The invention generally relates to a toe ramp system for a snowboard binding. The system includes one or more spacers that provide improved control and improved vibration and/or dampening characteristics.
Snowboard bindings are typically categorized as being either strap-type bindings for use with soft-style snowboard boots, or step-in type bindings for use with snowboard boots having bales or some other form of mating device. Both types of snowboard bindings function to securely fasten the snowboard boots of a rider to a snowboard.
As the sport of snowboard riding has evolved, various new snowboard binding features have been introduced by snowboard equipment manufacturers to improve performance and to consequently improve their products. One such development is the addition of an adjustable toe ramp for snowboard bindings. The toe ramp enhances the transfer of the load and/or pressure from the foot of a rider to the snowboard to provide improved control of the snowboard.
A conventional toe ramp is mounted to the front end of the base portion of a snowboard binding, and typically includes a flat or upwardly extending front portion for engagement with the toe portion of a snowboard boot of a rider. The toe ramp improves toe-side edge responsiveness of the snowboard in comparison to bindings that do not include such a toe ramp. In particular, toe side edge forces from the riders' foot are quickly transmitted to the snowboard through the toe ramp as the snowboarder travels down a slope. Conventional toe ramps allow a rider to adjust the position of the ramp in the front to rear position and/or the side-to-side position to accommodate a variety of snowboard shoe sizes.
However, as a rider adjusts the toe ramp to a front position on the binding, a gap or void appears between a rear surface of the toe ramp and the base portion of the binding. The size of the gap is typically proportional to the size of the riders' snowboard boot. This gap can become clogged with ice and/or snow which could adversely affect the binding mechanism of step-in type bindings. Furthermore, the void does nothing to dampen vibrations or to absorb shocks that are generated by the snowboard and that travel through the binding, into the snowboard boot and to the foot of the rider.
Presented is a toe ramp system for use with a snowboard binding. The system includes a toe ramp for adjustable attachment to a front portion of a base plate of the snowboard binding and including a toe ramp interlocking structure associated with a toe ramp rear wall. Also included is a first spacer having a first interlocking structure associated with a first wall for removable attachment to the toe ramp interlocking structure and having a second interlocking structure associated with a second wall for removable attachment to a base plate wall.
In an advantageous implementation, the system also includes at least a second spacer having a third interlocking structure associated with a front wall for removable attachment to the second interlocking structure of the first spacer, and having a fourth interlocking structure associated with a rear wall for removable attachment to the base plate wall. Any or all of the spacers may be made of a shock absorbing material, or a dampening material, or a composite material with shock absorbing and dampening characteristics. In a beneficial embodiment, the spacer first wall is shaped to flush fit with the toe ramp rear wall, and the spacer second wall is shaped to flush fit with the base plate wall. The first interlocking structure may be a flange and the second interlocking structure may be a receptacle, and the first and second walls of the spacer could be curved. The toe ramp may also include at least one well for accommodating at least one fastener, and the well may house at least one of a plurality of through holes or a slot. The toe ramp system may also include at least one fastener for adjustably connecting the toe ramp to the base plate, the toe ramp may be adjustable in a plurality of front-to-rear positions, and may include a contoured surface.
Another embodiment according to the invention pertains to a snowboard binding of the type that includes a base plate having a toe portion, the binding for releasably securing a snowboard boot to the base plate. The binding includes a toe ramp having an upper surface for supporting engagement with a toe portion of a snowboard boot, at least one fastener for adjustably securing the toe ramp to the toe portion of the base plate, and at least one spacer. The spacer has at least one first structure for releasably interlocking with the toe ramp and at least one second structure for releasably interlocking with the base plate. The spacer is selected and positioned by a rider between the toe ramp and a wall of the base plate to accommodate the size of a snowboard boot sole and provides enhanced snowboard riding characteristics.
In an advantageous implementation, the snowboard binding includes at least a second spacer having a third interlocking structure for removable attachment to the second interlocking structure of the first spacer, and a fourth interlocking structure for removable attachment to the base plate. The spacer may be made of a shock absorbing material, or of a dampening material, or of a composite material to provide a combination of shock absorbing and dampening characteristics. In addition, the spacer may be shaped to flush fit with both the toe ramp and the base plate. The first interlocking structure could be a flange and the second interlocking structure may be a receptacle. The toe ramp may also include at least one well for accommodating at least one fastener, and the well may house at least one of a plurality of through holes or a slot. At least one fastener could be included for adjustably connecting the toe ramp to the base plate, the toe ramp may be adjustable in a plurality of front-to-rear positions, and the toe ramp could also include a contoured surface.
The invention also pertains to a method for providing enhanced control and improved snowboard riding characteristics for a snowboard binding. The technique includes providing a toe ramp that is adjustably attached to a front portion of a base plate of the snowboard binding having a toe ramp interlocking structure, and providing at least one spacer having a first interlocking structure for removable attachment to the toe ramp interlocking structure and having a second interlocking structure for removable attachment to the base plate. The spacer includes at least one of a shock absorbing material and a dampening material.
The toe ramp system according to a preferred embodiment of the invention includes at least one spacer for providing beneficial dampening and/or vibration absorbing characteristics for a snowboard binding. Moreover, the spacer fills the void that would otherwise exist between the toe ramp and a base plate of the binding to prevent ice and/or snow or other foreign matter from clogging that space. The presence of such materials may detrimentally affect the performance of the binding.
Other aspects, purposes and advantages of the invention will become clear after reading the following description with reference to the attached drawings, in which:
Like reference numbers in the various drawings denote like elements.
Referring again to
As shown in
In the implementation shown in the figures, the first and second spacers 14 and 16 are utilized when the toe ramp 12 is adjusted to a forward position by a rider. If the toe ramp 12 were to be adjusted to the same forward position without the use of one or more spacers, then a void would be created between the wall 9 of the binding base 7 (which includes flanges 7a and 7b) and the rear wall 11 of the toe ramp 12.
The spacers are designed to interlock with each other when combined in addition to locking with the base and toe ramp. In the implementation shown, a tongue and groove type configuration is used to create a mechanical connection. However, it should be understood that this interlocking feature could be achieved through a number of alternative designs that would be apparent to one skilled in the art.
In the implementation shown in
It should also be understood that the spacer design and materials not only fill the void that would otherwise be created, but also provide a support structure that may dampen vibration and/or absorb shocks as the rider glides down a slope. The present system provides the opportunity to create selected dampening and/or shock absorbing characteristics into the binding system. In particular, as a snowboard moves over the riding surface, various vibrations travels through the board. These vibrations are transferred from the board into the binding and eventually into the riders feet. As the vibration passes through the area of the forefoot where the spacers are located, the vibrations may be reduced (dampened) by varying degrees depending on the density of the spacers.
A combination and/or incorporation of different materials into the composition of the spacers may be used to dampen vibration or absorb shock to varying degrees. In particular, a spacer can be made of any foam, viscoelastic, solid or composite material in a single or plurality of densities and layers, positioned in such a way as to provide more or less supportive, dampening or absorbing qualities or characteristics. For example, a spacer can be made of a soft thermoplastic urethane (TPU) material, or a thermoplastic rubber (TPR) material, or a combination of such materials. Furthermore, several layers of a plastics material having varying densities could be used. The harder the material the more supportive the feature. The slower the recovery time of the material the more shock absorbing the feature. The faster the recovery of the material after a shock the more dampening the feature. Materials can also be combined to create a combination of features which may provide performance advantages to the rider. In addition, an array of different spacers could be offered to a snowboard rider so that she may decide on a combination or an amount of vibration dampening and/or shock absorbing characteristics as desired. The choice of dampening or shock absorbing spacers for use with the binding could be made by a rider depending on individual preference, and/or depending on the snow conditions, and/or depending on other factors.
Although a particular implementation has been described, it should be understood that one of skill in the art could make many changes or modifications that would fall within the scope of the invention. For example, the size or shape of the spacers may be changed or modified, and different types of interlocking arrangements could be used, without departing from the spirit of the invention.
This application claims the benefit of copending U.S. Provisional patent application No. 60/442,197 filed on Jan. 24, 2003, which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4135736 | Druss | Jan 1979 | A |
4586727 | Andrieu et al. | May 1986 | A |
5503900 | Fletcher | Apr 1996 | A |
5697631 | Ratzek et al. | Dec 1997 | A |
5775717 | Bobrowicz | Jul 1998 | A |
5971407 | Zemke et al. | Oct 1999 | A |
6113114 | Zemke et al. | Sep 2000 | A |
6145868 | Schaller et al. | Nov 2000 | A |
6189911 | Caron et al. | Feb 2001 | B1 |
6315305 | Gien | Nov 2001 | B1 |
6328328 | Finiel | Dec 2001 | B1 |
6386574 | Tanaka | May 2002 | B1 |
6467795 | Hirayama et al. | Oct 2002 | B1 |
6485035 | Laughlin et al. | Nov 2002 | B1 |
6520531 | Gien | Feb 2003 | B1 |
6575490 | Laughlin | Jun 2003 | B1 |
6808196 | Des Ouches | Oct 2004 | B2 |
20040094917 | Frigo et al. | May 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040145156 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60422197 | Jan 2003 | US |