This invention relates to filling valves for toilet cisterns and more particularly to automatically closing valves.
Toilet filling valves which operate to close against pressure under the influence of a float mounted on a lever arm are widely used. They are however subject to leakage and consequently it is desirable to have such a valve which is pressure assisted.
It is an object of this invention to provide a compact, reliable, pressure assisted cistern filling valve.
In accordance with this invention there is provided a pressure assisted valve having an inlet into a chamber and an outlet from the chamber, wherein the inlet and outlet open adjacent each other into the chamber separated by a seal face for a diaphragm closure member in the chamber, with an axially movable pintle located through the diaphragm, a chamber vent opening from the chamber closable by an enlarged end to the pintle, a control spindle extending from the enlarged end of the pintle through the chamber vent opening, at least one bleed passage past the pintle into the chamber, and a manipulating mechanism at the spindle end to move the pintle to open the chamber vent opening.
A further feature of the invention provides for the outlet to be formed around the inlet.
A further feature of this invention provides for the manipulating mechanism to be an arm pivoted at one end and having depending from the other a combination float and anti-float assembly, the assembly being adjustable in height relative to the valve and guided on a cistern filling pipe.
Further features of this invention provide for the pintle to be a composite structure of plastics material with a metal spindle having one end embedded therein, for the bleed passage to be provided by ribs located around and extending along the pintle slidable through the diaphragm and for the ribs to act as a filter.
The invention also provides for the pintle to be supported by a perforated guide in the valve inlet, for the guide to be resiliently biased to close the enlarged end of the pintle against the chamber vent opening and for the enlarged end to form a tapered plug.
Further features of the invention provide for the chamber vent opening to be lined with resilient material and for the diaphragm to have an annular ring of increased flexibility adjacent its outer periphery.
These and other features of this invention will become apparent from the following description of three embodiments, by way of example only, wherein reference is made to the accompanying drawings in which:
As illustrated in
The inlet (3) has a screw threaded connection (7) to enable the valve (1) to be secured to extend through the cistern wall for connection into a water supply under pressure. The chamber (6) has an annular outlet opening (8) concentric around the inlet opening (9). The inlet opening (9) and outlet opening (8) are separated by a tubular extrusion (10), the top end of which forms an annular seal face (11). The face (11) is engageable by a diaphragm closure member (12) to control flow between the openings (8) and (9).
The chamber (6) has a top (13) which is made as a closure which secures the peripheral portion (14) of the diaphragm (12) in position in sealing engagement. This engagement can conveniently be effected by a rigid ring (15) inserted above the diaphragm (12) to be clamped in position by the top (13).
The top (13) has a central vent opening (16) which is lined with resilient material in the form of a resilient seal (17) located around the vent opening (16) between the top (13) and the ring (15). The ring (15) supports the resilient seal (17). In this embodiment, the top (13) is secured to the body (2) by bayonet type engaging formations, however any other suitable arrangement for engagement of these components (13) and (2) can be provided.
To give the diaphragm (12) the resilience required for its best operation an annular thin section (18) provides increased flexibility adjacent its periphery. This enables the central part to move easily into and out of the closure position on the face (11) located between the inlet opening (9) and annular outlet opening (8).
The central part of the diaphragm (12) is tapered downwardly into the inlet opening (9) and a preferably moulded plastics material pintle (19) extends through the center of the diaphragm (12). The upper end of the pintle (19) is operatively located within the chamber (6) and has an enlargement on its end in the form of a tapered plug (20).
This plug (20) engages in the resilient seal (17) to close the vent opening (16) from the chamber (6).
A preferably stainless steel operating spindle (21) is embedded in the pintle (19) to extend through the vent opening (16) where the free end (22) is located in a recess provided in a slide (23). The slide (23) is supported in an extension (24) from the top (13) of the chamber (6). The upper face of slide (23) is exposed and can be engaged by a suitable manipulating mechanism indicated at (25).
The lower end of the pintle (19) is secured to a slidable guide (27) that is located in the inlet (3) to the body (2). This guide (27) is perforated to allow water to flow through the valve (1) and is also resiliently biased by a compression spring (28) to assist the closure of the plug (20) against the seal (17).
Essential to the construction is a bleed passage indicated at (29) providing for a bleed flow from the inlet (3) into the chamber (6) above the diaphragm (12). This passage (29) between the pintle (19) and the diaphragm (12) is provided by ribs located around and extending along the pintle (19) which slides in the diaphragm (12). The ribs act as a filter to prevent debris entrained in the inlet water supply from entering the chamber (6). This in turn ensures that the passageway that opens during operation of the valve (1), between the tapered plug (20) and the seal (17), will not become filled with obstructing debris.
The manipulating mechanism (25) and consequently the operation of the filling valve (1) is activated by the influence of the rise and fall of the water level in the cistern on a combination float and anti-float assembly (30) such that when the cistern flushing valve is opened the filling valve (1) will open. The flushing valve (not shown) closes automatically after discharge of water and the filling valve (1) closes after the cistern has been filled as required.
An arm (31) is pivoted to a projection (32) from the top (13) adjacent the exposed face of slide (23). The arm (31) is shaped so that pivoting thereof in an operatively downward direction will depress the slide (23) and consequently the tapered plug (20) to open the vent opening (16) from the chamber (6).
The free end (33) of the arm (31) has a downwardly depending rod (34) screw threaded at its lower end (35). This end (35) engages the combination float and anti-float assembly (30) in a manner enabling the position of assembly (30) to be adjustable within the toilet cistern.
The assembly (30) can conveniently be guided for movement on a cistern filling pipe (36) discharging into the lower part of the cistern in conventional manner.
The embodiment of the valve (1) shown in
The position of this embodiment of the valve (1) can be seen more clearly from
In use, as mentioned, flushing of the cistern causes automatic opening of the inlet valve (1).
The drop of water level in the cistern brings the anti-float component of assembly (30) into effect to pull rod (34) and thus the arm (31) downwards activating slide (23) and spindle (21) to cause the tapered plug (20) to move out of sealing engagement with seal (17).
This enables water to flow from chamber (6) through vent opening (16) resulting in a pressure reduction in chamber (6) as water flow into the chamber (6) is restricted by the bleed passage indicated at (29). Under differential water pressure from the inlet (3), diaphragm (12) is flexed to open the inlet (3) to the outlet (4) to allow water to flow to fill the cistern.
As the cistern fills the bleed flow through passage (29) passes through chamber outlet opening (16) until the float component of assembly (30) becomes effective. The arm (31) then rises to relieve the downward force exerted on the face of slide (23) by the ballast effect out of water of the anti-float component of assembly (30) on arm (31). This relief causes the slide (23), spindle (21) and plug (20) to move, under action of inlet water pressure and the resilient biasing of spring (28), to a position wherein sealing engagement is re-established between plug (20) and resilient seal (17).
When this occurs water bleeding into the chamber (6) from the inlet (3) fills the chamber (6) causing the diaphragm (12) to close onto face (11) under the differential force exerted by the same water pressure on the greater area of the diaphragm (12) on the chamber (6) side compared to the smaller area of diaphragm (12) exposed to water inlet pressure on its opposite side. This differential force holds valve (1) closed thus providing a reliable cistern filling valve (1) that will give a controlled filling volume and pressure assisted closure of the valve (1).
This embodiment allows for the float and anti-float assembly (30) to be guided for movement on the inlet pipe as shown.
A number of variations can be made to the described embodiments of the valve without departing from the scope of this invention. These variations will be appreciated by a suitably skilled person. It will also be appreciated that the application of the pressure assisted valve will not be limited to the filling of toilet cisterns.
Number | Date | Country | Kind |
---|---|---|---|
2003/1926 | Mar 2003 | ZA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB04/00621 | 3/8/2004 | WO | 9/7/2005 |