The present invention relates generally to analysis of medical imaging data, and, more particularly to employing a tomographic light field microscope in a biological cell imager.
In the field of optical tomography continuous scanning from multiple perspectives is used to acquire projection images from, effectively, an infinite number of adjacent focal planes. The focal plane of an optical imaging system is mechanically translated along an axis perpendicular to the focal plane through the thickness of a specimen during a single detector exposure. This is often referred to as “scanning” the focal plane. The process is repeated from multiple perspectives, either in series using a single illumination/detection subsystem, or in parallel using several illumination/detection subsystems. In this way, a set of pseudoprojections is generated, which can be input to a 3D tomographic image reconstruction algorithm. The method disclosed may be useful in applications such as high resolution optical tomography of small objects. One such system has been published as United States Patent Application Publication 2004-0076319, on Apr. 22, 2004, corresponding to pending U.S. patent application Ser. No. 10/716,744, filed Nov. 18, 2003, to Fauver, et al. and entitled “Method and Apparatus of Shadowgram Formation for Optical Tomography.” U.S. patent application Ser. No. 10/716,744 is incorporated herein by reference.
Fauver uses a piezoelectric transducer (PZT) to move an objective lens an axial distance of about 40 microns or more. In one useful embodiment, a micro-objective positioning system provides a suitable PZT, which is driven up and down along the optical “z” axis to scan the focal plane of the objective lens. Such a mechanical arrangement has limited scanning speed due to limiting factors such as the mass of the objective and speed of the piezoelectric element.
An example of a light field microscope is described in a patent application of Levoy et. al., published as US Publication No. US 2008-0266655 A1 on Oct. 30, 2008, corresponding to pending U.S. patent application Ser. No. 12/089,371, filed Apr. 4, 2008, and entitled “Microscopy Arrangements and Approaches.”
Thus, a solution to the limitations of the prior art in acquiring pseudoprojections is desirable to increase throughput in an optical tomography system. Until the present invention no optical tomography system has been employed to acquire pseudoprojections from a rotating specimen carrier.
While the novel features of the invention are set forth with particularity in the appended claims, the invention, both as to organization and content, will be better understood and appreciated, along with other objects and features thereof, from the following detailed description taken in conjunction with the drawings, in which:
Referring now to
As compared to the optical tomography system of Fauver et al., the optical tomography system presented herein does not require scanning the objective lens for acquiring pseudoprojections. This reduces system complexity. As compared to a light field microscope, the optical tomography system presented herein adds a cell carrier to allow capture images from all directions around the cell. It is believed that multiple images improve the resolution of the 3D reconstruction.
While specific embodiments of the invention have been illustrated and described herein, it is realized that numerous modifications and changes will occur to those skilled in the art. It is therefore to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit and scope of the invention.
This application hereby claims the benefit of prior filed co-pending U.S. provisional patent application No. 61/145,717, filed Jan. 19, 2009, of Mathew D. Watson, entitled “Tomographic Light Field Microscope,” which is incorporated herein by this reference.
Number | Date | Country | |
---|---|---|---|
61145717 | Jan 2009 | US |