The present application claims the benefit of Swedish patent application No. 1350458-4, filed 11 Apr. 2013.
The present invention relates to touch sensing systems and data processing techniques in relation to such systems.
Touch sensing systems (“touch systems”) are in widespread use in a variety of applications. Typically, the touch systems are actuated by a touching object such as a finger or stylus, either in direct contact or through proximity (i.e. without contact) with a touch surface. Touch systems are for example used as touch pads of laptop computers, in control panels, and as overlays to displays on e.g. hand held devices, such as mobile telephones. A touch system that is overlaid on or integrated in a display is also denoted a “touch screen”. Many other applications are known in the art.
To an increasing extent, touch systems are designed to be able to detect two or more touches simultaneously, this capability often being referred to as “multi-touch”. There are numerous known techniques for providing multi-touch sensitivity, e.g. by using cameras to capture light scattered off the point(s) of touch on a panel, or by incorporating resistive wire grids, capacitive sensors, strain gauges, etc into a panel.
US2004/0252091 discloses an alternative technique which is based on frustrated total internal reflection (FTIR). Light sheets are coupled into a panel to propagate inside the panel by total internal reflection. When an object comes into contact with a surface of the panel, two or more light sheets will be locally attenuated at the point of touch. Arrays of light sensors are located around the perimeter of the panel to detect the received light for each light sheet. A coarse reconstruction of the light field across the panel surface is then created by geometrically back-tracing and triangulating all attenuations observed in the received light. This is stated to result in data regarding the position and size of each contact area.
US2009/0153519 discloses a panel capable of conducting signals. A “tomograph” is positioned adjacent to the panel with signal flow ports arrayed around the border of the panel at discrete locations. Signals measured at the signal flow ports are arranged in a sinogram (b) and tomographically processed to generate a two-dimensional representation (x) of the conductivity on the panel, whereby touching objects on the panel surface can be detected. The presented technique for tomographic reconstruction is based on a linear model of the tomographic system, Ax=b. The system matrix A is calculated at factory, and its pseudo inverse A−1 is calculated using Truncated SVD algorithms and operated on a sinogram b of measured signals to yield the two-dimensional (2D) representation of the conductivity: x=A−1b. The suggested method is both demanding in the term of processing and lacks suppression of high frequency components, possibly leading to much noise in the 2D representation. US2009/0153519 also makes a general reference to Computer Tomography (CT). CT methods are well-known imaging methods which have been developed for medical purposes. CT methods employ digital geometry processing to reconstruct an image of the inside of an object based on a large series of projection measurements through the object.
WO2011/139213 discloses an improved technique for tomographic reconstruction based on signals from a touch system that operates by transmission of signals across a touch surface. The signals, which represent detected energy on a plurality of actual detection lines across the touch surface, are processed to generate a set of matched samples, which are indicative of estimated detected energy for fictitious detection lines that have a location on the touch surface that matches a standard geometry for tomographic reconstruction. This technique enables the touch system to be designed with any arrangement of actual detection lines across the touch surface, while still allowing for the use of conventional tomographic reconstruction algorithms, which generate an interaction pattern that represents the location of objects on the touch surface.
As will be described with reference to
It is an objective of the invention to at least partly overcome one or more limitations of the prior art.
Another objective is to improve the spatial resolution of the interaction pattern generated by tomographic processing of signals acquired by projection measurements in a touch-sensitive apparatus.
One or more of these objectives, as well as further objectives that may appear from the description below, are at least partly achieved by means of a touch-sensitive apparatus, a method, a computer-readable medium and a device according to the independent claims, embodiments thereof being defined by the dependent claims.
A first aspect of the invention is a touch-sensitive apparatus comprising: a panel configured to conduct signals from a plurality of incoupling ports to a plurality of outcoupling ports, thereby defining detection lines that extend across a non-circular touch surface on the panel between pairs of incoupling and outcoupling ports; at least one signal generator coupled to the incoupling ports to generate the signals; at least one signal detector coupled to the outcoupling ports to generate an output signal; and a signal processor. The signal processor is connected to receive the output signal and configured to: process the output signal to generate a set of observed values for at least a subset of the detection lines, wherein the observed values correspond to sampling points in a two-dimensional sample space, in which a first dimension is defined by an angle parameter that represents a rotation angle of the detection line in the plane of the panel, and a second dimension is defined by a distance parameter that represent a distance of the detection line in the plane of the panel from a predetermined origin; process the observed values for the sampling points, by interpolation in the two-dimensional sample space, to generate estimated values for matched sampling points in the two-dimensional sample space, wherein the matched sampling points are arranged to form consecutive columns in the two-dimensional sample space, such that the columns extend in the second dimension and are spaced in the first dimension, and wherein at least a subset of the consecutive columns are non-equispaced and arranged to coincide with alignment lines that are defined by the locations of the sampling points in the two-dimensional sample space; and operate a tomographic reconstruction function on the estimated values for the matched sampling points to generate a two-dimensional representation of touch interaction on the touch surface.
The first aspect is based on an insight, obtained through extensive experimentation, that the spatial resolution of the two-dimensional representation may be improved by reducing the degree of interpolation in the first dimension, i.e. with respect to the angle parameter, when the estimated values for the matched sampling points are generated. This is generally achieved, when designing the interpolation to be used when the signal processor processes the observed values, by allowing the spacing between consecutive columns of matched sampling points to be non-equispaced in the sample space, and by intentionally selecting the placement of the individual columns of matched sampling points with respect to alignment lines that are given by the sampling points in the sample space. The term “non-equispaced” is used in its ordinary meaning to define that the spacing differs between different columns among the set of consecutive columns. It does not imply that all consecutive columns should have different spacing, but that at least one pair of consecutive columns has a different spacing than other pairs of consecutive columns.
The following embodiments define different concepts for arranging the columns of matched sampling points and for generating the estimated values for the matched sampling points, so as to improve the spatial resolution, possibly without significantly increasing the number of processing operations.
In one embodiment, the respective alignment line is defined to extend through at least two sampling points in the two-dimensional sample space.
In one embodiment, the respective alignment line is defined to extend through at least two sampling points that are aligned with respect to the first dimension in the two-dimensional sample space.
In one embodiment, the respective alignment line is defined by sampling points that represent detection lines that extend in parallel across the touch surface.
In one embodiment, the touch surface is quadrilateral and comprises at least two opposite sides that are essentially parallel and at least two adjacent sides, and wherein the incoupling and outcoupling ports are arranged along a perimeter of the touch surface, such that the detection lines extend between the at least two opposite sides and between the at least two adjacent sides of the touch surface, wherein the alignment lines are defined, preferably exclusively, by the detection lines that extend between the at least two opposite sides.
In one embodiment with quadrilateral touch surface, the detection lines that extend between the at least two opposite sides correspond to sampling points that are located within one or more confined sub-portions of the two-dimensional sample space, wherein the sampling points within the one or more confined sub-portions form a plurality of columnated clusters of sampling points, and wherein the alignment lines are defined to be co-located with a respective columnated cluster of sampling points. The columnated clusters may correspond to disjoint sets of sampling points within the one or more confined sub-portions.
In one embodiment, the columnated clusters are spaced-apart in the first dimension within the one or more confined sub-portions.
In one embodiment, the columnated clusters are identifiable by cluster analysis among the sampling points within the one or more sub-portions, wherein the cluster analysis is configured to identify a predefined number of columnated clusters by clustering the sampling points only based on the value of the angle parameter for the respective sampling point.
In one embodiment with quadrilateral touch surface, the incoupling and outcoupling ports are arranged such that the detection lines that extend between the at least two opposite sides of the touch surface form groups of detection lines with mutually different rotation angles in the plane of the panel, wherein the detection lines within the respective group have mutually similar rotational angles, and wherein the columnated clusters correspond to the groups of detection lines. At least a subset of the groups may consist of mutually parallel detection lines, at least a subset of the columnated clusters may consist of a respective column of sampling points in the two-dimensional sample space, and at least a subset of the alignment lines may be defined to coincide with the columns of sampling points.
In one embodiment, the signal processor is configured to apply a first interpolation function to generate the estimated values for matched sampling points that are located within at least one of the one or more confined sub-portions, and apply a second interpolation function to generate the estimated values for matched sampling points that are located outside the one or more confined sub-portions. In one implementation, the first interpolation function is configured to generate the estimated value for the respective matched sampling point on a given alignment line by interpolation only among observed values for the sampling points within the columnated cluster that defines the given alignment line, and the second interpolation function is configured to generate the estimated value for the respective matched sampling point by interpolation among observed values for the sampling points that are located outside the one or more confined sub-portions. Alternatively or additionally, each columnated cluster may consist of a column of sampling points in the two-dimensional sample space, and the respective alignment line may be defined to coincide with a respective column of sampling points, and the first interpolation function may configured to generate the estimated value for the respective matched sampling point by interpolation only among sampling points that are only displaced in the second dimension from the respective matched sampling point, and the second interpolation function may be configured to generate the estimated value for the respective matched sampling point by interpolation among observed values for sampling points that are displaced in any of the first and second dimensions from the respective matched sampling point.
In one embodiment, the signal processor is configured to generate the estimated value for the respective matched sampling point as a weighted combination of the observed values for a respective set of sampling points. For example, the signal processor may be configured to generate the weighted combination for the respective matched sampling point by applying a weight factor to the observed value for each sampling point in the respective set of sampling points, and the weight factor may be a function of a distance in the two-dimensional sample space between the respective matched sampling point and said each sampling point.
In one embodiment, the signal processor is configured to generate the observed values to be indicative of a decrease in signal energy caused by objects in contact or proximity with the touch surface.
In one embodiment, said signals comprise one of electrical energy, light, magnetic energy, sonic energy and vibration energy.
In one embodiment, the panel defines a top surface and an opposite, bottom surface, wherein said at least one signal generator is optically coupled to the panel at the incoupling ports and arranged to generate light that propagates inside the panel by internal reflection between the top and bottom surfaces from the incoupling ports to the outcoupling ports, wherein said at least one signal detector is optically coupled to the panel at the outcoupling ports to receive the propagating light, and wherein the touch-sensitive apparatus is configured such that the propagating light is locally attenuated by one or more objects that are brought into contact or proximity with at least one of the top and bottom surfaces.
A second aspect of the invention is a method for enabling touch determination, which comprises the steps of: receiving an output signal generated by at least one signal detector which is coupled to a plurality of outcoupling ports on a panel, which is configured to conduct signals from a plurality of incoupling ports on the panel to the plurality of outcoupling ports, so as to define detection lines that extend across a non-circular touch surface on the panel between pairs of incoupling and outcoupling ports; processing the output signal to generate a set of observed values for at least a subset of the detection lines, wherein the observed values correspond to sampling points in a two-dimensional sample space, in which a first dimension is defined by an angle parameter that represents a rotation angle of the detection line in the plane of the panel, and a second dimension is defined by a distance parameter that represent a distance of the detection line in the plane of the panel from a predetermined origin; processing the observed values for the sampling points, by interpolation in the two-dimensional sample space, to generate estimated values for matched sampling points in the two-dimensional sample space, wherein the matched sampling points are arranged to form consecutive columns in the two-dimensional sample space, such that the columns extend in the second dimension and are spaced in the first dimension, and wherein at least a subset of the consecutive columns are non-equispaced and arranged to coincide with alignment lines that are defined by the locations of the sampling points in the two-dimensional sample space; and operating a tomographic reconstruction function on the estimated values for the matched sampling points to generate a two-dimensional representation of touch interaction on the touch surface.
A third aspect of the invention is a computer-readable medium comprising program instructions which, when executed by a processing unit, is adapted to carry out the method according to the second aspect.
A fourth aspect of the invention is a device for enabling touch determination, which comprises: an input for receiving an output signal generated by at least one signal detector which is coupled to a plurality of outcoupling ports on a panel, which is configured to conduct signals from a plurality of incoupling ports on the panel to the plurality of outcoupling ports, so as to define detection lines that extend across a non-circular touch surface on the panel between pairs of incoupling and outcoupling ports; means for processing the output signal to generate a set of observed values for at least a subset of the detection lines, wherein the observed values correspond to sampling points in a two-dimensional sample space, in which a first dimension is defined by an angle parameter that represents a rotation angle of the detection line in the plane of the panel, and a second dimension is defined by a distance parameter that represent a distance of the detection line in the plane of the panel from a predetermined origin; means for processing the observed values for the sampling points, by interpolation in the two-dimensional sample space, to generate estimated values for matched sampling points in the two-dimensional sample space, wherein the matched sampling points are arranged to form consecutive columns in the two-dimensional sample space, such that the columns extend in the second dimension and are spaced in the first dimension, and wherein at least a subset of the consecutive columns are non-equispaced and arranged to coincide with alignment lines that are defined by the locations of the sampling points in the two-dimensional sample space; and means for operating a tomographic reconstruction function on the estimated values for the matched sampling points to generate a two-dimensional representation of touch interaction on the touch surface.
Any one of the above-identified embodiments of the first aspect may be adapted and implemented as an embodiment of the second to fourth aspects.
Still other objectives, features, aspects and advantages of the present invention will appear from the following detailed description, from the attached claims as well as from the drawings.
Embodiments of the invention will now be described in more detail with reference to the accompanying schematic drawings.
The present invention is directed to techniques that may improve the accuracy of tomographic reconstruction as applied for detecting touches based on projection measurements in a touch-sensitive apparatus. Throughout the description, the same reference numerals are used to identify corresponding elements.
A touch-sensitive apparatus that uses projection measurements is operated to transmit energy of some form across a touch surface in such a way that an object that is brought into close vicinity of, or in contact with, the touch surface does not block the transmission of energy but rather causes a local decrease in the transmitted energy. The apparatus repeatedly performs projection measurements, in which the transmitted energy on a large number of propagation paths across the touch surface is measured, and a subsequent image reconstruction, in which observed values acquired in the projection measurements are processed by tomographic reconstruction to generate a two-dimensional representation of the interaction on the touch surface.
Reverting to the example in
In the example of
From the point of view of tomographic reconstruction, the touch surface 1 has ideally a circular shape. However, for practical reasons, the touch surface 1 is typically non-circular, e.g. rectangular as shown. For example, the shape of the touch surface 1 may be given by consideration of cost, ease of manufacture and installation, design, form factor, etc. Furthermore, if the apparatus 100 is overlaid on or integrated in a rectangular display device, the touch surface 1 is likely to also be designed with a rectangular shape. As will be described in further detail below, the tomographic reconstruction may be optimized for the non-circular shape of the touch surface 1 to improve the accuracy of the interaction pattern.
The apparatus 100 may be configured to permit transmission of energy in one of many different forms. The emitted signals may thus be any radiation or wave energy that can travel in the panel 4 and across the touch surface 1 including, without limitation, light waves in the visible or infrared or ultraviolet spectral regions, electrical energy, electromagnetic or magnetic energy, or sonic and ultrasonic energy or vibration energy.
Embodiments of the invention may, e.g., be applied in an apparatus 100 that operates by frustrated total internal reflection (FTIR), as described in the Background section.
The signal processor 10 implements a tomographic reconstruction algorithm that generates the interaction pattern. Tomographic reconstruction algorithms are well-known in the art and are designed to process observed values which are generated in projection measurements through an attenuating medium. Each observed value is acquired for a specific propagation path (detection line) through the attenuating medium. In conventional tomography, e.g. as used in the field of medical imaging, the measurement system is controlled or set to yield a desired geometric arrangement of the detection lines. Such a measurement system is exemplified in
The projection measurements define a set of unique sampling points, where each sampling point corresponds to a detection line D and is associated with the observed value for this detection line. In tomographic processing, the observed values are represented in the form of a “sinogram”, which is a function that maps the observed values to the sampling points. The sinogram is given in a two-dimensional (2D) sample space, which is defined by dimensions that uniquely identify each individual detection line D (sampling point). In the foregoing example, the sample space may be defined by the above-mentioned angle and distance parameters φ, s. Thus, the sinogram may be represented as a function g(φ, s), abbreviated as g.
Tomographic reconstruction algorithms are designed to process the original sinogram g(φ, s) so as to generate a representation of the attenuating medium f(x, y). Generally, tomographic reconstruction algorithms require the sampling points to be arranged in columns in the sample space, e.g. as shown in
One difficulty of applying tomographic reconstruction algorithms to observed values that are acquired in a touch-sensitive apparatus 100 of projection-type, is that the detection lines D generally do not conform to the parallel geometry described in relation to
Embodiments of the invention that address this problem will now be described in relation to a touch-sensitive apparatus 100 with a rectangular touch surface 1. The description will focus on two exemplifying arrangements of emitters 2 (represented as crossed circles) and sensors 3 (represented as open squares) around the perimeter of the touch surface 1. A first arrangement, shown in
The following description assumes that the x, y coordinate system is located with its origin at the center of the touch surface 1, and that the detection lines D are parameterized by an angle parameter φ and a distance parameter s. This parameterization is illustrated for a single detection line D in
The present Applicant has found that an apparatus 100 that generates the matched sinogram according to the teachings in WO2011/139213, as exemplified in
First, it should be stated that the use of interpolation inevitably introduces errors into the interaction pattern, since the interpolation operates to estimate the observed values of fictitious detection lines on the touch surface 1, and an estimate is inherently associated with some degree of uncertainty. Reverting to
Thus, to improve the spatial resolution, the interpolation points may be arranged in non-equidistant columns in the matched sinogram, such that the respective column of interpolation points in the matched sinogram coincides with a column of sampling points in the original sinogram. This means that the interpolation points are aligned with existing “alignment lines” in the original sinogram, where the respective alignment line extends through at least two sampling points. With reference to
In a special implementation, the interpolation is selectively modified to only perform an interpolation in the s direction for those interpolation points that are aligned with a column of sampling points and are located between sampling points in this column. In
It should be understood that the foregoing discussion with reference to
The foregoing principles will now be exemplified with respect to the original sinogram g in
It should be noted that the alignment lines 30 are non-equispaced, i.e. the spacing between consecutive alignment lines 30 varies within the original sinogram g.
The matched sinogram is generated by arranging the interpolation points on the non-equispaced alignment lines 30 and by calculating the interpolated values based on the observed values of the sampling points in the original sinogram g.
As mentioned above, it may be beneficial to apply different types of interpolation when generating interpolation points in different portions of the φ-s-plane. Specifically, the interpolation points in the sub-portions 40, 42A, 42B may be generated by one-dimensional (1D) interpolation among the sampling points in the respective column, whereas interpolation points outside these sub-portions may be generated by two-dimensional (2D) interpolation in the φ-s-plane. The 1D interpolation thus operates to generate each interpolated value at an interpolation point on an alignment line 30 as a weighted combination of observed values for two or more sampling points on this alignment line. In contrast, the 2D interpolation operates to generate each interpolated value as a weighted combination of observed values for two or more sampling points that may be displaced in both the φ direction and the s direction from the interpolation point.
Depending on implementation, one or more interpolation points (or even all interpolation points) within one or more of the sub-portions 40, 42A, 42B may coincide with a respective sampling point. Likewise, one or more interpolation points outside the sub-portions 40, 42A, 42B may coincide with a sampling point. For each interpolation point that coincides with a sampling point, the interpolated value may be directly set equal to the observed value for this sampling point. Alternatively, a given interpolation function may be applied to compute the interpolated values of all interpolation points, also the interpolation points that coincide with sampling points. The latter approach may be more computation efficient since it does not involve special treatment of certain interpolation points.
As seen in
It should be noted that it is a general property of a rectangular touch surface that the detection lines that extend between opposite sides exhibit a larger degree of parallelism than the detection lines that extend between adjacent sides. Thus, it is generally advantageous to define the alignment lines 30 based on the sampling points within the sub-portions 40, 42A, 42B. The same property is also found when the touch surface 1 has other shapes with opposite line portions that are parallel, such as other types of quadrilateral shapes, including squares, trapezoids and parallelograms, as well as other types of polygons, such as hexagons and octagons.
This means that the placement of emitters 2 and sensors 3 along the respective side of the touch surface 1 may deviate from the equispaced arrangement in
The foregoing discussion is applicable to all arrangements of emitters and sensors that define detection lines between both adjacent sides and opposite sides of the touch surface.
In all of the foregoing examples, the arrangement of emitters 2 and sensors 3 is selected such that all sampling points within sub-portions 40, 42A and 42B define distinct and perfect columns in the φ-s-plane. However, there may be design considerations that call for a different placement of the emitters 2 and sensors 3 such that the sampling points are less accurately aligned in the φ-s-plane, in one or more of the sub-portions 40, 42A and 42B. In such a situation, it may still be possible to select the alignment lines so as to extend through two or more samplings points that are aligned in the s direction (i.e. have the same angle φ). However, the number of alignment lines may become excessive or at least larger than necessary to achieve a certain reconstruction accuracy. As will be shown below, with reference to an example, this drawback can be overcome by defining the alignment lines to coincide with center points of a given number of clusters of sampling points that are identified by standard cluster analysis among the sampling points that are located within the one or more sub-portions 40, 42A and 42B. Cluster analysis is a statistical approach to grouping a set of objects into a number of disjoint sets, i.e. sets that have no member in common. All members in a grouped set are “similar” in some respect to each other. There are many known types of clustering algorithms that may be used in the cluster analysis, such as connectivity-based clustering, centroid-based clustering, distribution-based clustering and density-based clustering, all of which are well-known to the person skilled in the art.
It should be noted that the outcome of the cluster analysis depends on the given number of alignment lines to be identified. For example, if the cluster analysis were set to identify 26 clusters in sub-portion 42A in
The cluster analysis is a one-dimensional optimization, since it amounts to finding a given number of clusters in the φ direction. This is further illustrated in
It should be noted that the above-described use of selective 1D interpolation within sub-portions 40, 42A and 42B may be slightly modified when the alignment lines do not coincide with the sampling points. Instead of a strict 1D interpolation with respect to the s dimension, i.e. along the respective alignment line, the 1D interpolation may be substituted for a “limited 2D interpolation” in which only sampling points that are associated with a particular alignment line are allowed to contribute to interpolation points on this alignment line (within sub-portion 40, 42A, 42B). Thus, in a sense, the limited 2D interpolation is one-dimensional with respect to the alignment line. For example, a limited 2D interpolation function may generate each interpolated value at an interpolation point on an alignment line as a weighted combination of observed values for the two (or more) nearest sampling points that are associated with this alignment line. In
The signal processor 10, shown in
Each frame starts by a data collection step 50, in which current measurement values are acquired from the sensors 3 in the apparatus 100. The measurement values represent detected energy, or an equivalent quantity such as power or intensity, for a set of detection lines. The measurement values may, but need not, be collected for all available detection lines in the apparatus 100. Step 50 may also include pre-processing of the measurement values, e.g. filtering for noise reduction, as well as formatting of the measurement values into a format adapted to the reconstruction function that is used (in the step 56, below) for generating the interaction pattern. The format may represent a decrease in signal energy caused by the interaction between touching objects and detection lines. In one implementation, the format is given as the (negative) logarithm of the signal transmission for the detection line, where the signal transmission is given by the measurement value normalized by a reference value. It can be shown that this format allows the interaction pattern to represent attenuation. In alternative implementations, the format may be given as a transmission (e.g. given by the measurement value normalized by the reference value), an energy difference (e.g. given by the difference between the measurement value and the reference value), or a logarithm of the energy difference. Irrespective of format, the data collection step 50 results in current “observed values” for the set of detection lines.
In step 52, the observed values are stored in a first data structure in the electronic memory 14. When populated with the observed values, the first data structure represents the original sinogram g for the apparatus 100, as obtained in the current frame. As explained above, the original sinogram g maps the observed values, which are acquired by step 50, to unique combinations of values for the φ and s parameters, where each unique combination represents one of the detection lines. Thus, the first data structure associates observed values with (φ, s) values. It should be noted that the first data structure and its (φ, s) values are predefined for the apparatus 100. The (φ, s) values for each detection line are typically determined theoretically, i.e. based on the extent of each detection line as given by the predefined locations of the incoupling and outcoupling ports in the x, y coordinate system of the touch surface.
In step 54, the original sinogram is processed for generation of a matched sinogram, which is implemented by a second data structure that maps interpolated values to interpolation points in the φ-s-plane. The interpolation points are defined by such (φ, s) values that the interpolation points are located on non-equidistantly spaced alignment lines in the φ-s-plane, according to the principles described and exemplified above with reference to
It is also worth noting that steps 52 and 54 allow for dynamic removal of certain sampling points in the original sinogram g during operation of the method. As suggested in aforesaid WO2011/139213, the apparatus may be provided with an ability of identifying faulty detection lines, i.e. detection lines that are deemed to cause problems in the reconstruction process and/or introduce major errors in the interaction pattern. For example, if an emitter or a sensor starts to perform badly, or not at all, during operation of the apparatus, this may have a significant impact on the interaction pattern. The apparatus may implement an error handling that validates the detection lines, e.g. every n:th frame (n≥1), and dynamically assigns a valid or invalid state to each detection line (sampling point) depending on the outcome of the validation. When a sampling point is set to an invalid state, step 54 may remove it from the original sinogram g and/or step 56 may disregard the observed value for the invalid sampling point when computing the interpolated values. Thereby, the sampling point is not used for computing the interpolated values of the matched sinogram, at least until the sampling point is again set to the valid state.
In step 56, the interaction pattern is reconstructed within the touch surface by operating a tomographic reconstruction function on the matched sinogram. The interaction pattern may be reconstructed within the entire touch surface or within one or more selected subareas thereof. An example of an interaction pattern is given in the 3D plot of
In an extraction step 58, the interaction pattern is then processed for identification of touch-related features and extraction of touch data. Any known technique may be used for isolating true (actual) touches within the interaction pattern. For example, ordinary blob detection and tracking techniques may be used for determining the touches, including thresholding, clustering, edge detection, shape matching, etc. Step 58 may also involve an initial processing of the interaction pattern for noise removal and/or image enhancement. Any available touch data may be extracted, including but not limited to x, y coordinates, areas and shapes of the touches.
After step 58, the extracted touch data is output, and the process returns to the data collection step 50.
It is to be understood that one or more of steps 50-58 may be effected concurrently. For example, the data collection step 50 of a subsequent frame may be initiated concurrently with any of steps 52-58.
The signal processor 10 may be implemented by special-purpose software (or firmware) run on one or more general-purpose or special-purpose computing devices. In this context, it is to be understood that each “element” or “means” of such a computing device refers to a conceptual equivalent of a method step; there is not always a one-to-one correspondence between elements/means and particular pieces of hardware or software routines. One piece of hardware sometimes comprises different means/elements. For example, a processing unit may serve as one element/means when executing one instruction, and serve as another element/means when executing another instruction. In addition, one element/means may be implemented by one instruction in some cases, but by a plurality of instructions in other cases. A software-controlled signal processor 10 may include one or more processing units (cf. 13 in
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and the scope of the appended claims.
For example, the present invention is not limited to any particular placement, any particular ordering, or installation of any particular number of emitters and sensors, respectively, on the different sides of the touch surface. However, in certain embodiments, the placement and/or ordering and/or number may be selected to achieve a given degree of parallelism among the detection lines that extend between opposite sides. It may be noted that it is possible to arrange, if desired, an emitter and a sensor in the same position at the perimeter of the touch surface. For example, in the FTIR system of
It is conceivable that the inventive principle of designing the matched sinogram based on non-equidistant alignment lines in the original sinogram is only applied for a confined range of φ values in the matched sinogram. For example, the interpolation points may be arranged on non-equidistant alignment lines within the φ range spanned by sub-portion 40 (or a sub-range thereof), whereas the interpolation points may be arranged in columns according to other principles, e.g. equidistantly, outside this φ range. For example, in the original sinograms shown in
Number | Date | Country | Kind |
---|---|---|---|
1350458 | Apr 2013 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2014/050435 | 4/9/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/168567 | 10/16/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3440426 | Bush | Apr 1969 | A |
3553680 | Cooreman | Jan 1971 | A |
3673327 | Johnson et al. | Jun 1972 | A |
4129384 | Walker et al. | Dec 1978 | A |
4180702 | Sick et al. | Dec 1979 | A |
4209255 | Heynau et al. | Jun 1980 | A |
4213707 | Evans, Jr. | Jul 1980 | A |
4254333 | Bergstrom | Mar 1981 | A |
4254407 | Tipon | Mar 1981 | A |
4294543 | Apple et al. | Oct 1981 | A |
4346376 | Mallos | Aug 1982 | A |
4420261 | Barlow et al. | Dec 1983 | A |
4484179 | Kasday | Nov 1984 | A |
4507557 | Tsikos | Mar 1985 | A |
4521112 | Kuwabara et al. | Jun 1985 | A |
4542375 | Alles et al. | Sep 1985 | A |
4550250 | Mueller et al. | Oct 1985 | A |
4593191 | Alles | Jun 1986 | A |
4673918 | Adler et al. | Jun 1987 | A |
4688933 | Lapeyre | Aug 1987 | A |
4688993 | Ferris et al. | Aug 1987 | A |
4692809 | Beining et al. | Sep 1987 | A |
4710760 | Kasday | Dec 1987 | A |
4736191 | Matzke et al. | Apr 1988 | A |
4737626 | Hasegawa | Apr 1988 | A |
4746770 | McAvinney | May 1988 | A |
4752655 | Tajiri et al. | Jun 1988 | A |
4772763 | Garwin et al. | Sep 1988 | A |
4782328 | Denlinger | Nov 1988 | A |
4812833 | Shimauchi | Mar 1989 | A |
4837430 | Hasegawa | Jun 1989 | A |
4868912 | Doering | Sep 1989 | A |
4891829 | Deckman et al. | Jan 1990 | A |
4933544 | Tamaru | Jun 1990 | A |
4949079 | Loebner | Aug 1990 | A |
4986662 | Bures | Jan 1991 | A |
4988983 | Wehrer | Jan 1991 | A |
5065185 | Powers et al. | Nov 1991 | A |
5073770 | Lowbner | Dec 1991 | A |
5105186 | May | Apr 1992 | A |
5159322 | Loebner | Oct 1992 | A |
5166668 | Aoyagi | Nov 1992 | A |
5227622 | Suzuki | Jul 1993 | A |
5248856 | Mallicoat | Sep 1993 | A |
5254407 | Sergerie et al. | Oct 1993 | A |
5345490 | Finnigan et al. | Sep 1994 | A |
5383022 | Kaser | Jan 1995 | A |
5483261 | Yasutake | Jan 1996 | A |
5484966 | Segen | Jan 1996 | A |
5499098 | Ogawa | Mar 1996 | A |
5502568 | Ogawa et al. | Mar 1996 | A |
5525764 | Junkins et al. | Jun 1996 | A |
5526422 | Keen | Jun 1996 | A |
5570181 | Yasuo et al. | Oct 1996 | A |
5572251 | Ogawa | Nov 1996 | A |
5577501 | Flohr et al. | Nov 1996 | A |
5600105 | Fukuzaki et al. | Feb 1997 | A |
5672852 | Fukuzaki et al. | Sep 1997 | A |
5679930 | Katsurahira | Oct 1997 | A |
5686942 | Ball | Nov 1997 | A |
5688933 | Evans et al. | Nov 1997 | A |
5729249 | Yasutake | Mar 1998 | A |
5736686 | Perret, Jr. et al. | Apr 1998 | A |
5740224 | Müller et al. | Apr 1998 | A |
5764223 | Chang et al. | Jun 1998 | A |
5767517 | Hawkins | Jun 1998 | A |
5775792 | Wiese | Jul 1998 | A |
5945980 | Moissev et al. | Aug 1999 | A |
5945981 | Paull et al. | Aug 1999 | A |
5959617 | Bird et al. | Sep 1999 | A |
6061177 | Fujimoto | May 2000 | A |
6067079 | Shieh | May 2000 | A |
6122394 | Neukermans et al. | Sep 2000 | A |
6141104 | Schulz et al. | Oct 2000 | A |
6172667 | Sayag | Jan 2001 | B1 |
6227667 | Halldorsson et al. | May 2001 | B1 |
6229529 | Yano et al. | May 2001 | B1 |
6333735 | Anvekar | Dec 2001 | B1 |
6366276 | Kunimatsu et al. | Apr 2002 | B1 |
6380732 | Gilboa | Apr 2002 | B1 |
6380740 | Laub | Apr 2002 | B1 |
6390370 | Plesko | May 2002 | B1 |
6429857 | Masters et al. | Aug 2002 | B1 |
6452996 | Hsieh | Sep 2002 | B1 |
6476797 | Kurihara et al. | Nov 2002 | B1 |
6492633 | Nakazawa et al. | Dec 2002 | B2 |
6495832 | Kirby | Dec 2002 | B1 |
6504143 | Koops et al. | Jan 2003 | B2 |
6529327 | Graindorge | Mar 2003 | B1 |
6538644 | Muraoka | Mar 2003 | B1 |
6587099 | Takekawa | Jul 2003 | B2 |
6648485 | Colgan et al. | Nov 2003 | B1 |
6660964 | Benderly | Dec 2003 | B1 |
6664498 | Forsman et al. | Dec 2003 | B2 |
6664952 | Iwamoto et al. | Dec 2003 | B2 |
6690363 | Newton | Feb 2004 | B2 |
6707027 | Liess et al. | Mar 2004 | B2 |
6738051 | Boyd et al. | May 2004 | B2 |
6748098 | Rosenfeld | Jun 2004 | B1 |
6784948 | Kawashima et al. | Aug 2004 | B2 |
6799141 | Stoustrup et al. | Sep 2004 | B1 |
6806871 | Yasue | Oct 2004 | B1 |
6927384 | Reime et al. | Aug 2005 | B2 |
6940286 | Wang et al. | Sep 2005 | B2 |
6965836 | Richardson | Nov 2005 | B2 |
6972753 | Kimura et al. | Dec 2005 | B1 |
6985137 | Kaikuranta | Jan 2006 | B2 |
7042444 | Cok | May 2006 | B2 |
7084859 | Pryor | Aug 2006 | B1 |
7133031 | Wang et al. | Nov 2006 | B2 |
7176904 | Satoh | Feb 2007 | B2 |
7359041 | Xie et al. | Apr 2008 | B2 |
7397418 | Doerry et al. | Jul 2008 | B1 |
7432893 | Ma et al. | Oct 2008 | B2 |
7435940 | Eliasson et al. | Oct 2008 | B2 |
7442914 | Eliasson et al. | Oct 2008 | B2 |
7465914 | Eliasson et al. | Dec 2008 | B2 |
7613375 | Shimizu | Nov 2009 | B2 |
7629968 | Miller et al. | Dec 2009 | B2 |
7646833 | He et al. | Jan 2010 | B1 |
7653883 | Hotelling et al. | Jan 2010 | B2 |
7655901 | Idzik et al. | Feb 2010 | B2 |
7705835 | Eikman | Apr 2010 | B2 |
7847789 | Kolmykov-Zotov et al. | Dec 2010 | B2 |
7855716 | McCreary et al. | Dec 2010 | B2 |
7859519 | Tulbert | Dec 2010 | B2 |
7924272 | Boer et al. | Apr 2011 | B2 |
7932899 | Newton et al. | Apr 2011 | B2 |
7969410 | Kakarala | Jun 2011 | B2 |
7995039 | Eliasson et al. | Aug 2011 | B2 |
8013845 | Ostergaard et al. | Sep 2011 | B2 |
8031186 | Ostergaard | Oct 2011 | B2 |
8077147 | Krah et al. | Dec 2011 | B2 |
8093545 | Leong et al. | Jan 2012 | B2 |
8094136 | Eliasson et al. | Jan 2012 | B2 |
8094910 | Xu | Jan 2012 | B2 |
8149211 | Hayakawa et al. | Apr 2012 | B2 |
8218154 | Østergaard et al. | Jul 2012 | B2 |
8274495 | Lee | Sep 2012 | B2 |
8325158 | Yatsuda et al. | Dec 2012 | B2 |
8339379 | Goertz et al. | Dec 2012 | B2 |
8350827 | Chung et al. | Jan 2013 | B2 |
8384010 | Hong et al. | Feb 2013 | B2 |
8407606 | Davidson et al. | Mar 2013 | B1 |
8441467 | Han | May 2013 | B2 |
8445834 | Hong et al. | May 2013 | B2 |
8466901 | Yen et al. | Jun 2013 | B2 |
8482547 | Cobon et al. | Jul 2013 | B2 |
8542217 | Wassvik et al. | Sep 2013 | B2 |
8567257 | Van Steenberge et al. | Oct 2013 | B2 |
8581884 | Fåhraeus et al. | Nov 2013 | B2 |
8624858 | Fyke et al. | Jan 2014 | B2 |
8686974 | Christiansson et al. | Apr 2014 | B2 |
8692807 | Føhraeus et al. | Apr 2014 | B2 |
8716614 | Wassvik | May 2014 | B2 |
8727581 | Saccomanno | May 2014 | B2 |
8745514 | Davidson | Jun 2014 | B1 |
8780066 | Christiansson et al. | Jul 2014 | B2 |
8830181 | Clark et al. | Sep 2014 | B1 |
8860696 | Wassvik et al. | Oct 2014 | B2 |
8872098 | Bergström et al. | Oct 2014 | B2 |
8872801 | Bergström et al. | Oct 2014 | B2 |
8884900 | Wassvik | Nov 2014 | B2 |
8890843 | Wassvik et al. | Nov 2014 | B2 |
8890849 | Christiansson et al. | Nov 2014 | B2 |
8928590 | El Dokor | Jan 2015 | B1 |
8963886 | Wassvik | Feb 2015 | B2 |
8982084 | Christiansson et al. | Mar 2015 | B2 |
9024916 | Christiansson | May 2015 | B2 |
9035909 | Christiansson | May 2015 | B2 |
9063617 | Eliasson et al. | Jun 2015 | B2 |
9086763 | Johansson et al. | Jul 2015 | B2 |
9134854 | Wassvik et al. | Sep 2015 | B2 |
9158401 | Christiansson | Oct 2015 | B2 |
9158415 | Song et al. | Oct 2015 | B2 |
9213445 | King et al. | Dec 2015 | B2 |
9274645 | Christiansson et al. | Mar 2016 | B2 |
9317168 | Christiansson et al. | Apr 2016 | B2 |
9323396 | Han et al. | Apr 2016 | B2 |
9366565 | Uvnäs | Jun 2016 | B2 |
9377884 | Christiansson et al. | Jun 2016 | B2 |
9389732 | Craven-Bartle | Jul 2016 | B2 |
9411444 | Christiansson et al. | Aug 2016 | B2 |
9411464 | Wallander et al. | Aug 2016 | B2 |
9430079 | Christiansson et al. | Aug 2016 | B2 |
9442574 | Fåhraeus et al. | Sep 2016 | B2 |
9547393 | Christiansson et al. | Jan 2017 | B2 |
9552103 | Craven-Bartle et al. | Jan 2017 | B2 |
9557846 | Baharav et al. | Jan 2017 | B2 |
9588619 | Christiansson et al. | Mar 2017 | B2 |
9594467 | Christiansson et al. | Mar 2017 | B2 |
9626018 | Christiansson et al. | Apr 2017 | B2 |
9626040 | Wallander et al. | Apr 2017 | B2 |
9639210 | Wallander et al. | May 2017 | B2 |
9678602 | Wallander | Jun 2017 | B2 |
9684414 | Christiansson et al. | Jun 2017 | B2 |
9710101 | Christiansson et al. | Jul 2017 | B2 |
20010002694 | Nakazawa et al. | Jun 2001 | A1 |
20010005004 | Shiratsuki et al. | Jun 2001 | A1 |
20010005308 | Oishi et al. | Jun 2001 | A1 |
20010030642 | Sullivan et al. | Oct 2001 | A1 |
20020067348 | Masters et al. | Jun 2002 | A1 |
20020075243 | Newton | Jun 2002 | A1 |
20020118177 | Newton | Aug 2002 | A1 |
20020158823 | Zavracky et al. | Oct 2002 | A1 |
20020158853 | Sugawara et al. | Oct 2002 | A1 |
20020163505 | Takekawa | Nov 2002 | A1 |
20030016450 | Bluemel et al. | Jan 2003 | A1 |
20030034439 | Reime et al. | Feb 2003 | A1 |
20030034935 | Amanai et al. | Feb 2003 | A1 |
20030048257 | Mattila | Mar 2003 | A1 |
20030052257 | Sumriddetchkajorn | Mar 2003 | A1 |
20030095399 | Grenda et al. | May 2003 | A1 |
20030107748 | Lee | Jun 2003 | A1 |
20030137494 | Tulbert | Jul 2003 | A1 |
20030156100 | Gettemy | Aug 2003 | A1 |
20030160155 | Liess | Aug 2003 | A1 |
20030210537 | Engelmann | Nov 2003 | A1 |
20030214486 | Roberts | Nov 2003 | A1 |
20040027339 | Schulz | Feb 2004 | A1 |
20040032401 | Nakazawa et al. | Feb 2004 | A1 |
20040090432 | Takahashi et al. | May 2004 | A1 |
20040130338 | Wang et al. | Jul 2004 | A1 |
20040174541 | Freifeld | Sep 2004 | A1 |
20040201579 | Graham | Oct 2004 | A1 |
20040212603 | Cok | Oct 2004 | A1 |
20040238627 | Silverbrook et al. | Dec 2004 | A1 |
20040239702 | Kang et al. | Dec 2004 | A1 |
20040245438 | Payne et al. | Dec 2004 | A1 |
20040252091 | Ma et al. | Dec 2004 | A1 |
20040252867 | Lan et al. | Dec 2004 | A1 |
20050012714 | Russo et al. | Jan 2005 | A1 |
20050041013 | Tanaka | Feb 2005 | A1 |
20050057903 | Choi | Mar 2005 | A1 |
20050073508 | Pittel et al. | Apr 2005 | A1 |
20050083293 | Dixon | Apr 2005 | A1 |
20050128190 | Ryynanen | Jun 2005 | A1 |
20050143923 | Keers et al. | Jun 2005 | A1 |
20050156914 | Lipman et al. | Jul 2005 | A1 |
20050162398 | Eliasson et al. | Jul 2005 | A1 |
20050179977 | Chui et al. | Aug 2005 | A1 |
20050200613 | Kobayashi et al. | Sep 2005 | A1 |
20050212774 | Ho et al. | Sep 2005 | A1 |
20050248540 | Newton | Nov 2005 | A1 |
20050253834 | Sakamaki et al. | Nov 2005 | A1 |
20050276053 | Nortrup et al. | Dec 2005 | A1 |
20060001650 | Robbins et al. | Jan 2006 | A1 |
20060001653 | Smits | Jan 2006 | A1 |
20060007185 | Kobayashi | Jan 2006 | A1 |
20060008164 | Wu et al. | Jan 2006 | A1 |
20060017706 | Cutherell et al. | Jan 2006 | A1 |
20060017709 | Okano | Jan 2006 | A1 |
20060033725 | Marggraff et al. | Feb 2006 | A1 |
20060038698 | Chen | Feb 2006 | A1 |
20060061861 | Munro et al. | Mar 2006 | A1 |
20060114237 | Crockett et al. | Jun 2006 | A1 |
20060132454 | Chen et al. | Jun 2006 | A1 |
20060139340 | Geaghan | Jun 2006 | A1 |
20060158437 | Blythe et al. | Jul 2006 | A1 |
20060170658 | Nakamura et al. | Aug 2006 | A1 |
20060202974 | Thielman | Sep 2006 | A1 |
20060227120 | Eikman | Oct 2006 | A1 |
20060255248 | Eliasson | Nov 2006 | A1 |
20060256092 | Lee | Nov 2006 | A1 |
20060279558 | Van Delden et al. | Dec 2006 | A1 |
20060281543 | Sutton et al. | Dec 2006 | A1 |
20060290684 | Giraldo et al. | Dec 2006 | A1 |
20070014486 | Schiwietz et al. | Jan 2007 | A1 |
20070024598 | Miller et al. | Feb 2007 | A1 |
20070034783 | Eliasson et al. | Feb 2007 | A1 |
20070038691 | Candes et al. | Feb 2007 | A1 |
20070052684 | Gruhlke et al. | Mar 2007 | A1 |
20070070056 | Sato et al. | Mar 2007 | A1 |
20070075648 | Blythe et al. | Apr 2007 | A1 |
20070120833 | Yamaguchi et al. | May 2007 | A1 |
20070125937 | Eliasson et al. | Jun 2007 | A1 |
20070152985 | Ostergaard et al. | Jul 2007 | A1 |
20070201042 | Eliasson et al. | Aug 2007 | A1 |
20070296688 | Nakamura et al. | Dec 2007 | A1 |
20080006766 | Oon et al. | Jan 2008 | A1 |
20080007540 | Ostergaard | Jan 2008 | A1 |
20080007541 | Eliasson et al. | Jan 2008 | A1 |
20080007542 | Eliasson et al. | Jan 2008 | A1 |
20080011944 | Chua et al. | Jan 2008 | A1 |
20080029691 | Han | Feb 2008 | A1 |
20080036743 | Westerman et al. | Feb 2008 | A1 |
20080062150 | Lee | Mar 2008 | A1 |
20080068691 | Miyatake | Mar 2008 | A1 |
20080074401 | Chung et al. | Mar 2008 | A1 |
20080088603 | Eliasson et al. | Apr 2008 | A1 |
20080121442 | Boer et al. | May 2008 | A1 |
20080122792 | Izadi et al. | May 2008 | A1 |
20080122803 | Izadi et al. | May 2008 | A1 |
20080130979 | Run et al. | Jun 2008 | A1 |
20080150846 | Chung et al. | Jun 2008 | A1 |
20080150848 | Chung et al. | Jun 2008 | A1 |
20080151126 | Yu | Jun 2008 | A1 |
20080158176 | Land et al. | Jul 2008 | A1 |
20080189046 | Eliasson et al. | Aug 2008 | A1 |
20080192025 | Jaeger et al. | Aug 2008 | A1 |
20080238433 | Joutsenoja et al. | Oct 2008 | A1 |
20080246388 | Cheon et al. | Oct 2008 | A1 |
20080252619 | Crockett et al. | Oct 2008 | A1 |
20080266266 | Kent et al. | Oct 2008 | A1 |
20080278460 | Arnett et al. | Nov 2008 | A1 |
20080284925 | Han | Nov 2008 | A1 |
20080291668 | Aylward et al. | Nov 2008 | A1 |
20080297482 | Weiss | Dec 2008 | A1 |
20090002340 | Van Genechten | Jan 2009 | A1 |
20090006292 | Block | Jan 2009 | A1 |
20090040786 | Mori | Feb 2009 | A1 |
20090066647 | Kerr et al. | Mar 2009 | A1 |
20090067178 | Huang et al. | Mar 2009 | A1 |
20090073142 | Yamashita et al. | Mar 2009 | A1 |
20090077501 | Partridge et al. | Mar 2009 | A1 |
20090085894 | Gandhi et al. | Apr 2009 | A1 |
20090091554 | Keam | Apr 2009 | A1 |
20090115919 | Tanaka et al. | May 2009 | A1 |
20090122020 | Eliasson et al. | May 2009 | A1 |
20090128508 | Sohn et al. | May 2009 | A1 |
20090135162 | Van De Wijdeven et al. | May 2009 | A1 |
20090143141 | Wells et al. | Jun 2009 | A1 |
20090153519 | Suarez Rovere | Jun 2009 | A1 |
20090161026 | Wu et al. | Jun 2009 | A1 |
20090168459 | Holman et al. | Jul 2009 | A1 |
20090187842 | Collins et al. | Jul 2009 | A1 |
20090189857 | Benko et al. | Jul 2009 | A1 |
20090189874 | Chene et al. | Jul 2009 | A1 |
20090189878 | Goertz et al. | Jul 2009 | A1 |
20090219256 | Newton | Sep 2009 | A1 |
20090229892 | Fisher et al. | Sep 2009 | A1 |
20090251439 | Westerman et al. | Oct 2009 | A1 |
20090256817 | Perlin et al. | Oct 2009 | A1 |
20090259967 | Davidson et al. | Oct 2009 | A1 |
20090267919 | Chao et al. | Oct 2009 | A1 |
20090273794 | Østergaard et al. | Nov 2009 | A1 |
20090278816 | Colson | Nov 2009 | A1 |
20090297009 | Xu et al. | Dec 2009 | A1 |
20100033444 | Kobayashi | Feb 2010 | A1 |
20100045629 | Newton | Feb 2010 | A1 |
20100060896 | Van De Wijdeven et al. | Mar 2010 | A1 |
20100066016 | Van De Wijdeven et al. | Mar 2010 | A1 |
20100066704 | Kasai | Mar 2010 | A1 |
20100073318 | Hu et al. | Mar 2010 | A1 |
20100078545 | Leong et al. | Apr 2010 | A1 |
20100079407 | Suggs et al. | Apr 2010 | A1 |
20100079408 | Leong et al. | Apr 2010 | A1 |
20100097345 | Jang et al. | Apr 2010 | A1 |
20100097348 | Park et al. | Apr 2010 | A1 |
20100097353 | Newton | Apr 2010 | A1 |
20100125438 | Audet | May 2010 | A1 |
20100127975 | Jensen | May 2010 | A1 |
20100134435 | Kimura et al. | Jun 2010 | A1 |
20100142823 | Wang et al. | Jun 2010 | A1 |
20100187422 | Kothari et al. | Jul 2010 | A1 |
20100193259 | Wassvik | Aug 2010 | A1 |
20100229091 | Homma et al. | Sep 2010 | A1 |
20100238139 | Goertz et al. | Sep 2010 | A1 |
20100245292 | Wu | Sep 2010 | A1 |
20100265170 | Norieda | Oct 2010 | A1 |
20100277436 | Feng et al. | Nov 2010 | A1 |
20100283785 | Satulovsky | Nov 2010 | A1 |
20100284596 | Miao et al. | Nov 2010 | A1 |
20100289754 | Sleeman et al. | Nov 2010 | A1 |
20100295821 | Chang et al. | Nov 2010 | A1 |
20100302196 | Han et al. | Dec 2010 | A1 |
20100302209 | Large | Dec 2010 | A1 |
20100302210 | Han et al. | Dec 2010 | A1 |
20100302240 | Lettvin | Dec 2010 | A1 |
20100315379 | Allard et al. | Dec 2010 | A1 |
20100321328 | Chang et al. | Dec 2010 | A1 |
20100322550 | Trott | Dec 2010 | A1 |
20110043490 | Powell et al. | Feb 2011 | A1 |
20110049388 | Delaney et al. | Mar 2011 | A1 |
20110050649 | Newton et al. | Mar 2011 | A1 |
20110051394 | Bailey | Mar 2011 | A1 |
20110068256 | Hong et al. | Mar 2011 | A1 |
20110069039 | Lee et al. | Mar 2011 | A1 |
20110069807 | Dennerlein et al. | Mar 2011 | A1 |
20110074725 | Westerman et al. | Mar 2011 | A1 |
20110074734 | Wassvik et al. | Mar 2011 | A1 |
20110074735 | Wassvik et al. | Mar 2011 | A1 |
20110090176 | Christiansson et al. | Apr 2011 | A1 |
20110102374 | Wassvik et al. | May 2011 | A1 |
20110115748 | Xu | May 2011 | A1 |
20110121323 | Wu et al. | May 2011 | A1 |
20110122075 | Seo et al. | May 2011 | A1 |
20110122091 | King et al. | May 2011 | A1 |
20110122094 | Tsang et al. | May 2011 | A1 |
20110134079 | Stark | Jun 2011 | A1 |
20110147569 | Drumm | Jun 2011 | A1 |
20110157095 | Drumm | Jun 2011 | A1 |
20110157096 | Drumm | Jun 2011 | A1 |
20110163996 | Wassvik et al. | Jul 2011 | A1 |
20110163997 | Kim | Jul 2011 | A1 |
20110163998 | Goertz et al. | Jul 2011 | A1 |
20110169780 | Goertz et al. | Jul 2011 | A1 |
20110175852 | Goertz et al. | Jul 2011 | A1 |
20110205186 | Newton et al. | Aug 2011 | A1 |
20110216042 | Wassvik et al. | Sep 2011 | A1 |
20110221705 | Yi et al. | Sep 2011 | A1 |
20110221997 | Kim et al. | Sep 2011 | A1 |
20110227036 | Vaufrey | Sep 2011 | A1 |
20110227874 | Fåhraeus et al. | Sep 2011 | A1 |
20110234537 | Kim et al. | Sep 2011 | A1 |
20110254864 | Tsuchikawa et al. | Oct 2011 | A1 |
20110261020 | Song et al. | Oct 2011 | A1 |
20110267296 | Noguchi et al. | Nov 2011 | A1 |
20110291989 | Lee | Dec 2011 | A1 |
20110298743 | Machida et al. | Dec 2011 | A1 |
20110309325 | Park et al. | Dec 2011 | A1 |
20110310045 | Toda et al. | Dec 2011 | A1 |
20120019448 | Pitkanen et al. | Jan 2012 | A1 |
20120026408 | Lee et al. | Feb 2012 | A1 |
20120038593 | Rönkä et al. | Feb 2012 | A1 |
20120062474 | Weishaupt et al. | Mar 2012 | A1 |
20120068973 | Christiansson et al. | Mar 2012 | A1 |
20120086673 | Chien et al. | Apr 2012 | A1 |
20120089348 | Perlin et al. | Apr 2012 | A1 |
20120110447 | Chen | May 2012 | A1 |
20120131490 | Lin et al. | May 2012 | A1 |
20120141001 | Zhang et al. | Jun 2012 | A1 |
20120146930 | Lee | Jun 2012 | A1 |
20120153134 | Bergström et al. | Jun 2012 | A1 |
20120154338 | Bergström et al. | Jun 2012 | A1 |
20120162142 | Christiansson et al. | Jun 2012 | A1 |
20120162144 | Fåhraeus et al. | Jun 2012 | A1 |
20120169672 | Christiansson | Jul 2012 | A1 |
20120181419 | Momtahan | Jul 2012 | A1 |
20120182266 | Han | Jul 2012 | A1 |
20120188206 | Sparf et al. | Jul 2012 | A1 |
20120191993 | Drader et al. | Jul 2012 | A1 |
20120200532 | Powell et al. | Aug 2012 | A1 |
20120200538 | Christiansson et al. | Aug 2012 | A1 |
20120212441 | Christiansson et al. | Aug 2012 | A1 |
20120217882 | Wong et al. | Aug 2012 | A1 |
20120249478 | Chang et al. | Oct 2012 | A1 |
20120256882 | Christiansson et al. | Oct 2012 | A1 |
20120268403 | Christiansson | Oct 2012 | A1 |
20120268427 | Slobodin | Oct 2012 | A1 |
20120274559 | Mathai et al. | Nov 2012 | A1 |
20120305755 | Hong et al. | Dec 2012 | A1 |
20130021300 | Wassvik | Jan 2013 | A1 |
20130021302 | Drumm | Jan 2013 | A1 |
20130027404 | Sarnoff | Jan 2013 | A1 |
20130044073 | Christiansson | Feb 2013 | A1 |
20130055080 | Komer et al. | Feb 2013 | A1 |
20130076697 | Goertz et al. | Mar 2013 | A1 |
20130082980 | Gruhlke et al. | Apr 2013 | A1 |
20130107569 | Suganuma | May 2013 | A1 |
20130113715 | Grant et al. | May 2013 | A1 |
20130120320 | Liu et al. | May 2013 | A1 |
20130125016 | Pallakoff et al. | May 2013 | A1 |
20130127790 | Wassvik | May 2013 | A1 |
20130135258 | King et al. | May 2013 | A1 |
20130135259 | King et al. | May 2013 | A1 |
20130141388 | Ludwig et al. | Jun 2013 | A1 |
20130154983 | Christiansson et al. | Jun 2013 | A1 |
20130155027 | Holmgren et al. | Jun 2013 | A1 |
20130181896 | Gruhlke et al. | Jul 2013 | A1 |
20130187891 | Eriksson et al. | Jul 2013 | A1 |
20130201142 | Suarez Rovere | Aug 2013 | A1 |
20130222346 | Chen et al. | Aug 2013 | A1 |
20130241887 | Sharma | Sep 2013 | A1 |
20130249833 | Christiansson | Sep 2013 | A1 |
20130269867 | Trott | Oct 2013 | A1 |
20130275082 | Follmer et al. | Oct 2013 | A1 |
20130285920 | Colley | Oct 2013 | A1 |
20130285968 | Christiansson et al. | Oct 2013 | A1 |
20130300716 | Craven-Bartle et al. | Nov 2013 | A1 |
20130307795 | Suarez Rovere | Nov 2013 | A1 |
20130342490 | Wallander et al. | Dec 2013 | A1 |
20140002400 | Christiansson et al. | Jan 2014 | A1 |
20140028575 | Parivar et al. | Jan 2014 | A1 |
20140028604 | Morinaga et al. | Jan 2014 | A1 |
20140028629 | Drumm et al. | Jan 2014 | A1 |
20140036203 | Guillou et al. | Feb 2014 | A1 |
20140055421 | Christiansson et al. | Feb 2014 | A1 |
20140063853 | Nichol et al. | Mar 2014 | A1 |
20140071653 | Thompson et al. | Mar 2014 | A1 |
20140085241 | Christiansson et al. | Mar 2014 | A1 |
20140092052 | Grunthaner et al. | Apr 2014 | A1 |
20140098032 | Ng et al. | Apr 2014 | A1 |
20140098058 | Baharav et al. | Apr 2014 | A1 |
20140109219 | Rohrweck et al. | Apr 2014 | A1 |
20140125633 | Fåhraeus et al. | May 2014 | A1 |
20140160762 | Dudik et al. | Jun 2014 | A1 |
20140192023 | Hoffman | Jul 2014 | A1 |
20140232669 | Ohlsson et al. | Aug 2014 | A1 |
20140237401 | Krus et al. | Aug 2014 | A1 |
20140237408 | Ohlsson et al. | Aug 2014 | A1 |
20140237422 | Ohlsson et al. | Aug 2014 | A1 |
20140253831 | Craven-Bartle | Sep 2014 | A1 |
20140267124 | Christiansson et al. | Sep 2014 | A1 |
20140292701 | Christiansson et al. | Oct 2014 | A1 |
20140300572 | Ohlsson | Oct 2014 | A1 |
20140320460 | Johansson et al. | Oct 2014 | A1 |
20140347325 | Wallander et al. | Nov 2014 | A1 |
20140362046 | Yoshida | Dec 2014 | A1 |
20140368471 | Christiansson et al. | Dec 2014 | A1 |
20140375607 | Christiansson et al. | Dec 2014 | A1 |
20150002386 | Mankowski et al. | Jan 2015 | A1 |
20150015497 | Leigh | Jan 2015 | A1 |
20150035774 | Christiansson et al. | Feb 2015 | A1 |
20150035803 | Wassvik et al. | Feb 2015 | A1 |
20150053850 | Uvnäs | Feb 2015 | A1 |
20150054759 | Christiansson et al. | Feb 2015 | A1 |
20150083891 | Wallander | Mar 2015 | A1 |
20150103013 | Huang | Apr 2015 | A9 |
20150130769 | Björklund | May 2015 | A1 |
20150138105 | Christiansson et al. | May 2015 | A1 |
20150138158 | Wallander et al. | May 2015 | A1 |
20150138161 | Wassvik | May 2015 | A1 |
20150205441 | Bergström et al. | Jul 2015 | A1 |
20150215450 | Seo et al. | Jul 2015 | A1 |
20150242055 | Wallander | Aug 2015 | A1 |
20150317036 | Johansson et al. | Nov 2015 | A1 |
20150324028 | Wassvik et al. | Nov 2015 | A1 |
20150331544 | Bergström et al. | Nov 2015 | A1 |
20150331545 | Wassvik et al. | Nov 2015 | A1 |
20150331546 | Craven-Bartle et al. | Nov 2015 | A1 |
20150331547 | Wassvik et al. | Nov 2015 | A1 |
20150332655 | Krus et al. | Nov 2015 | A1 |
20150346856 | Wassvik | Dec 2015 | A1 |
20150346911 | Christiansson | Dec 2015 | A1 |
20150363042 | Krus et al. | Dec 2015 | A1 |
20160026337 | Wassvik et al. | Jan 2016 | A1 |
20160034099 | Christiansson et al. | Feb 2016 | A1 |
20160050746 | Wassvik et al. | Feb 2016 | A1 |
20160070415 | Christiansson et al. | Mar 2016 | A1 |
20160070416 | Wassvik | Mar 2016 | A1 |
20160124546 | Chen et al. | May 2016 | A1 |
20160124551 | Christiansson et al. | May 2016 | A1 |
20160154531 | Wall | Jun 2016 | A1 |
20160202841 | Christiansson et al. | Jul 2016 | A1 |
20160216844 | Bergström | Jul 2016 | A1 |
20160224144 | Klinghult et al. | Aug 2016 | A1 |
20160299593 | Christiansson et al. | Oct 2016 | A1 |
20160328090 | Klinghult | Nov 2016 | A1 |
20160328091 | Wassvik et al. | Nov 2016 | A1 |
20160334942 | Wassvik | Nov 2016 | A1 |
20160342282 | Wassvik | Nov 2016 | A1 |
20160357348 | Wallander | Dec 2016 | A1 |
20170010688 | Fahraeus et al. | Jan 2017 | A1 |
20170090090 | Craven-Bartle et al. | Mar 2017 | A1 |
20170102827 | Christiansson et al. | Apr 2017 | A1 |
20170115235 | Ohlsson et al. | Apr 2017 | A1 |
20170139541 | Christiansson et al. | May 2017 | A1 |
20170177163 | Wallander et al. | Jun 2017 | A1 |
20170185230 | Wallander et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
201233592 | May 2009 | CN |
101644854 | Feb 2010 | CN |
201437963 | Apr 2010 | CN |
101019071 | Jun 2012 | CN |
101206550 | Jun 2012 | CN |
101075168 | Apr 2014 | CN |
3511330 | May 1988 | DE |
68902419 | Mar 1993 | DE |
69000920 | Jun 1993 | DE |
19809934 | Sep 1999 | DE |
10026201 | Dec 2000 | DE |
102010000473 | Aug 2010 | DE |
0845812 | Jun 1998 | EP |
0600576 | Oct 1998 | EP |
1798630 | Jun 2007 | EP |
0897161 | Oct 2007 | EP |
2088501 | Aug 2009 | EP |
1512989 | Sep 2009 | EP |
2077490 | Jan 2010 | EP |
1126236 | Dec 2010 | EP |
2314203 | Apr 2011 | EP |
2339437 | Oct 2011 | EP |
2442180 | Apr 2012 | EP |
2466429 | Jun 2012 | EP |
2479642 | Jul 2012 | EP |
1457870 | Aug 2012 | EP |
2172828 | Oct 1973 | FR |
2617619 | Jan 1990 | FR |
2614711 | Mar 1992 | FR |
2617620 | Sep 1992 | FR |
2676275 | Nov 1992 | FR |
1380144 | Jan 1975 | GB |
2131544 | Mar 1986 | GB |
2204126 | Nov 1988 | GB |
2000506655 | May 2000 | JP |
2000172438 | Jun 2000 | JP |
2000259334 | Sep 2000 | JP |
2000293311 | Oct 2000 | JP |
2003330603 | Nov 2003 | JP |
2005004278 | Jan 2005 | JP |
2008506173 | Feb 2008 | JP |
2011530124 | Dec 2011 | JP |
100359400 | Jul 2001 | KR |
100940435 | Feb 2010 | KR |
WO 1984003186 | Aug 1984 | WO |
WO 1999046602 | Sep 1999 | WO |
WO 01127867 | Apr 2001 | WO |
WO 0184251 | Nov 2001 | WO |
WO 0235460 | May 2002 | WO |
WO 02077915 | Oct 2002 | WO |
WO 02095668 | Nov 2002 | WO |
WO 03076870 | Sep 2003 | WO |
WO 2004081502 | Sep 2004 | WO |
WO 2004081956 | Sep 2004 | WO |
2005026938 | Mar 2005 | WO |
WO 2005029172 | Mar 2005 | WO |
WO 2005029395 | Mar 2005 | WO |
WO 2005125011 | Dec 2005 | WO |
WO 2006095320 | Sep 2006 | WO |
WO 2006124551 | Nov 2006 | WO |
WO 2007003196 | Jan 2007 | WO |
WO 2007058924 | May 2007 | WO |
WO 2007112742 | Oct 2007 | WO |
WO 2008004103 | Jan 2008 | WO |
WO 2008007276 | Jan 2008 | WO |
WO 2008017077 | Feb 2008 | WO |
WO 2008039006 | Apr 2008 | WO |
WO 2008068607 | Jun 2008 | WO |
WO 2006124551 | Jul 2008 | WO |
WO 2008017077 | Feb 2009 | WO |
WO 2009048365 | Apr 2009 | WO |
WO 2009077962 | Jun 2009 | WO |
WO 2009102681 | Aug 2009 | WO |
WO 2009137355 | Nov 2009 | WO |
WO 2010006882 | Jan 2010 | WO |
WO 2010006883 | Jan 2010 | WO |
WO 2010006884 | Jan 2010 | WO |
WO 2010006885 | Jan 2010 | WO |
WO 2010006886 | Jan 2010 | WO |
2010015410 | Feb 2010 | WO |
WO 2010046539 | Apr 2010 | WO |
WO 2010056177 | May 2010 | WO |
WO 2010064983 | Jun 2010 | WO |
WO 2010081702 | Jul 2010 | WO |
WO 2010112404 | Oct 2010 | WO |
WO 2010123809 | Oct 2010 | WO |
WO 2010134865 | Nov 2010 | WO |
2011028169 | Mar 2011 | WO |
WO 2011028170 | Mar 2011 | WO |
2011049512 | Apr 2011 | WO |
WO 2011049511 | Apr 2011 | WO |
WO 2011049513 | Apr 2011 | WO |
WO 2011057572 | May 2011 | WO |
WO 2011078769 | Jun 2011 | WO |
WO 2011082477 | Jul 2011 | WO |
2011139213 | Nov 2011 | WO |
WO 2012002894 | Jan 2012 | WO |
WO 2012010078 | Jan 2012 | WO |
2012050510 | Apr 2012 | WO |
WO 2012082055 | Jun 2012 | WO |
WO 2012105893 | Aug 2012 | WO |
WO 2012121652 | Sep 2012 | WO |
WO 2012158105 | Nov 2012 | WO |
WO 2012172302 | Dec 2012 | WO |
WO 2012176801 | Dec 2012 | WO |
WO 2013036192 | Mar 2013 | WO |
WO 2013048312 | Apr 2013 | WO |
WO 2013055282 | Apr 2013 | WO |
2013062471 | May 2013 | WO |
WO 2013089622 | Jun 2013 | WO |
2013133756 | Sep 2013 | WO |
2013133757 | Sep 2013 | WO |
WO 2013176613 | Nov 2013 | WO |
WO 2013176614 | Nov 2013 | WO |
WO 2013176615 | Nov 2013 | WO |
WO 2014055809 | Apr 2014 | WO |
Entry |
---|
International Search Report dated Jun. 12, 2014, in connection with related PCT/SE2014/050435. |
International Search Report dated Jul. 1, 2014, in connection with related PCT/SE2014/050437. |
International Search Report dated Jul. 1, 2014, in connection with related PCT/SE2014/050438. |
Ahn, Y., et al., “A slim and wide multi-touch tabletop interface and its applications,” BigComp2014, IEEE, 2014, in 6 pages. |
Chou, N., et al., “Generalized pseudo-polar Fourier grids and applications in regfersting optical coherence tomography images,” 43rd Asilomar Conference on Signals, Systems and Computers, Nov. 2009, in 5 pages. |
Fihn, M., “Touch Panel—Special Edition,” Veritas et Visus, Nov. 2011, in 1 page. |
Fourmont, K., “Non-Equispaced Fast Fourier Transforms with Applications to Tomography,” Journal of Fourier Analysis and Applications, vol. 9, Issue 5, 2003, in 20 pages. |
Iizuka, K., “Boundaries, Near-Field Optics, and Near-Field Imaging,” Elements of Photonics, vol. 1: In Free Space and Special Media, Wiley & Sons, 2002, in 57 pages. |
Johnson, M., “Enhanced Optical Touch Input Panel”, IBM Technical Discolusre Bulletin, 1985, in 3 pages. |
Kak, et al., “Principles of Computerized Tomographic Imaging”, Institute of Electrical Engineers, Inc., 1999, in 333 pages. |
The Laser Wall, MIT, 1997, http://web.media.mit.edu/{tilde over ( )}joep/SpectrumWeb/captions/Laser.html. |
Liu, J., et al. “Multiple touch points identifying method, involves starting touch screen, driving specific emission tube, and computing and transmitting coordinate of touch points to computer system by direct lines through interface of touch screen,” 2007, in 25 pages. |
Natterer, F., “The Mathematics of Computerized Tomography”, Society for Industrial and Applied Mathematics, 2001, in 240 pages. |
Natterer, F., et al. “Fourier Reconstruction,” Mathematical Methods in Image Reconstruction, Society for Industrial and Applied Mathematics, 2001, in 12 pages. |
Paradiso, J.A., “Several Sensor Approaches that Retrofit Large Surfaces for Interactivity,” ACM Ubicomp 2002 Workshop on Collaboration with Interactive Walls and Tables, 2002, in 8 pages. |
Tedaldi, M., et al. “Refractive index mapping of layered samples using optical coherence refractometry,” Proceedings of SPIE, vol. 7171, 2009, in 8 pages. |
Number | Date | Country | |
---|---|---|---|
20160299593 A1 | Oct 2016 | US |