The present invention relates to a toilet lamp, and more particularly, to a toilet lamp capable of illuminating based on human presence in its proximity.
A toilet is a necessary household item. Also, a toilet's material, shape and function is getting higher and higher requirements. For example, when a human would like to use a toilet at night during his/her sleep period, he/she needs to find a lamp switch for required luminance in advance. However, such luminance at night may hurt the human's sleep significantly because the human's pupils may abruptly and forcedly expand caused by a sudden change from a dark environment to an enlightened environment.
The present disclosure aims at disclosing a toilet lamp that includes a battery box, a metal flexible bar, an insulative sleeve and a light source. The battery box includes at least one battery, a driving component, a sensing module, a cap and a lens. The driving component is electrically coupled to the at least one battery for charging. The sensing module is electrically coupled to the driving component for being driven by the driving component. Also, the sensing module detects human presence in the toilet lamp's proximity. The cap covers the driving component. The lens is mounted on the cap. Besides, the lens is optically coupled to the sensing module. Moreover, the lens amplifies an optical disturbance occurred in the toilet lamp's proximity. Additionally, the lens relays the amplified optical disturbance to the sensing module as a reference in detecting the human presence. The metal flexible bar has a first terminal that penetrates the cap for electrically coupling to the sensing module. Also, the metal flexible bar's second terminal lies external to the cap. The insulative sleeve encloses the second terminal of the metal flexible bar. The light source is electrically coupled to the second terminal of the metal flexible bar. The metal flexible bar and the insulative flexible sleeve form a flexible hook that articulates with the toilet for installing the toilet light on the toilet. The sensing module activates the light source upon detecting the human presence within the toilet lamp's proximity. Besides, the sensing module disactivates the light source upon detecting the human presence's leaving from the toilet lamp's proximity.
In one example, the sensing module includes a passive infrared (PIR) motion sensor switch.
In one example, the metal flexible bar includes at least one of a weaved thin cupper plate and a copper wire.
In one example, the sensing module also disactivates the light source after a period of delay upon detecting the human presence's leaving from the toilet lamp's proximity.
In one example, the battery box also includes an upper housing and a lower housing. And the lower housing is detachably coupled to the upper housing.
In one example, the upper housing includes an installation component that receives the at least one battery.
In one example, the upper housing includes an installation plate that installs the driving component.
In one example, the upper housing includes at least one screw receiver that fixes the installation plate by screwing.
In one example, the at least one screw receiver includes at least one of an insulative sleeve that has screw threads inside.
In one example, the at least one screw receiver includes at least one of rubber and plastic material.
In one example, the upper housing and the lower housing are detachably coupled to each other via at least one of tongue-and-groove fit, snap fit, interference fit, post-and-bore fit, and press fit.
In one example, the lower housing includes at least one rib that is circumferentially and inwardly expanding. The upper housing includes at least one circumferential groove that is respective corresponding to and detachably engaged to the at least one rib via tongue-and-groove fit.
In one example, each of the at least one circumferential groove includes a circumferential abutment. The circumferential abutment supports the rib while the rib slides into the circumferential groove for engaging. Moreover, the circumferential abutment stops the rib from detachably falling from the circumferential groove after the rib slides into the circumferential groove.
In one example, a height of the circumferential abutment is no larger than a height of the circumferential groove. And an arc length difference between the circumferential groove and the circumferential abutment is no shorter than an arc length of the rib.
In one example, the rib further includes a recess, and the circumferential groove further includes a post. The recess receives the post to form a press fit when the rib is slid into the circumferential groove.
In one example, the cap includes a bore that encompasses the lens.
In one example, the cap includes a connection sleeve. And the metal flexible bar penetrates through the connection sleeve for being electrically coupled to the sensing module.
In one example, the connection sleeve includes a first flexible opening, and the insulative sleeve includes a second flexible opening. The first flexible opening and the second flexible opening form an interference fit that renders the connection sleeve to be detachably engaged with the insulative sleeve.
In one example, at least one of the first flexible opening and the second flexible opening is coated with an insulation layer.
In one example, the connection sleeve is integrated with the cap.
In one example, the light source includes a light emitting diode (LED) unit and a lampshade. The LED unit is electrically coupled to the metal flexible bar. The lampshade is disposed on the insulative sleeve. Also, the lampshade covers the LED unit.
In one example, the lampshade is coupled to the insulative sleeve via interference fit.
In one example, a connection between the lampshade and the insulative sleeve is coated with an insulation layer.
As mentioned above, the present disclosure discloses a toilet lamp that can illuminance upon a human's presence in its proximity. In addition, the disclosed toilet light illuminates in an indirect manner that the human's pupils will not receive direct lights from the toilet lamp. Such that the human's sleeping quality will not be significantly damaged.
In some examples, the toilet lamp is installed on a toilet's lid and coupled to the toilet's base. Such that when a human lift or puts the lid, he/she lifts or puts the toilet lamp as well.
The toilet lamp 100 includes at least a battery box 1, at least one battery 2, a driving component 3, a sensing module 4, a cap 5, a lens 6, a metal flexible bar 7, an insulative sleeve 8, and a light source 9.
The battery box 1 encompasses the at least one battery 2. The driving component 3 is disposed at an inner top side of the battery box 1 and is electrically coupled to the at least one battery 2 for charging. The sensing module 4 is installed above and electrically coupled to the driving component 3 for being driven by the driving component 3. The cap 5 is installed at a top side of the battery box 1 for covering the driving component 3. The lens 6 is mounted on the cap 5. Also, the sensing module 4 detects human presence in the toilet lamp 100's proximity with the aid of the lens 6. The metal flexible bar 7 has a first terminal that penetrates the cap 5 for electrically coupling to the sensing module 4. In addition, the metal flexible bar 7's second terminal lies external to the cap 5. Besides, the metal flexible bar 7 is enclosed by an insulative flexible sleeve 8 at its second terminal. The light source 9 is electrically coupled to the metal flexible bar 7's second terminal. It is noted that the metal flexible bar 7 and the insulative flexible sleeve 8 forms a flexible hook that articulates with a toilet's edge for installing the toilet lamp 100 on said toilet.
In some examples, the sensing module 4 is implemented using a passive infrared (PIR) motion sensor switch. Specifically, when a human enters the toilet lamp 100's proximity (i.e., the sensing module 4's effective detection range), the sensing module 4 senses an instant infrared change caused by the human. Then the sensing module 4 keeps on being conducting its loading during a period that the human lasts within the toilet lamp 100's proximity. Therefore, after the human leaves the toilet lamp 100's proximity, the sensing module 4 insulates its loading with a short period of delay. In some examples, the metal flexible bar 7 is implemented using weaved thin cupper plate or copper wire. Besides, the metal flexible bar 7 conducts the light source 9 with the sensing module 4 and the driving component 3.
The toilet lamp 100's advantage lies in the following facts. Specifically, the combination of the metal flexible bar 7 and the insulative flexible sleeve 8 can be arbitrarily bended to form a flexible hook that in turn hooks the toilet's edge, which may be connected to the toilet's base. The light source 9 can be disposed within an internal space of the toilet, and both the battery box 1 and the cap 5 are disposed external to the toilet. In this way, when a human approaches the toilet lamp 100's proximity (e.g., while flipping up the toilet's lid), the sensing module 4 detects the human's presence via the lens 6 and activates the light source 9 via the driving component 3. Such that the light source 9 illuminates the toilet's internal space. On the contrary, when the human leaves the toilet lamp 100's proximity, the sensing module 4 perceives the human's leaving. Therefore, the sensing module 4 then switches off (i.e., disactivate) the light source 9 with a short period of delay, for example, about five to ten seconds after losing the human's presence. In this way, during the night when the toilet's surrounding is in dark, as long as a human approaches the toilet's proximity, the toilet lamp 100's light source 9 is automatically activated without directly illuminating towards his/her eyes. Such that the human's sleeping quality is better kept. Also, when the human leaves the toilet lamp 100's proximity, the toilet lamp 100 automatically switches off the light source 9 with a short period of delay. Therefore, the toilet lamp 100's power consumption can be reduced and effectively controlled.
As shown in
In some examples, the upper housing 11 and the lower housing 12 are detachably coupled to each other via at least one of tongue-and-groove fit, snap fit, interference fit, post-and-bore fit, and press fit.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
Number | Date | Country | Kind |
---|---|---|---|
201922335078.X | Dec 2019 | CN | national |