Not applicable.
Not applicable.
The present invention relates to plumbing fixtures such as toilets. In particular, the present invention relates to the flush assembly and flush sequencing for toilets.
Conventional toilets utilize a single mechanical flush sequence to evacuate waste from the toilet bowl, rinse the bowl, and possibly to refill a water tank. Simple mechanical components such as gravity operated flapper valves and float controlled fill valves are normally used to control the passage of water through the bowl and the filling of the tank. The trade-off for such a simple mechanical flush assembly is wasted water consumption in low waste conditions and inadequate or inconsistent rinsing of the bowl in high waste conditions.
Over time there have been numerous revisions and improvements made to the conventional toilet. For example, several toilets have been devised with electronically controllable flush, rinse and fill components, see e.g., U.S. Pat. Nos. 5,548,850 and 6,332,229. These patents also disclose toilets with alternate flush sequences. And, more forceful rinsing action has been achieved using jet components, such as disclosed by U.S. Pat. No. 2,715,228. However, as of yet the flush control components and sequencing of conventional toilets has often been insufficient to achieve an efficient and adequate flush in varied waste load conditions.
There is thus a need for toilets with advanced flush assemblies and sequencing to better address problems with known toilets.
In one aspect the invention provides a toilet having a bowl with a bowl outlet and a rim having a rim outlet. A flush valve operates to control flow through the bowl outlet. A rim supply valve operates to control flow into the bowl rim. The toilet flushes water through the bowl during a flush sequence in which the rim supply valve and the flush valve are both opened and closed twice, first during a pre-rinse cycle and subsequently during a rinse cycle. The rim supply valve and the flush valve are closed at the beginning and end of the cycles and open therebetween.
In another aspect the invention provides a toilet as described that is selectively operable in first and second flush sequences. The first flush sequence includes a pre-rinse cycle in which the toilet flushes water through the bowl by opening and closing the rim supply valve and the flush valve once. The second flush sequence includes the pre-rinse cycle and a rinse cycle in which the rim supply valve and the flush valve are both opened and closed twice, first during the pre-rinse cycle and subsequently during the rinse cycle.
In still another aspect the invention provides a flush sequence for a toilet which includes initiating a pre-rinse cycle and subsequently initiating a rinse cycle for the same flush event. The pre-rinse cycle includes opening the supply valve to flow water to the rim and pass water through the rim outlet into the bowl, opening the flush valve to empty the bowl through the bowl outlet, and closing the flush valve. The rinse cycle includes opening the supply valve to flow water to the rim and pass water through the rim outlet to the bowl, opening the flush valve to evacuate the bowl through the bowl outlet, and closing the flush valve and the supply valve.
To improve flush performance, the flush sequence, particularly the rinse cycle, can further include using an eductor to increase the flow rate of rinse water into the bowl.
Additionally, the toilet can include an electronic control which controls the open and close operation of the flush valve and the rim supply valve. In addition to the rim water supply, the electronic control can control filling and output flow from a reservoir water supply, such as toilet tank. And, level sensors, such as mounted in the bowl and/or the water supply reservoir, can be coupled to the electronic control for sending bowl and reservoir level input signals to the electronic control, and thereby control fill levels in both.
Hence, the invention provides an advanced electronically controlled toilet which provides an improved flush. To save water in low-waste conditions, the toilet can be operated in a quick or short flush mode, in which the bowl is briefly rinsed by water from the bowl rim. For higher waste conditions, the user can select a long or dual rinse mode in which the bowl is pre-rinsed with water from the rim to empty the waste and then rinsed again, this time with rim water which may be eductor-assisted. To do this, the electronic control opens and closes the rim supply valve and the bowl flush valve one time during the pre-rinse cycle and a second time during the regular rinse cycle. Thus, fully opening and closing these valves twice during a single flush event. Additional electronic control and sensing can be provided to further automate and regulate the flushing operation.
The foregoing and still other advantages of the invention will appear from the following description. In that description reference is made to the accompanying drawings which form a part hereof and in which there is shown by way of illustration a preferred embodiment of the invention.
Referring now to
As best seen in
The frontal basin portion 12 includes a bowl 16 extending from a bowl rim 18 at the top of the bowl 16 to a bowl opening 20 proximate the bottom of the bowl 16. The bowl rim 18 includes a channel 22 (best seen in
The flush valve 26 is electromechanically controlled by a control board 28 (e.g., a controller or electrical control, and as schematically illustrated in
The trapway 24 is a tube-like passage that snakes under the bowl 16 and rearwards in a sideways S-shape from the bowl opening 20 to a trapway end 36 which connects to an opening in the floor which connects to a waste line pipe (not shown) or the like. The geometry of the trapway 24 is such that a first leg 38 of the trapway 24 proximate the flush valve 26 extends downward to a dip 40, a second leg 42 of the trapway 24 extends upward from the dip 40 to a weir 44, and a third leg 46 of the trapway 24 extends downward from the weir 44 to connect to the opening in the floor. To prevent the escape of trapped sewer gases from the waste water line into the bowl 16 (and into the atmosphere surrounding the toilet 10), water may be captured in the space between the dip 40 and the weir 44 to form a water seal in the trapway 24.
A water level sensor 48 (schematically illustrated in
Now with additional reference to
Notably, the tank 56 (or water supply reservoir) is also placed in communication with the rim line 60 via an eductor line 62 which connects to the rim line 60 to form an eductor 64. This eductor 64 may assist in providing a particularly strong flow of water to the rim 18 when water from the tank 56 supplements the water being supplied via the rim line 60.
Additionally, a float switch 66 may be located in the tank 56. When the water level in the tank 56 exceeds a pre-determined threshold level, typically causing a portion of the float switch 66 to rise within the tank 56, this displacement of a portion of the float switch 66 may cause the closing of a shutoff valve (possibly either by a direct mechanical connection between the float switch 66 and the shutoff valve or by a sending an electrical signal to the control board 28 which operates the shutoff valve) which temporarily closes off the water supply 50 from the other plumbing components.
With reference to
Referring now to
The pre-rinse cycle begins with the control board 28 instructing the rim supply valve 54a to open and then close according to step 804 to pre-rinse the bowl 16. This pre-rinse cycle may remove debris, such as toilet paper, stuck on the walls of the bowl 16 above the water fill line. Only a small of amount of water may be used to perform the pre-rinse of the bowl 16.
Next, according to step 806, the flush valve 26 is opened to remove waste from the bowl 16 while the rim supply valve 54a remains closed. This is a short, water efficient step, which removes the waste from the bowl 16. The flush valve 26 is then closed to seal the bowl opening 20 of the bowl 16 according to step 808.
Once the pre-rinse cycle is completed, the rinse cycle begins. After the flush valve 26 closed, the rim supply valve 54a is opened according to step 810 to start the bowl rinse cycle. After a sufficient amount of water has been introduced into the bowl 16, the flush valve 26 is opened according to step 812 to evacuate the water accumulated during the rinse cycle from the bowl 16. While the flush valve 26 is opened, water may continued to be supplied to the rim 18 to rinse the bowl 16. After a period of time, the flush valve 26 is closed according to step 814 to seal the bowl 16 and the rim supply valve 54a is closed according to step 816 to end the bowl rinse cycle.
Notably, while the rim supply valve 54a is opened and supplying water to the rim 18 via the rim line 60 either during the pre-rinse cycle or the rinse cycle, the eductor 64 may be used to increase the rate at which water is supplied to the rim 18. As the water introduced from the tank 56 to the rim line 60 via the eductor line 62 increases the flow rate of the rinse water into the bowl rim 18, the water is supplied more quickly and in such a manner as to more effectively and efficiently rinse the bowl 16. At greater flow rates, better bowl rinsing can be performed more quickly and with less water than with eductor-less flush mechanisms.
After the bowl rinse cycle is complete, then the fill cycle begins to refill the bowl 16 for another use of the toilet 10. During the fill cycle, the fill valve 54b is open and then closed according to step 818 to supply water to the water tank 56 (which may have been partially or fully depleted during the pre-rinse and rinse cycles) and to re-fill the bowl 16. The fill valve 54b remains open until the bowl 16 and the tank 56 are refilled. The determination of the levels of water in the bowl 16 and tank 56 may be determined by the water level sensor 48 and the float switch 66, respectively. Of course, a stop condition for refilling the bowl could potentially be based on one of or both of the water level sensor 48 and the float switch 66 or could be based on some other sensor or timing mechanism.
It should be appreciated that during the fill cycle, the rim supply valve 54a may be closed and, accordingly, the rate of flow of water into the bowl 16 may be comparatively slower than during the pre-rinse and/or rinse cycle. Of course, depending the particular plumbing configuration, the bowl re-fill may be accomplished using an additional bowl fill valve or by using the rim supply valve 54a either alone or in combination with the fill valve 54b.
Referring now to
Thus, a toilet is disclosed that is capable of performing two flush sequences. The longer of the two flush sequences is engineered with the removal of solid waste or the like from the bowl. The shorter of the two flush sequences is engineered with the removal of light waste or the like from the bowl. Given the benefits of water conservation, these flush sequences aim to use an appropriate amount of water for the task at hand.
Further, these flush sequences may utilize a pre-rinse cycle which helps to more efficiently use the water of the flushing sequence. In contrast to conventional flush cycles, which may have water continuously fed to the bowl via the rim while water continually drains from the bowl opening, the rim supply valve 54a may be opened and closed to provide an initial shot of water to pre-rinse the walls and then opened again after the bowl has been evacuated. By shutting off the rim supply valve in between the pre-rinse cycle and the subsequent rinse cycle, the amount of water used over the flush cycle is reduced.
While a specific embodiment of the present invention has been shown, various modifications falling within the breadth and scope of the invention will be apparent to one skilled in the art. For example, one or more jets may assist in vacating water and waste from the bowl. Thus, the following claims should be looked to in order to understand the full scope of the invention.
Disclosed is a plumbing fixture, such as a toilet having an advanced flush control assembly and sequencing providing efficient water consumption with adequate rinsing of the bowl.
Number | Name | Date | Kind |
---|---|---|---|
383858 | Campbell | Jun 1888 | A |
1281457 | Whitney | Oct 1918 | A |
2715228 | McLanahan | Aug 1955 | A |
5305475 | Jaeckels et al. | Apr 1994 | A |
5548850 | Geeham | Aug 1996 | A |
5873136 | Geeham | Feb 1999 | A |
5940899 | Mankin et al. | Aug 1999 | A |
6332229 | O'Malley et al. | Dec 2001 | B1 |
6502251 | Teshima et al. | Jan 2003 | B1 |
6671893 | Quintana et al. | Jan 2004 | B1 |
6782564 | Cheng | Aug 2004 | B1 |
6998552 | Li | Feb 2006 | B1 |
20050022292 | Choi | Feb 2005 | A1 |
20050028260 | Ling | Feb 2005 | A1 |
20060168716 | Schuster et al. | Aug 2006 | A1 |
20080047053 | Grech et al. | Feb 2008 | A1 |
20080072372 | Jorsch | Mar 2008 | A1 |
20080276362 | O'Malley | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
1036240 | Oct 1989 | CN |
2727262 | Sep 2005 | CN |
2937265 | Aug 2007 | CN |
10109152 | Sep 2002 | DE |
1156166 | Nov 2001 | EP |
H09256448 | Sep 1997 | JP |
H09287187 | Nov 1997 | JP |
2007-023492 | Feb 2007 | JP |
2009-074362 | Apr 2009 | JP |
9934067 | Jul 1999 | WO |
WO0244483 | Jun 2002 | WO |
03058102 | Jul 2003 | WO |
03087641 | Oct 2003 | WO |
Entry |
---|
Three pages of an ISR from the corresponding PCT/US2010/056136, mailed Mar. 1, 2011. |
Coxworth, Ben, EVOLUTE—the near-waterless toilet, www.gizmag.com, Feb. 25, 2010. |
New Inventors: Evolute, www.abc.net.au/tv/newinventors/txt/s2811696.htm, Feb. 26, 2010. |
Australian Provisional Patent Application No. 2009900129: Waterless Toilet, Filing Date of Jan. 14, 2009, Supplement to the Australian Official Journal of Patents, vol. 23, No. 4, Jan. 29, 2009, p. 6413. |
Australian Provisional Patent Application No. 2010900095: EVOLUTE Toilet, Filing Date of Jan. 13, 2010, Supplement to the Australian Official Journal of Patents, vol. 24, No. 4, Jan. 28, 2010, p. 320. |
Number | Date | Country | |
---|---|---|---|
20110113542 A1 | May 2011 | US |