Tokens can be used to protect sensitive information, such as account numbers. For example, tokens may only be valid under certain circumstances, such that if a token is compromised may not pose a security threat.
However, current mechanisms for obtaining tokens are limited. For example, a mobile device may require wireless communication connectivity in order to obtain a token over the air for a specific transaction. Thus, if a mobile device is in a zone without wireless communication coverage, the mobile device may not be able to obtain a token. If the mobile device is not able to obtain a token, then an intended transaction may not be consummated. Or, the mobile device may resort to using the sensitive information to conduct the transaction, which is undesirable.
Embodiments of the invention address these and other problems individually and collectively.
Embodiments of the invention are directed to obtaining tokens for transactions through alternative communication channels.
One embodiment of the invention is directed to a method. The method comprises receiving, at a first computer, a credential from a user, and sending a token request message including the credential to a second computer. The token request message is in the same format as an authorization request message used to authorize a transaction. The method further comprises receiving a token associated with the credential from the second computer, generating the authorization request message, and submitting the authorization request message including the token to an authorization computer for the transaction.
Another embodiment of the invention is directed to a first computer configured to perform the above-described method.
Another embodiment of the invention is directed to a method comprising receiving, at a second computer, a token request message including a credential from a first computer. The token request message has the same format as an authorization request message used to authorize a transaction. The method further comprises validating the token request message, assigning a token to the credential, and generating a token response message including the token. The token response message has the same format as an authorization response message. The method also comprises transmitting the token response message to the first computer.
Another embodiment of the invention is directed to a second computer configured to perform the above-described method.
Further details regarding embodiments of the invention can be found in the Detailed Description and the Figures.
Embodiments of the present invention are directed to requesting a payment token via a merchant access device. A user can present a payment device at an access device during a transaction. The payment device can then pass payment credentials to the access device. The payment credentials may then be sent by the access device in a token request message that is in the form of an authorization request message to a tokenization computer. The tokenization computer can respond with a token response message including a payment token that is associated with the payment credentials. The token response message may be in the form of an authorization response message. After the access device receives the payment token, it can be used to conduct the transaction instead of the payment credentials.
Some embodiments of the invention can advantageously allow normal magnetic stripe or chip type payment cards to request a payment tokens.
Some embodiments of the invention permit mobile device to obtain payment tokens via access devices. A payment token can be retrieved for a mobile device in the same manner as described above (e.g., transmit payment credentials from the mobile device to the access device, and access device sends a token request to a tokenization computer). Alternatively, the mobile device can generate the token request message and transmit the message to the access device, and then the access device can forward the token request message to the tokenization computer. Accordingly, a mobile device can obtain a payment token even when the mobile device is not in direct communication with the tokenization computer over the air.
Storing payment tokens on a payment device or mobile device can cause a security vulnerability, as the payment tokens may be compromised if the device is stolen or hacked. Instead of storing payment tokens, some embodiments of the invention allow tokens to be retrieved only when they are needed (e.g., during a transaction). Further, the payment tokens can have a short lifespan, as they may be used immediately. Accordingly, the risk of payment tokens being compromised is reduced, and any payment tokens that are stolen or lost may not pose a security threat (e.g., because they may be no longer valid). Further, the security of requesting and providing payment tokens can be improved, as secure authorization-related encryption techniques and secure communications can be utilized.
Embodiments of the invention, as discussed herein, will primarily be described as pertaining to financial transactions and payment systems. However, embodiments of the invention can also be used in other systems. Several examples exist of applications for which it can be advantageous to use the connectivity of an access point to obtain a token instead of an over-the-air connection.
In one example, instead of obtaining a payment token via an access device for a payment transaction, it may be useful to obtain access tokens via an access point for gaining access at the access point. Access tokens can be used for physical entry into a secure area, or for digital access to secure data (e.g., an email inbox, a secure database, a restricted webpage, etc.). For example, a user may have an access card (e.g., a readable badge or mobile device) that includes access credentials for entering a restricted area. It may be desirable to protect the user's access credentials by instead utilizing an access token that represents the access credentials.
Some embodiments allow access tokens to be retrieved when the user presents the access card at an access point (e.g., an access device that may control access to a restricted area). The access point may receive the access credentials from the access card, send a token request message with the access credentials, and obtain an access token associated with the access credentials. The access point can then use the access token for determining whether to allow access to the user, and/or the access point can store the access token (e.g., instead of the access credential) in a database that records who has entered the secure area. In some embodiments, the user's access card or other access device may be able to store access tokens. Accordingly, an access token may be stored for use at a later time. Accordingly, embodiments of the invention allow for protection of any suitable type of sensitive information by allowing for an suitable type of token to be requested and obtained.
Prior to discussing specific embodiments of the invention, some terms may be described in detail.
A “mobile device” may comprise any suitable electronic device that may be transported and operated by a user, which may also provide remote communication capabilities to a network. Examples of remote communication capabilities include using a mobile phone (wireless) network, wireless data network (e.g. 3G, 4G or similar networks), Wi-Fi, Wi-Max, or any other communication medium that may provide access to a network such as the Internet or a private network. Examples of mobile devices include mobile phones (e.g. cellular phones), PDAs, tablet computers, net books, laptop computers, personal music players, hand-held specialized readers, etc. Further examples of mobile devices include wearable devices, such as smart watches, fitness bands, ankle bracelets, rings, earrings, etc., as well as automobiles with remote communication capabilities. A mobile device may comprise any suitable hardware and software for performing such functions, and may also include multiple devices or components (e.g. when a device has remote access to a network by tethering to another device—i.e. using the other device as a modem—both devices taken together may be considered a single mobile device).
A “payment device” may include any suitable device that may be used to conduct a financial transaction, such as to provide payment credentials to a merchant. The payment device may be a software object, a hardware object, or a physical object. As examples of physical objects, the payment device may comprise a substrate such as a paper or plastic card, and information that is printed, embossed, encoded, or otherwise included at or near a surface of an object. A hardware object can relate to circuitry (e.g., permanent voltage values), and a software object can relate to non-permanent data stored on a device. A payment device may be associated with a value such as a monetary value, a discount, or store credit, and a payment device may be associated with an entity such as a bank, a merchant, a payment processing network, or a person. A payment device may be used to make a payment transaction. Suitable payment devices can be hand-held and compact so that they can fit into a user's wallet and/or pocket (e.g., pocket-sized). Example payment devices may include smart cards, magnetic stripe cards, keychain devices (such as the Speedpass™ commercially available from Exxon-Mobil Corp.), etc. Other examples of mobile devices include pagers, payment cards, security cards, access cards, smart media, transponders, and the like. If the payment device is in the form of a debit, credit, or smartcard, the payment device may also optionally have features such as magnetic stripes. Such devices can operate in either a contact or contactless mode. In some embodiments, a mobile device can function as a payment device (e.g., a mobile device can store and be able to transmit payment credentials for a transaction).
A “credential” may be any suitable information that serves as reliable evidence of worth, ownership, identity, or authority. A credential may be a string of numbers, letters, or any other suitable characters that may be present or contained in any object or document that can serve as confirmation.
A “value credential” may be information associated with worth. Examples of value credentials include payment credentials, coupon identifiers, information needed to obtain a promotional offer, etc.
“Payment credentials” may include any suitable information associated with an account (e.g. a payment account and/or payment device associated with the account). Such information may be directly related to the account or may be derived from information related to the account. Examples of account information may include a PAN (primary account number or “account number”), user name, expiration date, CVV (card verification value), dCVV (dynamic card verification value), CVV2 (card verification value 2), CVC3 card verification values, etc. CVV2 is generally understood to be a static verification value associated with a payment device. CVV2 values are generally visible to a user (e.g., a consumer), whereas CVV and dCVV values are typically embedded in memory or authorization request messages and are not readily known to the user (although they are known to the issuer and payment processors). Payment credentials may be any information that identifies or is associated with a payment account. Payment credentials may be provided in order to make a payment from a payment account. Payment credentials can also include a user name, an expiration date, a gift card number or code, and any other suitable information.
An “application” may be computer code or other data stored on a computer readable medium (e.g. memory element or secure element) that may be executable by a processor to complete a task.
A “digital wallet” can include an electronic device that allows an individual to conduct electronic commerce transactions. A digital wallet may store user profile information, payment credentials, bank account information, one or more digital wallet identifiers and/or the like and can be used in a variety of transactions, such as but not limited to eCommerce, social networks, money transfer/personal payments, mobile commerce, proximity payments, gaming, and/or the like for retail purchases, digital goods purchases, utility payments, purchasing games or gaming credits from gaming websites, transferring funds between users, and/or the like. A digital wallet may be designed to streamline the purchase and payment process. A digital wallet may allow the user to load one or more payment cards onto the digital wallet so as to make a payment without having to enter an account number or present a physical card.
A “digital wallet provider” may include an entity, such as an issuing bank or third party service provider, that issues a digital wallet to a user that enables the user to conduct financial transactions. A digital wallet provider may provide standalone user-facing software applications that store account numbers, or representations of the account numbers (e.g., payment tokens), on behalf of a cardholder (or other user) to facilitate payments at more than one unrelated merchant, perform person-to-person payments, or load financial value into the digital wallet. A digital wallet provider may enable a user to access its account via a personal computer, mobile device or access device. Additionally, a digital wallet provider may also provide one or more of the following functions: storing multiple payment cards and other payment products on behalf of a user, storing other information including billing address, shipping addresses, and transaction history, initiating a transaction by one or more methods, such as providing a user name and password, NFC or a physical token, and may facilitate pass-through or two-step transactions.
A “token” may be a substitute value for a credential. A token may be a string of numbers, letters, or any other suitable characters. Examples of tokens include payment tokens, access tokens, personal identification tokens, etc.
A “payment token” may include an identifier for a payment account that is a substitute for an account identifier, such as a primary account number (PAN). For example, a token may include a series of alphanumeric characters that may be used as a substitute for an original account identifier. For example, a token “4900 0000 0000 0001” may be used in place of a PAN “4147 0900 0000 1234.” In some embodiments, a token may be “format preserving” and may have a numeric format that conforms to the account identifiers used in existing transaction processing networks (e.g., ISO 8583 financial transaction message format). In some embodiments, a token may be used in place of a PAN to initiate, authorize, settle or resolve a payment transaction or represent the original credential in other systems where the original credential would typically be provided. In some embodiments, a token value may be generated such that the recovery of the original PAN or other account identifier from the token value may not be computationally derived. Further, in some embodiments, the token format may be configured to allow the entity receiving the token to identify it as a token and recognize the entity that issued the token.
“Tokenization” is a process by which data is replaced with substitute data. For example, a payment account identifier (e.g., a primary account number (PAN)) may be tokenized by replacing the primary account identifier with a substitute number (e.g. a token) that may be associated with the payment account identifier. Further, tokenization may be applied to any other information that may be replaced with a substitute value (i.e., token). Tokenization may be used to enhance transaction efficiency, improve transaction security, increase service transparency, or to provide a method for third-party enablement.
A “token provider” or “token service system” can include a system that that services payment tokens. In some embodiments, a token service system can facilitate requesting, determining (e.g., generating) and/or issuing tokens, as well as maintaining an established mapping of tokens to primary account numbers (PANs) in a repository (e.g. token vault). In some embodiments, the token service system may establish a token assurance level for a given token to indicate the confidence level of the token to PAN binding. The token service system may include or be in communication with a token vault where the generated tokens are stored. The token service system may support token processing of payment transactions submitted using tokens by de-tokenizing the token to obtain the actual PAN. In some embodiments, a token service system may include a tokenization computer alone, or in combination with other computers such as a transaction processing network computer. Various entities of a tokenization ecosystem may assume the roles of the token service provider. For example, payment networks and issuers or their agents may become the token service provider by implementing the token services according to embodiments of the present invention.
A “token domain” may indicate an area and/or circumstance in which a token can be used. Examples of the token domain may include, but are not limited to, payment channels (e.g., e-commerce, physical point of sale, etc.), POS entry modes (e.g., contactless, magnetic stripe, etc.), and merchant identifiers to uniquely identify where the token can be used. A set of parameters (i.e. token domain restriction controls) may be established as part of token issuance by the token service provider that may allow for enforcing appropriate usage of the token in payment transactions. For example, the token domain restriction controls may restrict the use of the token with particular presentment modes, such as contactless or e-commerce presentment modes. In some embodiments, the token domain restriction controls may restrict the use of the token at a particular merchant that can be uniquely identified. Some exemplary token domain restriction controls may require the verification of the presence of a token cryptogram that is unique to a given transaction. In some embodiments, a token domain can be associated with a token requestor.
“Token expiry date” may refer to the expiration date/time of the token. The token expiry date may be passed among the entities of the tokenization ecosystem during transaction processing to ensure interoperability. The token expiration date may be a numeric value (e.g. a 4-digit numeric value). In some embodiments, the token expiry date can be expressed as an time duration as measured from the time of issuance.
A “token request message” may be an electronic message for requesting a token. A token request message may include information usable for identifying a payment account or digital wallet, and/or information for generating a payment token. For example, a token request message may include payment credentials, mobile device identification information (e.g. a phone number or MSISDN), a digital wallet identifier, information identifying a tokenization service provider, a merchant identifier, a cryptogram, and/or any other suitable information. Information included in a token request message can be encrypted (e.g., with an issuer-specific key). In some embodiments, a token request message may be formatted as an authorization request message (e.g., an ISO 8583 message format). In some embodiments, the token request message may have a zero dollar amount in an authorization amount field. As another example, the token request message may include a flag or other indicator specifying that the message is a token request message.
A “token response message” may be a message that responds to a token request. A token response message may include an indication that a token request was approved or denied. A token response message may also include a payment token, mobile device identification information (e.g. a phone number or MSISDN), a digital wallet identifier, information identifying a tokenization service provider, a merchant identifier, a cryptogram, and/or any other suitable information. Information included in a token response message can be encrypted (e.g., with an issuer-specific key). In some embodiments, a token response message may be formatted as an authorization response message (e.g., an ISO 8583 message format). In some embodiments, the token response message may have a zero dollar amount in an authorization amount field. As another example, the token response message may include a flag or other indicator specifying that the message is a token response message.
A “user” may include an individual. In some embodiments, a user may be associated with one or more personal accounts and/or mobile devices. The user may also be referred to as a cardholder, account holder, or consumer.
A “resource provider” may be an entity that can provide a resource such as goods, services, information, and/or access. Examples of a resource provider includes merchants, access devices, secure data access points, etc. A “merchant” may typically be an entity that engages in transactions and can sell goods or services, or provide access to goods or services.
An “acquirer” may typically be a business entity (e.g., a commercial bank) that has a business relationship with a particular merchant or other entity. Some entities can perform both issuer and acquirer functions. Some embodiments may encompass such single entity issuer-acquirers. An acquirer may operate an acquirer computer, which can also be generically referred to as a “transport computer”.
An “authorizing entity” may be an entity that authorizes a request. Examples of an authorizing entity may be an issuer, a governmental agency, a document repository, an access administrator, etc. An “issuer” may typically refer to a business entity (e.g., a bank) that maintains an account for a user. An issuer may also issue payment credentials stored on a user device, such as a cellular telephone, smart card, tablet, or laptop to the consumer.
An “access device” may be any suitable device that provides access to a remote system. An access device may also be used for communicating with a merchant computer, a transaction processing computer, an authentication computer, or any other suitable system. An access device may generally be located in any suitable location, such as at the location of a merchant. An access device may be in any suitable form. Some examples of access devices include POS or point of sale devices (e.g., POS terminals), cellular phones, PDAs, personal computers (PCs), tablet PCs, hand-held specialized readers, set-top boxes, electronic cash registers (ECRs), automated teller machines (ATMs), virtual cash registers (VCRs), kiosks, security systems, access systems, and the like. An access device may use any suitable contact or contactless mode of operation to send or receive data from, or associated with, a user mobile device. In some embodiments, where an access device may comprise a POS terminal, any suitable POS terminal may be used and may include a reader, a processor, and a computer-readable medium. A reader may include any suitable contact or contactless mode of operation. For example, exemplary card readers can include radio frequency (RF) antennas, optical scanners, bar code readers, or magnetic stripe readers to interact with a payment device and/or mobile device. In some embodiments, a cellular phone, tablet, or other dedicated wireless device used as a POS terminal may be referred to as a mobile point of sale or an “mPOS” terminal.
An “authorization request message” may be an electronic message that requests authorization for a transaction. In some embodiments, it is sent to a transaction processing computer and/or an issuer of a payment card to request authorization for a transaction. An authorization request message according to some embodiments may comply with ISO 8583, which is a standard for systems that exchange electronic transaction information associated with a payment made by a user using a payment device or payment account. The authorization request message may include an issuer account identifier that may be associated with a payment device or payment account. An authorization request message may also comprise additional data elements corresponding to “identification information” including, by way of example only: a service code, a CVV (card verification value), a dCVV (dynamic card verification value), a PAN (primary account number or “account number”), a payment token, a user name, an expiration date, etc. An authorization request message may also comprise “transaction information,” such as any information associated with a current transaction, such as the transaction amount, merchant identifier, merchant location, acquirer bank identification number (BIN), card acceptor ID, information identifying items being purchased, etc., as well as any other information that may be utilized in determining whether to identify and/or authorize a transaction.
An “authorization response message” may be a message that responds to an authorization request. In some cases, it may be an electronic message reply to an authorization request message generated by an issuing financial institution or a transaction processing computer. The authorization response message may include, by way of example only, one or more of the following status indicators: Approval—transaction was approved; Decline—transaction was not approved; or Call Center—response pending more information, merchant must call the toll-free authorization phone number. The authorization response message may also include an authorization code, which may be a code that a credit card issuing bank returns in response to an authorization request message in an electronic message (either directly or through the transaction processing computer) to the merchant's access device (e.g. POS equipment) that indicates approval of the transaction. The code may serve as proof of authorization. As noted above, in some embodiments, a transaction processing computer may generate or forward the authorization response message to the merchant.
A “server computer” may include a powerful computer or cluster of computers. For example, the server computer can be a large mainframe, a minicomputer cluster, or a group of servers functioning as a unit. In one example, the server computer may be a database server coupled to a Web server. The server computer may be coupled to a database and may include any hardware, software, other logic, or combination of the preceding for servicing the requests from one or more client computers. The server computer may comprise one or more computational apparatuses and may use any of a variety of computing structures, arrangements, and compilations for servicing the requests from one or more client computers.
Messages between the computers, networks, and devices may be transmitted using a secure communications protocols such as, but not limited to, File Transfer Protocol (FTP); HyperText Transfer Protocol (HTTP); Secure Hypertext Transfer Protocol (HTTPS), Secure Socket Layer (SSL), ISO (e.g., ISO 8583) and/or the like.
The user 110 may be able to use the payment device 115 to conduct transactions with a resource provider associated with the resource provider computer 130. The payment device 115 may store information associated with the user 110 and/or a payment account. For example, the payment device 115 may store payment credentials as well as personal information such as a name, address, email address, phone number, or any other suitable user 110 identification information. The payment device 115 may provide this information to the access device 125 during a transaction.
Referring back to
An example of the resource provider computer 130, according to some embodiments of the invention, is shown in
The computer readable medium 130D may comprise a transaction processing module 130E, a token request module 130F, and any other suitable software module. The computer readable medium 130D may also comprise code, executable by the processor 130A for implementing a method comprising receiving, by a first computer, a credential from a user; sending a token request message including the credential to a second computer, the token request message being in the same format as an authorization request message used to authorize a transaction; receiving a token associated with the credential from the second computer; generating the authorization request message; and submitting the authorization request message including the token to an authorization computer for the transaction.
The transaction processing module 130E may comprise code that causes the processor 130A to process transactions. For example, the transaction processing module 130E may contain logic that causes the processor 130A to receive payment credentials from the user 110 (e.g., via the access device 125 and the payment device 115) for a transaction. The transaction processing module 130E may be able to initiate a transaction authorization process, and may also be able to finalize a transaction so that goods and/or services can be released. In some embodiments, instead of submitting payment credentials in an authorization request upon receipt, the transaction processing module 130E may first instruct the token request module 130F to obtain a payment token, and then the transaction processing module 130E may include the payment token in the authorization request message. The transaction processing module 130E may also be able to generate transaction receipts and store transaction records (e.g., including transaction data, user information, a payment token, etc.) in the transaction database 130C. In some embodiments, it may be beneficial to store a payment token in the transaction record instead of the user's payment credentials, as the potential of the payment credentials being compromised may thereby be reduced.
The token request module 130F may comprise code that causes the processor 130A to request and receive payment tokens. For example, the token request module 130F may contain logic that causes the processor 130A to send a token request message to a token provider. The token request message may include the user's payment credentials, resource provider identification information, and any other suitable information. The token request message may be formatted as an authorization request message, and may be transmitted along the same communication pathways as an authorization request message (e.g., it may be initially sent to the transport computer 140).
Referring back to
Authorization requests submitted by the resource provider computer 130 or the access device 125 may be sent to the transport computer 140 (which may be an acquirer computer). The transport computer 140 may be associated with the resource provider computer 130, and may manage authorization requests on behalf of the resource provider computer 130. The transport computer 140 may also handle token request messages on behalf of the resource provider computer 130. For example, in some embodiments, the transport computer 140 may receive and forward token request messages in the same manner as authorization request messages.
As shown in
An example of the transaction processing computer 150, according to some embodiments of the invention, is shown in
The computer readable medium 150D may comprise a transaction processing module 150E, a token request module 150F, and any other suitable software module. The computer readable medium 150D may also comprise code, executable by the processor 150A for implementing a method comprising receiving, by a transaction processing computer, a token request message including a credential (e.g., a value credential) from a first computer, wherein the token request message is in the same format as an authorization request message used to authorize a transaction; transmitting the token request message to a second computer; receiving a token response message including a token associated with the credential from the second computer, wherein the token response message is in the same format as an authorization response message; transmitting the token response message to the first computer; receiving the authorization request message from the first computer for the transaction, the authorization request message including the token; transmitting the authorization request message to an authorization computer; receiving the authorization response message from the authorization computer, the authorization response message indicating that the transaction is authorized; and transmitting the authorization response message to the first computer.
The transaction processing module 150E may comprise code that causes the processor 150A to process transactions. For example, the transaction processing module 150E may contain logic that causes the processor 150A to analyze transaction risk, and to forward, authorize, or reject authorization request messages for payment transactions. The transaction processing module 150E may also be able to store transaction records in the transaction database 150C. For example, the transaction database 150C may include a record of each completed transaction that includes transaction details (e.g. items purchased, amount, timestamp), resource provider information, user 110 information (e.g. a name, a phone number and/or other contact information, a payment token, an expiration date, etc.), and/or any other suitable information.
The token request module 150F may comprise code that causes the processor 150A to process token requests. For example, the token request module 150F may contain logic that causes the processor 150A to receive and forward token request messages and token response messages. In some embodiments, the token request module 150F may handle token request messages similarly to authorization request messages. For example, the token request module 150F may receive a token request message from the transport computer 140, identify a set of payment credentials within the message, identify an authorizing entity associated with the payment credentials, and then forward the token request message to the authorizing entity computer 160. Thus token request messages may be forwarded to the authorizing entity computer 160 or another relevant tokenization entity along the same communication channels as an authorization request message.
Referring back to
The authorizing entity computer 160 may issue and manage a payment account and an associated payment device 115 of the user 110. The authorizing entity computer 160 may be able authorize transactions that involve the payment account. Before authorizing a transaction, the authorizing entity computer 160 may authenticate payment credentials received in the authorization request, and check that there is available credit or funds in an associated payment account. The authorizing entity computer 160 may also receive and/or determine a risk level associated with the transaction, and may weigh the risk when deciding whether or not to authorize the transaction. If the authorizing entity computer 160 receives an authorization request that includes a payment token, the authorizing entity computer 160 may be able to de-tokenize the payment token in order to obtain the associated payment credentials.
The tokenization computer 170 (which may also be referred to as a “token provider computer”) may be able to provide payment tokens. For example, a token request message may be sent to the tokenization computer 170, and the tokenization computer 170 may then generate and/or associate a payment token with payment credentials in the token request message. In embodiments, tokenization services may be provided by the authorizing entity computer 160, the transaction processing computer 150, the transport computer 140, a third-party service provider, or any other suitable entity. Thus, the tokenization computer 170 may be incorporated as a part of another entity in the system 100. In some embodiments, as shown in
An example of the tokenization computer 170, according to some embodiments of the invention, is shown in
The computer readable medium 170D may comprise a tokenization module 170E, a detokenization module 170F, a security module 170G, and any other suitable software module. The computer readable medium 170D may also comprise code, executable by the processor 170A for implementing a method comprising receiving, at a second computer, a token request message including a credential from a first computer, the token request message being in the same format as an authorization request message used to authorize a transaction; validating the token request message; assigning a token to the credential; generating a token response message including the token, the token response message being in the same format as an authorization response message; and transmitting the token response message to the first computer.
The tokenization module 170E may comprise code that causes the processor 170A to provide payment tokens. For example, the tokenization module 170E may contain logic that causes the processor 170A to generate a payment token and/or associate the payment token with a set of payment credentials. A token record may then be stored in the token record database 170C indicating that the payment token is associated with a certain user 110 or a certain set of payment credentials. The tokenization module 170E may be able to send a token response message including the payment token along communication rails normally used for authorization response messages.
The detokenization module 170F may comprise code that causes the processor 170A to detokenize payment tokens. For example, the detokenization module 170F may contain logic that causes the processor 170A to identify a token record associated with a payment token in the token record database 170C. A set of payment credentials associated with the payment token (as indicated in the token record) can then be identified. In some embodiments, the detokenization module 170F may detokenize a payment token in response to a detokenization request message (e.g., received from the authorization entity computer 160, the transaction processing computer 150, or any other suitable entity).
The security module 170G may comprise code that causes the processor 170A to validate token requests before a payment token is provided. For example, security module 170G may contain logic that causes the processor 170A to confirm that a token request message is authentic by decrypting a cryptogram included in the message, by confirming that the payment credentials are authentic and associated with the requesting user 110, by assessing risk associated with the requesting resource provider computer 130, or by using any other suitable information. If the payment credentials are encrypted, the security module 170G may be able to decrypt the encrypted payment credentials (e.g. via an issuer-specific key).
As shown and described with respect to
A method 600 according to embodiments of the invention can be described with respect to
The user may wish to purchase a good or service from the resource provider. At step S602, in order to perform the purchase, the user may provide payment credentials (e.g. via the payment device 615) to the access device 625. For example, in some embodiments, the user may swipe a magnetic stripe card at the access device 625, or the user may present a smart card with contactless communication capabilities (e.g. NFC, Bluetooth, RF, etc.) to the access device 625. The payment device 615 may provide a PAN, a security code, an expiration date, a name, an address, a phone number, and/or any other suitable payment credentials.
At step S604, the resource provider computer 630 may receive (e.g. via the access device 625 or an online webpage) the payment credentials. In some embodiments, the resource provider computer 630 may then encrypt the payment credentials. For example, the resource provider computer 630 may encrypt the payment credentials with an issuer-specific key. Alternatively, in some embodiments, the resource provider computer 630 may encrypted payment credentials that are already encrypted. For example, the payment device 615 may use an issuer-specific key to encrypt the payment credentials, and may transmit the encrypted payment credentials to the access device 625. Accordingly, the resource provider computer 630 may not have access to sensitive unencrypted payment credentials.
At step S606, the resource provider computer 630, may determine that a payment token may be requested for the payment credentials. For example, in some embodiments, the resource provider computer 630 may recognize that the payment credentials include a PAN and not a payment token. The first six digits of a PAN may include a BIN, so if a valid BIN is present in the payment credentials, then it may be determined that the payment credentials include a PAN. In some embodiments, a payment token may be requested for certain types of payment devices 615, such as payment devices 615 that are associated with a certain authorizing entity computer 660 or transaction processing computer 650.
At step S608, the resource provider computer 630 may send a token request message to the transport computer 640. The token request message may include the payment credentials, which may be encrypted. The token request message may also include transaction information, a merchant ID, a cryptogram, a digital certificate (e.g., which may be signed by a key held by the resource provider computer 630), and/or any other suitable information. In some embodiments, the token request message may have an indication that it was sent by the resource provider computer 630 on behalf of the user, and may include any suitable user information.
The token request message may be transmitted through channels typically used for authorization request messages, and/or the token request message may be formatted similarly to an authorization request message. For example, the token request message may have an ISO 8583 message format. Also, the token request message may be a zero-dollar or no amount authorization request message. Similar to how an authorization request message can be forwarded, at step S610, the transport computer 640 may forward the token request message to the transaction processing computer 650. Further, at step S612, the transaction processing computer 650 may forward the token request message to the authorizing entity computer 660 associated with the payment credentials. In some embodiments, the transaction processing computer 650 may also analyze risk associated with the request and/or perform any other suitable checks and processing before forwarding the token request message.
At step S614, the authorizing entity computer 660 may forward the token request message to the tokenization computer 670. The authorizing entity computer 660 may forward the message after determining that the received message is a token request message and not an authorization request message (e.g., based on an indicator that it is a token request, based on a lack of transaction-related information such as a transaction amount).
At step S616, the tokenization computer 670 may validate the token request message (e.g. based on a cryptogram, transaction information, merchant information, the payment credentials, or any other suitable information in the token request message). In some embodiments, the tokenization computer 670 may use an encryption key to validate a digital certificate included in the token request message. If the payment credentials are encrypted, the tokenization computer 670 may be able to decrypt the encrypted payment credentials (e.g. via an issuer-specific key). In some embodiments, the authorizing entity computer 660 may decrypt the payment credentials before forwarding the token request message to the tokenization computer 670.
At step S618, the tokenization computer 670 may generate a payment token and/or create an association between the payment token and the payment credentials. In some embodiments, the tokenization computer 670 may instead identify an existing payment token that is already associated with the payment credentials.
At step S620, the tokenization computer 670 may send a token response message to the authorizing entity computer 660. The token response message may include the payment token as well as transaction information, a merchant ID, a cryptogram, and/or any other suitable information.
Similar to the token request message described above, the token response message may be transmitted through channels typically used for authorization response messages, and/or the token response message may be formatted similarly to an authorization response message. For example, similar to how an authorization response can be forwarded, at step S622, the authorizing entity computer 660 may forward the token response message to the transaction processing computer 650. Also, at step S624, the transaction processing computer 650 may forward the token response message to the transport computer 640. Further, at step S626, the transport computer 640 may forward the token response message to the resource provider computer 630.
At step S628, the resource provider computer 630 (or the access device 625) may receive the token response message including the payment token. In some embodiments, at this point, the resource provider computer 630 may erase any record of the payment credentials, such that the payment credentials are not stored at the resource provider computer 630. Then, the payment token may be used in place of the payment credentials (e.g. for transaction authorization and record-keeping purposes).
Although the example above describes the resource provider computer 630 generating a token request message and receiving a token response message, in other embodiments, the access device 625 may alternatively perform the above-described functions performed by the resource provider computer 630.
Thus, a request for a payment token associated with the payment device 615 may be sent by the resource provider computer 630 or the access device 625 on behalf of the user, allowing a payment card to be usable within a tokenization system. In some embodiments, having obtained the payment token, the transaction can then proceed to be completed using the payment token instead of the payment credentials.
At step S630, the resource provider computer 630 (or the access device 625) may send an authorization request message for the transaction to the transport computer 640. In some embodiments, the authorization request message may include the payment token instead of the payment credentials. The authorization request message may also include transaction information (e.g. items purchased, amount, etc.), merchant information (e.g. merchant name, location, etc.), and any other suitable information.
At step S632, the transport computer 640 may forward the authorization request message to the transaction processing computer 650. At step S634, the transaction processing computer 650 may forward the authorization request message to the authorizing entity computer 660.
At step S636, the authorizing entity computer 660 may detokenize the payment token and obtain the payment credentials. For example, the authorizing entity computer 660 may obtain the payment credentials from the tokenization computer 670 or from a local token record database. In some embodiments, any other suitable entity may instead detokenize the payment token. For example, the transaction processing computer 650 may detokenize the payment token before forwarding the authorization request message to the authorizing entity computer 660.
At step S638, the authorizing entity computer 660 may authorize or reject the transaction based on the payment credentials. For example, the authorizing entity computer 660 may identify the payment account associated with the payment credentials and/or payment token, and may determine whether there are sufficient funds.
At step S640, the authorizing entity computer 660 may send an authorization response indicating whether or not the transaction was authorized to the transaction processing computer 650. The authorization response message may include the payment token, transaction details, merchant information, and any other suitable information. In some embodiments, in order to protect the payment credentials by limiting exposure, the authorization response message may not include the payment credentials.
At step S642, the transaction processing computer 650 may forward the authorization response message to the transport computer 640. At step S644, the transport computer 640 may forward the authorization response message to the resource provider computer 630.
At step S646, the resource provider computer 630 may release the purchased goods and/or services to the user based on the authorization response message. Further, the resource provider computer 630 may store a transaction record including the payment token, user information, transaction details, and any other suitable information. In some embodiments, the resource provider computer 630 may erase any sensitive information, such as the encrypted or unencrypted payment credentials, but the resource provider computer 630 may store remaining information, such as the payment token.
Embodiments of the invention allow a number of alternatives to various aspects of the method 600. For example, in some embodiments, step S606 and other token requesting steps may be performed by the access device 625. For example, the access device 625 may include instructions for tokenization, or the access device 625 can interface with a resource provider system that can determine whether or not to request a payment token. Further, although the authorizing entity computer 660 in FIG. 6 obtains a token from the tokenization computer 670 and communicates with it to detokenize the token, in other embodiments, these functions may be performed by the transport computer 640 and/or the transaction processing computer 650 (as illustrated in
As described above, the method 600 advantageously allows the token request message to be sent via channels typically used for authorization request messages, allowing for efficient transmission and utilization of existing pathways. The token request message may be routed to the tokenization computer 670 via a number of entities. For example, as described above, the token request message may be forwarded via the transport computer 640, the transaction processing computer 650, and/or the authorizing entity computer 660.
In some embodiments, the token request message may be forwarded directly to the tokenization computer 670. For example, as shown in
Similarly, the token response message may be sent via channels typically used for authorization response messages, allowing for efficient transmission and utilization of existing pathways. The token request message may be routed to the resource provider computer 630 via a number of entities. In some embodiments, as shown in
In some embodiments, there limits may be placed on the payment token provided in the method 600. For example, the token domain and/or the token expiration date may be configured such that the payment token may only be usable in a certain area (e.g. based on geo-location data), at the resource provider computer 630 (e.g. based on a merchant ID), for the amount of the current transaction, and/or for a certain time period. Also, the payment token may be a one-time use token, and it may only be eligible for the current transaction. In some embodiments, the payment token may be utilized for a purchase immediately after being requested, and accordingly it may be assigned a short lifespan (e.g. it may have an expiration time in the near future). For example, the payment token may only be valid for 1 hour, 10 minutes, 5 minutes, 1 minute, 30 seconds, or any other suitable amount of time. In some embodiments, payment token parameter specifications may be requested in the token request message, or there may be specific rules for tokens associated with the authorizing entity computer 660 or any other suitable entity.
In some embodiments, instead of a magnetic stripe card or smart card, the user may use a different mode of payment, such as a mobile device. The following description relates to embodiments where a mobile device or any other suitable device with increased functionality is used for providing payment during a transaction.
The user 710 may be able to use the mobile device 720 to conduct transactions with a resource provider associated with the resource provider computer 730. The mobile device 720 may store information associated with the user 710 and/or a payment account. For example, the mobile device 720 may store (e.g., in a secure element) or have access to payment credentials as well as personal information such as a name, address, email address, phone number, or any other suitable user 710 identification information (e.g., via a digital wallet application). The mobile device 720 may be able to provide this information to the access device 725 during a transaction (e.g., via Bluetooth, NFC, RF, or any other suitable type of short range communications). Further, the mobile device 720 may be capable of more complex functions, such as generating request messages and receiving communications from various entities, such as the access device 725 and/or the wallet provider computer 780.
An example of the mobile device 720, according to some embodiments of the invention, is shown in
The memory 720E may comprise a digital wallet application 720J, a tokenization module 720L, and any other suitable module or data. The mobile device 720 may have any number of mobile applications installed or stored on the memory 720E and is not limited to that shown in
The digital wallet application 720J may provide a user interface for the user 710 to provide input and initiate, facilitate, and manage transactions using the mobile device 720. The digital wallet application 720J may be able to store and/or access a payment token and/or payment credentials. The digital wallet application 720J may also store an issuer-specific key, or any other suitable encryption means. The digital wallet application 720J may be able to cause the mobile device 720 to transmit the payment token and/or payment credentials in any suitable manner (e.g., NFC, QR code, etc.). In some embodiments, in order to increase security, payment tokens and/or payment credentials may not be stored at the mobile device 720. Instead, the payment tokens and/or payment credentials can be temporality retrieved from the wallet provider computer 780 when a transaction is being performed.
The digital wallet application 720J may be associated with and/or provided by the wallet provider computer 780, the authorizing entity computer 760, an issuer-trusted third party, the transaction processing computer 750, the transport computer 740, the resource provider computer 730, or any other suitable entity.
The tokenization module 720L may be a module of the digital wallet application 720J or a separate application on the mobile device 120. The tokenization module 720L may comprise code that causes the processor 720A to obtain payment tokens. For example, the tokenization module 720L may contain logic that causes the processor 720A to request a token from the wallet provider computer 780 or any other suitable tokenization service provider (e.g., the authorizing entity computer 760 or the transaction processing computer 750). In some embodiments, the mobile device 120 may be able to communicate over-the-air with the wallet provider computer 780, and thus the tokenization module 720L may be able to send a direct request to the wallet provider computer 780. In some embodiments, the tokenization module 720L may be able to send a token request message to the wallet provider computer 780 via communication channels typically used for authorization messages. For example, the tokenization module 720L may cause the mobile device 720 to send a token request message to the access device 725, and the request may be forwarded through the authorization rails to the wallet provider computer 780.
As mentioned, tokenization services may be provided by the wallet provider computer 780, the authorizing entity computer 760, the transaction processing computer 750, the transport computer 740, or any other suitable entity. The wallet provider computer 780 may additionally be able to provide other digital wallet-related services. For example, the wallet provider computer 780 may provide a digital wallet application, store payment credentials, store transaction records, and perform any other suitable transaction-related services. The wallet provider computer 780 may be associated with and/or in communication with one or more of the resource provider computer 730, the transport computer 740, the transaction processing computer 750, and the authorizing entity computer 760.
An example of the wallet provider computer 780, according to some embodiments of the invention, is shown in
The computer readable medium 780D may comprise a tokenization module 780E, a detokenization module 780F, a security module 780G, and any other suitable software module. The computer readable medium 780D may also comprise code, executable by the processor 780A for implementing a method comprising receiving, at a second computer, a token request message including a credential from a first computer, the token request message being in the same format as an authorization request message used to authorize a transaction; validating the token request message; assigning a token to the credential; generating a token response message including the token, the token response message being in the same format as an authorization response message; and transmitting the token response message to the first computer.
The tokenization module 780E may comprise code that causes the processor 780A to provide payment tokens. For example, tokenization module 780E may contain logic that causes the processor 780A to generate a payment token and/or associate the payment token with a set of payment credentials. A token record may then be stored in the user database 780C indicating that the payment token is associated with a certain user 710, a certain set of payment credentials, or a certain digital wallet. The tokenization module 780E may be able to send a token response message including the payment token along communication rails normally used for authorization response messages.
The detokenization module 780F may comprise code that causes the processor 780A to detokenize payment tokens. For example, the detokenization module 780F may contain logic that causes the processor 780A to identify a token record associated with a payment token in the user database 780C. A set of payment credentials associated with the payment token (as indicated in the token record or digital wallet) can then be identified. In some embodiments, the detokenization module 780F may detokenize a payment token in response to a detokenization request message (e.g., received from the authorization entity computer 760, the transaction processing computer 750, or any other suitable entity).
The security module 780G may comprise code that causes the processor 780A to validate token requests before a payment token is provided. For example, security module 780G may contain logic that causes the processor 780A to confirm that a token request message is authentic by decrypting a cryptogram included in the message, by confirming that the payment credentials are authentic and associated with the requesting user 710, by checking that the use of payment tokens is approved for an associated digital wallet, by assessing risk associated with the requesting resource provider computer 730, or by using any other suitable information. If the payment credentials are encrypted, the security module 780G may be able to decrypt the encrypted payment credentials (e.g. via an issuer-specific key).
Similar to
A method 1000 according to embodiments of the invention can be described with respect to
The user may wish to purchase a good or service from the resource provider. The user may wish to use the mobile device 1020 for providing payment. In some embodiments, in order to avoid compromise of payment information, the mobile device 1020 may not store payment credentials and/or payment tokens. Instead, the mobile device 1020 may wait until a transaction is about to take place before it retrieves a payment token from the wallet provider computer 1080. However, there may not always be a sufficient over-the-air connection (e.g., cellular or Wi-Fi) for the mobile device 1020 to communicate with the wallet provider computer 1080. Accordingly, the mobile device 1020 may instead leverage the resource provider's ability to communicate with the wallet provider computer 1080 via normal authorization channels.
At step S1002, the mobile device 1020 may activate a digital wallet application and/or a payment function. For example, the user may select a payment function in order to pay for the transaction.
At step S1004, the mobile device 1020 may generate a token request message (e.g., in response to a payment function being activated). The token request message may include payment information (e.g. a PAN, security code, expiration date, name, address, and/or phone number), information identifying the wallet provider computer 1080, and any other suitable information. Alternatively, in some embodiments, the token request message may not include payment credentials in order to protect the sensitive data. Instead, the token request message may include a digital wallet identifier, mobile device identifier, or any other suitable information that can be used to identify the user's digital wallet or payment account.
In some embodiments, the some or all of the information included in the token request message may be encrypted with an issuer-specific key. Further, the token request message may include a cryptogram, a digital certificate (e.g., which may be signed by a key held by the mobile device 1020), and/or any other security-related information.
At step S1006, the mobile device 1020 may transmit the token request message to the access device 1025 (e.g., via NFC, Bluetooth, RF, etc.). For example, the user may hold the mobile device 1020 near enough to the access device 1025 so that they can communicate wirelessly.
At step S1008, the resource provider computer 1030 may receive (e.g. via the access device 1025) the token request message. In some embodiments, the token request message may include encrypted payment credentials or no payment credentials, and thus the resource provider computer 1030 may not have access to sensitive unencrypted payment credentials.
At step S1010, the resource provider computer 1030 may determine that the token request message should be sent to the wallet provider computer 1080. For example, the token request message may be formatted as an authorization request message (e.g., an ISO 8583 message format) such that the resource provider computer 1030 can determine that the message should be forwarded along as an authorization request message. The resource provider computer 1030 may also detect a flag or indicator in the token request message specifying that the token request message should be forwarded. Additionally, the resource provider computer 1030 may optionally add transaction information, a merchant ID, a cryptogram, a digital certificate (e.g., which may be signed by a key held by the resource provider computer 1030), and/or any other suitable information to the token request message.
At steps S1012, S1014, S1016, and S1018, the token request message may be forwarded to the transport computer 1040, to the transaction processing computer 1050, authorizing entity computer 1060, and then the wallet provider computer 1080. Thus, the token request message may be transmitted through channels typically used for authorization request messages.
In some embodiments, the transaction processing computer 1050 and/or the authorizing entity computer 1060 may also analyze risk associated with the request and/or perform any other suitable checks and processing before forwarding the token request message. Further, the authorizing entity computer 1060 may forward the message to the wallet provider computer 1080 after determining that the received message is a token request message. For example, the authorizing entity computer 1060 may determine that the token request message includes an token request indicator, that the token request message lacks transaction-related information such as a transaction amount (or it includes a zero or no-dollar amount), or that the token request message lacks payment credentials.
At step S1020, the wallet provider computer 1080 may authenticate the token request message and/or the requesting digital wallet application. For example, the token request message may be validated based on a cryptogram, merchant information, the payment credentials, transaction information, or any other suitable information in the token request message. In some embodiments, the wallet provider computer 1080 may use an encryption key to validate a digital certificate included in the token request message. In some embodiments, the wallet provider computer 1080 may open a secure and private channel between the wallet provider computer 1080 and the mobile device 1020. This may enable mobile security checks (e.g. by the security module 780G) and token provisioning functions to occur. These functions may involve multiple communications/messages being sent between the mobile device 320 and the wallet provider server computer 380.
At step S1022, the wallet provider computer 1080 may identify the payment account and/or payment credentials for which a token is being requested. For example, if the payment credentials are included in the token request message, the wallet provider computer 1080 can locate the payment credentials within the message. If the payment credentials are encrypted, the wallet provider computer 1080 may be able to decrypt them (e.g. via an issuer-specific key). In some embodiments, the authorizing entity computer 1060 may decrypt the payment credentials before forwarding the token request message to the wallet provider computer 1080.
Alternatively, in some embodiments, the wallet provider computer 1080 may identify the user's record or the user's digital wallet (e.g., in the user database 780C) based on other information in the token request message, such as a digital wallet identifier, mobile device identifier, or any other suitable information. Then, a set of payment credentials can be obtained from the identified digital wallet.
At step S1024, the wallet provider computer 1080 may generate a payment token and/or create an association between the payment token and the payment credentials. In some embodiments, the wallet provider computer 1080 may instead identify an existing payment token that is already associated with the payment credentials. In some embodiments, as already described above for the method 600, there may be limits placed in the token domain and/or the token expiration date of the payment token.
At step S1026, the wallet provider computer 1080 may generate and send a token response message to the authorizing entity computer 1060. The token response message may include the payment token as well as transaction information, a merchant ID, a cryptogram, a digital wallet application identifier, a mobile device identifier, and/or any other suitable information. Some or all of the information included in the token response message may be encrypted with an issuer-specific key. The token response message may have an ISO 8583 message format, and/or the token response message may be formatted as a zero or no-dollar authorization response message.
At steps S1028, S1030, S1032, and S1034, the token response message may be forwarded to the transaction processing computer 1050, to the transport computer 1040, to the resource provider computer 1030, and then to the access device 1025. Thus, token response message may be transmitted through channels typically used for authorization response messages.
In some embodiments, the token response message may be routed to the access device 1025 in a different manner. For example, as shown in
At step S1036, the access device 1025 may send the token response message to the mobile device 1020. For example the user may still be holding the mobile device 1020 in within communication proximity of the access device 1025, or the user may be prompted to hold out the mobile device 1020 again.
At step S1038, the mobile device 1020 may associate the payment token with the digital wallet application or a certain set of payment credentials. The payment token may be stored at the mobile device 1020, or it may be deleted after being used for a transaction.
Thus, the mobile device 1020 may successfully leverage the connectivity of an access device 1025 for obtaining a payment token from the wallet provider computer 1080 via authorization communication channels. Accordingly, the mobile device 1020 can obtain payment tokens in real time during a transaction, and the mobile device 1020 can obtain payment tokens even when other wireless communication services (e.g., 3G, LTE, Wi-Fi) are unavailable. After receiving the payment token, the digital wallet application on the mobile device 1020 may then be able to use the payment token for the current transaction.
At step S1040, the mobile device 1020 may transmit the payment token to the access device 1025 as payment for the transaction. For example, the user may continue to hold the mobile device 1020 near the access device 1025 so that communication (e.g., NFC, Bluetooth, RF, etc.) is possible. Alternatively, the access device 1025 may prompt the user to provide payment information (e.g., raise the mobile device 1020 again) after the token requesting process was completed. Note that since the mobile device 1020 is now loaded with a payment token, it can use that payment token at any other suitable access device at any other suitable resource provider and not just at the access device 1025.
At step S1042, the access device 1025 may forward the payment token to the resource provider computer 1030 for processing. The access device 1025 may also provide transaction details and any other suitable information.
At step S1044, the resource provider computer 1030 (or the access device 1025) may send an authorization request message for the transaction to the transport computer 1040. In some embodiments, the authorization request message may include the payment token instead of the payment credentials. The authorization request message may also include transaction information (e.g. items purchased, amount, etc.), merchant information (e.g. merchant name, location, etc.), and any other suitable information.
At step S1046, the transport computer 1040 may forward the authorization request message to the transaction processing computer 1050. At step S1048, the transaction processing computer 1050 may forward the authorization request message to the authorizing entity computer 1060.
At step S1050, the authorizing entity computer 1060 may detokenize the payment token and obtain the payment credentials. For example, the authorizing entity computer 1060 may obtain the payment credentials from the wallet provider computer 1080, from a local token record database, or from any other suitable token provider. In some embodiments, any other suitable entity may instead detokenize the payment token. For example, the transaction processing computer 1050 may detokenize the payment token before forwarding the authorization request message to the authorizing entity computer 1060.
At step S1052, the authorizing entity computer 1060 may authorize or decline the transaction based on the payment credentials. For example, the authorizing entity computer 1060 may identify the payment account associated with the payment credentials and/or payment token, and may determine whether there are sufficient funds.
At step S1054, the authorizing entity computer 1060 may send an authorization response indicating whether or not the transaction was authorized to the transaction processing computer 1050. The authorization response message may include the payment token, transaction details, merchant information, and any other suitable information. In some embodiments, in order to protect the payment credentials by limiting exposure, the authorization response message may not include the payment credentials.
At step S1056, the transaction processing computer 1050 may forward the authorization response message to the transport computer 1040. At step S1058, the transport computer 1040 may forward the authorization response message to the resource provider computer 1030.
At step S1060, the resource provider computer 1030 may release the purchased goods and/or services to the user based on the authorization response message. Further, the resource provider computer 1030 may store a transaction record including the payment token, user information, transaction details, and any other suitable information. In some embodiments, the resource provider computer 1030 may erase any sensitive information, such as the encrypted or unencrypted payment credentials, but the resource provider computer 1030 may store remaining information, such as the payment token.
Embodiments of the invention allow a number of alternatives to various aspects of the method 1000. For example, in some embodiments, step S1010 and other token requesting steps may be performed by the access device 1025.
Additionally, in some embodiments, the token request message may be forwarded more directly to the wallet provider computer 1080. For example, as shown in
Further, as described above, in some embodiments the wallet provider computer 1080 may be embodied as part of another entity, such as the transport computer 1040, the transaction processing computer 1050, the authorizing entity computer 1060. Thus, the token request message may have reached its destination once it arrives at whichever entity is providing the tokenization services. The token request message may include a recipient identifier (e.g. a wallet provider ID or an issuer ID), such that the message can be directed to the appropriate recipient.
As described above in the method 1000, one or more communications can take place between the mobile device 1020 and the access device 1025. In some embodiments, the total time needed for communications between the mobile device 1020 and the access device 1025 (e.g., sending a token request, receiving a token response, providing payment, and/or receiving a transaction receipt) may be 30 seconds, 10 seconds, 5 seconds, 3 seconds, 1 second, or any other suitable amount of time. The time may vary from transaction to transaction. The user may hold the mobile device 1020 at or near the access device 1025 while the communications are taking place, and may remove the mobile device 1020 when the communications are finished.
In some embodiments, the user may be informed of communication progress and/or when it is acceptable to remove the mobile device 1020. For example, the access device 1025 and/or the mobile device 1020 may provide an indication when the communications are completed, such as an audible sound, a vibration, an electric pulse, and/or a displayed message.
Embodiments of the invention have a number of advantages. For example, in embodiments of the invention, payment devices such as credit cards can be integrated and used in payment systems that involve tokenization. Accordingly, users that do not have a mobile device or that are accustomed to a certain type of payment device (e.g. magnetic stripe credit cards) can participate in tokenization systems. Thus, a transition is provided from previous payment systems without tokenization to new payment systems with tokenization. Also, security may be increased for purchases made with payment devices such as credit cards, because a token can be provided and stored instead of sensitive payment information (e.g. a PAN).
Another advantage is that it may be easy for users to obtain tokens. The user might simply present a payment card or mobile device at an access device, and a token may be retrieved and then used for a purchase. Accordingly, the token requesting process may be seamless or undetected to the user.
Additionally, a mobile device may be able to obtain tokens when the mobile device does not have any connectivity (e.g. cell service, Wi-Fi, etc.). A merchant access device can essentially act as connectivity point (which is secure and reliable) through which the mobile device can request and receive tokens.
Further, tokens may only be valid for a short time duration because tokens may be used for a purchase immediately after being received. Accordingly, security may be increased, because if a token is compromised it may not be usable for fraudulent transactions at a later time. Also, devices that might retrieve and store tokens ahead of time (e.g. mobile devices, smart cards, etc.) may no longer need to store tokens, because tokens can be obtained during a transaction. Tokens stored on devices can be vulnerable because small devices are easily lost, and the tokens are often only protected by software. Accordingly, reducing the amount of time a token spends on a device before being used can reduce the risk of tokens being stolen or compromised.
Other embodiments of the invention are also contemplated.
One embodiment of the invention is directed to a method comprising receiving, at a second computer, a token request message including a credential from a first computer, the token request message being in the same format as an authorization request message used to authorize a transaction; validating, by the second computer, the token request message; assigning, by the second computer, a token to the credential; generating, by the second computer, a token response message including the token, the token response message being in the same format as an authorization response message; and transmitting, by the second computer, the token response message to the first computer.
Another embodiment of the invention is directed to a second computer configured to perform the above-described method. In some embodiments, the second computer may be a tokenization computer and/or a wallet provider computer.
Another embodiment of the invention is directed to a method comprising generating, by a mobile device, a token request message including a credential, the token request message being in the same format as an authorization request message used to authorize a transaction; sending, by the mobile device, the token request message to a first computer, wherein the first computer sends the token request message to a second computer, and wherein the first computer receives a token response message including a token associated with the credential from the second computer; receiving, by the mobile device, the token response message from the first computer; and providing, by the mobile device, the token to the first computer as payment for a transaction, wherein the first computer submits the authorization request message including the token to an authorization computer for the transaction.
Another embodiment of the invention is directed to a mobile device configured to perform the above-described method.
Another embodiment of the invention is directed to a method comprising receiving, by an intermediary computer, a token request message including a credential from a first computer, the token request message being in the same format as an authorization request message used to authorize a transaction; transmitting, by the intermediary computer, the token request message to a second computer; receiving, by the intermediary computer, a token response message including a token associated with the credential from the second computer, the token response message being in the same format as an authorization response message; transmitting, by the intermediary computer, the token response message to the first computer; receiving, by the intermediary computer, the authorization request message from the first computer for the transaction, the authorization request message including the token; transmitting, by the intermediary computer, the authorization request message to an authorization computer; receiving, by the intermediary computer, the authorization response message from the authorization computer, the authorization response message indicating that the transaction is authorized; and transmitting, by the intermediary computer, the authorization response message to the first computer.
Another embodiment of the invention is directed to an intermediary computer configured to perform the above-described method. In some embodiments, the intermediary computer may be a transport computer or a transaction processing computer.
As described, the inventive service may involve implementing one or more functions, processes, operations or method steps. In some embodiments, the functions, processes, operations or method steps may be implemented as a result of the execution of a set of instructions or software code by a suitably-programmed computing device, microprocessor, data processor, or the like. The set of instructions or software code may be stored in a memory or other form of data storage element which is accessed by the computing device, microprocessor, etc. In other embodiments, the functions, processes, operations or method steps may be implemented by firmware or a dedicated processor, integrated circuit, etc.
Any of the software components or functions described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, conventional or object-oriented techniques. The software code may be stored as a series of instructions, or commands on a computer-readable medium, such as a random access memory (RAM), a read-only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a CD-ROM. Any such computer-readable medium may reside on or within a single computational apparatus, and may be present on or within different computational apparatuses within a system or network.
While certain exemplary embodiments have been described in detail and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not intended to be restrictive of the broad invention, and that this invention is not to be limited to the specific arrangements and constructions shown and described, since various other modifications may occur to those with ordinary skill in the art.
As used herein, the use of “a”, “an” or “the” is intended to mean “at least one”, unless specifically indicated to the contrary.
This application is a continuation application of U.S. application Ser. No. 14/952,444, filed Nov. 25, 2015, which is a non-provisional application of and claims the benefit of the filing date of U.S. Provisional Application No. 62/084,738, filed on Nov. 26, 2014, which is herein incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5613012 | Hoffman et al. | Mar 1997 | A |
5781438 | Lee et al. | Jul 1998 | A |
5883810 | Franklin et al. | Mar 1999 | A |
5953710 | Fleming | Sep 1999 | A |
5956699 | Wong et al. | Sep 1999 | A |
6000832 | Franklin et al. | Dec 1999 | A |
6014635 | Harris et al. | Jan 2000 | A |
6044360 | Picciallo | Mar 2000 | A |
6163771 | Walker et al. | Dec 2000 | A |
6227447 | Campisano | May 2001 | B1 |
6236981 | Hill | May 2001 | B1 |
6267292 | Walker et al. | Jul 2001 | B1 |
6327578 | Linehan | Dec 2001 | B1 |
6341724 | Campisano | Jan 2002 | B2 |
6385596 | Wiser et al. | May 2002 | B1 |
6422462 | Cohen | Jul 2002 | B1 |
6425523 | Shem-Ur et al. | Jul 2002 | B1 |
6592044 | Wong et al. | Jul 2003 | B1 |
6636833 | Flitcroft et al. | Oct 2003 | B1 |
6748367 | Lee | Jun 2004 | B1 |
6805287 | Bishop et al. | Oct 2004 | B2 |
6879965 | Fung et al. | Apr 2005 | B2 |
6891953 | DeMello et al. | May 2005 | B1 |
6901387 | Wells et al. | May 2005 | B2 |
6931382 | Laage et al. | Aug 2005 | B2 |
6938019 | Uzo | Aug 2005 | B1 |
6941285 | Sarcanin | Sep 2005 | B2 |
6980670 | Hoffman et al. | Dec 2005 | B1 |
6990470 | Hogan et al. | Jan 2006 | B2 |
6991157 | Bishop et al. | Jan 2006 | B2 |
7051929 | Li | May 2006 | B2 |
7069249 | Stolfo et al. | Jun 2006 | B2 |
7103576 | Mann, III et al. | Sep 2006 | B2 |
7113930 | Eccles et al. | Sep 2006 | B2 |
7136835 | Flitcroft et al. | Nov 2006 | B1 |
7177835 | Walker et al. | Feb 2007 | B1 |
7177848 | Hogan et al. | Feb 2007 | B2 |
7194437 | Britto et al. | Mar 2007 | B1 |
7209561 | Shankar et al. | Apr 2007 | B1 |
7264154 | Harris | Sep 2007 | B2 |
7287692 | Patel et al. | Oct 2007 | B1 |
7292999 | Hobson et al. | Nov 2007 | B2 |
7350230 | Forrest | Mar 2008 | B2 |
7353382 | Labrou et al. | Apr 2008 | B2 |
7379919 | Hogan et al. | May 2008 | B2 |
RE40444 | Linehan | Jul 2008 | E |
7415443 | Hobson et al. | Aug 2008 | B2 |
7444676 | Asghari-Kamrani et al. | Oct 2008 | B1 |
7469151 | Khan et al. | Dec 2008 | B2 |
7548889 | Bhambri et al. | Jun 2009 | B2 |
7567934 | Flitcroft et al. | Jul 2009 | B2 |
7567936 | Peckover et al. | Jul 2009 | B1 |
7571139 | Giordano et al. | Aug 2009 | B1 |
7571142 | Flitcroft et al. | Aug 2009 | B1 |
7580898 | Brown et al. | Aug 2009 | B2 |
7584153 | Brown et al. | Sep 2009 | B2 |
7593896 | Flitcroft et al. | Sep 2009 | B1 |
7606560 | Labrou et al. | Oct 2009 | B2 |
7627531 | Breck et al. | Dec 2009 | B2 |
7627895 | Gifford et al. | Dec 2009 | B2 |
7650314 | Saunders | Jan 2010 | B1 |
7685037 | Reiners et al. | Mar 2010 | B2 |
7702578 | Fung et al. | Apr 2010 | B2 |
7707120 | Dominguez et al. | Apr 2010 | B2 |
7712655 | Wong | May 2010 | B2 |
7734527 | Uzo | Jun 2010 | B2 |
7753265 | Harris | Jul 2010 | B2 |
7770789 | Oder, II et al. | Aug 2010 | B2 |
7784685 | Hopkins, III | Aug 2010 | B1 |
7793851 | Mullen | Sep 2010 | B2 |
7801826 | Labrou et al. | Sep 2010 | B2 |
7805376 | Smith | Sep 2010 | B2 |
7805378 | Berardi et al. | Sep 2010 | B2 |
7818264 | Hammad | Oct 2010 | B2 |
7828220 | Mullen | Nov 2010 | B2 |
7835960 | Breck et al. | Nov 2010 | B2 |
7841523 | Oder, II et al. | Nov 2010 | B2 |
7841539 | Hewton | Nov 2010 | B2 |
7844550 | Walker et al. | Nov 2010 | B2 |
7848980 | Carlson | Dec 2010 | B2 |
7849020 | Johnson | Dec 2010 | B2 |
7853529 | Walker et al. | Dec 2010 | B1 |
7853995 | Chow et al. | Dec 2010 | B2 |
7865414 | Fung et al. | Jan 2011 | B2 |
7873579 | Hobson et al. | Jan 2011 | B2 |
7873580 | Hobson et al. | Jan 2011 | B2 |
7890393 | Talbert et al. | Feb 2011 | B2 |
7891563 | Oder, II et al. | Feb 2011 | B2 |
7896238 | Fein et al. | Mar 2011 | B2 |
7908216 | Davis et al. | Mar 2011 | B1 |
7922082 | Muscato | Apr 2011 | B2 |
7931195 | Mullen | Apr 2011 | B2 |
7937324 | Patterson | May 2011 | B2 |
7938318 | Fein et al. | May 2011 | B2 |
7954705 | Mullen | Jun 2011 | B2 |
7959076 | Hopkins, III | Jun 2011 | B1 |
7996288 | Stolfo | Aug 2011 | B1 |
8025223 | Saunders et al. | Sep 2011 | B2 |
8046256 | Chien et al. | Oct 2011 | B2 |
8060448 | Jones | Nov 2011 | B2 |
8060449 | Zhu | Nov 2011 | B1 |
8074877 | Mullen et al. | Dec 2011 | B2 |
8074879 | Harris | Dec 2011 | B2 |
8082210 | Hansen et al. | Dec 2011 | B2 |
8095113 | Kean et al. | Jan 2012 | B2 |
8104679 | Brown | Jan 2012 | B2 |
RE43157 | Bishop et al. | Feb 2012 | E |
8109436 | Hopkins, III | Feb 2012 | B1 |
8121942 | Carlson et al. | Feb 2012 | B2 |
8121956 | Carlson et al. | Feb 2012 | B2 |
8126449 | Beenau et al. | Feb 2012 | B2 |
8171525 | Pelly et al. | May 2012 | B1 |
8175973 | Davis et al. | May 2012 | B2 |
8190523 | Patterson | May 2012 | B2 |
8196813 | Vadhri | Jun 2012 | B2 |
8205791 | Randazza et al. | Jun 2012 | B2 |
8219489 | Patterson | Jul 2012 | B2 |
8224702 | Mengerink et al. | Jul 2012 | B2 |
8225385 | Chow et al. | Jul 2012 | B2 |
8229852 | Carlson | Jul 2012 | B2 |
8265993 | Chien et al. | Sep 2012 | B2 |
8280777 | Mengerink et al. | Oct 2012 | B2 |
8281991 | Wentker et al. | Oct 2012 | B2 |
8328095 | Oder, II et al. | Dec 2012 | B2 |
8336088 | Raj et al. | Dec 2012 | B2 |
8346666 | Lindelsee et al. | Jan 2013 | B2 |
8376225 | Hopkins, III | Feb 2013 | B1 |
8380177 | Laracey | Feb 2013 | B2 |
8387873 | Saunders et al. | Mar 2013 | B2 |
8401539 | Beenau et al. | Mar 2013 | B2 |
8401898 | Chien et al. | Mar 2013 | B2 |
8402555 | Grecia | Mar 2013 | B2 |
8403211 | Brooks et al. | Mar 2013 | B2 |
8412623 | Moon et al. | Apr 2013 | B2 |
8412837 | Emigh et al. | Apr 2013 | B1 |
8417642 | Oren | Apr 2013 | B2 |
8423453 | Elliott | Apr 2013 | B1 |
8433116 | Butler et al. | Apr 2013 | B2 |
8447699 | Batada et al. | May 2013 | B2 |
8453223 | Svigals et al. | May 2013 | B2 |
8453925 | Fisher et al. | Jun 2013 | B2 |
8458487 | Palgon et al. | Jun 2013 | B1 |
8484134 | Hobson et al. | Jul 2013 | B2 |
8485437 | Mullen et al. | Jul 2013 | B2 |
8494959 | Hathaway et al. | Jul 2013 | B2 |
8498908 | Mengerink et al. | Jul 2013 | B2 |
8504475 | Brand et al. | Aug 2013 | B2 |
8504478 | Saunders et al. | Aug 2013 | B2 |
8510816 | Quach et al. | Aug 2013 | B2 |
8533860 | Grecia | Sep 2013 | B1 |
8538845 | Liberty | Sep 2013 | B2 |
8555079 | Shablygin et al. | Oct 2013 | B2 |
8566168 | Bierbaum et al. | Oct 2013 | B1 |
8567670 | Stanfield et al. | Oct 2013 | B2 |
8571939 | Lindsey et al. | Oct 2013 | B2 |
8577336 | Mechaley, Jr. | Nov 2013 | B2 |
8577803 | Chatterjee et al. | Nov 2013 | B2 |
8577813 | Weiss | Nov 2013 | B2 |
8578176 | Mattsson | Nov 2013 | B2 |
8583494 | Fisher | Nov 2013 | B2 |
8584251 | McGuire et al. | Nov 2013 | B2 |
8589237 | Fisher | Nov 2013 | B2 |
8589271 | Evans | Nov 2013 | B2 |
8589291 | Carlson et al. | Nov 2013 | B2 |
8595098 | Starai et al. | Nov 2013 | B2 |
8595812 | Bomar et al. | Nov 2013 | B2 |
8595850 | Spies et al. | Nov 2013 | B2 |
8606638 | Dragt | Dec 2013 | B2 |
8606700 | Carlson et al. | Dec 2013 | B2 |
8606720 | Baker et al. | Dec 2013 | B1 |
8615468 | Varadarajan | Dec 2013 | B2 |
8620754 | Fisher | Dec 2013 | B2 |
8635157 | Smith et al. | Jan 2014 | B2 |
8646059 | von Behren et al. | Feb 2014 | B1 |
8651374 | Brabson et al. | Feb 2014 | B2 |
8656180 | Shablygin et al. | Feb 2014 | B2 |
8751391 | Freund | Jun 2014 | B2 |
8762263 | Gauthier et al. | Jun 2014 | B2 |
8763142 | McGuire et al. | Jun 2014 | B2 |
8793186 | Patterson | Jul 2014 | B2 |
8838982 | Carlson et al. | Sep 2014 | B2 |
8856539 | Weiss | Oct 2014 | B2 |
8887308 | Grecia | Nov 2014 | B2 |
8935777 | DeSoto et al. | Jan 2015 | B2 |
9065643 | Hurry et al. | Jun 2015 | B2 |
9070129 | Sheets et al. | Jun 2015 | B2 |
9100826 | Weiss | Aug 2015 | B2 |
9160741 | Wentker et al. | Oct 2015 | B2 |
9229964 | Stevelinck | Jan 2016 | B2 |
9245267 | Singh | Jan 2016 | B2 |
9249241 | Dai et al. | Feb 2016 | B2 |
9256871 | Anderson et al. | Feb 2016 | B2 |
9280765 | Hammad | Mar 2016 | B2 |
9530137 | Weiss | Dec 2016 | B2 |
20010029485 | Brody et al. | Oct 2001 | A1 |
20010034720 | Armes | Oct 2001 | A1 |
20010054003 | Chien et al. | Dec 2001 | A1 |
20020007320 | Hogan et al. | Jan 2002 | A1 |
20020016749 | Borecki et al. | Feb 2002 | A1 |
20020029193 | Ranjan et al. | Mar 2002 | A1 |
20020035548 | Hogan et al. | Mar 2002 | A1 |
20020073045 | Rubin et al. | Jun 2002 | A1 |
20020116341 | Hogan et al. | Aug 2002 | A1 |
20020133467 | Hobson et al. | Sep 2002 | A1 |
20020147913 | Lun Yip | Oct 2002 | A1 |
20030028481 | Flitcroft et al. | Feb 2003 | A1 |
20030130955 | Hawthorne | Jul 2003 | A1 |
20030191709 | Elston et al. | Oct 2003 | A1 |
20030191945 | Keech | Oct 2003 | A1 |
20040010462 | Moon et al. | Jan 2004 | A1 |
20040050928 | Bishop et al. | Mar 2004 | A1 |
20040059682 | Hasumi et al. | Mar 2004 | A1 |
20040093281 | Silverstein et al. | May 2004 | A1 |
20040139008 | Mascavage, III | Jul 2004 | A1 |
20040143532 | Lee | Jul 2004 | A1 |
20040158532 | Breck et al. | Aug 2004 | A1 |
20040210449 | Breck et al. | Oct 2004 | A1 |
20040210498 | Freund | Oct 2004 | A1 |
20040232225 | Bishop et al. | Nov 2004 | A1 |
20040260646 | Berardi et al. | Dec 2004 | A1 |
20050037735 | Coutts | Feb 2005 | A1 |
20050080730 | Sorrentino | Apr 2005 | A1 |
20050108178 | York | May 2005 | A1 |
20050199709 | Linlor | Sep 2005 | A1 |
20050246293 | Ong | Nov 2005 | A1 |
20050269401 | Spitzer et al. | Dec 2005 | A1 |
20050269402 | Spitzer et al. | Dec 2005 | A1 |
20060235795 | Johnson et al. | Oct 2006 | A1 |
20060237528 | Bishop et al. | Oct 2006 | A1 |
20060278704 | Saunders et al. | Dec 2006 | A1 |
20070107044 | Yuen et al. | May 2007 | A1 |
20070129955 | Dalmia et al. | Jun 2007 | A1 |
20070136193 | Starr | Jun 2007 | A1 |
20070136211 | Brown et al. | Jun 2007 | A1 |
20070170247 | Friedman | Jul 2007 | A1 |
20070179885 | Bird et al. | Aug 2007 | A1 |
20070208671 | Brown et al. | Sep 2007 | A1 |
20070245414 | Chan et al. | Oct 2007 | A1 |
20070288377 | Shaked | Dec 2007 | A1 |
20070291995 | Rivera | Dec 2007 | A1 |
20080015988 | Brown et al. | Jan 2008 | A1 |
20080029607 | Mullen | Feb 2008 | A1 |
20080035738 | Mullen | Feb 2008 | A1 |
20080052226 | Agarwal et al. | Feb 2008 | A1 |
20080054068 | Mullen | Mar 2008 | A1 |
20080054079 | Mullen | Mar 2008 | A1 |
20080054081 | Mullen | Mar 2008 | A1 |
20080065554 | Hogan et al. | Mar 2008 | A1 |
20080065555 | Mullen | Mar 2008 | A1 |
20080201264 | Brown et al. | Aug 2008 | A1 |
20080201265 | Hewton | Aug 2008 | A1 |
20080228646 | Myers et al. | Sep 2008 | A1 |
20080243702 | Hart et al. | Oct 2008 | A1 |
20080245855 | Fein et al. | Oct 2008 | A1 |
20080245861 | Fein et al. | Oct 2008 | A1 |
20080255947 | Friedman | Oct 2008 | A1 |
20080283591 | Oder, II et al. | Nov 2008 | A1 |
20080302869 | Mullen | Dec 2008 | A1 |
20080302876 | Mullen | Dec 2008 | A1 |
20080313264 | Pestoni | Dec 2008 | A1 |
20090006262 | Brown et al. | Jan 2009 | A1 |
20090010488 | Matsuoka et al. | Jan 2009 | A1 |
20090037333 | Flitcroft et al. | Feb 2009 | A1 |
20090037388 | Cooper et al. | Feb 2009 | A1 |
20090043702 | Bennett | Feb 2009 | A1 |
20090048971 | Hathaway et al. | Feb 2009 | A1 |
20090106112 | Dalmia et al. | Apr 2009 | A1 |
20090106160 | Skowronek | Apr 2009 | A1 |
20090134217 | Flitcroft et al. | May 2009 | A1 |
20090157555 | Biffle et al. | Jun 2009 | A1 |
20090159673 | Mullen et al. | Jun 2009 | A1 |
20090159700 | Mullen et al. | Jun 2009 | A1 |
20090159707 | Mullen et al. | Jun 2009 | A1 |
20090173782 | Muscato | Jul 2009 | A1 |
20090200371 | Kean et al. | Aug 2009 | A1 |
20090248583 | Chhabra | Oct 2009 | A1 |
20090276347 | Kargman | Nov 2009 | A1 |
20090281948 | Carlson | Nov 2009 | A1 |
20090294527 | Brabson et al. | Dec 2009 | A1 |
20090307139 | Mardikar et al. | Dec 2009 | A1 |
20090308921 | Mullen | Dec 2009 | A1 |
20090327131 | Beenau et al. | Dec 2009 | A1 |
20100008535 | Abulafia et al. | Jan 2010 | A1 |
20100088237 | Wankmueller | Apr 2010 | A1 |
20100094755 | Kloster | Apr 2010 | A1 |
20100106644 | Annan et al. | Apr 2010 | A1 |
20100120408 | Beenau et al. | May 2010 | A1 |
20100133334 | Vadhri | Jun 2010 | A1 |
20100138347 | Chen | Jun 2010 | A1 |
20100145860 | Pelegero | Jun 2010 | A1 |
20100161433 | White | Jun 2010 | A1 |
20100185545 | Royyuru et al. | Jul 2010 | A1 |
20100211505 | Saunders et al. | Aug 2010 | A1 |
20100223186 | Hogan et al. | Sep 2010 | A1 |
20100228668 | Hogan et al. | Sep 2010 | A1 |
20100235284 | Moore | Sep 2010 | A1 |
20100258620 | Torreyson et al. | Oct 2010 | A1 |
20100291904 | Musfeldt et al. | Nov 2010 | A1 |
20100299267 | Faith et al. | Nov 2010 | A1 |
20100306076 | Taveau et al. | Dec 2010 | A1 |
20100325041 | Berardi et al. | Dec 2010 | A1 |
20110010292 | Giordano et al. | Jan 2011 | A1 |
20110016047 | Wu et al. | Jan 2011 | A1 |
20110016320 | Bergsten et al. | Jan 2011 | A1 |
20110040640 | Erikson | Feb 2011 | A1 |
20110047076 | Carlson et al. | Feb 2011 | A1 |
20110083018 | Kesanupalli et al. | Apr 2011 | A1 |
20110087596 | Dorsey | Apr 2011 | A1 |
20110093397 | Carlson et al. | Apr 2011 | A1 |
20110125597 | Oder, II et al. | May 2011 | A1 |
20110153437 | Archer et al. | Jun 2011 | A1 |
20110153498 | Makhotin et al. | Jun 2011 | A1 |
20110154466 | Harper et al. | Jun 2011 | A1 |
20110161233 | Tieken | Jun 2011 | A1 |
20110178926 | Lindelsee et al. | Jul 2011 | A1 |
20110191244 | Dai | Aug 2011 | A1 |
20110238511 | Park et al. | Sep 2011 | A1 |
20110238573 | Varadarajan | Sep 2011 | A1 |
20110246317 | Coppinger | Oct 2011 | A1 |
20110258111 | Raj et al. | Oct 2011 | A1 |
20110258123 | Dawkins et al. | Oct 2011 | A1 |
20110272471 | Mullen | Nov 2011 | A1 |
20110272478 | Mullen | Nov 2011 | A1 |
20110276380 | Mullen et al. | Nov 2011 | A1 |
20110276381 | Mullen et al. | Nov 2011 | A1 |
20110276424 | Mullen | Nov 2011 | A1 |
20110276425 | Mullen | Nov 2011 | A1 |
20110295745 | White et al. | Dec 2011 | A1 |
20110302081 | Saunders et al. | Dec 2011 | A1 |
20120023567 | Hammad | Jan 2012 | A1 |
20120028609 | Hruska | Feb 2012 | A1 |
20120030047 | Fuentes et al. | Feb 2012 | A1 |
20120035998 | Chien et al. | Feb 2012 | A1 |
20120041881 | Basu et al. | Feb 2012 | A1 |
20120047237 | Arvidsson et al. | Feb 2012 | A1 |
20120066078 | Kingston et al. | Mar 2012 | A1 |
20120072350 | Goldthwaite et al. | Mar 2012 | A1 |
20120078735 | Bauer et al. | Mar 2012 | A1 |
20120078798 | Downing et al. | Mar 2012 | A1 |
20120078799 | Jackson et al. | Mar 2012 | A1 |
20120095852 | Bauer et al. | Apr 2012 | A1 |
20120095865 | Doherty et al. | Apr 2012 | A1 |
20120116902 | Cardina et al. | May 2012 | A1 |
20120123882 | Carlson et al. | May 2012 | A1 |
20120123940 | Killian et al. | May 2012 | A1 |
20120129514 | Beenau et al. | May 2012 | A1 |
20120143767 | Abadir | Jun 2012 | A1 |
20120143772 | Abadir | Jun 2012 | A1 |
20120158580 | Eram et al. | Jun 2012 | A1 |
20120158593 | Garfinkle et al. | Jun 2012 | A1 |
20120173431 | Ritchie et al. | Jul 2012 | A1 |
20120185386 | Salama et al. | Jul 2012 | A1 |
20120197807 | Schlesser et al. | Aug 2012 | A1 |
20120203664 | Torossian et al. | Aug 2012 | A1 |
20120203666 | Torossian et al. | Aug 2012 | A1 |
20120215688 | Musser et al. | Aug 2012 | A1 |
20120215696 | Salonen | Aug 2012 | A1 |
20120221421 | Hammad | Aug 2012 | A1 |
20120226582 | Hammad | Sep 2012 | A1 |
20120231844 | Coppinger | Sep 2012 | A1 |
20120233004 | Bercaw | Sep 2012 | A1 |
20120246070 | Vadhri | Sep 2012 | A1 |
20120246071 | Jain et al. | Sep 2012 | A1 |
20120246079 | Wilson et al. | Sep 2012 | A1 |
20120265631 | Cronic et al. | Oct 2012 | A1 |
20120271770 | Harris et al. | Oct 2012 | A1 |
20120297446 | Webb et al. | Nov 2012 | A1 |
20120300932 | Cambridge et al. | Nov 2012 | A1 |
20120303503 | Cambridge et al. | Nov 2012 | A1 |
20120303961 | Kean et al. | Nov 2012 | A1 |
20120304273 | Bailey et al. | Nov 2012 | A1 |
20120310725 | Chien et al. | Dec 2012 | A1 |
20120310831 | Harris et al. | Dec 2012 | A1 |
20120316992 | Oborne | Dec 2012 | A1 |
20120317035 | Royyuru et al. | Dec 2012 | A1 |
20120317036 | Bower et al. | Dec 2012 | A1 |
20130017784 | Fisher | Jan 2013 | A1 |
20130018757 | Anderson et al. | Jan 2013 | A1 |
20130019098 | Gupta et al. | Jan 2013 | A1 |
20130031006 | McCullagh et al. | Jan 2013 | A1 |
20130054337 | Brendell et al. | Feb 2013 | A1 |
20130054466 | Muscato | Feb 2013 | A1 |
20130054474 | Yeager | Feb 2013 | A1 |
20130081122 | Svigals et al. | Mar 2013 | A1 |
20130091028 | Oder, II et al. | Apr 2013 | A1 |
20130110658 | Lyman et al. | May 2013 | A1 |
20130111599 | Gargiulo | May 2013 | A1 |
20130117185 | Collison et al. | May 2013 | A1 |
20130124290 | Fisher | May 2013 | A1 |
20130124291 | Fisher | May 2013 | A1 |
20130124364 | Mittal | May 2013 | A1 |
20130124424 | Zloth et al. | May 2013 | A1 |
20130138525 | Bercaw | May 2013 | A1 |
20130144888 | Faith et al. | Jun 2013 | A1 |
20130145148 | Shablygin et al. | Jun 2013 | A1 |
20130145172 | Shablygin et al. | Jun 2013 | A1 |
20130159178 | Colon et al. | Jun 2013 | A1 |
20130159184 | Thaw | Jun 2013 | A1 |
20130166402 | Parento et al. | Jun 2013 | A1 |
20130166456 | Zhang et al. | Jun 2013 | A1 |
20130173474 | Ranganathan et al. | Jul 2013 | A1 |
20130173736 | Krzeminski et al. | Jul 2013 | A1 |
20130185202 | Goldthwaite et al. | Jul 2013 | A1 |
20130191286 | Cronic et al. | Jul 2013 | A1 |
20130191289 | Cronic et al. | Jul 2013 | A1 |
20130198071 | Jurss | Aug 2013 | A1 |
20130198080 | Anderson et al. | Aug 2013 | A1 |
20130200146 | Moghadam | Aug 2013 | A1 |
20130204787 | Dubois | Aug 2013 | A1 |
20130204793 | Kerridge et al. | Aug 2013 | A1 |
20130212007 | Mattsson et al. | Aug 2013 | A1 |
20130212017 | Bangia | Aug 2013 | A1 |
20130212019 | Mattsson et al. | Aug 2013 | A1 |
20130212024 | Mattsson et al. | Aug 2013 | A1 |
20130212026 | Powell et al. | Aug 2013 | A1 |
20130212666 | Mattsson et al. | Aug 2013 | A1 |
20130218698 | Moon et al. | Aug 2013 | A1 |
20130218769 | Pourfallah et al. | Aug 2013 | A1 |
20130219479 | DeSoto et al. | Aug 2013 | A1 |
20130226799 | Raj | Aug 2013 | A1 |
20130226813 | Voltz | Aug 2013 | A1 |
20130246199 | Carlson | Sep 2013 | A1 |
20130246202 | Tobin | Sep 2013 | A1 |
20130246203 | Laracey | Sep 2013 | A1 |
20130246258 | Dessert | Sep 2013 | A1 |
20130246259 | Dessert | Sep 2013 | A1 |
20130246261 | Purves et al. | Sep 2013 | A1 |
20130246267 | Tobin | Sep 2013 | A1 |
20130254028 | Salci | Sep 2013 | A1 |
20130254052 | Royyuru et al. | Sep 2013 | A1 |
20130254102 | Royyuru | Sep 2013 | A1 |
20130254117 | von Mueller et al. | Sep 2013 | A1 |
20130262296 | Thomas et al. | Oct 2013 | A1 |
20130262302 | Lettow et al. | Oct 2013 | A1 |
20130262315 | Hruska | Oct 2013 | A1 |
20130262316 | Hruska | Oct 2013 | A1 |
20130262317 | Collinge et al. | Oct 2013 | A1 |
20130275300 | Killian et al. | Oct 2013 | A1 |
20130275307 | Khan | Oct 2013 | A1 |
20130275308 | Paraskeva et al. | Oct 2013 | A1 |
20130282502 | Jooste | Oct 2013 | A1 |
20130282575 | Mullen et al. | Oct 2013 | A1 |
20130282588 | Hruska | Oct 2013 | A1 |
20130297501 | Monk et al. | Nov 2013 | A1 |
20130297504 | Nwokolo et al. | Nov 2013 | A1 |
20130297508 | Belamant | Nov 2013 | A1 |
20130304648 | O'Connell et al. | Nov 2013 | A1 |
20130304649 | Cronic et al. | Nov 2013 | A1 |
20130308778 | Fosmark et al. | Nov 2013 | A1 |
20130311375 | Priebatsch | Nov 2013 | A1 |
20130311382 | Fosmark et al. | Nov 2013 | A1 |
20130317982 | Mengerink et al. | Nov 2013 | A1 |
20130332344 | Weber | Dec 2013 | A1 |
20130339253 | Sincai | Dec 2013 | A1 |
20130346222 | Ran | Dec 2013 | A1 |
20130346314 | Mogollon et al. | Dec 2013 | A1 |
20140007213 | Sanin et al. | Jan 2014 | A1 |
20140013106 | Redpath | Jan 2014 | A1 |
20140013114 | Redpath | Jan 2014 | A1 |
20140013452 | Aissi et al. | Jan 2014 | A1 |
20140019352 | Shrivastava | Jan 2014 | A1 |
20140025581 | Calman | Jan 2014 | A1 |
20140025585 | Calman | Jan 2014 | A1 |
20140025958 | Calman | Jan 2014 | A1 |
20140032417 | Mattsson | Jan 2014 | A1 |
20140032418 | Weber | Jan 2014 | A1 |
20140040137 | Carlson et al. | Feb 2014 | A1 |
20140040139 | Brudnicki et al. | Feb 2014 | A1 |
20140040144 | Plomske et al. | Feb 2014 | A1 |
20140040145 | Ozvat et al. | Feb 2014 | A1 |
20140040628 | Fort et al. | Feb 2014 | A1 |
20140041018 | Bomar et al. | Feb 2014 | A1 |
20140046853 | Spies et al. | Feb 2014 | A1 |
20140047551 | Nagasundaram et al. | Feb 2014 | A1 |
20140052532 | Tsai et al. | Feb 2014 | A1 |
20140052620 | Rogers et al. | Feb 2014 | A1 |
20140052637 | Jooste et al. | Feb 2014 | A1 |
20140068706 | Aissi | Mar 2014 | A1 |
20140074637 | Hammad | Mar 2014 | A1 |
20140081862 | Patterson | Mar 2014 | A1 |
20140108172 | Weber et al. | Apr 2014 | A1 |
20140114857 | Griggs et al. | Apr 2014 | A1 |
20140143137 | Carlson | May 2014 | A1 |
20140164243 | Aabye et al. | Jun 2014 | A1 |
20140188586 | Carpenter et al. | Jul 2014 | A1 |
20140294701 | Dai et al. | Oct 2014 | A1 |
20140297534 | Patterson | Oct 2014 | A1 |
20140310183 | Weber | Oct 2014 | A1 |
20140330721 | Wang | Nov 2014 | A1 |
20140330722 | Laxminarayanan et al. | Nov 2014 | A1 |
20140331265 | Mozell et al. | Nov 2014 | A1 |
20140337236 | Wong et al. | Nov 2014 | A1 |
20140344153 | Raj et al. | Nov 2014 | A1 |
20140372308 | Sheets | Dec 2014 | A1 |
20150019443 | Sheets et al. | Jan 2015 | A1 |
20150032625 | Dill et al. | Jan 2015 | A1 |
20150032626 | Dill et al. | Jan 2015 | A1 |
20150032627 | Dill et al. | Jan 2015 | A1 |
20150046338 | Laxminarayanan et al. | Feb 2015 | A1 |
20150046339 | Wong et al. | Feb 2015 | A1 |
20150052064 | Karpenko et al. | Feb 2015 | A1 |
20150088756 | Makhotin et al. | Mar 2015 | A1 |
20150106239 | Gaddam et al. | Apr 2015 | A1 |
20150112870 | Nagasundaram et al. | Apr 2015 | A1 |
20150112871 | Kumnick | Apr 2015 | A1 |
20150120472 | Aabye et al. | Apr 2015 | A1 |
20150120536 | Talker | Apr 2015 | A1 |
20150127529 | Makhotin et al. | May 2015 | A1 |
20150127547 | Powell et al. | May 2015 | A1 |
20150140960 | Powell et al. | May 2015 | A1 |
20150142673 | Nelsen et al. | May 2015 | A1 |
20150161597 | Subramanian et al. | Jun 2015 | A1 |
20150178724 | Ngo et al. | Jun 2015 | A1 |
20150180836 | Wong et al. | Jun 2015 | A1 |
20150186864 | Jones et al. | Jul 2015 | A1 |
20150193222 | Pirzadeh et al. | Jul 2015 | A1 |
20150195133 | Sheets et al. | Jul 2015 | A1 |
20150199679 | Palanisamy et al. | Jul 2015 | A1 |
20150199689 | Kumnick et al. | Jul 2015 | A1 |
20150220917 | Aabye et al. | Aug 2015 | A1 |
20150269566 | Gaddam et al. | Sep 2015 | A1 |
20150312038 | Palanisamy | Oct 2015 | A1 |
20150319158 | Kumnick | Nov 2015 | A1 |
20150332262 | Lingappa | Nov 2015 | A1 |
20150356560 | Shastry et al. | Dec 2015 | A1 |
20160028550 | Gaddam et al. | Jan 2016 | A1 |
20160042263 | Gaddam et al. | Feb 2016 | A1 |
20160065370 | Le Saint et al. | Mar 2016 | A1 |
20160092696 | Guglani et al. | Mar 2016 | A1 |
20160092872 | Prakash et al. | Mar 2016 | A1 |
20160103675 | Aabye et al. | Apr 2016 | A1 |
20160119296 | Laxminarayanan et al. | Apr 2016 | A1 |
20160140545 | Flurscheim et al. | May 2016 | A1 |
20160148197 | Dimmick | May 2016 | A1 |
20160148212 | Dimmick | May 2016 | A1 |
20160171479 | Prakash et al. | Jun 2016 | A1 |
20160173483 | Wong et al. | Jun 2016 | A1 |
20160224976 | Basu et al. | Aug 2016 | A1 |
20170046696 | Powell et al. | Feb 2017 | A1 |
20170103387 | Weber | Apr 2017 | A1 |
20170220818 | Nagasundaram et al. | Aug 2017 | A1 |
20170228723 | Taylor et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
101266670 | Sep 2008 | CN |
102844776 | Dec 2012 | CN |
103780396 | May 2014 | CN |
104252590 | Dec 2014 | CN |
107004192 | Aug 2017 | CN |
2156397 | Feb 2010 | EP |
3224784 | Oct 2017 | EP |
2376635 | Dec 2009 | RU |
2708945 | Dec 2019 | RU |
11201702763 | Aug 2018 | SG |
0135304 | May 2001 | WO |
0135304 | May 2002 | WO |
2004042536 | May 2004 | WO |
2006113834 | Oct 2006 | WO |
2009032523 | Mar 2009 | WO |
2010078522 | Jul 2010 | WO |
2012068078 | May 2012 | WO |
2012098556 | Jul 2012 | WO |
2012142370 | Oct 2012 | WO |
2012167941 | Dec 2012 | WO |
2013048538 | Apr 2013 | WO |
2013056104 | Apr 2013 | WO |
2013119914 | Aug 2013 | WO |
2013179271 | Dec 2013 | WO |
2016086154 | Jun 2016 | WO |
Entry |
---|
Application No. CN202110863976.1 , Office Action, Mailed On May 20, 2023, 20 pages. |
Application No. EP15862269.6 , Office Action, Mailed On Jun. 6, 2023, 12 pages. |
“Petition for Inter Partes Review of U.S. Pat. No. 8,533,860 Challenging Claims 1-30 Under 35 U.S.C. § 312 and 37 C.F.R. § 42.104”, USPTO Patent Trial and Appeal Board, IPR 2016-00600, Feb. 17, 2016, 65 pages. |
U.S. Appl. No. 14/600,523, Secure Payment Processing Using Authorization Request, filed Jan. 20, 2015, 42 pages. |
U.S. Appl. No. 15/008,388, Methods for Secure Credential Provisioning, filed Jan. 27, 2016, 90 pages. |
U.S. Appl. No. 15/011,366, Token Check Offline, filed Jan. 29, 2016, 60 pages. |
U.S. Appl. No. 15/019,157, Token Processing Utilizing Multiple Authorizations, filed Feb. 9, 2016, 62 pages. |
U.S. Appl. No. 15/041,495, Peer Forward Authorization of Digital Requests, filed Feb. 11, 2016, 63 pages. |
U.S. Appl. No. 15/265,282, Self-Cleaning Token Valut, filed Sep. 14, 2016, 52 pages. |
U.S. Appl. No. 15/462,658, Replacing Token On a Multi-Token User Device, filed Mar. 17, 2017, 58 pages. |
U.S. Appl. No. 61/738,832, Management of Sensitive Data, filed Dec. 18, 2012, 22 pages. |
U.S. Appl. No. 61/751,763, Payments Bridge, filed Jan. 11, 2013, 64 pages. |
U.S. Appl. No. 61/879,632, Systems and Methods for Managing Mobile Cardholder Verification Methods, filed Sep. 18, 2013, 24 pages. |
U.S. Appl. No. 61/892,407, Issuer Over-The-Air Update Method and System, filed Oct. 17, 2013, 28 pages. |
U.S. Appl. No. 61/894,749, Methods and Systems for Authentication and Issuance of Tokens in a Secure Environment, filed Oct. 23, 2013, 67 pages. |
U.S. Appl. No. 61/926,236, Methods and Systems for Provisioning Mobile Devices With Payment Credentials and Payment Token Identifiers, filed Jan. 10, 2014, 51 pages. |
U.S. Appl. No. 62/000,288, Payment System Canonical Address Format, filed May 19, 2014, 58 pages. |
U.S. Appl. No. 62/003,717, Mobile Merchant Application, filed May 28, 2014, 58 pages. |
U.S. Appl. No. 62/024,426, Secure Transactions Using Mobile Devices, filed Jul. 14, 2014, 102 pages. |
U.S. Appl. No. 62/037,033, Sharing Payment Token, filed Aug. 13, 2014, 36 pages. |
U.S. Appl. No. 62/038,174, Customized Payment Gateway, filed Aug. 15, 2014, 42 pages. |
U.S. Appl. No. 62/042,050, Payment Device Authentication and Authorization System, filed Aug. 26, 2014, 120 pages. |
U.S. Appl. No. 62/053,736, Completing Transactions Without a User Payment Device, filed Sep. 22, 2014, 31 pages. |
U.S. Appl. No. 62/054,346, Mirrored Token Vault, filed Sep. 23, 2014, 38 pages. |
U.S. Appl. No. 62/103,522, Methods and Systems for Wallet Provider Provisioning, filed Jan. 14, 2015, 39 pages. |
U.S. Appl. No. 62/108,403, Wearables With NFC HCE, filed Jan. 27, 2015, 32 pages. |
U.S. Appl. No. 62/117,291, Token and Cryptogram Using Transaction Specific Information, filed Feb. 17, 2015, 25 pages. |
U.S. Appl. No. 62/128,709, Tokenizing Transaction Amounts, filed Mar. 5, 2015, 30 pages. |
Application No. CN201580064121.5 , Notice of Decision to Grant, Mailed On May 25, 2021, 4 pages. |
Application No. CN201580064121.5 , Office Action, Mailed On Dec. 23, 2020, 21 pages. |
Application No. CN201580064121.5 , Office Action, Mailed On Sep. 8, 2020, 23 pages. |
Application No. CN201580064121.5 , Office Action, Mailed On Mar. 4, 2020, 24 pages. |
Application No. EP15862269.6 , Extended European Search Report, Mailed On Oct. 11, 2017, 8 pages. |
Application No. EP15862269.6 , Office Action, Mailed On Mar. 12, 2020, 6 pages. |
Application No. EP15862269.6 , Office Action, Mailed On Jul. 30, 2021, 8 pages. |
Isaac et al., “Secure Mobile Payment Systems”, IEEE Computer Society, vol. 16, No. 3, May-Jun. 2014, pp. 36-43. |
Application No. PCT/US2015/062716 , International Preliminary Report on Patentability, Mailed On Jun. 8, 2017, 8 pages. |
Application No. PCT/US2015/062716 , International Search Report and Written Opinion, Mailed On Mar. 28, 2016, 11 pages. |
Application No. RU2017122090 , Notice of Decision to Grant, Mailed On Sep. 25, 2019, 14 pages. |
Application No. RU2017122090 , Office Action, Mailed On Apr. 29, 2019, 13 pages. |
Application No. SG11201702763T , Notice of Decision to Grant, Mailed On Jul. 5, 2018, 6 pages. |
Application No. SG11201702763T , PCT Written Opinion, Mailed On Dec. 1, 2017, 7 pages. |
Application No. CN202110863976.1 , Notice of Decision to Grant, Mailed On Mar. 1, 2024, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20230206221 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
62084738 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14952444 | Nov 2015 | US |
Child | 18178020 | US |