Tolerance ring assembly

Abstract
A tolerance ring has a band with outwardly extending corrugated protrusions forming waves that engage an outer surface of a shaft. At one end of the tolerance ring is an inwardly flared guide surface extending axially and radially from the band. The guide surface acts as a tapered entrance to a bore of a housing to assist during assembly.
Description
BACKGROUND OF THE INVENTION

Field of the Disclosure


This invention relates to tolerance ring assemblies, wherein a tolerance ring provides an interference fit between parts of an assembly, where a first part has a cylindrical portion located in a cylindrical bore of a second part. The invention particularly relates to assemblies having a tolerance ring that provides an interference fit between a cylindrical component such as a shaft or a bearing and a housing for the shaft.


Improved engineering techniques have resulted in the need for greater accuracy of machine parts, raising manufacturing costs. Very close tolerances are required where press fits, splines, pins or keyways are employed to transmit torque in applications such as pulleys, flywheels or driveshafts.


Tolerance rings may be used to provide an interference fit between parts required to transmit torque. Tolerance rings provide a low cost means of providing an interference fit between parts that may not be machined to exact dimensions. Tolerance rings have a number of other potential advantages, such as compensating for different linear coefficients of expansion between the parts, allowing rapid apparatus assembly, and durability.


A tolerance ring generally comprises a strip of resilient material, for example a metal such as spring steel, the ends of which are brought together to form a ring. A band of protrusions extend radially outwards from the ring, or radially inwards towards the centre of the ring. Usually, the protrusions are formations, possibly regular formations, such as corrugations, ridges or waves.


When the ring is located in the annular space between, for example, a shaft and a bore in a housing in which the shaft is located, the protrusions are compressed. Each protrusion acts as a spring and exerts a radial force against the shaft and the surface of the bore, providing an interference fit between the shaft and the housing. Rotation of the housing or the shaft will produce similar rotation in the other of the shaft or the housing, as torque is transmitted by the tolerance ring. Typically, the band of protrusions is axially flanked by annular regions of the ring that have no formations (known in the art as “unformed regions” of the tolerance ring).


Although tolerance rings usually comprise a strip of resilient material that is curved to allow the easy formation of a ring by overlapping the ends of the strip, a tolerance ring may also be manufactured as an annular band. The term “tolerance ring” as used hereafter includes both types of tolerance ring. The term “shaft” as used hereafter includes any assembly component with a cylindrical portion, such as a shaft or a bearing.


Problems can occur during assembly of parts that use tolerance rings. As the tolerance ring requires a tight fit in the apparatus, there may be abrasion between the ring and various parts of the apparatus, which removes small fragments from the surface of the affected parts. These fragments are known in the art as particles. In particular, parts of the protrusions distal to the band of the ring may generate particles when sliding relative to part(s) of the apparatus. In certain apparatus, such as a computer hard disk drive where cleanliness is essential, production of particles is extremely undesirable, as the particles can adversely affect the function of the apparatus.


If the material of the housing (e.g. aluminum) is softer than the material of the shaft (e.g. steel), it may be desirable to have the protrusions slide relative to the shaft during assembly to minimise particle production. Normally, for this type of arrangement, the tolerance ring's protrusions point inwards.


For apparatus that includes a bearing, however, it may also be desirable that the bearing has the tolerance ring fitted thereto, and the protrusions engage the surface of the bearing in the housing i.e. the protrusions point outwards. The arrangement may be useful where the tolerance ring distributes torque from the housing to the bearing, as load is distributed evenly over a large contact area of the shaft provided by the tolerance ring. Where the surface area is not maximized, for example when the protrusions engage the bearing under load, there may be problems with an effect known as “torque ripple” where the torque in the bearing is not generated at a continuous level. It is preferable that load is distributed over as large an area as possible, for example over the base of the protrusions of the tolerance ring.


It may be advantageous to provide in the bore a tolerance ring with outward protrusions and fit the shaft into the ring. In this arrangement, although there may be reduced particle production as the protrusions do not slide relative to an apparatus component, particles may still be produced, as the end of the shaft may rub against the rim of the tolerance ring during assembly owing to the tight fit between the tolerance ring and the shaft.


Alternatively, it may be advantageous to fit a tolerance ring with inward protrusions to the shaft, and insert the shaft and tolerance ring into the bore. Although the inward protrusions do not rub against the surface of the bore, particles may be produced when the rim of the tolerance ring rubs against the edge of the bore in the housing, owing to the tight fit between the ring and the housing.


The need to reduce or eliminate particle production can therefore impose restrictions on the type of tolerance ring used. The tolerance ring that minimizes particle production may not be the best choice for operation of the apparatus.


SUMMARY

Therefore, at its most general, the present invention proposes that the tolerance ring has a guide portion defining a surface inclined relative to the axis of the tolerance ring which can act as a guide when the tolerance ring is inserted in a bore or when a shaft is mounted in the tolerance ring. In the former case, the surface will be inclined outwardly whereas in the latter case it will be inclined inwardly. In either situation, the guide portion assists the assembly of the various components, but reduces or eliminates particle production.


Thus, according to a first aspect of the invention, there may be provided a tolerance ring comprising a band of resilient material having corrugated protrusions extending either radially outwards from the band or radially inwards towards the axis of the band; and a guide portion contiguous with, and extending axially from the band, wherein guide portion comprises at least one guide surface inclined relative to the axis of the band such that the guide free end of the guide portion is wider than the opening of the band when the corrugated protrusions extend radially outwards, and is narrower than the opening of the band when the corrugated protrusions extend radially inwards.


The angle of inclination of the at least one guide surface relative to the axis may be constant along the length of the guide surface, so that the guide surface defines the major part of a frusto-cone. Alternatively, the angle of inclination may change so that the guide surface is curved in an axial section.


An advantage of the present invention is correct assembly of a ring in a bore despite some axial misalignment of the ring and the bore.


The tolerance ring may be made of any suitable resilient material, preferably a metal, most preferably spring steel.


The guide portion may extend from the whole circumference of the band of the ring. Alternatively, the guide portion may extend from at least one segment of the circumference of the tolerance ring. The guide surfaces of the guide portion may be flared relative to the inside surface of the band of the tolerance ring. In one embodiment, the guide surface flares from the band to define an entrance at one end of the tolerance ring, wherein the perimeter or circumference of the entrance is greater than the circumference of the band of the tolerance ring. The guide portion provides a funnel extending from the band of the ring, with the guide surfaces angled relative to the axis of the band.


Conveniently, the guide surfaces of the guide portion are sufficiently free of obstruction so as to guide a shaft inserted axially into the guide portion into the band. If there is axial misalignment of the shaft and the axis of the tolerance ring, the guide surfaces of the guide portion serve to align axially the shaft with the band as the shaft is inserted into the band. The guide portion may include walls that are substantially parallel to the axis of the ring, for example near to the entrance.


Preferably, the entrance of the guide portion is circular or oval shaped. The entrance may be concentric with the band. The entrance may be rectangular or square in shape.


Preferably, the plane of the entrance is substantially perpendicular to the axis of the tolerance ring. Alternatively, the plane of the opening may be slanted relative to the axis of the ring, and a segment of the entrance is axially closer to the band than the rest of the entrance.


Alternatively, the guide surfaces of the guide portion taper towards the axis of the ring to narrow or close the opening of the band. The guide surfaces are provided by the outside surfaces of the guide portion. Ideally, the guide surfaces are sufficiently free of obstruction so as to allow the tolerance ring to be guided into a bore of a housing such that the bore of the housing is concentric with the band of the tolerance ring.


Ideally, the guide surface of any guide portion of the present invention is sufficiently smooth to prevent the production of particles when the guide surface rubs or slides against a shaft and/or the entrance to a bore in a housing. A possible advantage of the present invention is therefore a reduction in the particles normally generated when the tolerance ring is inserted inside a bore and/or fitted onto other apparatus, such as a shaft.


The tolerance ring of the present invention is particularly suited to apparatus where particle production is undesirable, for example the hard disk drive of a computer. Additionally, or alternatively, the present invention may be particularly useful where it is advantageous to distribute tolerance ring loading over as wide an area as possible on a component that has to be inserted into or over the tolerance ring.


Such an apparatus may comprise a housing, which includes a bore, in which bore a tolerance ring of the first aspect of the present invention is fitted such that the band of the tolerance ring is concentric with the bore and the guide portion extends and flares towards the mouth of the bore. The protrusions of the ring preferably extend radially outwards to engage the surface of the bore. A shaft can be inserted into the ring via the entrance provided by the guide portion, to be gripped by the ring. The internal diameter of the band is suitable to grip the shaft. Ideally, the internal diameter of the band is substantially the same as the diameter of the shaft.


The perimeter or circumference of the opening may be of sufficient dimension(s) to allow the opening to be accommodated inside the bore, so that no part of the guide portion protrudes out of the housing.


Alternatively part of, or the entire, guide portion may reside outside of the housing when the ring is in use, owing to the dimension(s) of the opening and/or the axial length of the guide portion. Alternatively, the guide portion may reside inside the housing such that the entrance of the guide portion lies flush with the outside of the housing. Preferably, the entrance of the guide portion is the same dimension and shape as the mouth of the bore.


The housing may be an actuator arm of a hard disk drive. The actuator arm may pivot relative to a bearing or bearing assembly.


The apparatus may comprise a shaft, onto which a tolerance ring of the present invention is fitted, wherein the protrusions of the ring preferably extend radially inwards. The tolerance ring may be fitted to the periphery of the shaft such that the protrusions engage and grip the shaft. The guide portion extends axially, away from the end of the shaft, and tapers to narrow or close the opening of the band. The guide portion preferably narrows the opening of the band but preferably does not taper to a point. Alternatively, the guide portion may taper to a point so that the tolerance ring acts a cap over the end of the shaft. Regardless of the exact shape of the guide portion, the guide surfaces of the guide portion allow the ring (and shaft) to be inserted into the bore of a housing such that the band of the tolerance ring sits concentrically in the bore. The external diameter of the band is sufficient to create a snug fit between the band and the bore. Ideally the external diameter of the band is substantially the same as the diameter of the bore.


Alternatively the apparatus may comprise a housing having a bore, a shaft and a tolerance ring of the first aspect of the invention, wherein at least part of the shaft is located in the bore and the band of the tolerance ring is concentrically located between the part of the shaft in the bore and the surface of the bore.


Preferably the apparatus is a hard disk drive and the shaft is a bearing or bearing assembly and the housing is an actuator arm. Preferably, the actuator arm pivots around the bearing or bearing assembly. Preferably the bearing or bearing assembly remains stationary.


Alternatively, the apparatus may be a torque limiting apparatus such as EPAS or a steering column lock, where slip occurs between the ring and another surface, an electric generator, a centrifugal pump, an air blower, a fan, a crane, woodworking or spinning machinery, a machine tool, a shaker or crusher.


The apparatus may be assembled by fitting a tolerance ring of the first aspect of the invention to a shaft, so that the inwardly extending protrusions of the ring grip the shaft and the guide portion tapers away from the shaft, the guide portion narrowing or closing the opening of the band; and inserting the shaft and ring into the bore of the housing such that the guide portion axially leads into the bore, such that the shaft/tolerance ring sits concentrically inside the bore and the band is sufficiently dimensioned to allow a tight fit between the band and the surface of the bore.


The guide surfaces of the guide portion may correct any axial misalignment between the shaft/ring and the bore.


Alternatively, the apparatus may be assembled by fitting a tolerance ring of the first or second aspect of the invention into a bore of a housing such that the outwardly extending protrusions of the tolerance ring contact the surface of the housing, wherein the band of the tolerance ring is suitably dimensioned to receive and grip a shaft, and the guide portion extends towards the entrance of the bore, the guide portion widening the opening of the band; and inserting a shaft into the guide portion such that the shaft slides into the band/bore to implement an interference fit between the ring and the shaft.


The guide surface(s) of the guide portion may correct any axial misalignment between the shaft and the tolerance ring/bore.


There may be a chamfer or flare at the mouth of the bore relative to the sides of the main section of the bore. This chamfer may act as a further guide, particularly in embodiments which the tolerance ring is mounted on a shaft prior to insertion in the bore. Such chamfers are, in themselves, already known.


A further aspect of the invention provides a blank for making tolerance ring of the first aspect. The blank comprises a strip of resilient material, in which the corrugated protrusions are formed, and having the guide portion inclined relative to the plane of the rest of the strip. The resulting blank may subsequently be curved into a substantially an annular shape corresponding to the tolerance ring of the first aspect with a gap between the ends of the strip.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be described in detail, by way of example, reference to the accompanying drawings, in which:



FIG. 1 shows in cross section a bearing and a known tolerance ring, which are about to be inserted into a bore in a pivotable actuator arm of a hard disk drive;



FIG. 2 shows in cross section another known tolerance ring with outward protrusions located in a bore in an actuator arm, and a bearing ready to be inserted into the tolerance ring;



FIG. 3 shows in cross section another known tolerance ring with inward protrusions located in a bore in an actuator arm, and a bearing ready to be inserted into the tolerance ring;



FIG. 4 shows in cross section a tolerance ring of he present invention located in a bore in an actuator arm, and a bearing ready to be inserted into the tolerance ring;



FIG. 5 shows in cross section, another known tolerance ring which is fitted to the end of a shaft and is about to be inserted into a bore in a housing; and



FIG. 6 shows in cross section a tolerance ring of the present invention, which is fitted to a shaft and is about to be inserted in a bore into a housing.





DETAILED DESCRIPTION

Before describing embodiments of the invention, it will be useful to understand conventional arrangements. Thus, FIGS. 1 to 3 illustrate use of a known tolerance ring to mount a shaft in a bore.


Thus, as shown in FIG. 1, a known tolerance ring with outwardly facing protrusions 2 in the form of waves and is fitted around a bearing 3 or bearing assembly 3 (hereinafter referred to as the bearing 3). The bearing 3 and tolerance ring 1 comprise a sub-assembly, which is axially inserted into the bore 4 of a body which may be an actuator arm 5 of a hard disk drive, indicated in FIG. 1 by the arrow 6. Unformed, annular portions 7 of the tolerance ring 1, which have no radial protrusions, axially flank the outwardly facing protrusions 2. Tolerance rings with outwardly facing protrusions are generally known in the art as S.V rings (Shaft Variable), as the diameter of the tolerance ring to be fitted to the bearing may be varied by differing amounts of overlap of the ends of the strip that forms the tolerance ring. The outwardly facing protrusions 2 of the ring 1 resiliently engage the surface 8 of the bore 4.


As the sub-assembly is inserted into the bore 4, the outwardly facing protrusions 2 of the tolerance ring 1 are compressed. Unformed portions 7 of the tolerance ring 1 that axially flank the outwardly facing protrusions 2 prevent changes in the pitch of the outwardly facing protrusions 2, allowing only resilient deformation of each outwardly facing protrusions. A radial force is created between the surface 8 of the bore 4 and the bearing 3. An interference fit is thus provided by the tolerance ring 1.


During assembly, the outwardly facing protrusions 2 of the tolerance ring 1 slide relative to the surface 8 of the bore 4. Abrasion of the waves against the surface 8 can cause small fragments of the housing 5 to be removed from the surface 8 of the bore 4 (and possibly tolerance ring 1). This problem is compounded if the material of the actuator arm 5 is softer than the material of the outwardly facing protrusions 2 of the ring 1. The fragments are known in the art as particles, which can adversely affect the operation of the apparatus in which the tolerance ring 1 is fitted. In the example, particles are extremely undesirable as cleanliness is important for proper functioning of the hard disk drive.


An alternative known assembly method comprises inserting the tolerance ring 1 into the bore 4 so that the tolerance ring 1 sits concentrically in the bore 4. The bearing 3 is inserted into the bore 4 and slides into the tolerance ring 1, as shown by the arrow 9 in FIG. 2. The bearing 3 may foul on the edge 10 of the ring as the bearing 3 is axially inserted into the ring 1, causing fragments of the ring 1 and/or bearing 3 to be removed. The fragments are known in the art as particles.


Particles may also be produced when using a tolerance ring with inwardly extending protrusions, for example as shown FIG. 3. A tolerance ring 11, with inwardly facing protrusions 30, sits concentrically in the bore 4 of the actuator arm 5, with the sides of the ring engaging the sides 8 of the bore 4. This type of ring is known in the art as an H.V. tolerance ring (Housing Variable). A bearing 3 is axially inserted into the ring 11, as indicated in FIG. 3 by the arrow 12. The bearing 3 moves relative to the inwardly facing protrusions 30. As the bearing 3 is made of harder material than the actuator arm 5, particle production is more limited.


The arrangement using a tolerance ring with inwardly extending waves may not be suitable for all types of apparatus, for example where it is desirable to have a load on the bearing spread over a wider area than can be provided by the tops of the waves. It is undesirable that a requirement to minimise particle production during assembly imposes a working arrangement that is sub-optimal for the apparatus.


In a computer hard disk drive the arrangement using a tolerance ring with inwardly extending waves (H.V) is undesirable, as load must be spread over as wide an area of the bearing as possible to avoid torque ripple. Furthermore, axial alignment, required in a hard disk drive, is usually better with tolerance rings having outwardly extending waves (S.V), shown in FIGS. 1 and 2. However, manufacturers may use the H.V ring and assembly method described in Example 3, as it minimizes particle production during assembly. Particles will adversely affect the functioning of the hard disk drive.


As had previously been mentioned, a tolerance ring according to the present invention modifies known tolerance rings by providing a guide portion which is inclined relative to the axis of the tolerance ring. The first embodiment of the present invention will now be described with reference to FIG. 4. Some of the features of the tolerance ring of this embodiment are the same in the tolerance rings described previously, and the same reference numerals will be used to indicate corresponding parts.


A tolerance ring 13 being the first embodiment of the present invention allows a tolerance ring with outwardly facing protrusions 2 to be used in the apparatus but minimizes or eliminates the particle production that results from the arrangements shown in FIGS. 1, 2 and 3. The tolerance ring 13 includes a guide portion indicated generally in FIG. 4 by 14. The guide portion 14 resembles a funnel, which flares towards the entrance of the bore 4. The guide portion comprises a flared guide surface, indicated in cross section by 15 in FIG. 4, extending axially from the band 16 of the ring 13, forming an endmost annular portion, towards the entrance of the bore 4. The guide portion terminates at free end 32 defining an axial end of the tolerance ring. This free end 32 defines an opening that (i) is larger than that defined by the unformed annular portions of the band, and (ii) has a diameter at said free end that is not greater than the diameter of the protrusions. As shown, the guide portion is provided at only one end of the band.


The guide surface 15 provides an enlarged entrance to the band 16 of the ring 13 for receiving the bearing, eliminating foul on the edge of the ring as described in Example 2. Guide surface 15 is sufficiently smooth so as to guide the bearing 3 into the ring 13, even if there is some axial misalignment of the bearing 3 and the ring 13. As the outwardly facing protrusions 2 of the ring 13 do not abrade against any surface during assembly and the end of the bearing 3 does not abrade against the ring 13, particle production is avoided. As shown, the tolerance ring 13 in the form of an annular band of resilient material has an innermost surface defined by the unformed annular portions 7, and has an outermost surface defined by the outwardly facing protrusions 2 having a diameter. All of the outwardly facing protrusions 2 extend radially outward, each extending between a pair of unformed annular portions. The guide portion is contiguous with and extends axially and radially outward from an endmost unformed annular portion (the topmost unformed annular portion shown in FIG. 4), and flares outwardly from the innermost surface. As shown, the guide portion has a free end defining an opening that has a diameter not greater than the diameter of the unformed annular portions. The arrangement using an S.V. type ring is preferable for the hard disk drive.


It is also known to use a tolerance ring with inwardly facing protrusions. The ring may be fitted to the end of a shaft and inserted into a bore in the housing, as shown in FIG. 5. The tolerance ring 17, with inwardly facing protrusions 2, is fitted to a shaft 18 and the shaft 18 and ring 17 inserted axially into the bore 4 of a housing 19. The diameter of the ring 17 is similar to the diameter of the bore 4 and so the ring 17 fouls on the edge 20 of the bore 4, producing particles from the ring 17 and/or the housing 19.


This known tolerance ring can be modified by the provision of an inclined guide portion, in a manner similar to the first embodiment, but with the angle of inclination being inward rather than outward. Such an embodiment is illustrated in FIG. 6, and again reference numerals are used to indicate corresponding parts. Tolerance ring 21 of the second embodiment is fitted to a shaft 18, and axially inserted into the bore 4 of a housing 19. The ring 21 includes inward protrusions in the form of waves to the grip shaft 18.


The ring includes a tapered guide portion indicated generally in FIG. 6 by 22, extending axially from the band 23 of the ring, away from the shaft 18. The guide portion comprises a guide surface, indicated in cross section in FIG. 6 by 24a, sloping towards the axis of the ring to narrow the opening of the band 23. The guide surface 24a axially leads into the bore 4 during assembly. The guide surface allows correction of axial misalignment of the bearing and the bore. The guide portion prevents the ring fouling on the edge of the bore 20, reducing or even eliminating particle production.


In the embodiments described above, the bore 4 has straight side walls. It is possible for the ends of the bore to be chamfered, although the presence of the guide portion makes such chamfering of little benefit.


The tolerance ring of the invention may be used on a hard disk drive, although there are numerous other applications of the present invention, for example any apparatus that uses a tolerance ring. In the example, the hard disk drive has an actuator arm pivotable around a bearing or bearing assembly. Typically, the actuator arm has an electronic transducer at one end for reading and writing data stored on a media disk. The arm pivots around a stationary shaft, which is mounted perpendicular to the plane of rotation of the media disk and arm.


Conventionally, the pivot mechanism comprises a centre shaft and one or a plurality of rolling element bearings surrounding the shaft. Each rolling element bearing includes an inner race attached to the shaft, an outer race located concentrically around the inner race, and a plurality of rolling elements located in the annular space between the inner and outer races. Such an assembly is commonly known as a bearing cartridge assembly. An outer cylinder or sleeve may surround the outer race or races of the bearing or bearings. Although such a hard disk drive is a typical arrangement, it will be appreciated by those in the art that there are other possible arrangements to which the invention can be applied.

Claims
  • 1. A tolerance ring having a first axial end and a second axial end, comprising: a body having an axis, a hollow cylindrical shape, a body diameter, and an exterior of the body forms a body load bearing area for contacting an outer component;a plurality of protrusions formed in the body, all of which extend radially inward from the body relative to the axis such that there are no protrusions that extend radially outward from the body, the protrusions have a minimum protrusion diameter that is less than the body diameter, and a surface of the protrusions form a protrusions load bearing area for contacting an inner component to distribute a load from the protrusions load bearing area to the body load bearing area and to provide an interference fit between the tolerance ring and the inner component; anda guide having a funnel shape and a minimum guide diameter that is not less than the minimum protrusion diameter, a guide surface that is contiguous with the body load bearing area to facilitate alignment between the outer component and the body when the guide is inserted into a bore of the outer component, wherein the minimum guide diameter forms the first axial end, and a maximum guide diameter is immediately adjacent to the body, the first axial end is closer to the minimum guide diameter as compared to the maximum guide diameter, and a lowermost diameter of the first axial end of the tolerance ring is less than the body diameter,wherein: the body is spaced apart from the first axial end of the tolerance ring;the guide is disposed between the body and the first axial end;a first unformed portion of the body is disposed between the guide and the plurality of protrusions, wherein the first unformed portion of the body has a constant radius axially flanking a first side of the plurality of protrusions; anda second unformed portion of the body having a constant radius axially flanking a second side of the plurality of protrusions, wherein the second side is opposite the first side.
  • 2. A tolerance ring according to claim 1, wherein the guide includes walls that are substantially parallel to the axis of the ring and at the first axial end.
  • 3. A tolerance ring according to claim 1, wherein an angle of inclination of the guide surface relative to the axis is constant along a length of the guide surface.
  • 4. A tolerance ring according to claim 1, wherein the guide extends from an entire circumference of an end of the body.
  • 5. A tolerance ring according to claim 1, wherein the guide is sufficiently smooth to reduce the production of particles when the outer component slides against the guide surface.
  • 6. A tolerance ring according to claim 1, wherein the body load bearing area is sufficiently sized to prevent torque ripple.
  • 7. A tolerance ring according to claim 1, wherein the minimum guide diameter is configured to be substantially a same as a diameter of the inner component.
Priority Claims (1)
Number Date Country Kind
0308957.0 Apr 2003 GB national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of and claims priority to U.S. Non-Provisional patent application Ser. No. 10/552,875, filed Apr. 17, 2003, entitled “TOLERANCE RING ASSEMBLY,” which was a U.S. national phase application under 35 U.S.C. §371 of International Patent Application No. PCT/GB2004/001681, filed Apr. 16, 2004, and claims priority to Great Britain Patent Application No. 0308957.0, filed Apr. 17, 2003, naming inventors Niki S. Woodhead and Andrew R. Slayne, which application is incorporated herein by reference in its entirety. The International Application was published in English on Nov. 4, 2004 as WO 2004/094852 A1 under PCT Article 21(2).

US Referenced Citations (138)
Number Name Date Kind
1469880 Bowden Oct 1923 A
2386951 Howe Oct 1945 A
2865692 Gossmann Dec 1958 A
2886354 Gustaf May 1959 A
2931412 Wing Apr 1960 A
3061386 Dix et al. Oct 1962 A
3094376 Thomas Jun 1963 A
3142887 Hülck et al. Aug 1964 A
3438660 Steiner Apr 1969 A
3494676 Compton Feb 1970 A
3633398 Koch Jan 1972 A
3700271 Blaurock et al. Oct 1972 A
3747997 Winn Jul 1973 A
3838928 Blaurock et al. Oct 1974 A
3976340 Pitner Aug 1976 A
4072368 Ehrentraut Feb 1978 A
4079168 Schwemmer et al. Mar 1978 A
4083622 Neidecker Apr 1978 A
4286894 Rongley Sep 1981 A
4376254 Hellmann Mar 1983 A
4790683 Cramer et al. Dec 1988 A
4800623 Brockhaus Jan 1989 A
4828423 Cramer, Jr. et al. May 1989 A
4889772 Bergmann et al. Dec 1989 A
4916026 Bergmann et al. Apr 1990 A
4932795 Guinn Jun 1990 A
4981390 Cramer, Jr. et al. Jan 1991 A
5003212 Ibe et al. Mar 1991 A
5030260 Beck et al. Jul 1991 A
5056937 Tanaka et al. Oct 1991 A
5193917 Adler et al. Mar 1993 A
5305654 Durham Apr 1994 A
5315465 Blanks May 1994 A
5328160 McLaughlin Jul 1994 A
5609421 Schulze-Eyssing et al. Mar 1997 A
5633086 Hsu et al. May 1997 A
5803614 Tsuji et al. Sep 1998 A
5885006 Sheedy Mar 1999 A
5906029 Fox May 1999 A
5939215 Andler Aug 1999 A
5964474 Chen Oct 1999 A
5988885 Heshmat Nov 1999 A
5999373 Allsup et al. Dec 1999 A
6018441 Wu et al. Jan 2000 A
6086257 Lee Jul 2000 A
6114040 Gebregiorgis et al. Sep 2000 A
6163441 Wood et al. Dec 2000 A
6178639 Lytwynec et al. Jan 2001 B1
6186027 Nielsen Feb 2001 B1
6228471 Neerinck et al. May 2001 B1
6261061 Pfaffenberger Jul 2001 B1
6288878 Misso et al. Sep 2001 B1
6294597 Rinde et al. Sep 2001 B1
6321712 Havel Nov 2001 B1
6333839 Misso et al. Dec 2001 B1
6411472 Allsup Jun 2002 B1
6428744 Takayama et al. Aug 2002 B1
6480363 Prater Nov 2002 B1
6516940 Hart et al. Feb 2003 B1
6527449 Koyama et al. Mar 2003 B1
6572270 Takemura et al. Jun 2003 B2
6603634 Wood et al. Aug 2003 B1
6606224 Macpherson et al. Aug 2003 B2
6655847 Obara et al. Dec 2003 B2
6740428 Norito et al. May 2004 B2
6744604 Misso Jun 2004 B2
6754046 Barina et al. Jun 2004 B2
6755746 Barnley et al. Jun 2004 B2
6813120 Misso Nov 2004 B1
6889956 Gutierrez et al. May 2005 B2
6905779 Sakai et al. Jun 2005 B2
7007386 Stover Mar 2006 B1
7054111 Dominguez et al. May 2006 B2
7085108 Oveyssi et al. Aug 2006 B1
7118181 Frear Oct 2006 B2
7118808 Wölki et al. Oct 2006 B2
7149281 Lacherade et al. Dec 2006 B2
7367107 Fruge et al. May 2008 B1
7554771 Hanrahan et al. Jun 2009 B2
7580225 Hanrahan et al. Aug 2009 B2
7583476 Hanrahan et al. Sep 2009 B2
7742676 Tilliette et al. Jun 2010 B2
7850389 Hanrahan et al. Dec 2010 B2
7922418 Baker et al. Apr 2011 B2
7957103 Woodhead et al. Jun 2011 B2
7958637 Hughes Jun 2011 B2
7978437 Hanrahan et al. Jul 2011 B2
8021072 Court et al. Sep 2011 B2
8228640 Woodhead et al. Jul 2012 B2
8233242 Court et al. Jul 2012 B2
8317425 Court et al. Nov 2012 B2
8363359 Slayne et al. Jan 2013 B2
8482882 Slayne et al. Jul 2013 B2
8485752 Slayne Jul 2013 B2
20020024770 Hong et al. Feb 2002 A1
20020039461 Obara et al. Apr 2002 A1
20020097927 Lee et al. Jul 2002 A1
20020097937 Obara Jul 2002 A1
20020118490 Macpherson et al. Aug 2002 A1
20020123608 Howard, III Sep 2002 A1
20020172836 Takayama et al. Nov 2002 A1
20030053260 Barina et al. Mar 2003 A1
20030150140 Takayama et al. Aug 2003 A1
20040057643 Blanchard et al. Mar 2004 A1
20040076356 Kapaan et al. Apr 2004 A1
20040157750 Danly, Sr. et al. Aug 2004 A1
20040246627 Durrum et al. Dec 2004 A1
20050018936 Yoshimura et al. Jan 2005 A1
20050051975 Takayama et al. Mar 2005 A1
20050077101 Yamamoto et al. Apr 2005 A1
20050181216 Nakanishi et al. Aug 2005 A1
20050185865 Agrawal Aug 2005 A1
20050225903 Sprankle et al. Oct 2005 A1
20060165973 Dumm et al. Jul 2006 A1
20060177685 Matsuda et al. Aug 2006 A1
20060181811 Hanrahan et al. Aug 2006 A1
20060214341 Sugiura et al. Sep 2006 A1
20060228174 Woodhead et al. Oct 2006 A1
20060275076 Hanrahan et al. Dec 2006 A1
20060276246 Needes et al. Dec 2006 A1
20070000680 Adachi et al. Jan 2007 A1
20070096572 Watkins et al. May 2007 A1
20070291417 Woodhead et al. Dec 2007 A1
20080028591 Hughes Feb 2008 A1
20080043374 Hanrahan et al. Feb 2008 A1
20080043375 Hanrahan et al. Feb 2008 A1
20080160300 Hwang et al. Jul 2008 A1
20080199254 Baker et al. Aug 2008 A1
20080218008 Ghasripoor et al. Sep 2008 A1
20080266717 Court et al. Oct 2008 A1
20080267693 Court et al. Oct 2008 A1
20090238504 Suzuki et al. Sep 2009 A1
20100126823 Gautier et al. May 2010 A1
20100321833 Woodhead et al. Dec 2010 A1
20110049834 Natu Mar 2011 A1
20110076096 Slayne et al. Mar 2011 A1
20110271512 Hughes Nov 2011 A1
20120240350 Natu et al. Sep 2012 A1
Foreign Referenced Citations (90)
Number Date Country
PI9201846 Jan 1993 BR
2526653 Dec 2004 CA
1126286 Jul 1996 CN
1402871 Mar 2003 CN
1459007 Nov 2003 CN
1478270 Feb 2004 CN
101122304 Feb 2008 CN
1872950 May 1963 DE
50166 Oct 1966 DE
2934271 Mar 1981 DE
3248148 Jul 1984 DE
3338507 Nov 1984 DE
4114643 Dec 1995 DE
19915417 Oct 1999 DE
10027513 Dec 2001 DE
507544 Oct 1992 EP
514329 Nov 1992 EP
0554144 Aug 1993 EP
514329 Sep 1995 EP
1302684 Apr 2003 EP
1498911 Jan 2005 EP
1305530 Mar 2005 EP
1568437 Aug 2005 EP
1731783 Dec 2006 EP
1886895 Feb 2008 EP
1985875 Oct 2008 EP
2009145 Dec 2008 EP
195795 Apr 1923 GB
414631 May 1933 GB
414631 Aug 1934 GB
687691 Feb 1953 GB
703563 Feb 1954 GB
866678 Apr 1961 GB
972589 Oct 1964 GB
1376563 Dec 1974 GB
2069070 Aug 1981 GB
2342425 Apr 2000 GB
2382386 May 2003 GB
2459959 Nov 2009 GB
S48-021050 Mar 1973 JP
1981-049415 May 1981 JP
59166711 Sep 1984 JP
63076908 Apr 1988 JP
3048013 Mar 1991 JP
04-285317 Oct 1992 JP
5052222 Mar 1993 JP
5052223 Mar 1993 JP
H05-098463 Apr 1993 JP
H0598463 Apr 1993 JP
5126147 May 1993 JP
H05179277 Jul 1993 JP
5-205413 Aug 1993 JP
H0790533 Apr 1995 JP
09-060397 Mar 1997 JP
09508692 Sep 1997 JP
2000-120663 Apr 2000 JP
2000188856 Jul 2000 JP
2001208082 Aug 2001 JP
2002213453 Jul 2002 JP
2003183684 Jul 2003 JP
2003-247542 Sep 2003 JP
2004-513309 Apr 2004 JP
2004277565 Oct 2004 JP
2004360855 Dec 2004 JP
2006-105380 Apr 2006 JP
2007502370 Feb 2007 JP
2007186149 Jul 2007 JP
2007239838 Sep 2007 JP
2008069923 Mar 2008 JP
2008069924 Mar 2008 JP
2008069925 Mar 2008 JP
2008095178 Apr 2008 JP
2008156690 Jul 2008 JP
2008-531430 Aug 2008 JP
2008184621 Aug 2008 JP
2008281017 Nov 2008 JP
2009-299748 Dec 2009 JP
2012-183577 Sep 2012 JP
1646706 May 1991 SU
9429609 Dec 1994 WO
0141136 Jun 2001 WO
0159314 Aug 2001 WO
0237479 May 2002 WO
03025907 Mar 2003 WO
2004094852 Nov 2004 WO
2004104268 Dec 2004 WO
2006056731 Jun 2006 WO
2008021890 Feb 2008 WO
2011023794 Mar 2011 WO
2011036126 Mar 2011 WO
Non-Patent Literature Citations (115)
Entry
International Search Report for PCT/GB2004/001681 mailed on Sep. 13, 2004, 3 pages.
European Search Report for European Patent Application No. 07252993-6 mailed Dec. 19, 2007, 7 pages.
European Search Report for European Patent Application No. 09013623.5 mailed Jan. 14, 2010, 5 pages.
Plastic Deformation; Author Unknown/ Matter Project, University of Liverpool; 1 page (1999).
Beer et al.; Mechanics of Materials; section 2.6, Elastic Versus Plastic Behavior of Material; McGraw-Hill Book Co.; pp. 39-41 (1981).
A.R. Slayne,; “Performance Characteristics of Actuator/Bearing Joints Made With Tolerance Rings”, Magnetic Recording Conference, 2002. Digest of Asia-Pacific; ISBN: 0-7803-7509-2; pp. WE-P-14-01 to WE-P-14-02; Dec. 10, 2002.
International Search Report from PCT Application No. PCT/US2012/030143, dated Oct. 31, 2012, 1 pg.
International Search Report for PCT/EP2010/062544 dated Dec. 28, 2010, 12 pages.
International Search Report for PCT/EP2010/063828 mailed on Dec. 21, 2010, 3 pages.
International Search Report for PCT/GB2005/004067 mailed on Sep. 13, 20040, 2 pages.
U.S. Appl. No. 13/427,459, filed Mar. 22, 2012, Inventors: Parag Natu et al.
U.S. Appl. No. 11/718,172, filed May 31, 2007 Inventors: Niki S. Woodhead et al.
U.S. Appl. No. 12/884,383, filed Sep. 17, 2010 Inventors: Andrew Robert Slayne et al.
U.S. Appl. No. 12/549,713, filed Aug. 28, 2009 Inventors: Paruag Natu.
U.S. Appl. No. 12/033,241, filed Feb. 19, 2008 Inventors: Marcus Baker et al.
International Search Report from PCT Application No. PCT/IB2009/006835 dated Dec. 16, 2009, 2 pgs.
“Tolerance rings”Engineering Magazine—Technical File, 92, Aug. 1981.
Girt L. Agrawal: “Foil air/gas bearing technology—an overview”ASME International Gas Turbine & Aeroengine Congress & Exhibition, Jun. 2-Jun. 5, 1997, pp. 1-11, New York.
Corrugate—Definition and More from the Free Merriam-Webster Dictionary, <http://www.merriam-webster.com/dictionary/corrugate?show=0&t=1413824164[Oct. 20, 2014 9:57:18 AM]>, 1 page.
Cylinder—Definition and More from the Free Merriam-Webster Dictionary, <http://www.merriam-webster.com/dictionary/cylinder[Oct. 20, 2014 10:00:24 AM]>, 2 pages.
External—Definition and More from the Free Merriam-Webster Dictionary, <http://www.merriam-webster.com/dictionary/external[Oct. 20, 2014 10:36:22 AM]>, 3 pages.
Axial—Definition and More from the Free Merriam-Webster Dictionary, <http://www.merriam-webster.com/dictionary/axial[Oct. 20, 2014 10:38:55 AM]>, 1 page.
Surface—Definition and More from the Free Merriam-Webster Dictionary, <http://www.merriam-webster.com/dictionary/surface?show=0&t=1413826865[Oct. 20, 2014 10:41:01 AM]>, 3 pages.
Interior—Definition and More from the Free Merriam-Webster Dictionary, <http://www.merriam-webster.com/dictionary/interior[Oct. 20, 2014 10:43:25 AM]>, 2 pages.
Bore—Definition and More from the Free Merriam-Webster Dictionary, <http://www.merriam-webster.com/dictionary/bore>, 2 pages.
Bushing—Definition and More from the Free Merriam-Webster Dictionary, <http://www.merriam-webster.com/dictionary/bushing>, 1 page.
Avallone, Eugene A. et al., Eds., “Marks' Standard Handbook for Mechanical Engineers”, Tenth Edition, McGraw-Hill, New York, 1996, 3 pages.
Slayne, A.R. “Performance Characteristics of Actuator/Bearing Joints Made with Tolerance Rings”, Rencol Tolerance Rings, Bristol, UK, 2002, 2 pages.
Shigley, Joseph E. et al., Eds., “Standard Handbook of Machine Design”, Third Edition, McGraw-Hill, New York, 2004, 2 pages.
Avallone, Eugene A. et al., Eds., “Marks' Standard Handbook for Mechanical Engineers”, Tenth Edition, McGraw-Hill, New York, 1996, 4 pages.
Smith, J.W., “Tolerance Rings”, IEEE Industry Applications Magazine, Sep./Oct. 2002, 9 pages.
“List of Defunct Hard Disk Manufacturers”, <http://en.wikipedia.org/wiki/List—of defunct—hard—disk—manufacturers>, Oct. 15, 2014, 6 pages.
Coughlin, Tom, “Declining Growth Projections for Hard Disk Drive Industry in 2013”, <http://www.forbes.com/sites/tomcoughlin/2013/05/10/2013-hard-disk-drive-projections/>, Oct. 13, 2014, 3 pages.
“Petitioner's Exhibit 1009”, Case IPR2014-00309, Intri-Plex and MMI Holdings, Aug. 19, 2014, 7 pages.
Saint-Gobain's Response to Office Action for U.S. Appl. No. 10/552,875, dated Dec. 23, 2009, 21 pages.
“Why Use a Tolerance Ring?”, Rencol Tolerance Rings, Saint-Gobain Performance Plastics, Sep. 8, 2014, 35 pages.
US National Phase Application for U.S. Appl. No. 10/552,875, dated Oct. 13, 2005, 45 pages.
Drawings of Woodhead during Deposition on Sep. 15, 2014, Intri-Plex and MMI Holdings, 1 page.
Office Action dated Apr. 15, 2009 and Examiners Summary of Interview dated May 19, 2009 for U.S. Appl. No. 10/552,875, 22 pages.
Examiners Summary of Interview for U.S. Appl. No. 10/552,875, dated Jul. 23, 2014, 3 pages.
Deposition Transcript of Nigel Misso, vol. 1, Sep. 12, 2014, 255 pages.
Deposition Transcript of Niki Samuel Woodhead, vol. 1, Sep. 15, 2014, 289 pages.
Deposition Transcript of Andrew Robert Slayne, vol. 1, Sep. 16, 2014, 264 pages.
Deposition Transcript of Alexander Henry Slocum, Ph.D., vol. 1, Sep. 26, 2014, 324 pages.
Amendment in Response to Non-Final Office Action for U.S. Appl. No. 10/552,875, dated Aug. 21, 2007, 13 pages.
Final Office Action for U.S. Appl. No. 10/552,875, dated Feb. 13, 2008, 12 pages.
Amendment After Final Action for U.S. Appl. No. 10/552,875, dated Apr. 15, 2008, 20 pages.
Amendments and Submission for U.S. Appl. No. 10/552,875, dated Jun. 29, 2010, 10 pages.
Request for Pre-Appeal Brief Conference for U.S. Appl. No. 10/552,875, dated Nov. 8, 2013, 6 pages.
Application for U.S. Appl. No. 12/870,978, Issued as US Patent 8228640, cited in IPR Oct. 21, 2014, 27 pages.
“Declaration of Ryan Schmidt”, Case IPR2014-00309, Intri-Plex and MMI Holdings, dated Oct. 21, 2014, 12 pages.
Customer Print Having Tolerance Ring Specifications, Intri-Plex and MMI Holdings, dated Jun. 28, 2014, 1 page.
Chart re Market Share of Leading Hdd Manufacturers, Intri-Plex and MMI Holdings, cited in IPR Oct. 21, 2014, 1 page.
Declaration of Michael McCarthy, Case IPR2014-00309, Intri-Plex and MMI Holdings, dated Oct. 21, 2014, 52 pages.
Protrusion—Definition and More from the Free Merriam-Webster Dictionary, <http://www.merriam-webster.com/dictionary/protrusion[10/20/2014 9:55:00 AM]>, 2 pages.
Chart re Total Shipment of 2.5 inch HDD's, Intri-Plex and MMI Holdings, Oct. 21, 2014, 1 page.
Non-Final Office Action for U.S. Appl. No. 10/552,875, dated May 21, 2007, 12 pages.
Invention Disclosure, Case IPR2014-00309, Intri-Plex v. Saint-Gobain, Aug. 11, 2014, 3 pages.
Screenshot to Metadata to Exhibit 2004, Case IPR2014-00309, Intri-Plex v. Saint-Gobain, Aug. 11, 2014, 1 page.
HDD R and D Review (Redacted), Case IPR2014-00309, Intri-Plex v. Saint-Gobain, Aug. 11, 2014, 3 pages.
RING5579A Concept Drawing (Redacted), Case IPR2014-00309, Intri-Plex v. Saint-Gobain, Aug. 11, 2014, 2 pages.
RING5346D Concept Drawing (Redacted), Case IPR2014-00309, Intri-Plex v. Saint-Gobain, Aug. 11, 2014, 1 page.
Technical Report (Redacted), Case IPR2014-00309, Intri-Plex v. Saint-Gobain, Aug. 11, 2014, 2 pages.
“IPT Sequoia Ring Comparison”, Saint-Gobain Performance Plastics, Aug. 11, 2014, 6 pages.
Declaration of Nik Woodhead (Redacted), Case IPR2014-00309, Intri-Plex v. Saint-Gobain, dated Aug. 8, 2014, 33 pages.
Declaration of Andy Slayne (Redacted), Case IPR2014-00309, Intri-Plex v. Saint-Gobain, dated Aug. 8, 2014, 25 pages.
Declaration of Nigel F. Misso, Case IPR2014-00309, Intri-Plex v. Saint-Gobain, dated Aug. 7, 2014, 7 pages.
Declaration of Alexander H . Slocum, Case IPR2014-00309, Intri-Plex v. Saint-Gobain, dated Aug. 8, 2014, 47 pages.
RING5579A Concept Drawing (Redacted), Case IPR2014-00309, Intri-Plex v. Saint-Gobain, Sep. 3, 2014, 2 pages.
RING5346D Concept Drawing (Redacted), Case IPR2014-00309, Intri-Plex v. Saint-Gobain, Sep. 3, 2014, 1 page.
Declaration of Andy Slayne (Redacted), Case IPR2014-00309, Intri-Plex v. Saint-Gobain, dated Aug. 8, 2014, 24 pages.
Corrected Declaration of Andy Slayne (Redacted), Case IPR2014-00309, Intri-Plex v. Saint-Gobain, dated Aug. 8, 2014, 25 pages.
Declaration of Michael A. Albert in Support of Motion for Admission Pro Hac Vice, Case IPR2014-00309, Intri-Plex v. Saint-Gobain, dated Sep. 9, 2014, 4 pages.
Kim, Michael W. et al, Administrative Patent Judges, “Decision—Institution of Inter Partes Review”, dated Jun. 10, 2014, 13 pages.
Motion to Seal and for Entry of Protective Order, Case IPR2014-00309, dated Aug. 11, 2014, 9 pages.
Patent Owner's Motion to Expunge, Case IPR2014-00309, dated Sep. 5, 2014, 10 pages.
Order Denying Petitioner's Motion for Discovery, Case IPR2014-00309, dated Sep. 4, 2014, 13 pages.
Petitioner's Opposition to Patent Owner's Motion to Seal and for Entry of Proposed Protective Order, Case IPR2014-00309, dated Aug. 19, 2014, 14 pages.
Opposition to Petitioners Motion for Additional Discovery, Case IPR2014-00309, dated Aug. 28, 2014, 14 pages.
Decision—Denying Patent Owner's Request for Rehearing and Order on Conduct of Proceeding, Case IPR2014-00309, dated Jul. 3, 2014, 4 pages.
Order—On Motion to Seal and for Entry of Protective Order and Notice of Revised Scheduling Order, Case IPR2014-00309, dated Aug. 27, 2014, 10 pages.
Petition for Inter Partes Review Under 37 C.F.R. 42.100, dated Dec. 27, 2013, 58 pages.
Patent Owner's Preliminary Response, 37 C.F.R. 42.107, Case IPR2014-00309, dated Apr. 15, 2014, 69 pages.
Request for Rehearing Under 37 C.F.R. 42.71(d), Case IPR2014-00309, dated Jun. 24, 2014, 12 pages.
Patent Owner's Response, 37 C.F.R. 42.120, Case IPR2014-00309, dated Aug. 11, 2014, 67 pages.
Amended Patent Owner's Response, 37 C.F.R. 42.120, Case IPR2014-00309, dated Sep. 3, 2014, 67 pages.
Petitioners Reply to Patent Owner's Response, Case IPR2014-00309, dated Oct. 21, 2014, 20 pages.
Secured Note Offering by MMI International Part 1, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 11, 2014, 158 pages.
Secured Note Offering by MMI International Part 2, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 11, 2014, 133 pages.
Secured Note Offering by MMI International Part 3, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 11, 2014, 194 pages.
Marked Up IPT Exhibit 1034, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 11, 2014, 1 page.
Figure of Exhibit 1002 and Figure Representative of Bushing of Exhibit 1002 discussed during J. Michael McCarthy Deposition, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 12, 2013, 1 page.
Figure Representative of the Bushing of Exhibit 1002 and Annotated Figure of Exhibit 1002 discussed during J. Michael McCarthy Deposition, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 12, 2014, 1 page.
Figure of Exhibit 1002 and Annotated Figure of Exhibit 1002 discussed diruing J. Michael McCarthy Deposition, IntriPlex v. Saint-Gobain, IPR2014-00309, dated Nov. 12, 2014, 1 page.
Annotated Figures of Exhibit 1002 discussed during J. Michael McCarthy Deposition, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 12, 2014, 1 pages.
Figure Representative of Bushing of Exhibit 1002, Annotated Figures of Exhibit 1002 discussed during J. Michael McCarthy Deposition, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 12, 2014, 1 page.
Excerpts from McGraw-Hill Dictionary of Scientific and Technical Terms, Sixth Edition (copyright 2003), Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 12, 2014, 10 pages.
Deposition Transcript of Ryan Schmidt, Reported by: Michelle Graciano, CSR No. 13572, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 11, 2014, Costa Mesa, CA, 90 pages.
Deposition Transcript of J. Michael McCarthy, Ph.D., Reported by: Michelle Graciano, CSR No. 13572, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 12, 2014, 93 pages.
Patent Owner's Motion for Observations on the Cross Examination of Mr. Ryan Schmidt and Dr. Michael McCarthy, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 21, 2014, 13 pages.
Patent Owner's Motion to Exclude Evidence Under 37 C.F.R. 42.64, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 21, 2014, 17 pages.
Attachment A to Patent Owners Motion to Exclude Evidence, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Oct. 28, 2014, 21 pages.
Petitioners Motion to Exclude Patent Owner's Exhibits 2030 and 2032-2036, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 21, 2014, 4 pages.
Patent Owner's Motion to Seal, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 21, 2014, 4 pages.
Petitioners Request for Oral Hearing, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 21, 2014, 4 pages.
Patent Owner's Request for Oral Hearing, Intri-Plex v. Saint-Gobain, IPR2014-00309, dated Nov. 21, 2014, 4 pages.
D.E. Whitney, “Quasi-Static Assembly of Compliantly Supported Rigid Parts,” Journal of Dynamic Systems, Measurement, and Control, Mar. 1982, vol. 104, pp. 65-77.
Tomas Lozano-Perez et al., “Automatic Synthesis of Fine-Motion Strategies for Robots,” The International Journal of Robotics Research, vol. 3, No. 1, Spring 1984, pp. 3-24.
Patent Owner's Demonstratives, Case IPR2014-00309, Intri-Plex v. Saint-Gobain, dated Jan. 15, 2015, pp. 1-100.
Patent Owner's Motion to Seal the Confidential, Unredacted Versions of Exhibits 1024 and 1025, Case IPR2014-00309, Intri-Plex v. Saint-Gobain, dated Jan. 9, 2015, pp. 1-14.
Patent Owner's Notice of Supplemental Authority, Case IPR2014-00309, Intri-Plex v. Saint-Gobain, dated Jan. 8, 2015, pp. 1-3.
Patent Owner's Submission of Demonstrative Exhibits, Case IPR2014-00309, Intri-Plex v. Saint-Gobain, dated Jan. 12, 2015, pp. 1-3.
Petitioners Opposition to Patent Owner's Motion to Seal Unredacted Portions of Deposition Transcripts of Andrew Slayne and Nik Woodhead in Exhibits 1024 and 1025, Case IPR2014-00309, Intri-Plex v. Saint-Gobain, dated Jan. 13, 2015, pp. 1-10.
Patent Owner's Reply in Support of its Motion to Seal the Confidential, Unredacted Versions of Exhibits 1024 and 1025, Case IPR2014-00309, Intri-Plex v. Saint-Gobain, dated Jan. 20, 2015, pp. 1-9.
Record of Oral Hearing before Michael W. Kim, William A. Capp, and Frances L. Ippolito, Administrative Patent Judges, held Jan. 15, 2015, Case IPR2014-00309, Intri-Plex v. Saint-Gobain, pp. 1-78.
Related Publications (1)
Number Date Country
20100321832 A1 Dec 2010 US
Divisions (1)
Number Date Country
Parent 10552875 US
Child 12870984 US