Tokenization of co-network accounts

Information

  • Patent Grant
  • 10313321
  • Patent Number
    10,313,321
  • Date Filed
    Thursday, April 7, 2016
    8 years ago
  • Date Issued
    Tuesday, June 4, 2019
    5 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Vu; Phy Anh T
    Agents
    • Kilpatrick Townsend & Stockton LLP
Abstract
The present disclosure relates generally to tokenization of a co-network account. A co-network account, as used herein, refers to an account associated with a first transaction processing network for processing transactions initiated using the account and a second transaction processing network for processing transactions initiated using the account. During provisioning of a co-network account onto a user device, a first token is generated for use with the first transaction processing network and a second token is generated for use with the second transaction processing network. Embodiments use the authentication result generated during the provisioning of the first token for the provisioning of the second token. Embodiments automatically provision multiple payment tokens on the user device upon determining that the account is associated with more than one transaction processing networks (e.g. the account is a co-network account).
Description
BACKGROUND

User devices (e.g. mobile communication devices, tablets, laptops, etc.) are used more and more to conduct transactions using user accounts. A user account may be provisioned on the user device thereby allowing the user device to initiate transactions (e.g. payment transactions) with transacting entities.


A user account may be associated with a transaction processing network. During provisioning of the account on the user device, the transaction processing network may perform an identification and verification process to ensure that the user requesting the account provisioning is the rightful user of the account. For example, the transaction processing network may send a security question to the user and receive an answer from the user. Accordingly, the user interaction is often required during provisioning of user accounts for improved security.


There exist accounts that are associated with more than one transaction processing networks. During provisioning of such accounts on a user device, all transaction processing networks associated with the account need to be identified so that each transaction processing network may perform their own identification and verification process. Thus, provisioning of such accounts may be burdensome on the user.


Embodiments of the invention address these and other problems, individually and collectively.


SUMMARY

The present disclosure relates generally to tokenization of a co-network account. A co-network account, as used herein, refers to an account that can be used in connection with transactions processed by multiple transaction processing networks. For example, a co-network account may be associated with a first transaction processing network (e.g. Visa) and a second transaction processing network (e.g. Interac) for processing transactions initiated using the co-network account. When the user (e.g. account holder of the co-network account) wishes to provision the co-network account onto his user device (e.g. mobile communication device) with tokenized information, the user needs two tokens: a first token associated with the first transaction processing network and a second token associated with the second transaction processing network. Embodiments provision the second token, after provisioning the first token, without requesting the user to re-authenticate themselves for the provisioning of the second token. That is, embodiments use the authentication result generated during the provisioning of the first token for the provisioning of the second token. Embodiments automatically provision multiple payment tokens on a user device upon determining that the account is associated with more than one transaction processing networks (e.g. the account is a co-network account).


Embodiments provide a method comprising receiving, at a server computer of a first transaction processing network, a token provisioning request message from a token requestor. The token provisioning request message includes an account identifier. In some embodiments, an account identified by the account identifier is a co-network account. The method further includes determining, by the server computer, a second transaction processing network associated with the account identifier. The method also includes performing, by the server computer, an authentication process with a user based on determining the second transaction processing network associated with the account identifier. The method further includes generating, by the server computer, a first token associated with the account identifier and sending, by the server computer, the first token and result of the authentication process to the token requestor. The token requestor requests a second token for the account identifier from the second transaction processing network associated with the account identifier. In some embodiments, the first token and the second token are provisioned on a user device of the user.


According to various embodiments, the method includes informing the token requestor of the second transaction processing network upon determining the second transaction processing network. The method may also include sending a provisioning request message to an authorizing computer to request authorization prior to generating the first token. The provisioning request message may include the account identifier and the result of the authentication process. In some embodiments, the method may include determining, prior to generating the first token, that an account identified by the account identifier is eligible for provisioning.


In some embodiments, a method is provided including sending, by a token requestor computer, a first token request message to a first transaction processing network. The first token request message may include an account identifier. The method may also include receiving, by the token requestor computer, a message from the first transaction processing network indicating that the account identifier is associated with a second transaction processing network. The method may further include receiving, by the token requestor computer, a first token from the first transaction processing network. The method may also include sending, by the token requestor computer, a second token request message to the second transaction network, and receiving, by the token requestor computer, a second token from the second transaction processing network. According to various embodiments, the first token and the second token may be provisioned on a user device of a user of an account identified by the account identifier.


In some embodiments, the second token request message may include the account identifier and the first token. The method may also include receiving, by the token requestor computer, result of an authentication process performed by the first transaction processing network. The second token request message may include the account identifier and the result of the authentication process performed by the first transaction processing network. The method may also include receiving, by the token requestor computer, the account identifier from a user of an account associated with the account identifier prior to sending the first token request message.


Embodiments may also provide a system including one or more processors; and a non-transitory computer readable storage medium communicatively coupled with the one or more processors. The readable storage medium comprises code, executable by the one or more processors, to implement the above-described methods.


The foregoing, together with other features and embodiments will become more apparent upon referring to the following specification, claims, and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary co-network identification card associated with a co-network account, according to some embodiments of the invention.



FIG. 2 illustrates a transaction processing environment that manages provisioning of a co-network account on a user device, according to some embodiments of the present invention.



FIG. 3 illustrates an transaction using one of the multiple tokens associated with a co-network account provisioned on a user device, according to various embodiments.



FIG. 4 a block diagram of an exemplary transaction processing network computer, in accordance with some embodiments of the invention.



FIG. 5 is a block diagram of a computer apparatus that may be used to implement embodiments disclosed herein, according to an embodiment of the invention.





DETAILED DESCRIPTION

In the following description, for the purposes of explanation, specific details are set forth in order to provide a thorough understanding of embodiments of the invention. However, it will be apparent that various embodiments may be practiced without these specific details. For example, circuits, systems, algorithms, structures, techniques, networks, processes, and other components may be shown as components in block diagram form in order not to obscure the embodiments in unnecessary detail.


It is to be understood that embodiments of the invention may include more or fewer than the components shown individually in a diagram. The figures and description are not intended to be restrictive.


Also, it is noted that individual embodiments may be described as a process which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process is terminated when its operations are completed, but could have additional steps not included in a figure. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination can correspond to a return of the function to the calling function or the main function.


The present disclosure relates generally to tokenization of a co-network account. A co-network account, as used herein, refers to an account that can be used in connection with transactions processed by multiple networks. For example, a co-network account may be associated with a first transaction processing network (e.g. VISA) and a second transaction processing network (e.g. Interac) for processing transactions initiated using the co-network account. When the user (e.g. account holder of the co-network account) wishes to provision the co-network account onto his user device (e.g. mobile communication device), the user needs two tokens: a first token associated with the first transaction processing network and a second token associated with the second transaction processing network. Embodiments provision the second token, after provisioning the first token, without requesting the user to re-authenticate themselves during the provisioning of the second token. That is, embodiments use the authentication result generated during the provisioning of the first token for the provisioning of the second token. Embodiments automatically provision multiple payment tokens on the user's mobile communication device upon determining that the account is associated with more than one transaction processing networks (e.g. the account is a co-network account).


Although many of the specific examples relate to tokens for payments, it is understood that embodiments of the invention can be used where any two transaction processing networks are used. For example, a corporation may operate an authorizing computer system, and may operate different networks that can allow access to different locations of the corporation (e.g., a building in Texas and a building in California). The locations may require respectively different tokens to access the systems, and these tokens may be based on a single real employee account identifier. Tokens for these different locations may be provisioned to a user device in a similar manner as described below with respect to tokens that are used with financial transactions.


In yet other embodiments, tokens may be used to access certain types of data from different data providers (e.g., credit agencies, governmental agencies, etc.). Tokens for these different data providers may be provisioned to a user device in a similar manner as described below with respect to tokens that are used with financial transactions.


Before discussing specific embodiments and examples, some descriptions of terms used herein are provided below.


A “server computer” may typically be a powerful computer or cluster of computers. For example, the server computer can be a large mainframe, a minicomputer cluster, or a group of servers functioning as a unit. In one example, a server computer may be a database server coupled to a Web server. A server computer may also be a cloud based or non-cloud based server implementation. Data transfer and other communications between components such as computers may occur via any suitable wired or wireless network, such as the Internet or private networks.


An “account holder” may hold an account. An “account holder” may include an individual or an entity that uses a system. An account holder may be associated with one or more accounts and/or user devices. In some cases, the account holder may also be referred to as a user or a consumer.


An “authorizing entity” (e.g. an issuer) can include an entity that authorizes a request. In some embodiments, an authorizing entity is an issuer that issues an account. The account (which may be associated with one or more user devices) may refer to any suitable account including payment accounts (e.g. a credit card account, a checking account, a savings account, a merchant account assigned to a consumer, a prepaid account, etc.), an employment account, an online account (e.g. email account, database subscription account, etc.).


An “issuer” may typically refer to a business entity (e.g., a bank) that maintains financial accounts for a user and often issues a credit or debit card to the user. An issuer can include a payment account issuer. The issuer may be responsible to make a credit limit available to account holders and may also be responsible for sending payments to merchants for purchases made with payment accounts issued by the issuer. The issuer may authorize a requested load amount to be uploaded to a user device. The issuer may operate an “authorization computer” to perform the foregoing actions.


A “transacting party” is an entity that conducts a transaction. It can be an entity that engages in transactions and can sell goods or services, or provides access to goods or services. For example, a transacting party may include a merchant.


A “transaction processing network” may refer to a computer or a network of computers that processes transactions. In some embodiments, the transaction processing network can be in an electronic system used to accept, transmit, or process transactions made by user devices for money, goods, services or access to locations or data. The transaction processing network may transfer information and funds among issuers, acquirers, transacting parties, and users. An example of the transaction processing network may include a payment processing server computer such as VisaNet™, operated by Visa®. Payment processing server computers such as VisaNet™ are able to process credit card transactions, debit card transactions, and other types of commercial transactions. VisaNet™, in particular includes a Visa Integrated Payments (VIP) system which processes authorization requests and a Base II system which performs clearing and settlement services. In other embodiments, a transaction processing network can be a collection of computers that can allow access to a person seeking to access a particular location. In yet other embodiments, a transaction processing network can be a collection of computers that can allow access to specific types of data (e.g., governmental agencies).


A “user device” may refer to any device that may be used to conduct a financial transaction, such as to provide payment information to a merchant. A user device may be in any suitable form. For example, suitable user devices may be hand-held and compact so that they can fit into a consumer's wallet and/or pocket (e.g., pocket-sized). They may include smart cards, magnetic stripe cards, keychain devices (such as the Speedpass™ commercially available from Exxon-Mobil Corp.), etc. Other examples of user devices include cellular phones, personal digital assistants (PDAs), pagers, payment cards, security cards, access cards, smart media, transponders, 2-D barcodes, an electronic or digital wallet, wearable devices such as smart watches, fitness bands, ankle bracelets, rings, earrings, and the like. If the user device is in the form of a debit, credit, or smartcard, the user device may also optionally have features such as magnetic stripes. Such devices can operate in either a contact or contactless mode. In some embodiments, the user device may include a mobile device comprising any electronic device that may be transported and operated by a user, which may also provide remote communication capabilities to a network. Examples of remote communication capabilities include using a mobile phone (wireless) network, wireless data network (e.g. 3G, 4G or similar networks), Wi-Fi, Wi-Max, or any other communication medium that may provide access to a network such as the Internet or a private network. Examples of mobile devices include mobile phones (e.g. cellular phones), PDAs, tablet computers, net books, laptop computers, personal music players, hand-held specialized readers, etc. In some embodiments, the user device may include a stand-alone computer for conducting e-commerce transactions. Yet it other embodiments, the user device may include a vehicle, such as a car or a motorcycle having a processor and a memory storing payment information of the user.


A “token” may be a substitute for credential information. In some embodiments, a token may include an identifier for a payment account that is a substitute for an account identifier, such as a primary account number (PAN). For example, a token may include a series of numeric and/or alphanumeric characters that may be used as a substitute for an original account identifier. For example, a token “4900 0000 0000 0001” may be used in place of a PAN “4147 0900 0000 1234.” In some embodiments, a token may be “format preserving” and may have a numeric format that conforms to the account identifiers used in existing payment processing networks (e.g., ISO 8583 financial transaction message format). In some embodiments, a token may be used in place of a PAN to initiate, authorize, settle or resolve a payment transaction or represent the original credential in other systems where the original credential would typically be provided. In some embodiments, a token value may be generated such that the recovery of the original PAN or other account identifier from the token value may not be computationally derived. Further, in some embodiments, the token format may be configured to allow the entity receiving the token to identify it as a token and recognize the entity that issued the token.


A “token service provider” may refer to an entity including one or more server computers that generates, processes and maintains tokens. The token service provider may include or be in communication with a token vault where the generated tokens are stored. Specifically, the token vault may maintain one-to-one mapping between a token and a primary account number (PAN) represented by the token.


A “token vault” may refer to a repository that maintains established token-to-PAN mappings. According to various embodiments, the token vault may also maintain other attributes of a token requester that may be determined at the time of registration and that may be used by the token service provider to apply domain restrictions or other controls during transaction processing. In some embodiments, the token vault may be provided as a part of the token service provider. Alternatively, the token vault may be a remote repository accessible by the token service provider. The token vault, due to the sensitive nature of the data mappings that are stored and managed in it, may be protected by strong underlying physical and logical security.


“Tokenization” is a process by which data is replaced with substitute data. For example, a payment account identifier (e.g., a primary account number (PAN)) may be tokenized by replacing the primary account identifier with a substitute number (e.g. a token) that may be associated with the payment account identifier. Further, tokenization may be applied to any other-information which may be replaced with a substitute value (i.e., token). Tokenization may be used to enhance transaction efficiency, improve transaction security, increase service transparency, or to provide a method for third-party enablement.


A “co-network account” may refer to an account that is associated with (e.g. that can be used in connection with transactions processed by) two or more transaction processing networks. A co-network account may be associated with a co-network card, such as a co-network debit card.



FIG. 1 illustrates an exemplary co-network identification card 100 associated with a co-network account, according to some embodiments of the invention. The co-network identification card 100 may be used to conduct transactions such as payment transactions to purchase goods or services, or access transactions to gain access to physical locations (e.g. a building) or to gain access to data stored at a virtual location (e.g. database supervised by a government agency). The co-network identification card 100 may show/display the user name and the account number 103. The co-network identification card 100 may also include a memory device 105, such as a memory chip, that may be used to store data and/or to conduct contactless transactions. The exemplary co-network identification card 100 illustrated in FIG. 1 may have access to a first transaction processing network (e.g. the Interac network) and a second transaction processing network (e.g. the VISA network) for payments that come from the co-network account. Both the logo 102 of the first transaction processing network and the logo 104 of the second transaction processing network may be displayed on the front of the co-network identification card 100. While payments come directly from the co-network account, the transactions may take place over the first transaction processing network or the second transaction processing network depending on the type of transaction or dependent on user's selection.



FIG. 2 illustrates a transaction processing environment 200 that manages provisioning of a co-network account on a user device 202, according to some embodiments of the present invention. FIG. 2 illustrates functional elements of a transaction processing environment according to one embodiment of the present invention. It is to be understood that embodiments of the invention may include more than one of the components shown individually in FIG. 2. Additionally, some embodiments of the invention may include fewer than all of the components shown in FIG. 2.


Transaction processing environment 200 may include an account holder 204, a user device 202 storing an application 206 provided by an authorizing entity and an application provided by an e-wallet provider (e.g. e-wallet application) 208, a first transaction processing network computer 210, a second transaction processing network computer 214, and an authorizing computer system 212 associated with an authorizing entity. The various computer systems may be configured to communicate in any suitable manner using any suitable communication network. Although the entities are shown as coupled to particular entities, the entities may be configured to communicate through any other suitable interfaces and some entities may be removed and/or added to the system depending on the configuration of the system.


The first transaction processing network computer 210 and the second transaction processing network computer 214 can include, respectively, data processing subsystems, networks, and operations used to support and deliver authorization services, exception file services, and clearing and settlement services. For example, the first transaction processing network computer 210 or the second transaction processing network computer 214 can comprise a server computer and databases of information.


In some embodiments, the first transaction processing network computer 210 or the second transaction processing network computer 214 can be implemented as a payment processing network. An exemplary payment processing network may include, for example, VisaNet™. Payment processing networks such as VisaNet™ are able to process credit card transactions, debit card transactions, and other types of commercial transactions. VisaNet™, in particular, includes a VIP system (Visa Integrated Payments system) which processes authorization requests and a Base II system which performs clearing and settlement services. The first transaction processing network computer 210 or the second transaction processing network computer 214 can use any suitable wired or wireless network, including the Internet. Among other functions, the first transaction processing network computer 210 or the second transaction processing network computer 214 may be responsible for ensuring that a user is authorized to conduct a transaction (via an authentication process), confirm the identity of a party to a transaction (e.g., via receipt of a personal identification number), confirm a sufficient balance or credit line to permit a purchase, or reconcile the amount of a purchase with the consumer's account (via entering a record of the transaction amount, date, etc.).


The first transaction processing network computer 210 and/or the second transaction processing network computer 214 may also function as a token service provider. That is, the first transaction processing network computer 210 and/or the second transaction processing network computer 214 may include one or more server computers that generates, processes and maintains tokens. The first transaction processing network computer 210 and/or the second transaction processing network computer 214 may include or be in communication with a token vault 218, 228 where the generated tokens are stored. Specifically, the token vault may maintain one-to-one mapping between a token and a primary account number (PAN) represented by the token.


In some embodiments, the user (e.g. the account holder) 204 may have a co-network account that the user wishes to provision on the user device 202. The user 204 may send the provisioning request using the authorizing entity application 206 or the e-wallet application 208 stored on the user device by providing an account identifier (e.g. a primary account number (PAN)) for the co-network account to either one of these applications (step 1). If the user 204 providers the account identifier to the authorizing entity application 206 (e.g. the user logs in to the authorizing entity application 206 and enters the account identifier using the physical or virtual keypad of the user device 202), the authorizing entity application 206 may then pass the account identifier to the e-wallet application 208 (step 2). Once the e-wallet application receives the account identifier from either the user 204 or the authorizing entity application 206, the e-wallet application 208 generates and transmits a first provisioning request to the first transaction processing network computer 210 (step 3a). The provisioning request may also be referred as a token request, as the account is provisioned on the user device using a token.


The first transaction processing network computer 210 may analyze the request to retrieve the account identifier. Once the first transaction processing network computer 210 retrieves the account identifier, the first transaction processing network computer 210 may determine (1) whether the account identifier can be tokenized, and (2) whether the account identifier is associated with a co-network account. For example, the first transaction processing network computer 210 may determine a second transaction processing network computer 214 associated with the account identifier. For example, the first transaction processing network computer 210 may query a database or an issuer of the account to determine that the account identifier is associated with a co-network account and/or that the second transaction processing network computer 214 is associated with the account identifier. In some embodiments, the first transaction processing network computer 210 may notify the e-wallet application 208 that the account identifier is associated with another transaction processing network (e.g. with the second transaction processing network computer 214).


The first transaction processing network computer 210 may initiate an authentication process with the user 204 to ensure that the user 204 is the authorized user of the account identified by the account identifier provided in the first provisioning request. For example, the first transaction processing network computer 210 may perform one or more of identification and verification (ID&V) methods with the user 204. Examples of ID&V methods may include, but are not limited to, an account verification message, a risk score based on assessment of the primary account number (PAN) and use of one time password by the issuer or its agent to verify the account holder. Exemplary ID&V methods may be performed using information such as a user signature, a password, an offline or online personal identification number (PIN), an offline or online enciphered PIN, a combination of offline PIN and signature, a combination of offline enciphered PIN and signature, user biometrics (e.g. voice recognition, fingerprint matching, etc.), a pattern, a glyph, knowledge-based challenge-responses, hardware tokens (multiple solution options), one time passwords (OTPs) with limited use, software tokens, two-channel authentication processes (e.g., via phone), etc.


Upon successful completion of the authentication process, the first transaction processing network computer 210 may send the first provisioning request to the authorizing computer system 212 (step 3b). In some embodiments, the first transaction processing network computer 210 may also send the result of the authentication process to the authorizing computer system 212. The authorizing computer system 212 may approve the tokenization of the account identified by the account identifier provided in the first provisioning request. The authorizing computer system 212 may return the provisioning decision (e.g. the provisioning authorization) to the first transaction processing network computer 210 (step 3c).


The first transaction processing network computer 210 may interact with a first token vault 218 to generate and store a first token 215 associated with the account identifier provided in the first provisioning request. The first transaction processing network computer 210 may store a mapping between the first token 215 and the account identifier in the first token vault 218. The first transaction processing network computer 210 may then transmit the first token 215 to the e-wallet application 208 (step 3d). The e-wallet application 208 may store the first token 215 at a secure storage of the user device 202 that is accessible by the e-wallet application 208. Accordingly, the first token 215 may be provisioned on the user device 202. In some embodiments, the first transaction processing network computer 210 may also provide the authentication process to the e-wallet application 208.


As explained above, the e-wallet application 208 is notified by the first transaction processing network computer 210 that the account identifier is also associated with the second transaction processing network computer 214. Thus, when the first token 215 is successfully provisioned on the user device 202 and/or is activated upon use, the e-wallet application 208 may automatically generate and transmit a second provisioning request to the second transaction processing network computer 214 (step 4a). The second provisioning request may include the account identifier (e.g. the same identifier provided in the first provisioning request). In some embodiments, the second provisioning request may also include the result of the authentication process performed by the first transaction processing network computer 210 and provided to the e-wallet application 208. The second provisioning request may also include an indication that a token (i.e. the first token 215) has already been generated for this account. In embodiments where the result of the authentication process performed by the first transaction processing network is provided to the second transaction processing network, the second transaction processing network may verify the result of the authentication process to ensure that the received data is indeed a valid result of the authentication process from the first processing network. The verification may be performed by the second transaction processing network or by the issuers enabled by the second transaction processing network.


The second transaction processing network computer 214 may transmit the second provisioning request to the authorizing computer system 212 (step 4b). The second provisioning request may include one or more of the account identifier, the result of the authentication performed by the first transaction processing network computer 210, an indicator that a token has been previously authorized and generated for this account, etc. In some embodiments, the authorizing computer system 212 may independently determine whether the authorizing computer system 212 has already approved provisioning of the account identified by the account identifier. If the authorizing computer system 212 determines that it already approved the provisioning of the account, the authorizing computer system 212 may return the provisioning decision (e.g. the provisioning authorization) to the second transaction processing network computer 214 (step 4c). In other embodiments, the authorizing computer 212 may approve the provisioning of the account via the second transaction processing network computer 214 based on the information provided in the second provisioning request. The authorizing computer system 212 may return the provisioning decision (e.g. the provisioning authorization) to the second transaction processing network computer 214 (step 4c).


The second transaction processing network computer 214 may interact with a second token vault 228 to generate and store a second token 216 associated with the account identifier provided in the second provisioning request. The second transaction processing network computer 214 may store a mapping between the second token 216 and the account identifier in the second token vault 228. The second transaction processing network computer 214 may then transmit the second token 216 to the e-wallet application 208 (step 4d). The e-wallet application 208 may store the second token 216 at a secure storage of the user device 202 that is accessible by the e-wallet application 208. Accordingly, the second token 216 may be provisioned on the user device 202.



FIG. 3 illustrates an transaction using one of the multiple tokens associated with a co-network account provisioned on a user device, according to various embodiments. In the exemplary transaction illustrated in FIG. 3, the user 204 may initiate a transaction using the user device 202 at a terminal 302. For example, the transaction may be for the purchase of a good or a service at a terminal (e.g. a point of sale (POS) device) of a transacting entity (e.g. a merchant) or the transaction may be to withdraw/transfer money from the co-network account of the user 204 at a banking terminal (e.g. ATM). The transaction may be initiated when the user 204 presents his or her user device 202 to the terminal 302. The user 204 may be asked to choose one of the tokens 212, 216 that are stored on the user device 202. For example, when the user 204 places the user device 202 at the proximity of the terminal 302, a screen prompt may be displayed on the user device 202 requiring the user 204 to select one of the first token 215 or the second token 216 associated with the co-network account. Alternatively, the user 204 may select one of the first token 215 or the second token 216 associated with the co-network account prior to placing the user device 202 at the proximity of the terminal 302 to initiate the transaction. For example, the user 204 may select the first token 215 for the exemplary transaction.


Depending on the token received at the terminal 302, the transacting entity (e.g. merchant, ATM owner, bank, etc.) associated with the terminal 302 may determine the transaction processing network (e.g. the first transaction processing network 210 or the second transaction processing network 214) associated with the received token. In the exemplary transaction discussed above, the transacting entity may determine that the transaction should be processed by the first transaction processing network computer 210 upon receiving the first token 215. The transacting entity associated with the terminal 302 may transmit transaction information (e.g. the received token, description of the goods or services included in the transaction, transaction amount, etc.). in an authorization request message to the first transaction processing network 210.


An authorization request message may be protected using a secure encryption method (e.g., 128-bit SSL or equivalent) in order to prevent data from being compromised. In one embodiment, the authorization request message is a standardized interchange message such as an International Organization for Standardization (ISO) 8583 message. An ISO 8583 message includes a message type indicator; one or more bitmaps indicating which data elements are present in the message, and data elements of the message. The authorization request message may comprise routing information as part of or in addition to the interchange message. As part of generating the authorization request message, the transacting entity may communicate with a database which stores data such as data regarding the account owner, the payment device, or the account owner's transaction history with the transacting entity.


The first transaction processing network 210 may receive the authorization request message and may exchange the received token (e.g. the first token 215) with the corresponding identifier (e.g. account number) associated with the co-network account. The first transaction processing network 210 may then determine an authorizing entity capable of authorizing transactions initiated using the co-network account of the account holder 204. For example, the authorizing entity may be the issuer of the co-network account of the account holder 204. The first transaction processing network 210 may then forward the authorization request message to the authorizing computer system 212 for authorization of the transaction. Any number of additional processes including fraud analysis, authentication, risk analysis, and/or other actions may be performed by the first transaction processing network 210 (or any of the other computers associated with the authorization request message).


The authorizing computer system 212 receives the authorization request message and determines whether the transaction should be authorized. The authorizing computer system 212 may determine the account associated with the authorization request message, compare an account value or credit available in the account to the transaction amount, perform any number of fraud checks or risk analysis processes, and/or perform any other relevant actions to determine an appropriate authorization decision.


The authorizing computer system 212 may determine an authorization decision approving or declining the transaction and may generate an authorization response message including the authorization decision. The authorizing computer system 212 may send the authorization response message to the first transaction processing network 210 for completion and processing of the transaction.


The first transaction processing network 210 may receive the authorization response message, log the authorization decision for settlement and clearance purposes, and send the authorization response message to the transacting entity terminal 302. The transacting entity terminal 302 (associated with a transacting entity computer system) receives the authorization response message and completes the transaction based on the authorization decision of the authorization response message. For example, the transacting entity may provide a good or service to the user 204 if the authorization response message includes an indication of an accepted transaction and may decline to provide a good or service to the user 204 if the authorization response message includes an indication of a declined transaction.



FIG. 4 illustrates the components of an exemplary transaction processing network computer 400 according to an embodiment of the invention. The transaction processing network computer 400 may include an analysis module 402, a token generation module 403, an identification and verification module 404, a transaction processing module 405, an external communication interface 406, an account database 408, a memory/storage 410 and a processor 412.


The account database 408 may store information associated with user accounts. For example, an account identifier (e.g. account number), a token corresponding to the account identifier, user identifying information (e.g. user name, address, alias, social security number, etc.), security codes, etc. associated with an account may be stored in connection with that account on the database 408. Even though the account database 408 is illustrated as a part of the transaction processing network computer 400 in FIG. 4, one of ordinary skill in the art will appreciate that the account database 408 may be external to and accessible by the transaction processing network computer 400. For example, the account database 408 may be stored at a token vault 218, 228 illustrated in FIG. 2.


According to various embodiments, the transaction processing network computer 400 may also function as a tokenization server computer that generates tokens upon request. For example, when the transaction processing network computer 400 receives a token generation request message from a token requestor (as discussed above in connection with FIG. 2), the transaction processing network computer 400 may generate a token associated with an account identifier included in the token request message. The transaction processing network computer 400 may store a mapping between the generated token and the corresponding account identifier at the account database 408.


In some embodiments, transaction analysis module 402, working with processor 412 of the transaction processing network computer 400, may determine whether the account identified by the account identifying information provided in the token request message is allowed for tokenization (e.g. whether the account may be provisioned on a user device and/or may be used in a transaction). For example, the transaction analysis module 402, in conjunction with the processor 412, may determine whether the account is closed (e.g. deactivated). In such cases, the transaction processing network computer 400 may notify the token requestor that the account has been deactivated and cannot be provisioned (e.g. a token cannot be generated for the account identifier). In some embodiments, the account may be restricted for use in connection with pre-determined types of transactions. For example, the account may be restricted for use with transaction based on transaction location, transaction value, transaction time, etc. In such cases, the transaction analysis module 402 and the processor 412 may inform the token generation module 403 of such restrictions so that restricted use token(s) may be generated for that account.


Transaction analysis module 402, working with processor 412 of the transaction processing network computer 400, may also determine that the account identified by the account identifying information provided in the token request message is a co-network account. For example, the transaction analysis module 402, working with processor 412 of the transaction processing network computer 400, may determine at least one additional transaction processing network associated with the account identifier.


Upon determining that the account is a co-network account, the transaction processing network computer 400 may initiate an authentication process with the user to ensure that the user is the authorized user of the co-network account identified by the account identifier provided in the token request message. For example, the identification and verification module 404 of the transaction processing network computer 400 may perform one or more of identification and verification methods with the user. As part of an ID&V method, the identification and verification module 404 may receive information such as a user signature, a password, an offline or online personal identification number (PIN), an offline or online enciphered PIN, a combination of offline PIN and signature, a combination of offline enciphered PIN and signature, user biometrics (e.g. voice recognition, fingerprint matching, etc.), a pattern, a glyph, knowledge-based challenge-responses, hardware tokens (multiple solution options), one time passwords (OTPs) with limited use, software tokens, two-channel authentication processes (e.g., via phone), etc. The identification and verification module 404 may use the received information to confirm that the token is requested for the intended user of the co-network account.


The token generation module 403 may generate the token in response to the token request message after the identification and verification module 404 confirms that the token is requested for the intended user of the co-network account. The transaction processing network computer 400 may return the generated token to the token requestor via the external communication interface 406.


When a user initiates a transaction with a transacting party, the computer operated by the transacting party generates a transaction authorization request message and sends the transaction authorization request message to the transaction processing network computer 400. The transaction processing network computer 400 may receive the transaction authorization request message via the external communication interface 406. The transaction authorization request message may include, among other information, a token. Upon receiving the transaction authorization request message, the transaction analysis module 402 of the transaction processing network computer 400, working in conjunction with the processor 412, may query the account database 408 to determine the account associated with the token included in the transaction authorization request message.


The transaction processing module 405 and the processor 412 may modify the transaction authorization request message to replace the token with the corresponding account information retrieved from the account database 408. The transaction processing module 405 and the processor 412 may then transmit the modified transaction authorization request message to the authorizing computer system. Upon receiving the transaction authorization request message, the authorizing computer system may process the transaction authorization request message and determine whether the request should be approved or declined. The authorizing computer system may provide a transaction authorization response message to the transaction processing network computer 400. The transaction processing network computer 400 may receive the transaction authorization response message via the external communication interface 406.


In some embodiments, the transaction processing module 405 and the processor 412 of the transaction processing network computer 400 may modify the transaction authorization response message received from the authorizing computer system to replace the account identifier with the token. The transaction processing network computer 400 may send the transaction authorization response message (or the modified transaction authorization response message) to the transacting party.


The transaction processing network computer 400 may also include a system memory 410 comprising one or modules to generate and utilize electronic messages, and the data processor 412 for facilitating a transaction and the exchange of electronic messages. According to some embodiments, the account database 408 may be stored at the system memory 410.


Embodiments allow for provisioning of a co-network account on a user device. For accounts that are associated with more than one transaction processing network, embodiments allow provisioning multiple tokens based on the identification and verification result (e.g. authentication result) of one of the transaction processing networks. When a first token associated with a first transaction processing network is provisioned on the user device, the subsequent tokens associated with the remaining transaction processing networks may be automatically provisioned using the authentication result of the first transaction processing networks.


The various participants and elements described herein with reference to FIGS. 1-4 may operate one or more computer apparatuses to facilitate the functions described herein. Any of the elements in FIGS. 1-4, including any servers or databases, may use any suitable number of subsystems to facilitate the functions described herein.


Examples of such subsystems or components are shown in FIG. 5. The subsystems shown in FIG. 5 are interconnected via a system bus 775. Additional subsystems such as a printer 774, keyboard 778, fixed disk 779 (or other memory comprising computer readable media), monitor 776, which is coupled to display adapter 782, and others are shown. Peripherals and input/output (I/O) devices, which couple to I/O controller 771 (which can be a processor or other suitable controller), can be connected to the computer system by any number of means known in the art, such as serial port 777. For example, serial port 777 or external interface 781 can be used to connect the computer apparatus to a wide area network such as the Internet, a mouse input device, or a scanner. The interconnection via system bus allows the central processor 773 to communicate with each subsystem and to control the execution of instructions from system memory 772 or the fixed disk 779, as well as the exchange of information between subsystems. The system memory 777 and/or the fixed disk 779 may embody a computer readable medium.


Embodiments of the invention are not limited to the above-described embodiments. For example, although separate functional blocks are shown for an issuer, payment processing network, and acquirer, some entities perform all of these functions and may be included in embodiments of invention.


Specific details regarding some of the above-described aspects are provided above. The specific details of the specific aspects may be combined in any suitable manner without departing from the spirit and scope of embodiments of the invention. For example, back end processing, data analysis, data collection, and other transactions may all be combined in some embodiments of the invention. However, other embodiments of the invention may be directed to specific embodiments relating to each individual aspect, or specific combinations of these individual aspects.


It should be understood that the present invention as described above can be implemented in the form of control logic using computer software (stored in a tangible physical medium) in a modular or integrated manner. Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will know and appreciate other ways and/or methods to implement the present invention using hardware and a combination of hardware and software.


Any of the software components or functions described in this application, may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, conventional or object-oriented techniques. The software code may be stored as a series of instructions, or commands on a computer readable medium, such as a random access memory (RAM), a read only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a CD-ROM. Any such computer readable medium may reside on or within a single computational apparatus, and may be present on or within different computational apparatuses within a system or network.


The above description is illustrative and is not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of the disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the pending claims along with their full scope or equivalents.


One or more features from any embodiment may be combined with one or more features of any other embodiment without departing from the scope of the invention.


A recitation of “a”, “an” or “the” is intended to mean “one or more” unless specifically indicated to the contrary.


All patents, patent applications, publications, and descriptions mentioned above are herein incorporated by reference in their entirety for all purposes. None is admitted to be prior art.

Claims
  • 1. A method comprising: receiving, at a server computer of a first transaction processing network, a first token provisioning request message from a token requestor, the first token provisioning request message including an account identifier identifying a co-network account managed by the first transaction processing network and a second transaction processing network such that transactions initiated using the account identifier is processed by one of the first transaction processing network or the second transaction processing network;determining, by the server computer of the first transaction processing network, the second transaction processing network associated with the account identifier;performing, by the server computer of the first transaction processing network, an authentication process with a user;generating, by the server computer of the first transaction processing network, a first token associated with the account identifier; and sending, by the server computer of the first transaction processing network, the first token and result of the authentication process to the token requestor, wherein the token requestor sends a second token provisioning message including the account identifier and the result of the authentication process performed by the server computer of the first transaction processing network to the second transaction processing network to request a second token for the account identifier, wherein, the second transaction processing network generates the second token based on the first token and the result of the authentication process, the first token and the second token are associated with the account identifier, and the first token and the second token are provisioned on a user device of the user.
  • 2. The method of claim 1, further comprising: upon determining the second transaction processing network, informing, by the server computer of the first transaction processing network, the token requestor about the second transaction processing network.
  • 3. The method of claim 1, further comprising: sending, by the server computer of the first transaction processing network, a provisioning request message to an authorizing computer to request authorization prior to generating the first token.
  • 4. The method of claim 3, wherein the provisioning request message includes the account identifier and the result of the authentication process.
  • 5. The method of claim 1, further comprising: determining, by the server computer of the first transaction processing network and prior to generating the first token, that the co-network account identified by the account identifier is eligible for provisioning.
  • 6. The method of claim 1, wherein the authentication process is performed based on the determining the second transaction processing network associated with the account identifier.
  • 7. The method of claim 1, wherein the first token or the second token is used to access a building or data in a database.
  • 8. A method comprising: sending, by a token requestor computer, a first token request message to a first transaction processing network, wherein the first token request message includes an account identifier identifying a co-network account managed by the first transaction processing network and a second transaction processing network such that transactions initiated using the account identifier is processed by one of the first transaction processing network or the second transaction processing network;receiving, by the token requestor computer, a message from the first transaction processing network indicating that the account identifier is associated with the second transaction processing network;receiving, by the token requestor computer, a first token from the first transaction processing network;sending, by the token requestor computer, a second token request message to the second transaction processing network, wherein the second token request message includes the account identifier, the first token and a result of an authentication process performed by the first transaction processing network, wherein the second transaction processing network generates a second token based on the first token and the result of the authentication process; andreceiving, by the token requestor computer, the second token from the second transaction processing network, wherein the first token and the second token are provisioned on a user device of a user of the co-network account associated with the account identifier.
  • 9. The method of claim 8, further comprising: receiving, by the token requestor computer, the result of the authentication process performed by the first transaction processing network.
  • 10. The method of claim 8, further comprising: receiving, by the token requestor computer, the account identifier from the user of the co-network account associated with the account identifier prior to sending the first token request message.
  • 11. A server computer of a first transaction processing network, comprising: one or more processors; anda non-transitory computer readable storage medium communicatively coupled with the one or more processors and storing instructions which, when executed by the one or more processors, cause the server computer to:receive a token provisioning request message from a token requestor, the token provisioning request message including an account identifier identifying a co-network account managed by the first transaction processing network and a second transaction processing network such that transactions initiated using the account identifier is processed by one of the first transaction processing network or the second transaction processing network;determine the second transaction processing network associated with the account identifier;perform an authentication process with a user based on the determining the second transaction processing network associated with the account identifier;generate a first token associated with the account identifier; andsend the first token and result of the authentication process performed by the server computer of the first transaction processing network to the token requestor, wherein the token requestor requests a second token for the account identifier from the second transaction processing network associated with the account identifier, wherein the second transaction processing network generates the second token based on the first token and the result of the authentication process, the first token and the second token are associated with the account identifier, and the first token and the second token are provisioned on a user device of the user.
  • 12. The server computer of claim 11, wherein the instructions, when executed by the one or more processors, further cause the server computer to: upon determining the second transaction processing network, inform the token requestor of the second transaction processing network.
  • 13. The server computer of claim 11, wherein the instructions, when executed by the one or more processors, further cause the server computer to: send a provisioning request message to an authorizing computer to request authorization prior to generating the first token.
  • 14. The server computer of claim 13, wherein the provisioning request message includes the account identifier and the result of the authentication process.
  • 15. The server computer of claim 11, wherein the instructions, when executed by the one or more processors, further cause the server computer to: determine, prior to generating the first token, that the co-network account identified by the account identifier is eligible for provisioning.
US Referenced Citations (549)
Number Name Date Kind
5613012 Hoffman Mar 1997 A
5781438 Lee Jul 1998 A
5883810 Franklin Mar 1999 A
5953710 Fleming Sep 1999 A
5956699 Wong Sep 1999 A
6000832 Franklin Dec 1999 A
6014635 Harris Jan 2000 A
6044360 Picciallo Mar 2000 A
6163771 Walker Dec 2000 A
6227447 Campisano May 2001 B1
6236981 Hill May 2001 B1
6267292 Walker Jul 2001 B1
6327578 Linehan Dec 2001 B1
6341724 Campisano Jan 2002 B2
6385596 Wiser May 2002 B1
6422462 Cohen Jul 2002 B1
6425523 Shem Ur Jul 2002 B1
6592044 Wong Jul 2003 B1
6636833 Flitcroft Oct 2003 B1
6748367 Lee Jun 2004 B1
6805287 Bishop Oct 2004 B2
6879965 Fung Apr 2005 B2
6891953 DeMello May 2005 B1
6901387 Wells May 2005 B2
6931382 Laage Aug 2005 B2
6938019 Uzo Aug 2005 B1
6941285 Sarcanin Sep 2005 B2
6980670 Hoffman Dec 2005 B1
6990470 Hogan Jan 2006 B2
6991157 Bishop Jan 2006 B2
7051929 Li May 2006 B2
7069249 Stolfo et al. Jun 2006 B2
7103576 Mann, III Sep 2006 B2
7113930 Eccles Sep 2006 B2
7136835 Flitcroft Nov 2006 B1
7177835 Walker Feb 2007 B1
7177848 Hogan Feb 2007 B2
7194437 Britto Mar 2007 B1
7209561 Shankar et al. Apr 2007 B1
7264154 Harris Sep 2007 B2
7287692 Patel Oct 2007 B1
7292999 Hobson Nov 2007 B2
7350230 Forrest Mar 2008 B2
7353382 Labrou Apr 2008 B2
7379919 Hogan May 2008 B2
RE40444 Linehan Jul 2008 E
7415443 Hobson Aug 2008 B2
7444676 Asghari-Kamrani Oct 2008 B1
7469151 Khan Dec 2008 B2
7548889 Bhambri Jun 2009 B2
7567934 Flitcroft Jul 2009 B2
7567936 Peckover Jul 2009 B1
7571139 Giordano Aug 2009 B1
7571142 Flitcroft Aug 2009 B1
7580898 Brown Aug 2009 B2
7584153 Brown Sep 2009 B2
7593896 Flitcroft Sep 2009 B1
7606560 Labrou Oct 2009 B2
7627531 Breck Dec 2009 B2
7627895 Gifford Dec 2009 B2
7650314 Saunders Jan 2010 B1
7685037 Reiners Mar 2010 B2
7702578 Fung Apr 2010 B2
7707120 Dominguez Apr 2010 B2
7712655 Wong May 2010 B2
7734527 Uzo Jun 2010 B2
7753265 Harris Jul 2010 B2
7770789 Oder, II Aug 2010 B2
7784685 Hopkins, III Aug 2010 B1
7793851 Mullen Sep 2010 B2
7801826 Labrou Sep 2010 B2
7805376 Smith Sep 2010 B2
7805378 Berardi Sep 2010 B2
7818264 Hammad Oct 2010 B2
7828220 Mullen Nov 2010 B2
7835960 Breck Nov 2010 B2
7841523 Oder, II Nov 2010 B2
7841539 Hewton Nov 2010 B2
7844550 Walker Nov 2010 B2
7848980 Carlson Dec 2010 B2
7849020 Johnson Dec 2010 B2
7853529 Walker Dec 2010 B1
7853995 Chow Dec 2010 B2
7865414 Fung Jan 2011 B2
7873579 Hobson Jan 2011 B2
7873580 Hobson Jan 2011 B2
7890393 Talbert Feb 2011 B2
7891563 Oder, II Feb 2011 B2
7896238 Fein Mar 2011 B2
7908216 Davis et al. Mar 2011 B1
7922082 Muscato Apr 2011 B2
7931195 Mullen Apr 2011 B2
7937324 Patterson May 2011 B2
7938318 Fein May 2011 B2
7954705 Mullen Jun 2011 B2
7959076 Hopkins, III Jun 2011 B1
7996288 Stolfo Aug 2011 B1
8025223 Saunders Sep 2011 B2
8046256 Chien Oct 2011 B2
8060448 Jones Nov 2011 B2
8060449 Zhu Nov 2011 B1
8074877 Mullen Dec 2011 B2
8074879 Harris Dec 2011 B2
8082210 Hansen Dec 2011 B2
8095113 Kean Jan 2012 B2
8104679 Brown Jan 2012 B2
RE43157 Bishop Feb 2012 E
8109436 Hopkins, III Feb 2012 B1
8121942 Carlson Feb 2012 B2
8121956 Carlson Feb 2012 B2
8126449 Beenau Feb 2012 B2
8171525 Pelly May 2012 B1
8175973 Davis et al. May 2012 B2
8190523 Patterson May 2012 B2
8196813 Vadhri Jun 2012 B2
8205791 Randazza Jun 2012 B2
8219489 Patterson Jul 2012 B2
8224702 Mengerink Jul 2012 B2
8225385 Chow Jul 2012 B2
8229852 Carlson Jul 2012 B2
8265993 Chien Sep 2012 B2
8280777 Mengerink Oct 2012 B2
8281991 Wentker et al. Oct 2012 B2
8328095 Oder, II Dec 2012 B2
8336088 Raj et al. Dec 2012 B2
8346666 Lindelsee et al. Jan 2013 B2
8376225 Hopkins, III Feb 2013 B1
8380177 Laracey Feb 2013 B2
8387873 Saunders Mar 2013 B2
8401539 Beenau Mar 2013 B2
8401898 Chien Mar 2013 B2
8402555 Grecia Mar 2013 B2
8403211 Brooks Mar 2013 B2
8412623 Moon Apr 2013 B2
8412837 Emigh Apr 2013 B1
8417642 Oren Apr 2013 B2
8447699 Batada May 2013 B2
8453223 Svigals May 2013 B2
8453925 Fisher Jun 2013 B2
8458487 Palgon Jun 2013 B1
8484134 Hobson Jul 2013 B2
8485437 Mullen Jul 2013 B2
8494959 Hathaway Jul 2013 B2
8498908 Mengerink Jul 2013 B2
8504475 Brand et al. Aug 2013 B2
8504478 Saunders Aug 2013 B2
8510816 Quach Aug 2013 B2
8433116 Davis et al. Sep 2013 B2
8533860 Grecia Sep 2013 B1
8538845 Liberty Sep 2013 B2
8555079 Shablygin Oct 2013 B2
8566168 Bierbaum Oct 2013 B1
8567670 Stanfield Oct 2013 B2
8571939 Lindsey Oct 2013 B2
8577336 Mechaley, Jr. Nov 2013 B2
8577803 Chatterjee Nov 2013 B2
8577813 Weiss Nov 2013 B2
8578176 Mattsson Nov 2013 B2
8583494 Fisher Nov 2013 B2
8584251 Mcguire Nov 2013 B2
8589237 Fisher Nov 2013 B2
8589271 Evans Nov 2013 B2
8589291 Carlson Nov 2013 B2
8595098 Starai Nov 2013 B2
8595812 Bomar Nov 2013 B2
8595850 Spies Nov 2013 B2
8606638 Dragt Dec 2013 B2
8606700 Carlson Dec 2013 B2
8606720 Baker Dec 2013 B1
8615468 Varadarajan Dec 2013 B2
8620754 Fisher Dec 2013 B2
8635157 Smith Jan 2014 B2
8646059 Von Behren Feb 2014 B1
8651374 Brabson Feb 2014 B2
8656180 Shablygin Feb 2014 B2
8751391 Freund Jun 2014 B2
8762263 Gauthier et al. Jun 2014 B2
8793186 Patterson Jul 2014 B2
8838982 Carlson et al. Sep 2014 B2
8856539 Weiss Oct 2014 B2
8887308 Grecia Nov 2014 B2
9065643 Hurry et al. Jun 2015 B2
9070129 Sheets et al. Jun 2015 B2
9100826 Weiss Aug 2015 B2
9160741 Wentker et al. Oct 2015 B2
9229964 Stevelinck Jan 2016 B2
9245267 Singh Jan 2016 B2
9249241 Dai et al. Feb 2016 B2
9256871 Anderson et al. Feb 2016 B2
9280765 Hammad Mar 2016 B2
9530137 Weiss Dec 2016 B2
9848052 Kumnick Dec 2017 B2
20010029485 Brody Oct 2001 A1
20010034720 Armes Oct 2001 A1
20010054003 Chien Dec 2001 A1
20020007320 Hogan Jan 2002 A1
20020016749 Borecki Feb 2002 A1
20020029193 Ranjan Mar 2002 A1
20020035548 Hogan Mar 2002 A1
20020073045 Rubin Jun 2002 A1
20020116341 Hogan Aug 2002 A1
20020133467 Hobson Sep 2002 A1
20020147913 Lun Yip Oct 2002 A1
20030028481 Flitcroft Feb 2003 A1
20030130955 Hawthorne Jul 2003 A1
20030191709 Elston Oct 2003 A1
20030191945 Keech Oct 2003 A1
20040010462 Moon Jan 2004 A1
20040050928 Bishop Mar 2004 A1
20040059682 Hasumi Mar 2004 A1
20040093281 Silverstein May 2004 A1
20040139008 Mascavage Jul 2004 A1
20040143532 Lee Jul 2004 A1
20040158532 Breck Aug 2004 A1
20040210449 Breck Oct 2004 A1
20040210498 Freund Oct 2004 A1
20040232225 Bishop Nov 2004 A1
20040260646 Berardi Dec 2004 A1
20050037735 Coutts Feb 2005 A1
20050080730 Sorrentino Apr 2005 A1
20050108178 York May 2005 A1
20050199709 Linlor Sep 2005 A1
20050246293 Ong Nov 2005 A1
20050269401 Spitzer Dec 2005 A1
20050269402 Spitzer Dec 2005 A1
20060235795 Johnson Oct 2006 A1
20060237528 Bishop Oct 2006 A1
20060278704 Saunders Dec 2006 A1
20070107044 Yuen May 2007 A1
20070129955 Dalmia Jun 2007 A1
20070136193 Starr Jun 2007 A1
20070136211 Brown Jun 2007 A1
20070170247 Friedman Jul 2007 A1
20070179885 Bird Aug 2007 A1
20070208671 Brown Sep 2007 A1
20070245414 Chan Oct 2007 A1
20070288377 Shaked Dec 2007 A1
20070291995 Rivera Dec 2007 A1
20080015988 Brown Jan 2008 A1
20080029607 Mullen Feb 2008 A1
20080035738 Mullen Feb 2008 A1
20080052226 Agarwal Feb 2008 A1
20080054068 Mullen Mar 2008 A1
20080054079 Mullen Mar 2008 A1
20080054081 Mullen Mar 2008 A1
20080065554 Hogan Mar 2008 A1
20080065555 Mullen Mar 2008 A1
20080201264 Brown Aug 2008 A1
20080201265 Hewton Aug 2008 A1
20080228646 Myers Sep 2008 A1
20080243702 Hart Oct 2008 A1
20080245855 Fein Oct 2008 A1
20080245861 Fein Oct 2008 A1
20080283591 Oder, II Nov 2008 A1
20080302869 Mullen Dec 2008 A1
20080302876 Mullen Dec 2008 A1
20080313264 Pestoni Dec 2008 A1
20090006262 Brown Jan 2009 A1
20090010488 Matsuoka Jan 2009 A1
20090037333 Flitcroft Feb 2009 A1
20090037388 Cooper Feb 2009 A1
20090043702 Bennett Feb 2009 A1
20090048971 Hathaway Feb 2009 A1
20090106112 Dalmia Apr 2009 A1
20090106160 Skowronek Apr 2009 A1
20090134217 Flitcroft May 2009 A1
20090157555 Biffle Jun 2009 A1
20090159673 Mullen Jun 2009 A1
20090159700 Mullen Jun 2009 A1
20090159707 Mullen Jun 2009 A1
20090173782 Muscato Jul 2009 A1
20090200371 Kean Aug 2009 A1
20090248583 Chhabra Oct 2009 A1
20090276347 Kargman Nov 2009 A1
20090281948 Carlson Nov 2009 A1
20090294527 Brabson Dec 2009 A1
20090307139 Mardikar Dec 2009 A1
20090308921 Mullen Dec 2009 A1
20090310778 Mueller Dec 2009 A1
20090327131 Beenau Dec 2009 A1
20100008535 Abulafia Jan 2010 A1
20100088237 Wankmueller Apr 2010 A1
20100094755 Kloster Apr 2010 A1
20100106644 Annan Apr 2010 A1
20100120408 Beenau May 2010 A1
20100133334 Vadhri Jun 2010 A1
20100138347 Chen Jun 2010 A1
20100145860 Pelegero Jun 2010 A1
20100161433 White Jun 2010 A1
20100185545 Royyuru Jul 2010 A1
20100211505 Saunders Aug 2010 A1
20100223186 Hogan Sep 2010 A1
20100228668 Hogan Sep 2010 A1
20100235284 Moore Sep 2010 A1
20100258620 Torreyson Oct 2010 A1
20100291904 Musfeldt Nov 2010 A1
20100299267 Faith et al. Nov 2010 A1
20100306076 Taveau Dec 2010 A1
20100325041 Berardi Dec 2010 A1
20110010292 Giordano Jan 2011 A1
20110016047 Wu Jan 2011 A1
20110016320 Bergsten Jan 2011 A1
20110040640 Erikson Feb 2011 A1
20110047076 Carlson et al. Feb 2011 A1
20110083018 Kesanupalli Apr 2011 A1
20110087596 Dorsey Apr 2011 A1
20110093397 Carlson Apr 2011 A1
20110125597 Oder, II May 2011 A1
20110153437 Archer Jun 2011 A1
20110153498 Makhotin et al. Jun 2011 A1
20110154466 Harper Jun 2011 A1
20110161233 Tieken Jun 2011 A1
20110178926 Lindelsee et al. Jul 2011 A1
20110191244 Dai Aug 2011 A1
20110238511 Park Sep 2011 A1
20110238573 Varadarajan Sep 2011 A1
20110246317 Coppinger Oct 2011 A1
20110258111 Raj et al. Oct 2011 A1
20110272471 Mullen Nov 2011 A1
20110272478 Mullen Nov 2011 A1
20110276380 Mullen Nov 2011 A1
20110276381 Mullen Nov 2011 A1
20110276424 Mullen Nov 2011 A1
20110276425 Mullen Nov 2011 A1
20110295745 White Dec 2011 A1
20110302081 Saunders Dec 2011 A1
20120023567 Hammad Jan 2012 A1
20120028609 Hruska Feb 2012 A1
20120030047 Fuentes et al. Feb 2012 A1
20120035998 Chien Feb 2012 A1
20120041881 Basu Feb 2012 A1
20120047237 Arvidsson Feb 2012 A1
20120066078 Kingston Mar 2012 A1
20120072350 Goldthwaite Mar 2012 A1
20120078735 Bauer Mar 2012 A1
20120078798 Downing Mar 2012 A1
20120078799 Jackson Mar 2012 A1
20120095852 Bauer Apr 2012 A1
20120095865 Doherty Apr 2012 A1
20120116902 Cardina May 2012 A1
20120123882 Carlson May 2012 A1
20120123940 Killian May 2012 A1
20120129514 Beenau May 2012 A1
20120143767 Abadir Jun 2012 A1
20120143772 Abadir Jun 2012 A1
20120158580 Eram Jun 2012 A1
20120158593 Garfinkle Jun 2012 A1
20120173431 Ritchie Jul 2012 A1
20120185386 Salama Jul 2012 A1
20120197807 Schlesser Aug 2012 A1
20120203664 Torossian Aug 2012 A1
20120203666 Torossian Aug 2012 A1
20120215688 Musser Aug 2012 A1
20120215696 Salonen Aug 2012 A1
20120221421 Hammad Aug 2012 A1
20120226582 Hammad Sep 2012 A1
20120231844 Coppinger Sep 2012 A1
20120233004 Bercaw Sep 2012 A1
20120246070 Vadhri Sep 2012 A1
20120246071 Jain Sep 2012 A1
20120246079 Wilson et al. Sep 2012 A1
20120259782 Hammad Oct 2012 A1
20120265631 Cronic Oct 2012 A1
20120271770 Harris Oct 2012 A1
20120297446 Webb Nov 2012 A1
20120300932 Cambridge Nov 2012 A1
20120303503 Cambridge Nov 2012 A1
20120303961 Kean Nov 2012 A1
20120304273 Bailey Nov 2012 A1
20120310725 Chien Dec 2012 A1
20120310831 Harris Dec 2012 A1
20120316992 Oborne Dec 2012 A1
20120317035 Royyuru Dec 2012 A1
20120317036 Bower Dec 2012 A1
20130017784 Fisher Jan 2013 A1
20130018757 Anderson et al. Jan 2013 A1
20130019098 Gupta Jan 2013 A1
20130031006 Mccullagh et al. Jan 2013 A1
20130054337 Brendell Feb 2013 A1
20130054466 Muscato Feb 2013 A1
20130054474 Yeager Feb 2013 A1
20130081122 Svigals Mar 2013 A1
20130091028 Oder, II Apr 2013 A1
20130110658 Lyman May 2013 A1
20130111599 Gargiulo May 2013 A1
20130117185 Collison May 2013 A1
20130124290 Fisher May 2013 A1
20130124291 Fisher May 2013 A1
20130124364 Mittal May 2013 A1
20130138525 Bercaw May 2013 A1
20130144888 Faith Jun 2013 A1
20130145148 Shablygin Jun 2013 A1
20130145172 Shablygin Jun 2013 A1
20130151400 Makhotin Jun 2013 A1
20130159178 Colon Jun 2013 A1
20130159184 Thaw Jun 2013 A1
20130166402 Parento Jun 2013 A1
20130166456 Zhang Jun 2013 A1
20130173736 Krzeminski Jul 2013 A1
20130185202 Goldthwaite Jul 2013 A1
20130191286 Cronic Jul 2013 A1
20130191289 Cronic Jul 2013 A1
20130198071 Jurss Aug 2013 A1
20130198080 Anderson et al. Aug 2013 A1
20130200146 Moghadam Aug 2013 A1
20130204787 Dubois Aug 2013 A1
20130204793 Kerridge Aug 2013 A1
20130212007 Mattsson Aug 2013 A1
20130212017 Bangia Aug 2013 A1
20130212019 Mattsson Aug 2013 A1
20130212024 Mattsson Aug 2013 A1
20130212026 Powell et al. Aug 2013 A1
20130212666 Mattsson Aug 2013 A1
20130218698 Moon Aug 2013 A1
20130218769 Pourfallah et al. Aug 2013 A1
20130226799 Raj Aug 2013 A1
20130226813 Voltz Aug 2013 A1
20130246199 Carlson Sep 2013 A1
20130246202 Tobin Sep 2013 A1
20130246203 Laracey Sep 2013 A1
20130246258 Dessert Sep 2013 A1
20130246259 Dessert Sep 2013 A1
20130246261 Purves et al. Sep 2013 A1
20130246267 Tobin Sep 2013 A1
20130254028 Salci Sep 2013 A1
20130254052 Royyuru Sep 2013 A1
20130254102 Royyuru Sep 2013 A1
20130254117 Von Mueller Sep 2013 A1
20130262296 Thomas Oct 2013 A1
20130262302 Lettow Oct 2013 A1
20130262315 Hruska Oct 2013 A1
20130262316 Hruska Oct 2013 A1
20130262317 Collinge Oct 2013 A1
20130275300 Killian Oct 2013 A1
20130275307 Khan Oct 2013 A1
20130275308 Paraskeva Oct 2013 A1
20130282502 Jooste Oct 2013 A1
20130282575 Mullen Oct 2013 A1
20130282588 Hruska Oct 2013 A1
20130297501 Monk et al. Nov 2013 A1
20130297504 Nwokolo Nov 2013 A1
20130297508 Belamant Nov 2013 A1
20130304649 Cronic Nov 2013 A1
20130308778 Fosmark Nov 2013 A1
20130311382 Fosmark Nov 2013 A1
20130317982 Mengerink Nov 2013 A1
20130332344 Weber Dec 2013 A1
20130339253 Sincai Dec 2013 A1
20130346314 Mogollon Dec 2013 A1
20140007213 Sanin Jan 2014 A1
20140013106 Redpath Jan 2014 A1
20140013114 Redpath Jan 2014 A1
20140013452 Aissi et al. Jan 2014 A1
20140019352 Shrivastava Jan 2014 A1
20140025581 Calman Jan 2014 A1
20140025585 Calman Jan 2014 A1
20140025958 Calman Jan 2014 A1
20140032417 Mattsson Jan 2014 A1
20140032418 Weber Jan 2014 A1
20140040137 Carlson Feb 2014 A1
20140040139 Brudnicki Feb 2014 A1
20140040144 Plomske Feb 2014 A1
20140040145 Ozvat Feb 2014 A1
20140040148 Ozvat Feb 2014 A1
20140040628 Fort Feb 2014 A1
20140041018 Bomar Feb 2014 A1
20140046853 Spies Feb 2014 A1
20140047551 Nagasundaram et al. Feb 2014 A1
20140052532 Tsai Feb 2014 A1
20140052620 Rogers Feb 2014 A1
20140052637 Jooste Feb 2014 A1
20140068706 Aissi Mar 2014 A1
20140074637 Hammad Mar 2014 A1
20140108172 Weber et al. Apr 2014 A1
20140114857 Griggs et al. Apr 2014 A1
20140143137 Carlson May 2014 A1
20140164243 Aabye et al. Jun 2014 A1
20140188586 Carpenter et al. Jul 2014 A1
20140250006 Makhotin Sep 2014 A1
20140294701 Dai et al. Oct 2014 A1
20140297534 Patterson Oct 2014 A1
20140310183 Weber Oct 2014 A1
20140330721 Wang Nov 2014 A1
20140330722 Laxminarayanan et al. Nov 2014 A1
20140331265 Mozell et al. Nov 2014 A1
20140337236 Wong Nov 2014 A1
20140344153 Raj Nov 2014 A1
20140344154 Flurscheim Nov 2014 A1
20140372308 Sheets Dec 2014 A1
20150019443 Sheets et al. Jan 2015 A1
20150032625 Dill Jan 2015 A1
20150032626 Dill Jan 2015 A1
20150032627 Dill Jan 2015 A1
20150046338 Laxminarayanan Feb 2015 A1
20150046339 Wong Feb 2015 A1
20150046340 Dimmick Feb 2015 A1
20150052064 Karpenko Feb 2015 A1
20150081554 Wong Mar 2015 A1
20150088674 Flurscheim Mar 2015 A1
20150088756 Makhotin et al. Mar 2015 A1
20150106239 Gaddam et al. Apr 2015 A1
20150112870 Nagasundaram et al. Apr 2015 A1
20150112871 Kumnick Apr 2015 A1
20150120472 Aabye et al. Apr 2015 A1
20150127529 Makhotin et al. May 2015 A1
20150127547 Powell et al. May 2015 A1
20150140960 Powell May 2015 A1
20150142673 Nelsen et al. May 2015 A1
20150161597 Subramanian et al. Jun 2015 A1
20150178724 Ngo et al. Jun 2015 A1
20150180836 Wong Jun 2015 A1
20150186864 Jones et al. Jul 2015 A1
20150193222 Pirzadeh et al. Jul 2015 A1
20150195133 Sheets Jul 2015 A1
20150199679 Palanisamy et al. Jul 2015 A1
20150199689 Kumnick et al. Jul 2015 A1
20150220917 Aabye et al. Aug 2015 A1
20150227932 Huxham Aug 2015 A1
20150269566 Gaddam et al. Sep 2015 A1
20150312038 Palanisamy Oct 2015 A1
20150319158 Kumnick Nov 2015 A1
20150332262 Lingappa Nov 2015 A1
20150339664 Wong Nov 2015 A1
20150356560 Shastry et al. Dec 2015 A1
20160028550 Gaddam et al. Jan 2016 A1
20160036790 Shastry et al. Feb 2016 A1
20160042263 Gaddam et al. Feb 2016 A1
20160065370 Le Saint et al. Mar 2016 A1
20160092696 Guglani et al. Mar 2016 A1
20160092872 Prakash et al. Mar 2016 A1
20160103675 Aabye et al. Apr 2016 A1
20160119296 Laxminarayanan et al. Apr 2016 A1
20160173483 Wong Jun 2016 A1
20160224976 Basu Aug 2016 A1
20160248479 Bellenger Aug 2016 A1
20160267466 Kumnick Sep 2016 A1
20160283942 Chitragar Sep 2016 A1
20160292686 Laxminarayanan Oct 2016 A1
20160302140 Shaw Oct 2016 A1
20160321652 Dimmick Nov 2016 A1
20160358163 Kumar Dec 2016 A1
20170017957 Radu Jan 2017 A1
20170032362 Lahkar Feb 2017 A1
20170046696 Powell et al. Feb 2017 A1
20170103387 Weber Apr 2017 A1
20170186007 Lam Jun 2017 A1
20170220818 Nagasundaram et al. Aug 2017 A1
20170221054 Flurscheim Aug 2017 A1
20170228723 Taylor et al. Aug 2017 A1
Foreign Referenced Citations (16)
Number Date Country
2156397 Feb 2010 EP
2001035304 May 2001 WO
2001035304 May 2001 WO
2004042536 May 2004 WO
2006113834 Oct 2006 WO
2009032523 Mar 2009 WO
2010078522 Jul 2010 WO
2012068078 May 2012 WO
2012098556 Jul 2012 WO
2012142370 Oct 2012 WO
2012167941 Dec 2012 WO
2013048538 Apr 2013 WO
2013056104 Apr 2013 WO
2013119914 Aug 2013 WO
2013179271 Dec 2013 WO
2014-007516 Jan 2014 WO
Non-Patent Literature Citations (32)
Entry
Chipman, et al., U.S. Appl. No. 15/265,282 (Unpublished), Self-Cleaning Token Vault, filed Sep. 14, 2016.
Lopez, et al., U.S. Appl. No. 15/462,658 (Unpublished), Replacing Token on a Multi-Token User Device, filed Mar. 17, 2017.
Petition for Inter Partes Review of U.S. Pat. No. 8,533,860 Challenging Claims 1-30 Under 35 U.S.C. § 312 and 37 C.F.R. § 42.104, filed Feb. 17, 2016, Before the USPTO Patent Trial and Appeal Board, IPR 2016-00600, 65 pages.
Wang, U.S. Appl. No. 62/000,288 (unpublished), Payment System Canonical Address Format, filed May 19, 2014.
Sharma et al., U.S. Appl. No. 62/003,717 (unpublished), Mobile Merchant Application, filed May 28, 2014.
Kalgi et al., U.S. Appl. No. 62/024,426, (unpublished) Secure Transactions Using Mobile Devices, filed Jul. 14, 2014.
Prakash et al., U.S. Appl. No. 62/037,033 (unpublished), Sharing Payment Token, filed Aug. 13, 2014.
Hoverson et al., U.S. Appl. No. 62/038,174 (unpublished), Customized Payment Gateway, filed Aug. 15, 2014.
Wang, U.S. Appl. No. 62/042,050 (unpublished), Payment Device Authentication and Authorization System, filed Aug. 26, 2014.
Gaddam et al., U.S. Appl. No. 62/053,736 (unpublished), Completing Transactions Without a User Payment Device, filed Sep. 22, 2014.
Patterson, U.S. Appl. No. 62/054,346 (unpublished), Mirrored Token Vault, filed Sep. 23, 2014.
Dimmick, U.S. Appl. No. 14/952,514 (unpublished), Systems Communications With Non-Sensitive Identifiers, filed Nov. 25, 2015.
Dimmick, U.S. Appl. No. 14/952,444 (unpublished), Tokenization Request Via Access Device, filed Nov. 25, 2015.
Prakash et al., U.S. Appl. No. 14/955,716 (unpublished), Provisioning Platform for Machine-To-Machine Devices, filed Dec. 1, 2015.
Wong et al., U.S. Appl. No. 14/966,948 (unpublished), Automated Access Data Provisioning, filed Dec. 11, 2015.
Stubbs et al., U.S. Appl. No. 62/103,522 (unpublished), Methods and Systems for Wallet Provider Provisioning, filed Jan. 14, 2015.
McGuire, U.S. Appl. No. 14/600,523 (unpublished), Secure Payment Processing Using Authorization Request, filed Jan. 20, 2015.
Flurscheim et al., U.S. Appl. No. 15/004,705 (unpublished), Cloud-Based Transactions With Magnetic Secure Transmission, filed Jan. 22, 2016.
Flurscheim et al., U.S. Appl. No. 62/108,403 (unpublished), Wearables With NFC HCE, filed Jan. 27, 2015.
Sabba et al., U.S. Appl. No. 15/011,366 (unpublished), Token Check Offline, filed Jan. 29, 2016.
Patterson, U.S. Appl. No. 15/019,157 (unpublished), Token Processing Utilizing Multiple Authorizations, filed Feb. 9, 2016.
Cash et al., U.S. Appl. No. 15/041,495 (unpublished), Peer Forward Authorization of Digital Requests, filed Feb. 11, 2016.
Le Saint et al., U.S. Appl. No. 15/008,388 (unpublished), Methods for Secure Credential Provisioning, filed Jan. 27, 2016.
Kinagi, U.S. Appl. No. 62/117,291 (unpublished), Token and Cryptogram Using Transaction Specific Information, filed Feb. 17, 2015.
Galland et al. U.S. Appl. No. 62/128,709 (unpublished), Tokenizing Transaction Amounts, filed Mar. 5, 2015.
Rangarajan et al., U.S. Appl. No. 61/751,763 (unpublished), Payments Bridge, filed Jan. 11, 2013.
Li, U.S. Appl. No. 61/894,749 (unpublished), Methods and Systems for Authentication and Issuance of Tokens in a Secure Environment, filed Oct. 23, 2013.
Aissi et al., U.S. Appl. No. 61/738,832 (unpublished), Management of Sensitive Data, filed Dec. 18, 2012.
Wong et al., U.S. Appl. No. 61/879,362 (unpublished), Systems and Methods for Managing Mobile Cardholder Verification Methods, filed Sep. 18, 2013.
Powell, U.S. Appl. No. 61/892,407 (unpublished), Issuer Over-The-Air Update Method and System, filed Oct. 17, 2013.
Powell, U.S. Appl. No. 61/926,236 (unpublished), Methods and Systems for Provisioning Mobile Devices With Payment Credentials and Payment Token Identifiers, filed Jan. 10, 2014.
International Search Report and the Written Opinion of the International Searching Authority, PCT Application No. PCT/US2016/026527, dated Dec. 21, 2016, 12 pages.
Related Publications (1)
Number Date Country
20170295155 A1 Oct 2017 US