The present invention relates to a tobacco sheet for a non-combustion heating-type flavor inhaler, a non-combustion heating-type flavor inhaler, and a non-combustion heating-type flavor inhaling system.
In a combustion-type flavor inhaler (cigarette), a tobacco filler, including leaf tobacco, is combusted to obtain a flavor. As an alternative to the combustion-type flavor inhaler, a non-combustion heating-type flavor inhaler has been proposed in which a flavor source, such as a tobacco sheet, is not combusted but heated to obtain a flavor. The heating temperature of a non-combustion heating-type flavor inhaler is lower than the combustion temperature of a combustion-type flavor inhaler and is approximately 400° C. or less, for example. Since a non-combustion heating-type flavor inhaler has a low heating temperature, an aerosol generator can be added to a flavor source in the non-combustion heating-type flavor inhaler from the perspective of increasing the amount of smoke. An aerosol generator is vaporized by heating and generates an aerosol. A user is supplied with the aerosol together with a flavor component, such as a tobacco component, and can obtain a sufficient flavor.
Such a non-combustion heating-type flavor inhaler can include, for example, a tobacco-containing segment filled with a tobacco sheet or the like, a cooling segment, and a filter segment. In relation to a heater, the tobacco-containing segment of the non-combustion heating-type flavor inhaler typically has a shorter axial length than the tobacco-containing segment of the combustion-type flavor inhaler. Thus, in the non-combustion heating-type flavor inhaler, the short tobacco-containing segment is filled with a large amount of tobacco sheet or the like to ensure the amount of aerosol generated during heating. To fill the short segment with a large amount of tobacco sheet or the like, the tobacco sheet in the non-combustion heating-type flavor inhaler typically has a low bulkiness or a high density. The bulkiness is a value indicating a volume of a predetermined mass of shredded tobacco sheets compressed at a certain pressure for a certain period. For example, Patent Literature 1 and Patent Literature 2 disclose a tobacco sheet for use in a non-combustion heating-type flavor inhaler.
However, the present inventors have found that, in terms of the heating system, the heating capability of a heater, and aerosol generation, the use of a tobacco sheet with a low bulkiness (high density) increases the total heat capacity of the tobacco-containing segment and, depending on the heating method and the capability of a heater, the tobacco sheet filled in the tobacco-containing segment does not contribute sufficiently to aerosol generation. To solve this problem, it is conceivable to reduce the total heat capacity of the tobacco-containing segment.
To reduce the total heat capacity of the tobacco-containing segment, the present inventors have studied (1) reducing the specific heat of a tobacco raw material contained in a tobacco sheet and (2) using a tobacco sheet with a high bulkiness (low density). However, it is difficult to reduce the specific heat of the tobacco raw material itself in (1), and it was considered effective to reduce the total heat capacity of the tobacco-containing segment in (2). It is therefore desirable to develop a tobacco sheet with a high bulkiness (low density) suitable for use in a non-combustion heating-type flavor inhaler.
It is an object of the present invention to provide a tobacco sheet with a high bulkiness for a non-combustion heating-type flavor inhaler, a non-combustion heating-type flavor inhaler containing the tobacco sheet, and a non-combustion heating-type flavor inhaling system.
The present invention includes the following aspects.
A tobacco sheet for a non-combustion heating-type flavor inhaler, comprising a tobacco powder with a cumulative 90% particle diameter (D90) of 200 μm or more in a volume-based particle size distribution as measured by a dry laser diffraction method.
The sheet according to Aspect 1, having a density of 1.0 g/cm3 or less.
The sheet according to Aspect 1 or 2, which is a press-formed sheet.
The sheet according to any one of Aspects 1 to 3, containing:
The sheet according to Aspect 4, wherein the air permeability is 500 CORESTA Units or more.
A non-combustion heating-type flavor inhaler comprising a tobacco-containing segment containing the tobacco sheet for a non-combustion heating-type flavor inhaler according to any one of Aspects 1 to 5.
A non-combustion heating-type flavor inhaling system including:
The present invention can provide a tobacco sheet with a high bulkiness for a non-combustion heating-type flavor inhaler, a non-combustion heating-type flavor inhaler containing the tobacco sheet, and a non-combustion heating-type flavor inhaling system.
A tobacco sheet for a non-combustion heating-type flavor inhaler according to the present embodiment (hereinafter also referred to as a “tobacco sheet”) contains a tobacco powder with a cumulative 90% particle diameter (D90) of 200 μm or more in a volume-based particle size distribution as measured by a dry laser diffraction method.
The tobacco powder in the tobacco sheet according to the present embodiment has a D90 of 200 μm or more as measured by the dry laser diffraction method and therefore has a large void, which is presumed to contribute to the improvement of the bulkiness of the tobacco sheet. Furthermore, the tobacco sheet according to the present embodiment preferably further contains an aerosol generator and a shaping agent, and the blending ratio of these is set in a predetermined range to further improve the bulkiness of the tobacco sheet.
The tobacco powder in the tobacco sheet according to the present embodiment is, for example, leaf tobacco, midribs, residual stems, or the like. These may be used alone or in combination. These can be cut into a predetermined size and used as a tobacco powder. For the size of the tobacco powder, the cumulative 90% particle diameter (D90) in a volume-based particle size distribution as measured by the dry laser diffraction method is 200 μm or more, preferably 350 μm or more, more preferably 500 μm or more. The upper limit of D90 can be, for example, but is not limited to, 2000 μm or less.
For the size of the tobacco powder, from the perspective of further improving the bulkiness of the tobacco sheet, the cumulative 50% particle diameter (D50) in a volume-based particle size distribution as measured by the dry laser diffraction method is preferably 40 μm or more, more preferably 100 μm or more, still more preferably 200 μm or more. The upper limit of D50 can be, for example, but is not limited to, 1000 μm or less. In the present embodiment, D90 and D50 by the dry laser diffraction method can be measured with, for example, Mastersizer (trade name, manufactured by Spectris Co., Ltd., Malvern Panalytical).
The tobacco powder content per 100% by mass of the tobacco sheet preferably ranges from 45% to 95% by mass. A tobacco powder content of 45% by mass or more can result in sufficient tobacco aroma generated during heating. A tobacco powder content of 95% by mass or less can result in a sufficient amount of aerosol generator or shaping agent contained. The tobacco powder content more preferably ranges from 50% to 93% by mass, still more preferably 55% to 90% by mass, particularly preferably 60% to 88% by mass.
The tobacco sheet according to the present embodiment preferably further contains an aerosol generator from the perspective of increasing the amount of smoke during heating. The aerosol generator is, for example, glycerin, propylene glycol, 1,3-butanediol, or the like. These may be used alone or in combination.
When the tobacco sheet contains an aerosol generator, the aerosol generator content per 100% by mass of the tobacco sheet preferably ranges from 4% to 50% by mass. An aerosol generator content of 4% by mass or more can result in sufficient aerosol in terms of amount generated during heating. An aerosol generator content of 50% by mass or less can result in sufficient aerosol in terms of heat capacity generated during heating. The aerosol generator content more preferably ranges from 6% to 40% by mass, still more preferably 8% to 30% by mass, particularly preferably 10% to 20% by mass.
The tobacco sheet according to the present embodiment preferably further contains a shaping agent from the perspective of ensuring the shape. The shaping agent is, for example, a polysaccharide, a protein, a synthetic polymer, or the like. These may be used alone or in combination. The polysaccharide is, for example, a cellulose derivative or a naturally occurring polysaccharide.
The cellulose derivative is, for example, a cellulose ether, such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxymethylethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, benzyl cellulose, trityl cellulose, cyanoethyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, or aminoethyl cellulose; an organic acid ester, such as cellulose acetate, cellulose formate, cellulose propionate, cellulose butyrate, cellulose benzoate, cellulose phthalate, or tosyl cellulose; a mineral acid ester, such as cellulose nitrate, cellulose sulfate, cellulose phosphate, or cellulose xanthate; or the like.
The naturally occurring polysaccharide is, for example, a plant-derived polysaccharide, such as guar gum, tara gum, locust bean gum, tamarind seed gum, pectin, gum arabic, gum tragacanth, karaya gum, ghatti gum, arabinogalactan, flaxseed gum, cassia gum, psyllium seed gum, or Artemisia seed gum; an algae-derived polysaccharide, such as carrageenan, agar, alginic acid, a propylene glycol alginate ester, furcellaran, or a Colpomenia sinuosa extract; a microbial polysaccharide, such as xanthan gum, gellan gum, curdlan, pullulan, Agrobacterium succinoglycan, welan gum, Macrophomopsis gum, or rhamsan gum; a crustacean polysaccharide, such as chitin, chitosan, or glucosamine; a starch, such as starch, sodium starch glycolate, pregelatinized starch, or dextrin; or the like.
The protein is, for example, a grain protein, such as wheat gluten or rye gluten. The synthetic polymer is, for example, polyphosphoric acid, sodium polyacrylate, polyvinylpyrrolidone, or the like.
When the tobacco sheet contains a shaping agent, the shaping agent content per 100% by mass of the tobacco sheet preferably ranges from 0.1% to 15% by mass. When the shaping agent content is 0.1% by mass or more, a raw material mixture can be formed into a sheet. When the shaping agent content is 15% by mass or less, another raw material for ensuring a function required for the tobacco-containing segment of the non-combustion heating-type flavor inhaler can be sufficiently used. The shaping agent content more preferably ranges from 0.2% to 13% by mass, still more preferably 0.5% to 12% by mass, particularly preferably 1% to 10% by mass.
The tobacco sheet according to the present embodiment can further contain a reinforcing agent from the perspective of further improving physical properties. The reinforcing agent is, for example, a fibrous material, such as fibrous pulp, an insoluble fiber, fibrous synthetic cellulose, a liquid material with a surface coating function of forming a film when dried, such as aqueous pectin suspension, or the like. These may be used alone or in combination.
When the tobacco sheet contains a reinforcing agent, the reinforcing agent content per 100% by mass of the tobacco sheet preferably ranges from 4% to 60% by mass. In this range, another raw material for ensuring a function required for the tobacco-containing segment of the non-combustion heating-type flavor inhaler can be sufficiently used. The reinforcing agent content more preferably ranges from 4.5% to 55% by mass, still more preferably 5% to 50% by mass.
The tobacco sheet according to the present embodiment can further contain a humectant from the perspective of quality preservation. The humectant is, for example, a sugar alcohol, such as sorbitol, erythritol, xylitol, maltitol, lactitol, mannitol, or reduced maltose syrup, or the like. These may be used alone or in combination.
When the tobacco sheet contains a humectant, the humectant content per 100% by mass of the tobacco sheet preferably ranges from 1% to 15% by mass. In this range, another raw material for ensuring a function required for the tobacco-containing segment of the non-combustion heating-type flavor inhaler can be sufficiently used. The humectant content more preferably ranges from 2% to 12% by mass, still more preferably 3% to 10% by mass.
The tobacco sheet according to the present embodiment can contain, in addition to the tobacco powder, the aerosol generator, the shaping agent, the reinforcing agent, and the humectant, if necessary, a flavoring and seasoning agent, such as a flavoring agent or a taste agent, a colorant, a wetting agent, a preservative, a diluent, such as an inorganic substance, and/or the like.
The tobacco sheet according to the present embodiment preferably has a bulkiness of 190 cc/100 g or more. When the bulkiness is 190 cc/100 g or more, the total heat capacity of the tobacco-containing segment of the non-combustion heating-type flavor inhaler can be sufficiently reduced, and a tobacco sheet filled in the tobacco-containing segment can contribute more to aerosol generation. The bulkiness is more preferably 210 cc/100 g or more, still more preferably 230 cc/100 g or more. The upper limit of the bulkiness is, for example, but not limited to, 800 cc/100 g or less. The bulkiness is a value measured with DD-60A (trade name, manufactured by Borgwaldt KC Inc.) after the tobacco sheet is cut into a size of 0.8 mm×9.5 mm and is allowed to stand in a conditioned room at 22° C. and 60% for 48 hours. The measurement is performed by putting 15 g of the shredded tobacco sheet into a cylindrical vessel with an inside diameter of 60 mm and determining the volume of the tobacco sheets compressed at a load of 3 kg for 30 seconds.
In the present embodiment, the “tobacco sheet” is a component constituting a tobacco sheet, such as a tobacco powder, formed into a sheet shape. The term “sheet”, as used herein, refers to a shape with a pair of approximately parallel main surfaces and side surfaces. The length and width of the tobacco sheet are not particularly limited and can be appropriately adjusted according to the filling form. The thickness of the tobacco sheet is preferably, but not limited to, in the range of 100 to 1000 μm, more preferably 150 to 600 μm, in terms of the balance between heat transfer efficiency and strength.
The tobacco sheet according to the present embodiment can be produced, for example, by a known method, such as a rolling method or a casting method. Details of various tobacco sheets produced by such a method are disclosed in “Tabako no jiten (Tobacco Dictionary), Tobacco Academic Studies Center, Mar. 31, 2009”.
A method for producing a tobacco sheet by a rolling method may include the following steps, for example.
Furthermore, when a tobacco sheet is produced by the method, depending on the purpose, the surface of a rolling roller may be heated or cooled, or the number of revolutions of the rolling roller may be adjusted. Furthermore, the distance between rolling rollers may be adjusted. One or more rolling rollers may be used to produce a tobacco sheet of a desired basis weight.
A method for producing a tobacco sheet by a casting method may include the following steps, for example.
This method for producing a tobacco sheet may further include a step of irradiating a slurry, which is prepared by mixing water, a tobacco powder, an aerosol generator, a shaping agent, and pulp, with ultraviolet radiation or X-ray radiation to remove a component, such as a nitrosamine.
A non-combustion heating-type flavor inhaler according to the present embodiment includes a tobacco-containing segment containing the tobacco sheet according to the present embodiment or the like. Since the non-combustion heating-type flavor inhaler according to the present embodiment includes the tobacco-containing segment filled with the tobacco sheet with a high bulkiness according to the present embodiment or the like, the total heat capacity of the tobacco-containing segment can be sufficiently reduced, and the tobacco sheet filled in the tobacco-containing segment can contribute more to aerosol generation.
The non-combustion heating-type flavor inhaler according to the present embodiment may have any axial length and preferably has an axial length of 40 mm or more and 90 mm or less, more preferably 50 mm or more and 75 mm or less, still more preferably 50 mm or more and 60 mm or less. The non-combustion heating-type flavor inhaler preferably has a circumferential length of 16 mm or more and 25 mm or less, more preferably 20 mm or more and 24 mm or less, still more preferably 21 mm or more and 23 mm or less. For example, the tobacco-containing segment has a length of 20 mm, the cooling segment has a length of 20 mm, the center hole segment has a length of 8 mm, and the filter segment has a length of 7 mm. The length of the filter segment can be selected in the range of 4 mm or more and 10 mm or less. The airflow resistance of the filter segment is selected in the range of 15 mmH2O/seg or more and 60 mmH2O/seg or less per segment. The length of each segment can be appropriately changed according to the manufacturability, quality requirements, and the like. Only the filter segment on the downstream side of the cooling segment without the center hole segment can also function as a non-combustion heating-type flavor inhaler.
The tobacco-containing segment 2 is filled with the tobacco sheet according to the present embodiment or the like in a wrapping paper (hereinafter also referred to as a wrapper). The wrapping paper (hereinafter also referred to as a wrapper) may be filled with the tobacco sheet or the like by any method, for example, by wrapping the tobacco sheet or the like with the wrapper or by filling a tubular wrapper with the tobacco sheet or the like. When the shape of the tobacco sheet has a longitudinal direction like a rectangular shape, the tobacco sheet or the like may be packed such that the longitudinal direction is an unspecified direction in the wrapper or may be packed so as to be aligned in the axial direction of the tobacco-containing segment 2 or in a direction perpendicular to the axial direction.
As illustrated in
The tubular member 7 and a mouthpiece lining paper 12 described later have a hole 8 passing therethrough. The hole 8 allows the outside air to be introduced into the cooling segment 3 during inhalation. This brings a vaporized aerosol component generated by heating the tobacco-containing segment 2 into contact with the outside air, lowers the temperature of the vaporized aerosol component, liquefies the vaporized aerosol component, and forms an aerosol. The hole 8 may have any diameter (full length), for example, a diameter in the range of 0.5 mm or more and 1.5 mm or less. The number of holes 8 may be, but is not limited to, one or two or more. For example, a plurality of holes 8 may be provided on the periphery of the cooling segment 3.
The amount of outside air introduced through the hole 8 is preferably 85% by volume or less, more preferably 80% by volume or less, of the volume of the whole gas inhaled by the user. When the amount of outside air is 85% by volume or less, it is possible to sufficiently reduce the decrease in flavor due to dilution with the outside air. This is also referred to as a ventilation ratio. The lower limit of the ventilation ratio is preferably 55% by volume or more, more preferably 60% by volume or more, in terms of cooling performance.
The cooling segment may be a segment including a sheet of an appropriate constituent material that is wrinkled, pleated, gathered, or folded. A cross-sectional profile of such an element may have randomly oriented channels. The cooling segment may also include a bundle of longitudinally extending tubes. Such a cooling segment may be formed, for example, by wrapping a pleated, gathered, or folded sheet material with a wrapping paper.
The cooling segment can have an axial length of, for example, 7 mm or more and 28 mm or less, for example, 18 mm. Furthermore, the cooling segment can be substantially circular in its axial cross-sectional shape and can have a diameter of, for example, 5 mm or more and 10 mm or less, for example, approximately 7 mm.
The center hole segment is composed of a fill layer with one or more hollow portions and an inner plug wrapper (inner wrapping paper) covering the fill layer. For example, as illustrated in
The filter segment 5 may have any structure and may be composed of one or more fill layers. The outer side of the fill layer(s) may be wrapped with one or more wrapping papers. The airflow resistance per segment of the filter segment 5 can be appropriately changed depending on the amount, material, and the like of filler in the filter segment 5. For example, when the filler is cellulose acetate fibers, increasing the amount of cellulose acetate fibers in the filter segment 5 can increase the airflow resistance. When the filler is cellulose acetate fibers, the packing density of the cellulose acetate fibers may range from 0.13 to 0.18 g/cm3. The airflow resistance is a value measured with an airflow resistance measuring instrument (trade name: SODIMAX, manufactured by SODIM).
The filter segment 5 may have any circumferential length, which preferably ranges from 16 to 25 mm, more preferably 20 to 24 mm, still more preferably 21 to 23 mm. The axial length of the filter segment 5 can be selected from 4 to 10 mm and is selected to have an airflow resistance in the range of 15 to 60 mmH2O/seg. The filter segment 5 preferably has an axial length in the range of 5 to 9 mm, more preferably 6 to 8 mm. The filter segment 5 may have any cross-sectional shape, for example, a circular shape, an elliptical shape, a polygonal shape, or the like. A breakable capsule containing a flavoring agent, flavoring agent beads, or a flavoring agent may be added directly to the filter segment 5.
As illustrated in
A non-combustion heating-type flavor inhaling system according to the present embodiment includes the non-combustion heating-type flavor inhaler according to the present embodiment and a heating device for heating the tobacco-containing segment of the non-combustion heating-type flavor inhaler. The non-combustion heating-type flavor inhaling system according to the present embodiment may have another constituent, in addition to the non-combustion heating-type flavor inhaler according to the present embodiment and the heating device.
Although there is a space between the outer circumference of the non-combustion heating-type flavor inhaler 1 and the inner circumference of the metal tube 16 in schematically illustrated
The heating temperature of the heating device is preferably, but is not limited to, 400° C. or less, more preferably 150° C. or more and 400° C. or less, still more preferably 200° C. or more and 350° C. or less. The heating temperature refers to the temperature of the heater of the heating device.
The present inventors have found that high response at the beginning of inhalation, that is, sufficient delivery of a flavor component at the beginning of inhalation enhances the use satisfaction. Furthermore, known tobacco sheets have no or very low air permeability. To control the component release from such a sheet, for example, the sheet has been rolled to change the loading amount of the composition, the density of the composition, or the like. However, such a known method has a threshold value in the loading amount and the density to maintain the rolled shape and disadvantageously has a narrow applicable range in product design. Thus, the present invention includes a tobacco sheet with a high bulkiness and higher use satisfaction (first embodiment) and a tobacco sheet with a high bulkiness that can have a good profile (second embodiment) These embodiments are described below.
A tobacco sheet with a high bulkiness and higher use satisfaction is described below as a first embodiment. The tobacco sheet according to the present embodiment has a density of 1.0 g/cm3 or less.
The binder is a type of the shaping agent described above and is an adhesive agent for binding tobacco powder particles or binding a tobacco powder to another component. In the present embodiment, a known binder can be used. Such a binder is, for example, a polysaccharide, such as guar gum or xanthan gum, or a cellulose derivative, such as carboxymethyl cellulose (CMC), a carboxymethyl cellulose sodium salt (CMC-Na), or hydroxypropyl cellulose (HPC). The binder content based on dry mass (mass excluding water mixed therein, the same applies hereinafter) preferably has an upper limit of 6% by mass or less and preferably has a lower limit of 1% by mass or more, more preferably 3% by mass or more, based on the dry mass of the tobacco sheet. At an amount of binder higher than the upper limit or lower than the lower limit, the effects described above may not be sufficiently exhibited.
A binder used in the present embodiment may be a polysaccharide, a protein, or a synthetic polymer. Specific examples of these are described below. In the present embodiment, these binders may be used in combination.
Methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxymethylethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, benzyl cellulose, trityl cellulose, cyanoethyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, or aminoethyl cellulose
Organic acid ester: cellulose acetate, cellulose formate, cellulose propionate, cellulose butyrate, cellulose benzoate, cellulose phthalate, or tosyl cellulose
Mineral acid ester: cellulose nitrate, cellulose sulfate, cellulose phosphate, or a cellulose xanthate salt
Guar gum, tara gum, locust bean gum, tamarind seed gum, pectin, gum arabic, gum tragacanth, karaya gum, ghatti gum, arabinogalactan, flaxseed gum, cassia gum, psyllium seed gum, or Artemisia seed gum
Carrageenan, agar, alginic acid, propylene glycol alginate ester, furcellaran, or a Colpomenia sinuosa extract
Xanthan gum, gellan gum, curdlan, pullulan, Agrobacterium succinoglycan, welan gum, Macrophomopsis gum, or rhamsan gum
Chitin, chitosan, or glucosamine
Starch, sodium starch glycolate, pregelatinized starch, or dextrin
Wheat gluten or rye gluten
Polyphosphoric acid, sodium polyacrylate, or polyvinylpyrrolidone
Also in the present embodiment, a known aerosol generator can be used, and examples thereof include polyhydric alcohols, such as glycerin and propylene glycol (PG), and those with a boiling point of more than 100° C., such as triethyl citrate (TEC) and triacetin. In the present embodiment, the amount of the aerosol generator in the tobacco sheet preferably ranges from 5% to 40% by mass, more preferably 10% to 20% by mass, based on dry mass (mass excluding water mixed therein, the same applies hereinafter). When the amount of the aerosol generator is higher than the upper limit, it may be difficult to produce a tobacco sheet. When the amount of the aerosol generator is lower than the lower limit, smoke sensitivity may decrease.
In the present embodiment, the tobacco sheet may contain an emulsifier. The emulsifier increases the affinity between the aerosol generator, which is lipophilic, and the tobacco material, which is hydrophilic. Thus, the addition of the emulsifier is effective particularly when a lipophilic aerosol generator is used. The emulsifier can be a known emulsifier and is, for example, an emulsifier with an HLB value in the range of 8 to 18. The amount of the emulsifier is preferably, but not limited to, in the range of 0.1 to 3 parts by mass, more preferably 1 to 2 parts by mass, based on dry mass with respect to 100 parts by mass of the tobacco sheet.
The tobacco sheet according to the present embodiment can contain no tobacco-derived fiber or no fiber derived from a material other than tobacco (for example, cellulose). This can avoid an undesirable influence, such as an unpleasant taste, on the smoke taste due to these fibers. However, it is unrealistic to completely eliminate fibers, and the amount of the fibers in the tobacco sheet is preferably 1.0% by mass, more preferably 0.5% by mass, based on dry mass. The tobacco sheet according to the present embodiment can contain 0.5% to 2.0% by mass of a tobacco-derived fiber or a fiber derived from a material other than tobacco in total. In such a case, the fiber improves the strength of the tobacco sheet and provides a good balance between the smoke taste and the strength. In the present invention, the tobacco-derived fiber refers to a fiber produced by beating a tobacco raw material with a grinder or the like to produce pulp and is different from the tobacco material.
In the present embodiment, the tobacco sheet may contain a flavoring agent. The flavoring agent is a substance that provides an aroma or flavor. The flavoring agent may be a natural flavoring agent or a synthetic flavoring agent. The flavoring agent may be one type of flavoring agent or a mixture of multiple types of flavoring agents. The flavoring agent may be any flavoring agent commonly used in smoking articles, and specific examples thereof are described below. The flavoring agent can be contained in a sheet for a smoking article in such an amount that the smoking article can provide a favorable aroma or flavor. For example, the amount of the flavoring agent in the tobacco sheet preferably ranges from 1% to 30% by mass, more preferably 2% to 20% by mass.
The flavoring agent may be of any type and, from the perspective of imparting flavor sense, may be acetoanisole, acetophenone, acetylpyrazine, 2-acetylthiazole, an alfalfa extract, amyl alcohol, amyl butyrate, trans-anethole, star anise oil, apple juice, Peru balsam oil, beeswax absolute, benzaldehyde, benzoin resinoid, benzyl alcohol, benzyl benzoate, benzyl phenylacetate, benzyl propionate, 2,3-butanedione, 2-butanol, butyl butyrate, butyric acid, caramel, cardamom oil, carob absolute, β-carotene, carrot juice, L-carvone, β-caryophyllene, cassia bark oil, cedar wood oil, celery seed oil, chamomile oil, cinnamaldehyde, cinnamic acid, cinnamyl alcohol, cinnamyl cinnamate, citronella oil, DL-citronellol, a clary sage extract, cocoa, coffee, cognac oil, coriander oil, cumin aldehyde, davana oil, 8-decalactone, γ-decalactone, decanoic acid, dill herb oil, 3,4-dimethyl-1,2-cyclopentanedione, 4,5-dimethyl-3-hydroxy-2,5-dihydrofuran-2-one, 3,7-dimethyl-6-octenoic acid, 2,3-dimethylpyrazine, 2,5-dimethylpyrazine, 2,6-dimethylpyrazine, ethyl 2-methylbutyrate, ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl isovalerate, ethyl lactate, ethyl laurate, ethyl levulinate, ethyl maltol, ethyl octanoate, ethyl oleate, ethyl palmitate, ethyl phenylacetate, ethyl propionate, ethyl stearate, ethyl valerate, ethylvanillin, ethylvanillin glucoside, 2-ethyl-3,(5 or 6)-dimethylpyrazine, 5-ethyl-3-hydroxy-4-methyl-2(5H)-furanone, 2-ethyl-3-methylpyrazine, eucalyptol, fenugreek absolute, genet absolute, gentian root infusion, geraniol, geranyl acetate, grape juice, guaiacol, a guava extract, γ-heptalactone, γ-hexalactone, hexanoic acid, cis-3-hexen-1-ol, hexyl acetate, hexyl alcohol, hexyl phenylacetate, honey, 4-hydroxy-3-pentenoic acid lactone, 4-hydroxy-4-(3-hydroxy-1-butenyl)-3,5,5-trimethyl-2-cyclohexen-1-one, 4-(p-hydroxyphenyl)-2-butanone, sodium 4-hydroxyundecanoate, immortelle absolute, β-ionone, isoamyl acetate, isoamyl butyrate, isoamyl phenylacetate, isobutyl acetate, isobutyl phenylacetate, jasmine absolute, kola nut tincture, labdanum oil, lemon terpeneless oil, a licorice extract, linalool, linalyl acetate, lovage root oil, maltol, maple syrup, menthol, menthone, L-menthyl acetate, p-methoxybenzaldehyde, methyl-2-pyrrolylketone, methyl anthranilate, methyl phenyl acetate, methyl salicylate, 4′-methylacetophenone, methylcyclopentenolone, 3-methylvaleric acid, mimosa absolute, molasses, myristic acid, nerol, nerolidol, γ-nonalactone, nutmeg oil, 8-octalactone, octanal, octanoic acid, orange flower oil, orange oil, orris root oil, palmitic acid, @-pentadecalactone, peppermint oil, petitgrain Paraguay oil, phenethyl alcohol, phenethyl phenylacetate, phenylacetic acid, piperonal, a plum extract, propenyl guaethol, propyl acetate, 3-propylidenephthalide, prune fruit juice, pyruvic acid, a raisin extract, rose oil, rum, sage oil, sandalwood oil, spearmint oil, styrax absolute, marigold oil, tea distillate, α-terpineol, terpinyl acetate, 5,6,7,8-tetrahydroquinoxaline, 1,5,5,9-tetramethyl-13-oxacyclo(8.3.0.0(4.9))tridecane, 2,3,5,6-tetramethylpyrazine, thyme oil, a tomato extract, 2-tridecanone, triethyl citrate, 4-(2,6,6-trimethyl-1-cyclohexenyl)2-buten-4-one, 2,6,6-trimethyl-2-cyclohexene-1,4-dione, 4-(2,6,6-trimethyl-1,3-cyclohexadienyl)2-buten-4-one, 2,3,5-trimethylpyrazine, γ-undecalactone, γ-valerolactone, a vanilla extract, vanillin, veratraldehyde, violet leaf absolute, N-ethyl-p-menthane-3-carboamide (WS-3), ethyl-2-(p-menthane-3-carboxamide)acetate (WS-5), sugar (sucrose, fructose), a cocoa powder, a carob powder, a coriander powder, a licorice powder, an orange peel powder, a rose hip powder, a chamomile flower powder, a lemon verbena powder, a peppermint powder, a leaf powder, a spearmint powder, a black tea powder, a natural plant flavoring agent (for example, jasmine oil, lemon oil, vetiver oil, lovage oil), an ester (for example, menthyl acetate, isoamyl propionate, or the like), or an alcohol (for example, phenylethyl alcohol, cis-6-nonene-1-ol, or the like). These flavoring agents may be used alone or in combination.
The tobacco sheet according to the present embodiment has a density of 1.0 g/cm3 or less. A tobacco sheet with such a low density can achieve sufficient delivery of a flavor component at the beginning of inhalation. Although the reason for this is not limited, it is surmised that a tobacco sheet with a low density can reduce the packing density of a tobacco filler in a smoking article and can therefore increase the amount of heat received per mass. Furthermore, a decrease in packing density can achieve cost reduction. From these perspectives, the density is preferably 0.95 g/cm3 or less, more preferably 0.75 g/cm3 or less. The lower limit of the density is preferably, but not limited to, 0.5 g/cm3 or more from the perspective of strength or the like. In the present invention, the density is calculated from the basis weight (mass per unit area) and the thickness. The tobacco sheet according to the present embodiment preferably has an air permeability of 0 CORESTA units.
The tobacco sheet may have any thickness, but the upper limit is preferably 1500 μm or less, more preferably 1000 μm or less, still more preferably 500 μm or less. The lower limit is preferably 20 μm or more, more preferably 100 μm or more, still more preferably 150 μm or more.
A tobacco segment for use in a smoking article can be produced from a tobacco sheet. In one embodiment, the tobacco segment includes a tubular wrapper and a tobacco sheet helically packed in the wrapper (see
In another embodiment, the tobacco segment 20A has a tubular wrapper 22 and a tobacco sheet T folded and packed in the wrapper. A ridgeline formed by folding is approximately parallel to the longitudinal direction of the segment (see
In another embodiment, the tobacco segment 20A has the tubular wrapper 22 and cut pieces of the tobacco sheet T packed in the wrapper (see
In another embodiment, the tobacco segment 20A has the tubular wrapper 22 and shredded strands packed in the wrapper (see
In another embodiment, the tobacco segment 20A has the tubular wrapper 22 and a shredded tobacco filler randomly packed in the wrapper. Shredded tobacco is cut shreds and is different from shredded strands.
The tobacco sheet according to the present embodiment can be produced by any method, preferably a method including the following steps.
Step 1 of kneading at least a tobacco powder, a binder, and a medium to prepare a mixture.
Step 2 of flattening the mixture or extruding the mixture through a die to prepare a wet sheet.
Step 3 of drying the wet sheet.
A sheet formed by applying pressure in this manner is referred to as a “press-formed sheet”, and the “press-formed sheet” includes a “laminated sheet” and an “extruded sheet”, as described later. The laminated sheet is a sheet produced by flattening the mixture one or more times to a target thickness using a roller and then drying the mixture to a target water content. The extruded sheet is a sheet produced by extruding the mixture through a T-die or the like to a target thickness and then drying the mixture to a target water content. In a press-formed sheet, flattening and extrusion may be combined. For example, the mixture may be extruded and then further flattened to form a sheet.
In this step, the tobacco powder, the binder, and the medium are kneaded. If necessary, an aerosol generator, an emulsifier, or a flavoring agent may also be added. The amount of each component is adjusted to achieve the amount described above. The medium is preferably, for example, composed mainly of water or a water-soluble organic solvent with a boiling point of less than 100° C., such as ethanol, and is more preferably water or ethanol.
This step can be performed by kneading the components and is preferably performed through 1) grinding of a raw material (for example, a single leaf), 2) preparation of a wet powder, and 3) kneading.
Preferably, a raw material is coarsely ground and is then finely ground using a grinder (for example, ACM-5 manufactured by Hosokawa Micron Corporation). The particle diameter D90 after the fine grinding preferably ranges from 20 to 1000 μm. The particle size is measured with a laser diffraction particle size analyzer, such as Mastersizer (manufactured by malvern).
A binder and an optional additive agent, such as a flavoring agent or a lipid, are added to and mixed with the ground tobacco powder. This mixing is preferably dry blending, and a mixer is preferably used as a mixing machine. A medium, such as water, and an optional aerosol generator, such as glycerin, are then added to the dry blend and are mixed using a mixer to prepare a wet powder (a powder in a wet state). The amount of the medium in the wet powder can range from 20% to 80% by mass, preferably 20% to 40% by mass, and the wet powder is appropriately adjusted in the step 2. For example, the amount of the medium can range from 20% to 50% by mass in the case of flattening and 20% to 80% by mass in the case of extrusion in the step 2. The wet powder preferably has a solid concentration in the range of 50% to 90% by mass. In a particularly preferred embodiment, a wet powder to be used contains tobacco particles with a D90 of 200 μm or more and a liquid medium containing water (more preferably, a liquid medium composed of water) and has a water content of 50% by mass or more.
The wet powder is kneaded with a kneader (for example, DG-1 manufactured by Dalton Corporation). The kneading is preferably performed until the medium is wholly dispersed. For example, the kneading is preferably performed until the color of the mixture is visually uniform.
In this step, the mixture (wet powder) is flattened or extruded through a die to prepare a wet sheet. For example, the mixture sandwiched between two substrate films can be passed between a pair of rollers to a predetermined thickness (more than 100 μm) using a calendar (for example, manufactured by Yuri Roll Machine Co., Ltd.) and can be flattened to form a laminate of a wet sheet sandwiched between the two substrate films. The substrate film is preferably a non-adhesive film, such as a fluorinated polymer film. The flattening using a roller can be performed multiple times. Alternatively, the mixture (wet powder) may be extruded through a die (preferably a T-die) with a predetermined gap to form a wet sheet on a substrate. The substrate may be a known substrate, such as a glass sheet, a metal sheet, or a plastic sheet. A known extruder can be used for the extrusion.
In this step, the wet sheet is dried. For example, the laminate can be subjected to this step by the following procedure. 1) One of the substrate films is peeled off. 2) The laminate is dried with a forced-air dryer. The drying temperature may be room temperature and preferably ranges from 50° C. to 100° C., and the drying time can range from 1 to 2 minutes. 3) The remaining substrate film is then peeled off, and drying is further performed under the conditions described above to produce a tobacco sheet. Such drying can prevent the tobacco sheet from adhering to another substrate. The tobacco sheet thus produced is also referred to as a “laminated sheet”. The laminated sheet is preferred because it has a smooth surface and can have fewer fallen shreds when coming into contact with another member. This method is suitable for the production of a sheet of 300 μm or less.
In extrusion, the wet sheet on the substrate is dried by air drying or heating. The drying conditions are as described above. The tobacco sheet thus produced is also referred to as an “extruded sheet”. The extruded sheet is preferred because it has a smooth surface and can have fewer fallen shreds when coming into contact with another member. This method is suitable for the production of a sheet of 200 μm or more.
In a second embodiment, a tobacco sheet with a high bulkiness that can have a good profile is described below. The tobacco sheet according to the present embodiment contains a tobacco powder, a humectant, a binder, and one or both of a flavoring and taste agent and a shaping aid, and has an air permeability of more than 0 CORESTA units.
The humectant in the present embodiment is a material for imparting moisture to the tobacco sheet and is also the aerosol generator that is vaporized by heating and is cooled to generate an aerosol or that generates an aerosol by atomization. The humectant in the present embodiment may be a polyhydric alcohol, such as glycerin or propylene glycol (PG); or a triester, such as triethyl citrate (TEC) or triacetin. The humectant in the present embodiment preferably has a boiling point of more than 100° C. The amount of the humectant in the tobacco sheet preferably ranges from 1% to 40% by mass, more preferably 10% to 20% by mass, based on dry mass (mass excluding water mixed therein, the same applies hereinafter). When the amount of the humectant is higher than the upper limit, it may be difficult to produce a tobacco sheet. When the amount of the humectant is lower than the lower limit, smoke sensitivity may decrease.
In the present embodiment, the binder described in the first embodiment can be used.
The flavoring and taste agent is a material that imparts a flavor, preferably a flavoring agent. The flavoring agent may be one described above.
In the present embodiment, the tobacco sheet may contain the aerosol generator described in the first embodiment that does not correspond to the humectant.
The shaping aid in the present embodiment may be pulp or non-woven fabric of plant fiber or synthetic fiber, more specifically, a tobacco-derived fiber or a fiber derived from a material other than tobacco. The amount of the shaping aid to be added preferably ranges from 0.5% to 2.0% by mass in the sheet. The tobacco sheet according to the present embodiment may contain either a flavoring and taste agent or a shaping aid. More specifically, the tobacco sheet containing a shaping aid can have an effect of ensuring the strength of the sheet, an effect of reducing the stickiness of the sheet, or the like. The tobacco sheet containing a flavoring agent, which can be carried by a shaping aid, can have an effect of improving the ability of the sheet to carry the flavoring agent or the like.
The tobacco sheet according to the present embodiment has an air permeability of more than 0 CORESTA units, preferably 50 CORESTA Units or more, 100 CORESTA Units or more, 200 CORESTA Units or more, 300 CORESTA Units or more, or 400 CORESTA Units or more, more preferably 500 CORESTA Units or more. The upper limit thereof is preferably, but not limited to, 20,000 CORESTA units or less, more preferably 15,000 CORESTA units or less. The CORESTA Unit is defined as the air flow rate (cm3) per cm2 per minute at a pressure difference of 1 kPa. The air permeability can be measured with an air permeability meter PPM1000M manufactured by Cerulean. In the present invention, the air permeability is preferably measured by the following procedure. 1) A sheet is conditioned by standing it for 48 hours under the conditions of a room temperature of 22° C. and a relative humidity of 60%. 2) The sheet is then cut into a size of 40 mm×240 mm, and the amount of air passing from the front surface to the back surface is measured with the air permeability measuring device (PPM1000M manufactured by Cerulean) at a pressure difference of 1 kPa using a 2-cm2 circular measuring head. 3) The measurement environment is set to room temperature (for example, 22° C.) and a relative humidity of 60%.
In the present embodiment, a tobacco sheet with a specific air permeability can be used to achieve an initial profile. More specifically, delivery higher than delivery of known sheets can be achieved in an initial puff, and a profile can be achieved in which the delivery amount is less likely to decrease in the latter half of the puff as in known sheets. Although the reason for this is not limited, it is surmised that the sheet with high air permeability has a high release efficiency of the humectant from the sheet and generates an increased amount of aerosol formed from the humectant.
The thickness of the tobacco sheet according to the present embodiment is preferably, but not limited to, in the range of 20 to 2000 μm, more preferably 100 to 1500 μm, still more preferably 100 to 1000 μm, in one embodiment.
The tobacco sheet according to the present embodiment preferably has a density in the range of 0.5 to 2.0 g/cm3, more preferably 0.5 to 1.0 g/cm3. As described later, the tobacco sheet according to the present embodiment preferably has a pore provided physically or chemically, and the density herein is not the density of a portion excluding the pore but the density of the entire sheet including the pore. Furthermore, the tobacco sheet according to the present embodiment with a density of 1.0 g/cm3 or less can achieve more sufficient delivery of a flavor component at the beginning of inhalation.
As described above, the tobacco sheet according to the present embodiment preferably has a pore formed by processing. The pore can be provided by physical or chemical processing. The former may be laser processing, cutting processing with a needle or the like, electrical perforation by local electrical discharge, or the like. The latter may be etching. The pore may have any shape, a circle, an ellipse, a polygon, or the like, and is preferably a through-hole. The size, number, and arrangement of pores are appropriately adjusted to achieve a desired air permeability. In one embodiment, the circumcircle of the pore has a diameter in the range of 0.1 to 0.8 mm. In one embodiment, pores are arranged in a lattice pattern on the sheet, and the shortest distance between adjacent pores ranges from approximately 0.2 to 0.8 mm.
A tobacco segment for use in a smoking article can be produced from a tobacco sheet. The tobacco segment in the present embodiment is as described above in the first embodiment.
The tobacco sheet according to the present embodiment can be produced by any method, preferably a method including the following steps.
Step 1 of kneading at least a tobacco powder, a humectant, a binder, one or both of a flavoring and taste agent and a shaping aid, and a medium to prepare a mixture.
Step 2 of flattening the mixture or extruding the mixture through a die to prepare a wet sheet.
Step 3 of drying the wet sheet.
A sheet formed by applying pressure in this manner is referred to as a “press-formed sheet”, and the “press-formed sheet” includes a “laminated sheet” and an “extruded sheet”, as described later. The laminated sheet is a sheet produced by flattening the mixture one or more times to a target thickness using a roller and then drying the mixture to a target water content. The extruded sheet is a sheet produced by extruding the mixture through a T-die or the like to a target thickness and then drying the mixture to a target water content. In a press-formed sheet, flattening and extrusion may be combined. For example, the mixture may be extruded and then further flattened to form a sheet.
In this step, at least a tobacco powder, a humectant, a binder, one or both of a flavoring and taste agent and a shaping aid, and a medium are kneaded. If necessary, an emulsifier may be added. The amount of each component is adjusted to achieve the amount described above. The medium is preferably, for example, composed mainly of water or a water-soluble organic solvent with a boiling point of less than 100° C., such as ethanol, and is more preferably water or ethanol.
This step can be performed by kneading the components and is preferably performed through 1) grinding of a raw material (for example, a single leaf), 2) preparation of a wet powder, and 3) kneading.
Preferably, a raw material is coarsely ground and is then finely ground using a grinder (for example, ACM-5 manufactured by Hosokawa Micron Corporation). The particle diameter D90 of the tobacco powder after the fine grinding is as described above. The particle size is measured with a laser diffraction particle size analyzer, such as Mastersizer (manufactured by malvern).
A tobacco powder, a binder, one or both of a flavoring and taste agent and a shaping aid, and an optional additive agent, such as a lipid, are mixed. This mixing is preferably dry blending, and a mixer is preferably used as a mixing machine. A medium, such as water, and a humectant are then added to the dry blend and are mixed using a mixer to prepare a wet powder (a powder in a wet state). The amount of the medium in the wet powder can range from 20% to 80% by mass, preferably 20% to 40% by mass, and the wet powder is appropriately prepared in the step 2. For example, the amount of the medium can range from 20% to 50% by mass in the case of flattening and 20% to 80% by mass in the case of extrusion in the step 2. The wet powder preferably has a solid concentration in the range of 50% to 90% by mass.
The wet powder is kneaded with a kneader (for example, DG-1 manufactured by Dalton Corporation). The kneading is preferably performed until the medium is wholly dispersed. For example, the kneading is preferably performed until the color of the mixture is visually uniform.
In this step, the mixture (wet powder) is flattened or extruded through a die to prepare a wet sheet. For example, the mixture sandwiched between two substrate films can be passed between a pair of rollers to a predetermined thickness (more than 100 μm) using a calendar (for example, manufactured by Yuri Roll Machine Co., Ltd.) and can be flattened to form a laminate of a wet sheet sandwiched between the two substrate films. The substrate film is preferably a non-adhesive film, such as a fluorinated polymer film. The flattening using a roller can be performed multiple times. Alternatively, the mixture (wet powder) may be extruded through a die (preferably a T-die) with a predetermined gap to form a wet sheet on a substrate. The substrate may be a known substrate, such as a glass sheet, a metal sheet, or a plastic sheet. A known extruder can be used for the extrusion.
In this step, the wet sheet is dried. For example, the laminate can be subjected to this step by the following procedure. 1) One of the substrate films is peeled off. 2) The laminate is dried with a forced-air dryer. The drying temperature may be room temperature and preferably ranges from 50° C. to 100° C., and the drying time can range from 1 to 2 minutes. 3) The remaining substrate film is then peeled off, and drying is further performed under the conditions described above to produce a tobacco sheet. Such drying can prevent the tobacco sheet from adhering to another substrate. The sheet thus produced is also referred to as a “laminated sheet”. The laminated sheet is preferred because it has a smooth surface and can have fewer fallen shreds when coming into contact with another member. This method is suitable for the production of a sheet of 300 μm or less.
In extrusion, the wet sheet on the substrate is dried by air drying or heating. The drying conditions are as described above. The tobacco sheet thus produced is also referred to as an “extruded sheet”. The extruded sheet is preferred because it has a smooth surface and can have fewer fallen shreds when coming into contact with another member. This method is suitable for the production of a sheet of 200 μm or more.
Furthermore, the tobacco sheet can also be produced by a paper-making method, a casting method, a non-woven fabric coating method, or the like. The paper-making method is a method for making paper from a mixture containing a tobacco powder, a humectant, a binder, one or both of a flavoring and taste agent and a shaping aid, and water, and drying the paper to produce a sheet. The mixture needs to contain a fibrous material and therefore preferably contains a fiberized tobacco raw material or pulp as a shaping aid. A water extract extracted before a tobacco raw material is fiberized can be concentrated later and added back to a paper-made sheet. A sheet produced by this method is referred to as a paper-made sheet.
The casting method is a method for spreading (casting) a mixture containing a tobacco powder, a humectant, a binder, and one or both of a flavoring and taste agent and a shaping aid on a substrate, and drying the mixture to produce a sheet. If necessary, the mixture may contain a shaping aid and a medium, such as water. A sheet produced by this method is referred to as a cast sheet.
The non-woven fabric coating method is a method for applying a mixture containing a tobacco powder, a humectant, a binder, and one or both of a flavoring and taste agent and a shaping aid on a non-woven fabric to produce a sheet. A sheet produced by this method is referred to as a non-woven fabric sheet.
Although specific examples of the present embodiment are described below, the present invention is not limited to these examples.
A tobacco lamina (leaf tobacco) was dry-ground with a Hosokawa Micron ACM machine to produce a tobacco powder. The tobacco powder had a cumulative 50% particle diameter (D50) of 57 μm and a cumulative 90% particle diameter (D90) of 216 μm in a volume-based particle size distribution as measured by a dry laser diffraction method using Mastersizer (trade name, manufactured by Spectris Co., Ltd., Malvern Panalytical).
The tobacco powder was used to produce a tobacco sheet by the rolling method. More specifically, 87 parts by mass of the tobacco powder, 12 parts by mass of glycerin as an aerosol generator, and 1 part by mass of carboxymethyl cellulose as a shaping agent were mixed and kneaded with an extruder. The kneaded product was formed into a sheet using two pairs of metallic rolls and was dried in a hot air circulating oven at 80° C. to produce a tobacco sheet. The tobacco sheet was shredded with a shredder to a size of 0.8 mm×9.5 mm.
The bulkiness of the shredded tobacco sheet was measured. More specifically, after the shredded tobacco sheet was allowed to stand in a conditioned room at 22° C. and 60% for 48 hours, the bulkiness was measured with DD-60A (trade name, manufactured by Borgwaldt KC Inc.). The measurement was performed by putting 15 g of the shredded tobacco sheet into a cylindrical vessel with an inside diameter of 60 mm and determining the volume of the tobacco sheets compressed at a load of 3 kg for 30 seconds. Table 1 shows the results. In Table 1, the bulkiness is shown by a rate of increase in bulkiness (%) with respect to the bulkiness of Comparative Example 1 described later.
A tobacco sheet was produced and evaluated in the same manner as in Example 1 except that the tobacco powder had a cumulative 50% particle diameter (D50) of 121 μm and a cumulative 90% particle diameter (D90) of 389 μm in a volume-based particle size distribution by the dry laser diffraction method. Table 1 shows the results.
A tobacco sheet was produced and evaluated in the same manner as in Example 1 except that the tobacco powder had a cumulative 50% particle diameter (D50) of 225 μm and a cumulative 90% particle diameter (D90) of 623 μm in a volume-based particle size distribution by the dry laser diffraction method. Table 1 shows the results.
A tobacco sheet was produced and evaluated in the same manner as in Example 1 except that the tobacco powder had a cumulative 50% particle diameter (D50) of 32 μm and a cumulative 90% particle diameter (D90) of 84 μm in a volume-based particle size distribution by the dry laser diffraction method. Table 1 shows the results.
Table 1 shows that the tobacco sheets of Examples 1 to 3, which are tobacco sheets according to the present embodiment, had higher bulkiness than the tobacco sheet of Comparative Example 1 in which the tobacco powder had a D90 of less than 200 μm as measured by the dry laser diffraction method. Although the tobacco sheets were produced by the rolling method in Examples 1 to 3, a tobacco sheet produced by the casting method in the same manner also had improved bulkiness.
The first embodiment is described below with reference to Reference Example A and Reference Comparative Example A.
A tobacco leaf was ground with a grinder (ACM-5 manufactured by Hosokawa Micron Corporation) so as to have a D90 of 400 μm to produce leaf tobacco particles. D90 was measured with Mastersizer (manufactured by malvern). The leaf tobacco particles and a binder Sunrose F20HC (cellulose ether manufactured by Nippon Paper Industries Co., Ltd.) were dry-blended using a mixer. Glycerin as an aerosol generator and water as a medium were then added to the dry blend and were mixed using a mixer to prepare a wet powder. Table A1 shows the ratio of each component.
The wet powder was kneaded six times at room temperature using a kneading machine (DG-1 manufactured by Dalton Corporation) to prepare a mixture. The die shape was a circular rectangle, and the screw speed was 60 rpm.
The wet powder was sandwiched between two Teflon (registered trademark) films (Nitoflon (registered trademark) No. 900UL manufactured by Nitto Denko Corporation) and was rolled in four stages to a predetermined thickness (more than 100 μm) using a calendar (manufactured by Yuri Roll Machine Co., Ltd.) to prepare a laminate 250 μm in thickness with a layered structure of film/wet sheet/film. The roll gaps in the first to fourth stages were 1100 μm, 500 μm, 300 μm, and 200 μm, respectively. The roll gap in the fourth stage was larger than the thickness of the finally formed sheet because the sheet released from the pressure between the rollers expanded close to the final thickness.
One of the Teflon (registered trademark) films was peeled off from the laminate, and the laminate was dried with a forced-air dryer at 80° C. for 1 to 2 minutes. The other film was then peeled off, and the wet sheet was dried under the same conditions to produce and evaluate the tobacco sheet according to the present embodiment.
With respect to the mass in the wet powder in Table A1, the mass of ground tobacco leaves, glycerin, or the binder is a dry mass. The mass of water is the total of the mass of water charged and the mass of water in the ground tobacco leaves, glycerin, and binder.
A tobacco sheet was produced and evaluated in the same manner as in Reference Example A1 except that leaf tobacco particles with a D90 of 600 μm or 800 μm were used.
A tobacco sheet was produced and evaluated in the same manner as in Reference Example A1 except that leaf tobacco particles with a D90 of 80 μm or 200 μm were used.
A tobacco sheet was produced and evaluated in the same manner as in Reference Example A1 except that leaf tobacco particles with a D90 of 200 μm were used and the water content of the wet powder was 50 WB mass %.
A tobacco sheet was produced and evaluated in the same manner as in Reference Example A1 except that leaf tobacco particles with a D90 of 200 μm were used and the water content of the wet powder was 30 or 40 WB mass %. Table A3 shows the results. “Amount of water in wet powder” in Table A3 corresponds to the amount of water based on the mass ratio in the wet powder in Table A1.
A tobacco sheet with a sheet density of 0.75 g/cm3 or 0.96 g/cm3 (Reference Example A5) and a tobacco sheet with a sheet density of 1.19 g/cm3 (Reference Comparative Example A5) were produced by the casting method in accordance with a routine method. The tobacco sheets were subjected to a smoking test. As a result, it was found that a smoking article including the sheet of Reference Example A5 was superior to a smoking article including the sheet of Reference Comparative Example A5 in terms of delivery of a flavor component at the beginning of inhalation. It is surmised from this that smoking articles including the tobacco sheets prepared in Reference Examples A1 to A3 also exhibit good delivery of a flavor component at the beginning of inhalation.
Evaluation methods are described below.
A non-combustion heating-type smoking system as illustrated in
The tobacco sheet was cut into 55 mm square, and the mass (dry mass) was measured to calculate the mass per unit area (basis weight). The thickness was measured with a thickness gauge (manufactured by Mitutoyo Corporation), and the density was calculated from the basis weight and the thickness.
Reference Example A5 was reproduced. That is, a tobacco sheet was produced as follows:
With respect to the mass in the wet powder in Table A2, the mass of ground tobacco leaves, glycerin, or the binder is a dry mass. The mass of water is the total of the mass of water charged and the mass of water in the ground tobacco leaves, glycerin, and binder.
A tobacco sheet was produced and evaluated in the same manner as in Reference Example A5-1 except that leaf tobacco particles with a D90 of 80 μm were used. Table A3 shows the results.
The second embodiment is described below with reference to Reference Example B and Reference Comparative Example B.
A tobacco leaf was ground with a grinder (ACM-5 manufactured by Hosokawa Micron Corporation) so as to have a D90 of 70 μm to produce leaf tobacco particles. D90 was measured with Mastersizer (manufactured by malvern). The leaf tobacco particles and a binder carboxymethyl cellulose (trade name Sunrose F30MC manufactured by Nippon Paper Industries Co., Ltd.) were dry-blended using a mixer. Glycerin as a humectant and water as a medium were then added to the dry blend and were mixed using a mixer to prepare a wet powder. Table B1 shows the ratio of each component.
The wet powder was kneaded six times at room temperature using a kneading machine (DG-1 manufactured by Dalton Corporation) to prepare a mixture. A T-die was used as a die, and the screw speed was 38.5 rpm.
The wet powder was sandwiched between two Teflon (registered trademark) films (Nitoflon (registered trademark) No. 900UL manufactured by Nitto Denko Corporation) and was rolled in four stages to a predetermined thickness (more than 100 μm) using a calendar (manufactured by Yuri Roll Machine Co., Ltd.) to prepare a laminate 105 μm in thickness with a layered structure of film/wet sheet/film. The roll gaps in the first to fourth stages were 650 μm, 330 μm, 180 μm, and 5 μm, respectively. The roll gap in the fourth stage was larger than the thickness of the finally formed sheet because the sheet released from the pressure between the rollers expanded close to the final thickness.
One of the Teflon (registered trademark) films was peeled off from the laminate, and the laminate was dried with a forced-air dryer at 80° C. for 1 to 2 minutes. The other film was then peeled off, and the wet sheet was dried under the same conditions to produce a sheet according to the present embodiment.
The sheet thus produced was allowed to stand for 48 hours under the conditions of a room temperature of 22° C. and a relative humidity of 60%. The sheet was then provided with a plurality of apertures with a perforation size of 0.2 mm×0.2 mm using a laser processing apparatus (manufactured by TROTEC). The apertures were disposed at regular intervals of 0.4 mm. Table B2 shows detailed conditions. The air permeability and release profile of the processed tobacco sheet thus produced were evaluated by the methods described later. Table B2 and
The sheet after the perforation was allowed to stand for 48 hours under the conditions of a room temperature of 22° C. and a relative humidity of 60%. The sheet was then cut into a size of 40 mm×240 mm and was subjected to measurement with the air permeability measuring device (PPM1000M manufactured by Cerulean) under measurement conditions of a pressure difference of 1 kPa using a 2-cm2 circular measuring head. The measurement environment was a room temperature of 22° C. and a relative humidity of 60%. The air permeability was calculated as an air flow rate (cm3) per cm2 per minute at a pressure difference of 1 kPa.
Sheets with air permeability as shown in Table B2 were prepared by changing the laser processing conditions. A roll for smoking test was prepared and evaluated in the same manner as in Reference Example B1 except that each sheet was used and the filling ratio was changed.
As shown in the figure, a smoking article containing the sheet of the present embodiment can have a good profile with high delivery in an initial puff and with delivery comparable to known sheets even in the latter half.
The aspects are described below.
Number | Date | Country | Kind |
---|---|---|---|
PCT/JP2021/036389 | Oct 2021 | WO | international |
PCT/JP2021/036396 | Oct 2021 | WO | international |
2021-170058 | Oct 2021 | JP | national |
The present application is a Continuation of International Patent Application No. PCT/JP2022/025729 filed on Jun. 28, 2022, which contains subject matter related to PCT Application No. PCT/JP2021/036389 filed on Oct. 1, 2021, PCT Application No. PCT/JP2021/036396 filed on Oct. 1, 2021, Japanese Patent Application No. 2021-170058 filed in the Japan Patent Office on Oct. 18, 2021, the entire contents of each are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2022/025729 | Jun 2022 | WO |
Child | 18621155 | US |