measurements. For example, spectrophotometric detection can be degraded by a colored background matrix or the formation of precipitates. One alternative is to use a tracer that can be detected electrochemically. For example, the titration of the halides Cl−, Br− and I− by silver ion, Ag+, involves quantitative precipitation of the silver-halide salts AgCl(s), AgBr(s) and AgI(s) resulting in an abrupt increase in [Ag+] after the equivalence point (see e.g. Harris, 2007). The classical version of this titration involves recording the volume of titrant added and activity of Ag+ registered by an ion selective electrode for a series of dropwise additions of standard AgNO3 titrant (Harris, 2007). A tracer monitored titration version like that of the subject invention is carried out by adding a second ion selective electrode for NO3− which is used as a tracer for the titrant, Ag+.
Because the dilution factors are related by fT+fS=1 (Equation 5), direct quantification of the sample dilution factor (fS) can be used to calculate the titrant dilution factor (fT). In this case, a tracer in the sample decreases in concentration as titrant is added. As for all titrations, the titrant concentration must be known, but the titrant dilution factor is found indirectly, by monitoring the dilution of the sample. This approach requires that either 1) a tracer is added to each sample explicitly (e.g. addition of an inert dye) or 2) the sample, by its nature, contains a practical tracer (e.g. chloride ion in seawater). The dilution factors are calculated without quantifying volume of sample by recording a background or beginning tracer value (chemical blank) when only sample is in the titration cell (i.e. when fS=1).). In an optical measurement the chemical blank may be recorded as
where A is optical absorbance, Io is optical intensity at the specified wavelength with titrant or titrand only in the titration chamber and I is optical intensity at the specified wavelength in said mixture of titrant and titrand. This approach does not require accurate knowledge of the tracer's physicochemical tracing property (e.g. molar absorptivity) because the blank tracer value serves as a baseline that can be used with subsequent measurements of the physical or chemical property to calculate fS by their ratio. This rule applies to the previously described titrant-based tracer approaches (Examples 1-4) if the condition is reached where fT=1 (100% titrant in the titration vessel) and the tracer exists as a single chemical species when the tracer baseline is recorded.
Some titrations are based on a single addition of excess titrant (beyond the endpoint) and measurement of the excess, e.g. addition of a known volume of excess acid to a weak base titrand and determination of the final pH. Because no volume or mass is measured in the subject method, excess titrant can be added in solid form, such as NaOH pellets. Prior to titration, the solid titrant is mixed with a known amount of solid tracer so that the titrant and tracer masses are accurately known. The solid tracer may be inert or act as an indicator for the extent of reaction as described in the previous examples.
The titration method of the subject invention allows accurate analysis of a sample to be conducted without requiring volumetric or gravimetric measurement of titrant or titrand. This simple method of using a tracer molecule or physical property to quantify the titrant added will make these analyses more available. The subject method can be more easily automated, is less expensive and can be conducted by inexperienced operators.
It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the scope of the appended claims.
The subject application was made with government support under a research project supported by the Office of Naval Research, Grant No. N00014-00-1-0573 and the National Science Foundation, Grant No. 0327763. The government has certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
60763170 | Jan 2006 | US |