Token with an electronic identifier

Information

  • Patent Grant
  • 7942334
  • Patent Number
    7,942,334
  • Date Filed
    Wednesday, November 9, 2005
    19 years ago
  • Date Issued
    Tuesday, May 17, 2011
    13 years ago
Abstract
A token includes a flat body made of a plastic material. The flat body has at least two parallel faces and a cavity which opens to at least one of the at least two parallel faces. The cavity receives an electronic identification device. At least one plug made of a plastic material is included. The plug is inserted into the cavity to retain the electronic device. The electronic device is in the form a pellet having outer film layers enveloping the electronic elements. The film layers are perforated.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention generally concerns gaming tokens such as disks, or flat plaques, or cards, integrating an electronic chip or an electronic identifier (called hereafter electronic identification device). The applications for the present invention are to be found, amongst others, in the contactless identification of persons and objects also called electronic labeling, and in the authentication, the identification and management (in particular the tracking and counting) of gaming tokens, also called casino chips. The expression “gaming token” covers any token that can be used in a gaming room and representing a value that is predetermined or not. Gaming tokens are usually made of a rigid plastic material to obtain a structure that is solid enough to resist conditions of use in casinos which are often very tough. The term “token” is used in this application to refer to any flat body that may include an electronic circuit.


2. Discussion of Background Information


U.S. Pat. No. 6,021,949, commonly owned with the present application, describes a gaming token or plaque, the body of which integrates an electronic chip and is made from laminated sheets of rolled plastic material. The electronic chip or electronic identifier includes an electronic circuit with a memory bearing identification and/or coding information concerning the person or object associated with the token (electronic label) or the token itself (gaming token or payment token), the electronic circuit generally being associated with an emitter-receiver connected to an antenna and adapted to be supplied by inductive coupling. The electronic chip is placed in the center of an opening provided in the body of the plaque, protected and held on either side by two rigid wafers and finally joined together and integrated into the body of the plaque by a lamination of top sheets of transparent cellulose acetate followed by the thermoforming of the assembly.


The manufacturing process for the body of the plaque incorporating the electronic chip by laminating thin sheets of plastic material described in the above mentioned patent was well adapted to highly decorated plaques and those representing a high nominal value, usually manufactured in small or medium sized series. However, a good protection of the electronic chip when it is integrated into the body of the plaque required a certain thickness (usually between 4 and 6 mm) so gaming tokens or plaques with a thickness of about 3 mm and equipped with an electronic chip were difficult to manufacture using this method with an excessive number of rejects resulting from the destruction of the chip.


To facilitate the manufacture of thinner game tokens, commonly assigned U.S. Pat. No. 6,581,747, the entire disclosure of which is hereby expressly incorporated by reference, discloses a gaming token or plaque or similar device made of plastic with a cavity in which an electronic identification device is placed. The electronic device includes an emitter-receiver and a peripheral antenna placed between two thin plastic films joined along their peripheries to form a protective envelope or pellet. The cavity offers at least one face opening closed by a plastic plug inserted into the cavity and assembled directly with the flat body, retaining the electronic device therein.


This structural arrangement made the token very robust while reducing its thickness by eliminating any superfluous layer of plastic. Furthermore, the simplification of their structure made the tokens much easier to manufacture. Plugs were inserted with a minimum clearance in the face openings of the cavities having matching shapes and directly assembled with the body of the token or plaque. The plug, inserted into the cavity in a solid state, possibly softened or pasty was deformed and welded to the body of the token by combined heating and pressure. Thus, the deformation capacity of the plug ensured a very robust weld, and a good cohesion between the token body and the thus completed electronic identifier.


However, the electronic device utilized in the above mentioned prior art, was of a relatively small physical size, incorporating components capable of operating with a relatively low frequency. To accommodate higher frequencies a larger size, typically a larger diameter, electronic pellet was necessary. The increased size was found to be accompanied by an increased incidence of breakage of the pellet envelope. Because the electronic pellet was heterogonous rather than homogeneous, stresses from the deforming plastic plug were concentrated at certain points of the envelope, causing the plastic film to break. Also, there was no direct interconnection between the upper and lower surfaces of the token, weakening the structure. Thus, the manufacturing process was accompanied by a high number of rejected defective tokens.


SUMMARY OF THE INVENTION

According to the present invention, there is a reduction in the incidence of breakage of the electronic identification envelope and a strengthening of the token body. Thus, particularly where larger electronic identification pellets are used, a more robust chip with a lesser number of manufacturing rejects is obtained.


For this purpose the electronic identification pellet is made by forming the envelope around the electronic components from a film which includes at least one opening or perforation. The perforation facilitates the flow of the deforming plastic plug to interconnect the token parts and reduce the stress concentrations on the envelope.


The perforations may be in the form of one or more holes punched in a sheet of plastic, which is later cut to yield the appropriate size film for the envelope. The perforations themselves may be of various shapes and sizes, including round, rectangular, or elliptical, and extend completely through the film. Where the envelope for the electronic identification device is formed by an upper and a lower film, each film may include perforations which would enable the flowing plastic of the plug to extend through the pellet and interconnect the upper and lower surfaces of the token.


The particular design of the perforation, its size, shape and number, is determined so as to maximize the contact surface between the top and bottom of the token body while leaving enough plastic film to cover the circuitry of the electronic identifier within the pellet. With heating and pressure application, the plastic of the plug passes through the pellet and joins the upper and lower surfaces of the body with continuous, homogeneous plastic material, solidifying the token and preventing separation of its components.


Preferably, the electronic identification device includes an electronic circuit having a memory containing information concerning the token, for example an identification code and an emitter-receiver with a peripheral antenna adapted to be supplied by inductive coupling, the whole assembly being placed in a protective enclosure such as a thin film flat envelope, followed by a protective shell made of rigid plastic or a hardened coating resin pellet, especially of the epoxy type. The token body includes either a through hole or a cavity that provides a housing. Preferably, the electronic identification device and the protective enclosure are in the form of a flat disk with a smaller diameter than the diameter of the housing hole or cavity in which it is received.


In one embodiment of the invention, the token includes a cavity extending from one surface into, but not through, the body. The pellet is placed on the stepped bottom of the cavity and overlaid with a plug, in this case acting as a lid. Completing the assembly, decals or labels containing indicia, are placed over the lid and beneath the token body. All the components of the token are then fused or welded together in a single thermo-compression process.


Where a component of the electronic circuit within the pellet envelope might have greater thickness, the bottom of the cavity or housing can include a recess to accommodate this component without damage during the thermo-compression process.


The body and the plug are made of an identical or different thermoplastic material, showing a vitreous transition temperature of between 40 degrees C. and 130 degrees C., preferably between 50 degrees C. and 100 degrees C.


Various embodiments of the invention use bodies and plugs of thermoplastic material. The bodies and plugs are each made of a thermoplastic material belonging to one of the following families:

    • the styrenes and their copolymers, in particular PBS and ABS, the methacrylics, in particular PMMA, the vinyls in particular PVC and their copolymers, the celluloses, in particular cellulose acetate, the saturated polyesters, in particular PBT and the polyolefins, in particular PE hd and their copolymers.


According to yet another embodiment of the invention, the body and the plug are made of identical or different thermosetting plastic, namely a material belonging to the family of non-saturated polyesters.


As an alternative, the body and the plug for the two embodiments of the invention presented above are made of plastic materials having the same basic polymer so as to facilitate the welding between the body and the plug, or of plastic material compatible with welding.


According to the invention, a method for manufacturing an electronic identifier including an electronic circuit, an emitter-receiver, and a peripheral antenna to form an electronic identification device comprises:


preparing an upper and a lower layer of film by punching a sheet of plastic to form perforations,


cutting the sheet to form appropriately sized film layers,


placing the electronic components between the perforated film layers, and


joining the film layers around their peripheries to form an envelope surrounding the electronic identifier, thereby forming an electronic pellet for inclusion in a game or token body.


The invention also concerns a method of manufacturing a gaming token or plaque or similar device, hereinafter called token, with a thermoplastic body, including the following:


manufacturing by groups or by unit, the thermoplastic token body,


making a cavity in the body having at least one face opening,


placing in the cavity the electronic identification device and inserting a plug or lid in each face opening,


closing of the cavity by welding of the plug(s) with the token body previously heated, in particular and around the area of each opening by applying pressure to the heated area(s),


cutting of the contour of the token body and/or finishing of the edge of the token, if necessary.


The invention also concerns a method of manufacturing a gaming token or plaque or similar device, hereinafter called token, with a thermosetting body, including the following operations:


manufacturing a preform of the token body in a thermosetting plastic material,


making cavity in the preform having at least one face opening,


placing the electronic identification device in the cavity and inserting plug in each face opening,


placing the whole preform of the token body equipped with the electronic identification device and plug(s) into a mold,


making the token body by thermocompression of the preform and closing of the cavity in the token body.


In either of the methods above, decals or labels having indicia can be placed on both faces of the token body.


It should also be noted that the invention is not limited to gaming tokens and plaques, but also concerns similar devices equipped with an electronic chip and having similar shapes and structures, in particular fixed amount prepaid tokens and electronic payment tokens, electronic labels, plaques or electronic identification cards and it should also be noted that electronic identification may sometimes be limited to a simple authentication of the electronic chip, i.e. the recognition of the presence of the chip by an associated contactless reader (radio-frequency reader also called RFID reader) for electronic transaction (read and/or write).


Other objects, characteristics and advantages of the present invention will be apparent on reading the following description of various embodiments of the invention, including methods of manufacturing thereof, which are given as non-restricting examples in reference to the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

It should be noted that the plaques and tokens illustrated in the drawings presented below are shown to a scale that is larger in thickness to facilitate an understanding of the drawings. The present invention is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:



FIG. 1 shows a perspective view of a gaming token made of thermoplastic material with a through cavity in accordance with a first embodiment of the invention;



FIG. 2 is a perspective view of an electronic identifier device in accordance with the invention;



FIG. 3 shows a diametral sectional view of the electronic identification device to be integrated into the token with the dimensions exaggerated for better illustration;



FIG. 4 is a cross sectional view of the electronic identification pellet incorporated in the plastic token;



FIG. 5 shows a longitudinal sectional view in a plane perpendicular to the token and passing through the line AA, of FIG. 1 after fixation of the plugs;



FIG. 6 shows a longitudinal sectional view similar to FIG. 5 of a variant of the token of FIG. 1 with a non-through cavity after fixation of the plug;



FIG. 7 shows a perspective view of a variant of a token body which is circularly shaped;



FIG. 8 shows a diametral sectional view, in a plane perpendicular to the token and passing through line BB of the token of FIG. 7 after the thermocompression operation;



FIG. 9 shows a perspective view of a gaming token including a surface decal or label with indicia;



FIG. 10 is a diametric sectional view of the token of FIG. 9; and



FIG. 11 is an exploded view of the FIG. 9 embodiment showing the orientation of the pellet so as to cooperate with a recess in the bottom of the cavity.





DETAILED DESCRIPTION OF THE PRESENT INVENTION


FIG. 1 shows a first embodiment of the token or plaque in accordance with the invention with a deformable plug and according to which the body of the token or plaque is composed of a thermoplastic material, in the present case a gaming token 10 approximately rectangular, shown in perspective, the flat body 12 of which shows two approximately parallel faces 13 and 14. The token integrates a chip or electronic identifier 16 placed in a cavity 15 crossing through the body 12 perpendicular to the faces 13 and 14. Of course the description of this embodiment of the invention also applies to disk shaped tokens with a circular contour and to flat tokens or cards with various contours, including elliptical contours.


Generally, the electronic identification device 16 shown in FIGS. 2 and 3 includes an electronic circuit 25 with a PROM memory containing information on the token and or the person or object associated with the token, for example a fixed digital or alphanumerical identification code of 64 bytes (including one or several fields such as: the serial number, the identification of a product, batch or place, a digital value associated with the token, etc.), and an emitter-receiver 26 with a peripheral circular antenna 27 adapted to be fed by inductive coupling from the modulated waves of the reader station (not shown). The emitter-receiver is capable of exchanging data without contact by modulated waves with a remote reader station (for example, between 15 cm and 2 m), the working frequency being between 10 kHz and 20 MHz. The electronic device containing a memory, for example, can be used as protection against theft and/or to facilitate the management and inventory of a batch of objects in a defined space (storage areas, warehouses, stores). Of course, without going beyond the scope of the invention, the electronic device 16 equipped with a memory of a non-reprogramable type (read-only) can be replaced by a changing code reprogramable device with possibility of reading and writing to the memory.


The electronic identification device 16 including the emitter-receiver 26 and the peripheral antenna 27 is placed between two thin plastic films 28 welded on the periphery to form a protective envelope, the whole sub-assembly being in the form of a thin pellet 29 of a maximum thickness of around one millimeter and a diameter of between 10 mm and 20 mm. As a result, the cavity 15 has a cylindrical shape with a diameter slightly greater by a few millimeters thus avoiding a premature deterioration of the electronic chip when the electronic identifier is placed in the cavity. Furthermore, without going beyond the scope of the invention, cavities with various sections (e.g., rectangular) are used to house electronic identifiers the antennas of which have matching contours (e.g., rectangular).


As shown in FIG. 3, the film 28 is perforated by having holes 28a placed within its periphery to pass the plastic flow material of the plug as it is compressed during assembly. The holes 28a may be circular or of other shapes including elliptical or rectangular, and may be punched, pierced, or otherwise provided in the film. The shape of the hole may also conform substantially to the shape and placement of the electrical circuit and its components, to the extent that the plastic film is open and not continuous across its surface, yet does not expose the circuitry or the electronic components themselves.


The body 12 of the plaque can be formed in various ways. For example, with injection molding, the cavity, whether crossing through the body or not, is obtained directly during molding, individually, or in a group from thick sheets or strips (monobloc or welded, glued or laminated multiple layers) of predimensioned thermoplastic material having the final thickness of the plaque or token, for example 3 mm.


According to a first variant of the invention, with a through cavity, as illustrated in FIG. 4, the thick sheet or strip is pierced with a number of holes corresponding to the number of plaques or tokens to be produced, the degrouping of the plaques or tokens obtained by cutting and punching or by milling the contour of the plaque or token (also called trimming) being carried out at the end of manufacture after integration of the electronic identifier 16 and closing of the cavity.


According to another variant of the invention, the thick sheet or strip is softened by heating (between 50 degrees C. and 150 degrees C.) and punched to obtain individually the body 12, 12′ of the token or plaque. Simultaneously, the cavity intended to be used as a housing recess for the electronic identifier is attained:


either as a through hole 15 (FIG. 5) by punching or cutting out,


or as a blind hole, non-through cavity 15′ (FIG. 6) with a flat bottom 24′ or a stepped bottom, either by die stamping on a part that is still hot or by non-opening spot facing with a milling cutter on a harder cooled part. For example, the cavity has a depth of approximately 2 mm.


The plugs 19, 20, 19′ are obtained for example by punching (cold or hot if necessary) from plates or strips with a thickness of between 1 mm and 1.5 mm. The plugs 19 and 20 are inserted (with the electronic identifier 16′) in the cavity 15 preferably with a minimum clearance in solid state, sometimes softened or pasty, and deformable during the later stage of compression or welding. The plugs 19 and 20 have a contour that matches that of the cavity 15, e.g. a circular contour, and have a thickness that makes their two external faces slightly overlap the faces 13 and 14 of the body 12 so as to ensure the complete filling of the cavity 15 and a solid weld with mechanical interlocking more or less undulated 25 (see FIG. 4), in the side wall 23 of the cavity when the face openings 17 and 18 are closed.


The body 12 and the plugs 19 and 20 may be made of the same thermoplastic material, in this case loaded between 50% and 70% with barite or barium sulphate, chosen from among one of the following polymer families:


the styrenes and their copolymers, namely polybutadienestyrene (PBS) and acrylonitrile-butadiene styrene (ABS),


the methacrylics, namely polymethylmethacrylate (PMMA),


the vinyls, namely polyvinyl chloride (PVC) and their copolymers,


the celluloses, namely cellulose acetate,


the saturated polyesters, namely polybutyleneterphtalate (PBT),


and the polyolefines, namely high density polyethylene (PE hd) and their copolymers.


Still within the scope of the present invention, it should be noted that good weld joints can also be obtained by using for the body and plugs, couples of different polymer based thermoplastic materials offering a good compatibility to be welded together, for example the couples ABS/PMMA, ABS/PBT and PVC/PBT. In any case, the undulated mechanical interlocking at joint level reinforces the weld.


The integration of the electronic identifier ends with the heating and compression (respectively shown in FIG. 5 by the straight arrows P and the curved arrows C) of the plugs 19 and 20 and the body 12 using a press, the hot plates 21 and 22 of which are arranged opposite each plug 19 and 20 on either side of the body of the plaque 12. These hot plates 21 and 22 which cover the whole surface of the faces 13 and 14 of the body of the plaque or token are mobile by bringing one close to the other by any known arrangement (not described) so as to push sufficiently, but not in excess, the plugs 19 and 20 towards the inside of the cavity 15 so as to embed the thin pellet or protective envelope 29 of the identifier 16 and to hold the latter in position. On compression, the plastic material of the plugs enters the perforations 28a to extend into the envelope of the pellet. The through flowing plastic 18, in the embodiment of FIG. 5, relieves the stress and forces on the outside of the envelope which might otherwise occur. Additionally, the flowing plastic extends between and interconnects the upper and lower faces of the token while fixing the electronic identifier in place.


The controlled movement of the press with plates 21 and 22 enables the body of the plaque or token to be obtained directly at the required final thickness (for example 3 mm), the body in addition undergoing a slight optional reduction of its thickness (for example, approximately one millimeter).


In special situations, and in particular depending on the types of thermoplastic materials used for the bodies and plugs, the heating temperature is generally between 100 degrees C. and 160 degrees C., and the pressure applied generally between 1 and 10 Mpa (10 to 100 bars). Furthermore, it may be preferable to start heating the body and/or plug before applying the pressure on the plugs and/or body.


As shown in FIG. 5, the plugs 19 and 20, under the combined action of the heat and the pressure applied to each face 13 and 14, are deformed to become welded to the side wall 23 of the cavity 15 and most often form fitting and interlocking undulations 15 when the face openings 17 and 18 are closed, the limit of the welding area disappearing (at least on the surface), when using identical or almost identical thermoplastic material of the same color for the plugs 19 and 20 and the body of the plaque 12. Thus, the creation of a real mechanical interlocking between the plug and the side of the cavity reinforces the weld joint. This interlocking is obtained more easily when heat and pressure are applied on the entire token face (the plastic flow being facilitated) rather than within an area limited to the plug and immediate surroundings of the face openings for the body.


The manufacture of the plaque (or token) continues with the cutting of the contour of the body in the event of group production from a thick sheet and/or the finishing of the edge, if necessary. As an option, it is possible to create a sunk decoration or a new hollow cavity (1 mm to 2 mm) by die punching and/or the placing of a surface decoration on the faces of the plaque (or token), for example by pad printing, hot punching or screen printing and heat bonding covering labels on the faces of the plaque (or token), etc.



FIG. 6 concerns a plaque 10′ variant of the plaque 10 (or token) described above and is distinguished from the latter by a non-through cavity 15′. Of generally similar structure, plaques 10 and 10′ have a large number of identical or similar technical characteristics, the description of which will not be repeated in detail and which have the same numerical references accompanied by the prime sign.


As shown in FIG. 6, the cavity 15′ of the plaque 10′ has a flat bottom 24′ approximately parallel to the faces 13′ and 14′ and distant from the sole face opening 17′ so as to place the electronic identifier 16′ in median position in the thickness of the body 12′ with its circular peripheral antenna in parallel position with the faces 13′ and 14′ of the plaque 10′. As with the plaque 10, a solid but deformable thermoplastic plug 19′ is initially inserted into the face opening 17′ after placing the identifier 16′ in the cavity 15′ then welded with undulated mechanical interlocking 25′ to the side wall 23′ of the cavity 15′ by heating and compression. Here again, the plug 19′ extends slightly beyond the face 13′ and has a sufficient volume to fill the cavity, extending around the periphery of the electronic identifier. As in FIG. 5, the material of the plug extends into the opening 28a′ in the upper film and through the envelope of the identifier. Optionally, and additionally, as shown in FIG. 6, the lower film of the envelope includes perforations as well, to enable the flowing plastic 18′ to extend completely through the envelope and join all the components of the token. It should be noted that it may be practical to heat the bottom 24′ of the cavity 15′ through the bottom heating plate 22′ to ensure a good support between the electronic identifier 16′ and the wall of the bottom 24′. In some cases, a spot of glue can be placed between the bottom 24′ and the identifier 16′.


The invention is not limited to the ways, of heating and compression or thermocompression described herein, but concerns the use of technically equivalent ways known to specialists. In particular, the expression “heating” is used in a wide sense and covers especially heating by electrical resistances, high frequency, micro-wave or infrared heating. Within the scope of the invention it is also possible to physically separate the ways of heating from the ways of compression (plate press). Finally, in certain variants of the invention, the plug(s) are preheated before being inserted into the cavity. It is also possible to preheat or to heat during final compression the whole body of the token or plaque. In the same way, the pressing ways can be limited in surface for the thermoplastic material or cover the whole face of the token or plaque for both the thermoplastic material and thermosetting material (as described below), thus allowing a token or a plaque to be obtained with a good surface condition and a high quality visual appearance.



FIGS. 7 and 8 concern another embodiment of the token or plaque according to the invention and according to which the body of the token or plaque is made of a thermosetting plastic material, in this case a gaming token 30, the flat body 32 of which has two approximately parallel faces 33 and 34. Generally, the structure of the token 30 is similar to that of the plaque 10′ and its description will not be repeated in detail, especially for the same elements.


The token 30 integrates an electronic identifier 36, identical to the electronic identifier 16 described above, placed in a cavity 35 made in the body 32, the antenna of the identifier 36 being placed approximately parallel to faces 33 and 34. The body 32 is realized from a preform made of thermosetting material including a non-through cavity 35 entering into the body 32 at right angles to faces 33 and 34 visible in FIG. 8. The cavity 35 is obtained either directly when the preform is realized (cold pre-molding), or by removing material. As an alternative, the bottom 40 of the cavity has a central step to determine a housing recess 44 for the electronic identifier 36.


The integration of the electronic identifier 16 begins with its placement inside the housing 44 of the cavity 35 followed by the insertion of a plug 39 in the face opening of the cavity 35. The preform of the body of the token is placed in a heating mould 41, 42.


The plug 39 is inserted in the cavity 35, preferably with a minimum clearance in a solid but deformable state during the later welding stage and offers a sufficient volume to completely fill the cavity 35 and form a good weld with the side 43 of the latter when the face opening 37 is closed.


The plug 39 (as well as the body) is made of a thermosetting material, loaded or not; for example a polymer chosen from among the non-saturated polyesters loaded between 50% and 70% in weight with barite or barium sulphate.


The integration of the electronic identifier ends with a thermocompression operation with the combined action of heat and pressure in the mould 41, 42, with a temperature of between 120 degrees C. and 160 degrees C. and an applied pressure of between 0.2 and 1 Mpa (between 2 and 10 bars).


As shown in FIG. 8, the plug 39 under the combined action of heat and pressure applied to each heated area looses its shape and welds with undulated mechanical interlocking 43 to the side wall of the cavity 35 and closes the face opening, the limit of the welding area disappearing (at least on the surface) in the event of identical or almost identical thermosetting materials for the plug 39 and the body or the token 32. Additionally, as in the previous embodiments, the plug may deform and flow into the perforations 28a″ and completely through the envelope to fix the identifier and join the upper and lower faces of the token.


Of course, the description of this embodiment of the invention also applies to rectangular plaques and flat tokens or plaques with various contours, especially elliptic, as well as to plaques and tokens with through cavities closed by two plugs.



FIGS. 9 and 10 illustrate another embodiment of the invention that joins all of the components of a finished token, including decals or labels, in a single thermo-compression process. As in the previously described embodiment, the electronic pellet 36 is placed in a cavity 35 having a flat bottom surface. A plug, in the form a lid 50, overlies the pellet and in turn is covered by a decal 52. A similar decal 54 is placed beneath the token body.


The whole assembly is placed in a mold or between two compression plates, as in the previous embodiments, and compressed such that the individual components are joined or welded together with the planar surface of the decals 52 and 54 assuming a final position in the same plane as the upper and lower faces of the token body. In this way, but for any final trimming operations, a finished token is produced with the inlaid decals with the appropriate indicia.


A refinement of the token body is shown in FIG. 11. Here, the bottom of the cavity includes a recess 56. The electronic pellet is placed in the cavity such that a component 58 of the electronic circuit, which has a greater depth or thickness than the other components, can be at least partially received in the recess. With this arrangement, potential damage to the particular component is mitigated during the compression process.


Thus, thanks to the invention described herein, it is possible to obtain gaming plaques and tokens with electronic identifiers, or similar devices approximately 3 mm thick, of good quality and at a low cost, while lessening the chance of damage to the electronic identifier or a lack of structural strength of the assembled token parts which would lead to rejects in the manufacturing process.


The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the present invention may be embodied in practice.


It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the present invention has been described with reference to an exemplary embodiment, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects. Although the present invention has been described herein with reference to particular means, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.

Claims
  • 1. An electronic identifier pellet configured to be embedded in a gaming token having a top face and a bottom face parallel thereto and a cavity that opens to at least one of the two faces, the electronic identifier pellet comprising: an electronic circuit; anda flat envelope enclosing said circuit, said envelope having a top surface and a bottom surface, wherein said envelope includes at least one through hole having an inside surface corresponding to the thickness of said envelope, said at least one through hole being configured to facilitate the flow of a deforming plug into and through said at least one through hole, and wherein the at least one through hole is configured such that the deforming plug material flows within the cavity of said gaming token so as to fix the position of said envelope within the cavity of said gaming token, and wherein the flow of material into and through said through hole reduces the stresses from the deforming plug on at least one of said top and bottom surfaces of said envelope.
  • 2. The electronic identifier pellet according to claim 1, wherein said circuit comprises an emitter-receiver.
  • 3. The electronic identifier pellet according to claim 2, wherein said circuit further comprises an antenna.
  • 4. The electronic identifier pellet according to claim 1, wherein said envelope is formed by two planar plastic film layers, and at least one layer including at least one hole within its periphery.
  • 5. The electronic identifier pellet according to claim 4, wherein said film layers are joined about their peripheries.
  • 6. The electronic identifier pellet according to claim 4, wherein said film layers are planar and circular.
  • 7. The electronic identifier pellet according to claim 1, wherein said through hole is circular.
  • 8. The electronic identifier pellet according to claim 1, wherein said electronic circuit is located around the periphery of said envelope; and said hole being located in the interior of the envelope spaced from said circuit such that said hole does not expose said electrical circuit.
  • 9. The electronic identifier pellet according to claim 1, wherein said flow of said deforming plug is from at least one of said top surface and said bottom surface of said envelope to at least one of said top surface and said bottom surface of said envelope through said at least one through hole.
  • 10. The electronic identifier pellet according to claim 9, wherein said flow of said deforming plug contacts at least one of said top surface of said envelope and said bottom surface of said envelope.
  • 11. The electronic identifier pellet according to claim 9, wherein said flow of said deforming plug contacts each of said top surface of said envelope and said bottom surface of said envelope.
  • 12. An electronic identification pellet configured to be embedded in a gaming token having a top face and a bottom face parallel thereto and a cavity that opens to at least one of the two faces, the electronic identification pellet comprising: an electronic circuit;an emitter-receiver operatively connected to said electronic circuit;an antenna for receiving and sending signals from said emitter receiver; anda flat envelope enclosing said circuit, said emitter-receiver and said antenna, said envelope comprising two plastic films, joined and sealed around their peripheries, said envelope having a top surface and a bottom surface, said envelope being configured to fit within the cavity, wherein each of said films includes a perforation or opening within its periphery configured to facilitate the flow of a deforming plug into and through the perforation or opening, and wherein the perforation or opening is configured such that the deforming plug material flows within the cavity of the gaming token so as to fix the position of the envelope within the cavity of the gaming token, and wherein the flow of material into and through the perforation or opening reduces the stresses from the deforming plug on at least one of the top and bottom surfaces of the envelope.
  • 13. A unit configured for gaming, the unit comprising one of a token or card having a flat body made of a plastic material, the flat body comprising at least two parallel faces and a cavity which opens to at least one of the at least two parallel faces, an electronic identification device in the cavity, at least one plug made of a plastic material, the at least one plug received in the cavity to completely enclose and retain the electronic device in the flat body, wherein the improvement comprises: a flat envelope enclosing the electronic device to form a pellet, said envelope having a top surface and a bottom surface;the envelope defined by two planar plastic films; andat least one of said plastic films having at least one of a perforation or hole;whereby the plastic material of said plug penetrates the at least one of a perforation or hole to extend into the envelope into and through the at least one perforation or hole, and whereby the at least one through hole is configured such that the deforming plug material flows within the cavity of the gaming token so as to fix the position of the envelope within the cavity of the gaming token, and wherein the flow of material into and through the through hole reduces the stresses from the deforming plug on at least one of the top and bottom surfaces of the envelope.
  • 14. The unit according to claim 13, further comprising: each planar plastic film having at least one of a perforation or hole; andthe plastic material extending completely through the envelope and passing the at least one of a perforation or hole in each planar plastic film to join the two parallel faces of the body.
  • 15. The unit according to claim 13, wherein the one of, a token or card comprises one of a gaming token and a gaming plaque.
  • 16. The unit according to claim 13, wherein the electronic identification device is one of: retained on one side by the at least one plug and on another side by the flat body; and retained on one side by the at least one plug and on another side by another plug.
  • 17. The unit according to claim 13, wherein the at least one plug comprises a shape which is substantially similar to a shape of the cavity and wherein the plug is sized to fit within the cavity with a minimum clearance.
  • 18. The unit according to claim 17, wherein the at least one plug is secured to the flat body by one of gluing, welding, and mechanical interlocking.
  • 19. The unit according to claim 18, wherein the at least one plug is secured to the flat body by mechanical interlocking, the mechanical interlocking being formed by one of deformation by heating and compression.
  • 20. The unit according to claim 13, wherein the at least one plug is secured to the flat body by welding and wherein the welding utilizes heating and pressure.
  • 21. The unit according to claim 20, wherein the heating and pressure are applied to the at least one plug and to the at least two parallel faces.
  • 22. The unit according to claim 13, wherein the cavity comprises a through opening which extends between the at least two parallel faces and wherein the at least one plug comprises at least two plugs.
  • 23. The unit according to claim 22, wherein the electronic identification device is disposed within the flat body between the at least two plugs.
  • 24. The unit according to claim 13, wherein the cavity comprises a blind opening which opens to one of the at least two parallel faces, the blind opening comprising a flat bottom surface for supporting the electronic identification device.
  • 25. The unit according to claim 24, wherein the flat bottom surface of the cavity includes a recess.
  • 26. The unit according to claim 13, wherein the electronic identification device comprises an electronic circuit, memory storage, and an emitter-receiver having a peripheral antenna.
  • 27. The unit according to claim 13, wherein the electronic identification device comprises a diameter which is smaller than a diameter of the cavity, the cavity comprising a bottom surface and a lower surface which is stepped below the bottom surface.
  • 28. The unit according to claim 13, wherein the flat body and the at least one plug comprise one of a polymer material and a material which can be welded.
  • 29. The unit according to claim 13, wherein the flat body and the at least one plug comprise a thermoplastic material.
  • 30. The unit according to claim 29, wherein the thermoplastic material comprises one of a styrene, a styrene copolymer, PBS, ABS, a inethacrylic, PMMA, a vinyl, PVC, a PVC copolymer, a cellulose, cellulose acetate, a saturated polyester, PBC, a polyolefin, PE hd, and a PE hd copolymer.
  • 31. The unit according to claim 13, wherein one of the flat body and the at least one plug comprises a thermoplastic material having a vitreous transition temperature of between 40 degrees C. and 130 degrees C.
  • 32. The unit according to claim 31, wherein the vitreous transition temperature is between 50 degrees C. and 100 degrees C.
  • 33. The unit according to claim 13, wherein the flat body and the at least one plug comprise a thermosetting plastic material.
  • 34. The unit according to claim 33, wherein the thermosetting plastic material comprises a non-saturated polyester material.
  • 35. The unit according to claim 13 further comprising at least one decal corresponding in shape to said cavity, the at least one decal overlying said at lest one plug, and being coplanar with one of the at least two parallel faces of the flat body.
  • 36. The unit according to claim 35, wherein the at least one decal comprises two decals, each decal being coplanar and continuous with a different one of the at least two parallel faces of the flat body.
  • 37. The unit according to claim 13, wherein the token is a gaming chip.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority under 35 U.S.C. 119(e) of U.S. Provisional Patent Application No. 60/686,419, filed on Jun. 2, 2005, the disclosure of which is expressly incorporated by reference herein in its entirety. Additionally, the present application discloses subject matter similar to that disclosed in copending application Ser. No. 11/269,758, entitled “Method of Making a Token with an Electronic Identifier,” filed on Nov. 9, 2005.

US Referenced Citations (8)
Number Name Date Kind
2836911 Priesmeyer Jun 1958 A
3439439 Stimson Apr 1969 A
3670524 Korwin Jun 1972 A
3926291 Burke et al. Dec 1975 A
4818855 Mongeon et al. Apr 1989 A
6021949 Boiron Feb 2000 A
6581747 Charlier et al. Jun 2003 B1
20020006829 Purton Jan 2002 A1
Related Publications (1)
Number Date Country
20060279420 A1 Dec 2006 US
Provisional Applications (1)
Number Date Country
60686419 Jun 2005 US