TOE VALVE HOUSING TRACER

Information

  • Patent Application
  • 20200263519
  • Publication Number
    20200263519
  • Date Filed
    January 29, 2020
    4 years ago
  • Date Published
    August 20, 2020
    3 years ago
Abstract
A toe valve housing one or more of tracer or dye compounds and a method of monitoring the operation of a toe valve. The toe valve has an atmospheric chamber disposed between a sleeve and a pressure barrier and contains one or more of tracer or dye compounds in an amount sufficient to be observed from water or other wellbore fluids when released to the fluids. The tracer compound is released from the atmospheric chamber as a pressure barrier is activated and open. The released tracer or dye compounds can be identified from the water or other wellbore fluids. Also included are methods of monitoring the operation of a toe valve in a wellbore.
Description
BACKGROUND

The present invention relates to a toe valve housing containing one or more of tracer or dye compounds that can be identified from water or other wellbore fluids when the toe valve is activated and open. The present invention also relates to a method of monitoring the operation of a toe valve by identifying one or more of the tracer or dye compounds that are released from the toe valve to water or other wellbore fluids.


Toe valves or initiation valves have become a critical component, after cementation, in circulating fluids necessary to finish a process called completion and accessing the formation without the use of coiled tubing. Various means of identifying open top valve have been practiced over the years. Traditionally, an operator pumps tracer or dye compounds into the toe stage once the toe valve is open, and receives confirmation that the wellbore is unobstructed to surface. Such operations, however, can be complex, time-consuming, and expensive.


Placing tracer pills, packets, pods, or bags inside the toe valve has been thereby proposed to remedy the disadvantages of traditional methods and facilitate identification of open toe valve. Once the toe valve is open, it will release the tracer or dye compounds housed in the toe valve. When they flow back afterwards to land surface, the end user on the surface will be able to confirm that the wellbore is free from obstruction for flowback. The simplicity of housing tracer or dye compounds in toe valves allows accurate and fast real-time data analysis, otherwise frequently susceptible to false readings, without any change to the function of the toe valve to open with pressure. It also adds the benefit of it being an indicator on the wellbore status.


There is, therefore, a need for a toe valve whose operation can be monitored without the operator from location that normally pumps tracers into the toe stage. In particular, there is a need for a toe valve that impregnates tracer or dye compounds during the completion process and release and expose them to formation including water or other wellbore fluids once the toe valve is open.


SUMMARY OF THE INVENTION

The present invention now provides a toe valve comprising an internal sub mechanically engaged with the first and second subs surrounding a through bore for the toe valve; a housing being mechanically engaged with the first and second subs and being spaced radially spaced from the internal sub; a sleeve disposed between the internal sub and the housing, the sleeve being movable axially in response to an application of fluid pressure from a closed position to an open position; and an atmospheric chamber adjacent the sleeve, the atmospheric chamber containing a tracer or dye compound in an amount sufficient to be observed from water or other wellbore fluids when released to the fluids. The sleeve is movable between closed and open positions, such that in the closed position, the sleeve prevents fluid communication between the atmospheric chamber and fluids in the through bore, and in the open position, the sleeve allows fluid communication between the atmospheric chamber and fluids in the through bore to release the tracer or dye compound into the fluids. The fluids containing the tracer or dye compounds can be monitored as they travel in the wellbore.


In some embodiments, the first sub defines a portion of the through bore, and the second sub defines another portion of the through bore, the second sub being spaced axially from the first sub. Furthermore, the first sub defines a portion of a through bore, and the second sub defines another portion of the through bore, the second sub being spaced axially from the first sub.


In some desirable embodiments, a pressure barrier is disposed in the first sub, the pressure barrier fluidly communicating with the through bore. The atmospheric chamber is disposed between the sleeve and the pressure barrier. The pressure barrier is activated at a predetermined pressure to allow fluid communication between the through bore and the atmospheric chamber and move the sleeve from a closed position to an open position,


In some embodiments, the internal sub and the housing includes one or more openings. When the sleeve is in the closed position, the sleeve extends across the one or more openings of the housing and the internal sub, and prevents fluid communication from the atmospheric chamber and the through bore to the fluids via the one or more openings of the housing and the internal sub. When the sleeve is in the open position, the sleeve shuttles past the one or more openings of the housing and the internal sub, and allows fluid communication from the atmospheric chamber and the through bore to the fluids via the one or more openings of the housing and the internal sub, such that the tracer compound is released to the fluids.


The invention also relates to a method of monitoring the operation of a toe valve, which comprises providing one of the toe valves described herein; moving the sleeve member from the closed position to the open position to release the tracer or dye compound from the atmospheric chamber to the fluids in the through hole; and identifying the released tracer or dye compound from the fluids.


The invention also relates to another method of monitoring the operation of a toe valve. The method comprises providing a toe valve comprising a first sub defining a portion of a through bore; a second sub defining another portion of the through bore, the second sub being spaced axially from the first sub; an internal sub being mechanically engaged with the first and second subs, such that the through bore is defined axially between the first sub and the second sub; a housing being mechanically engaged with the first and second subs and being spaced radially spaced from the internal sub; a sleeve disposed between the internal sub and the housing, the sleeve being movable axially in response to an application of fluid pressure from a closed position to an open position; a pressure barrier disposed in the first sub, the pressure being fluidly communicating with the through bore; and an atmospheric chamber disposed between the sleeve and the pressure barrier, the atmospheric chamber containing a tracer or dye compound in an amount sufficient to be observed from water or other wellbore fluids when released to the fluids. The method further comprises delivering the toe valve into a wellbore wherein the fluids are present surrounding the toe valve. The method further comprises activating the pressure barrier at a predetermined pressure to allow fluid communication between the through bore and the atmospheric chamber and move the sleeve from a closed position to an open position. In the open position, the sleeve shuttles past the one or more openings of the housing and the internal sub, and allows fluid communication from the atmospheric chamber and the through bore to the fluids via the one or more openings of the housing and the internal sub. The method further comprises releasing the tracer compound from the atmospheric chamber to the fluids. The method further comprises identifying the released tracer compound from the fluids.





BRIEF DESCRIPTION OF THE DRAWINGS

Various features of examples and embodiments in accordance with the principles described herein may be more readily understood with reference to the following detailed description taken in conjunction with the accompanying drawings, where like reference numerals designate like structural elements, and in which:



FIG. 1A illustrates a cross-sectional view of a toe valve comprising an atmospheric chamber containing one or more of tracer or dye compounds in a closed position, according to an embodiment consistent with the principles described herein.



FIG. 1B illustrates a cross-sectional view of a toe valve comprising an atmospheric chamber containing one or more of tracer or dye compounds in an open position, according to an embodiment of the principles described herein.



FIG. 2A illustrates a perspective view of a toe valve comprising an atmospheric chamber containing one or more of tracer or dye compounds in a closed position, according to an embodiment consistent with the principles described herein.



FIG. 2B illustrates a perspective view of a toe valve comprising an atmospheric chamber containing one or more of tracer or dye compounds in an open position, according to an embodiment of the principles described herein.





DETAILED DESCRIPTION OF THE INVENTION

The present system and method will be described in connection with the figures, it being understood that the description and figures are for illustrative, non-limiting purposes.


Embodiments of the present invention disclose a downhole tool in particular as a toe valve. The toe valve may be threaded onto a casing, a tubing a liner, or any other string or pressure bearing pipe lowered into the well. The toe valve comprises an atmospheric chamber containing one or more of tracer or dye compounds to be released to certain downhole fluids such as water or other wellbore fluids and flow back to land surface to update the operation of the toe valve and status of wellbore to the end user on the surface. The tracer compound is released in the downhole environment after the toe valve is transitioned from a closed position to an open position.



FIGS. 1A and 2A illustrate a cross-sectional view and a perspective view of a toe valve 100 in a closed position, respectively, according to an embodiment consistent with the principles described herein. The toe valve 100 has a generally tubular elongated shape suitable for deployment into a wellbore. The toe valve 100 may comprise of various sections depending on its type and construction. For example, the toe valve 100 comprises a first sub 101 and a second sub 102, each defining a portion of a through bore 103. The second sub 102 is spaced axially from the first sub 101. An internal sub 104 is mechanically engaged with the first sub 101 and second sub 102 at threaded engagements 112, such that the through bore 103 is defined axially between the first sub 101 and the second sub 102 via the internal sub 104. A housing 105 is mechanically engaged with the first sub 101 and second sub 102 and is spaced radially spaced from the internal sub 104. A sleeve 106 is disposed between the internal sub 104 and the housing 105. The sleeve 106 is movable axially between the internal sub 104 and the housing 105 in response to an application of fluid pressure from a closed position to an open position.


A pressure barrier 107 is disposed in the first sub 101. The pressure barrier 107 fluidly communicates with the through bore 103. In some embodiments, multiple pressure barriers 107 are provided. Preferably, a plurality of pressure barriers 107 are provided. The pressure barrier(s) 107 may include, but not limited to, for example, a rupture disk, a pressure relief valve, or a check valve. In a preferred embodiment, the pressure barrier 107 is a rupture disk. An atmospheric chamber 108 provides for a dead volume disposed between the sleeve 106 and the pressure barrier 107. The pressure in the atmospheric chamber 108 is a sealed area that is at atmospheric pressure. Likewise, each mechanical engagement among the first sub 101, the second sub 102, the internal chamber 104, the housing 105, and the sleeve 106 is sealed.


The atmospheric chamber 108 contains one or more of tracer or dye compounds in an amount sufficient to be observed from water or other wellbore fluids when released to the water or other wellbore fluids. The internal sub 104 includes one or more openings 109. The housing 105 also includes one or more openings (not shown in FIG. 1A). In some embodiments, the one or more openings are oval in shape.


The pressure barrier 107 is activated at a predetermined pressure to allow fluid communication between the through bore 103 and the atmospheric chamber 108 and move the sleeve 106 from a closed position to an open position. The predetermined pressure may vary depending on the embodiment. In a preferred embodiment, the rupture disk 107 is ruptured at a predetermined pressure to allow fluid communication between the through bore 103 and the atmospheric chamber 108 and move the sleeve 106 from a closed position to an open position. When the sleeve 106 is in the closed position, the sleeve 106 extends across the one or more openings (not shown in FIG. 1A) of the housing 105 and one or more openings 109 of the internal sub 104. This prevents fluid communication from the atmospheric chamber 108 and the through bore 103 to the water or other wellbore fluids via the one or more openings (not shown in FIG. 1A) of the housing 105 and the one or more openings 109 of the internal sub 104.



FIGS. 1B and 2B illustrate a cross-sectional view and a perspective view of a toe valve 100 in an open position, respectively, according to an embodiment consistent with the principles described herein. In response to an application of fluid pressure, the sleeve 106 then becomes unbalanced and shifted down until it contacts an end point 114, and is translated to the open position. When the sleeve 106 is in the open position, the sleeve 106 shuttles past the one or more openings of the housing 105 and the internal sub 104. This allows fluid communication from the atmospheric chamber 108 and the through bore 103 to formation including the water or other wellbore fluids via the one or more openings of the housing 105 and the one or more openings 109 of the internal sub 104, such that the tracer compound is released to the water or other wellbore fluids.


The atmospheric chamber 108 serves to impregnate one or more of tracer or dye compounds in an amount sufficient to be observed from water or other wellbore fluids when released to the water or other wellbore fluids. For example, the tracer or dye compounds are 10 grams at minimum. The tracer or dye compounds may come in any of a variety of forms. For example, the tracer or dye compounds may be a solid. It can be in a form of powder. In preferred embodiments, tracer compounds may be categorized into three groups: oil soluble tracers, water soluble tracers, and gas soluble tracers. Typical oil soluble tracers are halogenated hydrocarbons. The halogenated hydrocarbons may include, but not be limited to, fluorobenzoates, chlorobenzoates and bromobenzenes. Typical water soluble tracers are halogenated salts. The halogenated salts may include, but not be limited to, sulfonic acids, fluorobenzoic acids and chlorobenzoic acids. Typical gas soluble tracers are perfluorinated compounds. The perfluorinated compounds may include, but not be limited to, perfluorinated compounds such as mercaptan, nitrogen, perfluoromethylcyclopentanes and perfluoromethylcyclohexanes. In some embodiments, the tracer or dye compounds may be packaged in a small water soluble pill, packet, pod or bag. When the packages are exposed to the water or other wellbore fluids, they become quickly disintegrated to release the tracer or dye compounds to the fluids.


In some embodiments, each atmospheric chamber 108 may hold a different kind of the tracer or dye compound to facilitate identification of open pressure barriers 107. Once a portion or portions of the pressure barriers 107 is activated at a predetermined pressure, it will expose the tracer or dye compounds to the downhole environment, including the water or other wellbore fluids. When the water or other wellbore fluids containing the one or more tracer or dye compounds flow back to land surface, the end user will be able to detect the released tracer or dye compounds from the water or other wellbore fluids by, for example, analyzing fluid samples and identifying the tracer or dye compounds using analyzing instruments. The end user then will be able to receive confirmation of whether the toe valve is open and the wellbore is unobstructed to surface from the analysis of fluid samples.


It should be understood that combinations of described features or steps are contemplated even if they are not described directly together or not in the same context.


It should be understood that claims that include fewer limitations, broader claims, such as claims without requiring a certain feature or process step in the appended claim or in the specification, clarifications to the claim elements, different combinations, and alternative implementations based on the specification, or different uses, are also contemplated by the embodiments of the present invention.


The terms or words that are used herein are directed to those of ordinary skill in the art in this field of technology and the meaning of those terms or words will be understood from terminology used in that field or can be reasonably interpreted based on the plain English meaning of the words in conjunction with knowledge in this field of technology. This includes an understanding of implicit features that for example may involve multiple possibilities, but to a person of ordinary skill in the art a reasonable or primary understanding or meaning is understood.


It should be understood that the above-described examples are merely illustrative of some of the many specific examples that represent the principles described herein. Clearly, those skilled in the art can readily devise numerous other arrangements without departing from the scope as defined by the following claims.

Claims
  • 1. A toe valve comprising: an internal sub mechanically engaged with first and second subs surrounding a through bore for the toe valve;a housing being mechanically engaged with the first and second subs and being spaced radially from the internal sub;a sleeve disposed between the internal sub and the housing, the sleeve being movable axially in response to an application of fluid pressure from a closed position to an open position; andan atmospheric chamber adjacent the sleeve, the atmospheric chamber containing a tracer or dye compound in an amount sufficient to be observed from water or other wellbore fluids when released to the fluids;wherein the sleeve is movable between closed and open positions, such that in the closed position, the sleeve prevents fluid communication between the atmospheric chamber and fluids in the through bore, and in the open position, the sleeve allows fluid communication between the atmospheric chamber and fluids in the through bore to release the tracer or dye compound into the fluids.
  • 2. The toe valve of claim 1 wherein the first sub defines a portion of the through bore, and the second sub defines another portion of the through bore, the second sub being spaced axially from the first sub.
  • 3. The toe valve of claim 1 wherein the first sub defines a portion of the through bore, and the second sub defines another portion of the through bore, the second sub being spaced axially from the first sub.
  • 4. The toe valve of claim 1 wherein a pressure barrier is disposed in the first sub, the pressure barrier fluidly communicating with the through bore.
  • 5. The toe valve of claim 4 wherein the atmospheric chamber is disposed between the sleeve and the pressure barrier.
  • 6. The toe valve of claim 4 wherein the pressure barrier is activated at a predetermined pressure to allow fluid communication between the through bore and the atmospheric chamber and move the sleeve from a closed position to an open position,
  • 7. The toe valve of claim 1 wherein each of the internal sub and the housing includes one or more openings.
  • 8. The toe valve of claim 7 wherein when the sleeve is in the closed position, the sleeve extends across the one or more openings of the housing and the internal sub, and prevents fluid communication from the atmospheric chamber and the through bore to the fluids via the one or more openings of the housing and the internal sub.
  • 9. The toe valve of claim 7 wherein when the sleeve is in the open position, the sleeve shuttles past the one or more openings of the housing and the internal sub, and allows fluid communication from the atmospheric chamber and the through bore to the fluids via the one or more openings of the housing and the internal sub, such that the tracer compound is released to the fluids.
  • 10. A toe valve comprising: a first sub defining a portion of a through bore;a second sub defining another portion of the through bore, the second sub being spaced axially from the first sub;an internal sub being mechanically engaged with the first and second subs, such that the through bore is defined axially between the first sub and the second sub;a housing being mechanically engaged with the first and second subs and being spaced radially spaced from the internal sub;a sleeve disposed between the internal sub and the housing, the sleeve being movable axially in response to an application of fluid pressure from a closed position to an open position;a pressure barrier disposed in the first sub, the pressure barrier fluidly communicating with the through bore; andan atmospheric chamber disposed between the sleeve and the pressure barrier, the atmospheric chamber containing a tracer or dye compound in an amount sufficient to be observed from water or other wellbore fluids when released to the fluids;wherein each of the internal sub and the housing includes one or more openings;wherein the pressure barrier is activated at a predetermined pressure to allow fluid communication between the through bore and the atmospheric chamber and move the sleeve from a closed position to an open position,wherein when the sleeve is in the closed position, the sleeve extends across the one or more openings of the housing and the internal sub, and prevents fluid communication from the atmospheric chamber and the through bore to the fluids via the one or more openings of the housing and the internal sub, andwherein when the sleeve is in the open position, the sleeve shuttles past the one or more openings of the housing and the internal sub, and allows fluid communication from the atmospheric chamber and the through bore to the fluids via the one or more openings of the housing and the internal sub, such that the tracer compound is released to the fluids.
  • 11. A method of monitoring of operation of a toe valve, which comprises: providing a toe valve according to claim 1;moving the sleeve from the closed position to the open position to release the tracer or dye compound from the atmospheric chamber to the fluids in the through hole; andidentifying the released tracer or dye compound from the fluids.
  • 12. The method of claim 11 wherein the first sub defines a portion of the through bore, and the second sub defines another portion of the through bore, the second sub being spaced axially from the first sub.
  • 13. The method of claim 11 wherein the first sub defines a portion of the through bore, and the second sub defines another portion of the through bore, the second sub being spaced axially from the first sub.
  • 14. The method of claim 11 wherein a pressure barrier is disposed in the first sub, the pressure barrier fluidly communicating with the through bore.
  • 15. The method of claim 14 wherein the atmospheric chamber is disposed between the sleeve and the pressure barrier.
  • 16. The method of claim 14 wherein the pressure barrier is activated at a predetermined pressure to allow fluid communication between the through bore and the atmospheric chamber and move the sleeve from a closed position to an open position,
  • 17. The method of claim 11 wherein each of the internal sub and the housing includes one or more openings.
  • 18. The method of claim 17 wherein when the sleeve is in the closed position, the sleeve extends across the one or more openings of the housing and the internal sub, and prevents fluid communication from the atmospheric chamber and the through bore to the fluids via the one or more openings of the housing and the internal sub.
  • 19. The method of claim 17 wherein when the sleeve is in the open position, the sleeve shuttles past the one or more openings of the housing and the internal sub, and allows fluid communication from the atmospheric chamber and the through bore to the fluids via the one or more openings of the housing and the internal sub, such that the tracer compound is released to the fluids.
  • 20. A method of monitoring of operation of a toe valve, which comprises: providing a toe valve comprising: a first sub defining a portion of a through bore;a second sub defining another portion of the through bore, the second sub being spaced axially from the first sub;an internal sub being mechanically engaged with the first and second subs, such that the through bore is defined axially between the first sub and the second sub;a housing being mechanically engaged with the first and second subs and being spaced radially spaced from the internal sub;a sleeve disposed between the internal sub and the housing, the sleeve being movable axially in response to an application of fluid pressure from a closed position to an open position;a pressure barrier disposed in the first sub, the pressure being fluidly communicating with the through bore; andan atmospheric chamber disposed between the sleeve and the pressure barrier, the atmospheric chamber containing a tracer or dye compound in an amount sufficient to be observed from water or other wellbore fluids when released to the fluids;delivering the toe valve into a wellbore wherein the fluids are present surrounding the toe valve;activating the pressure barrier at a predetermined pressure to allow fluid communication between the through bore and the atmospheric chamber and move the sleeve from a closed position to an open position, wherein in the open position, the sleeve shuttles past the one or more openings of the housing and the internal sub, and allows fluid communication from the atmospheric chamber and the through bore to the fluids via the one or more openings of the housing and the internal sub;releasing the tracer compound from the atmospheric chamber to the fluids; andidentifying the released tracer compound from the fluids.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 62/806,509, filed on Feb. 15, 2019, the disclosure of which is expressly incorporated herein by reference thereto.

Provisional Applications (1)
Number Date Country
62806509 Feb 2019 US