The disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.
Options for accessing and listening to digital audio in an out-loud setting were limited until in 2003, when SONOS, Inc. filed for one of its first patent applications, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering a media playback system for sale in 2005. The Sonos Wireless HiFi System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a smartphone, tablet, or computer, one can play what he or she wants in any room that has a networked playback device. Additionally, using the controller, for example, different songs can be streamed to each room with a playback device, rooms can be grouped together for synchronous playback, or the same song can be heard in all rooms synchronously.
Given the ever-growing interest in digital media, there continues to be a need to develop consumer-accessible technologies to further enhance the listening experience.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:
The drawings are for purposes of illustrating example embodiments, but it is understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings. In the drawings, identical reference numbers identify at least generally similar elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refers to the Figure in which that element is first introduced. For example, element 110 is first introduced and discussed with reference to
Networked microphone device may be used to control a household using voice control. Voice control can be beneficial for a “smart” home having a system of smart devices, such as playback devices, wireless illumination devices, thermostats, door locks, home-automation devices, as well as other examples. In some implementations, the system of smart devices includes a networked microphone device configured to detect voice inputs. A voice assistant service facilitates processing of the voice inputs. Traditionally, the voice assistant service includes remote servers that receive and process voice inputs. The voice service may return responses to voice inputs, which might include control of various smart devices or audio or video information (e.g., a weather report), among other examples.
A voice input typically includes an utterance with a wake word followed by an utterance containing a user request. A wake word, when uttered, may invoke a particular voice assistance service. For instance, in querying the AMAZON® voice assistant service, a user might speak a wake word “Alexa.” Other examples include “Ok, Google” for invoking the GOOGLE® voice assistant service and “Hey, Siri” for invoking the APPLE® voice assistant service.
Upon detecting a wake word, a networked microphone device may listen for the user request in the voice utterance following the wake word. In some instances, the user request may include a command to control a third party device, such as a smart illumination device (e.g., a PHILIPS HUE® lighting device), a thermostat (e.g., NEST® thermostat), or a media playback device (e.g., a Sonos® playback device). For example, a user might speak the wake word “Alexa” followed by the utterance “turn on the living room” to turn on illumination devices. A user might speak the same wake word followed by the utterance “set the thermostat to 68 degrees.” The user may also utter a request for a playback device to play a particular song, an album, or a playlist of music.
When a networked microphone device detects a wake word, the networked microphone device may provide an acknowledgement of the wake word to the user, so that the user can be informed that the networked microphone device has detected the wake word. In some implementations, this acknowledgement is provided by way of a light response (e.g., the illumination of one or more light emitting diodes, perhaps in certain colors and/or patterns). A possible disadvantage of using a light response to acknowledge wake word detection is that the user must be looking in the direction of the networked microphone device to see the light response.
Alternatively, example networked microphone devices may provide acknowledgement of wake word detection by way of an audio response. For instance, one or more speakers may play back an audible “acknowledgement” tone shortly after a networked microphone device detects a wake word in captured audio. However, wake words typically precede a voice utterance (e.g., a voice command or query) spoken by the user. As such, an acknowledgement tone may overlap the user's voice utterance. Given this overlap, the acknowledgement tone may interfere with the networked microphone device's capturing of the voice utterance.
In an effort to avoid or lessen interference from the acknowledgement tone in the capturing of the voice utterance, a networked microphone device may use an Acoustic Echo Canceller (“AEC”) to remove the sound of the acknowledgement tone from the signal captured by microphone(s) of the networked microphone device. This removal is intended to improve the signal-to-noise ratio of a voice input to other sound within the acoustic environment, which includes the sound produced by the one or more speakers in playing back the acknowledgement tone, so as to provide a less noisy signal to a voice assistant service.
In example implementations, an AEC is implemented within the audio processing pipeline of a networked microphone device. Input to an AEC may include the signal captured by the microphone(s) and a reference signal representing the analog audio expected to be output by the transducers (e.g., the acknowledgement tone). Given these inputs, the AEC attempts to find a transfer function (i.e., a ‘filter’) that transforms the reference signal into the captured microphone signal with minimal error. Inverting the resulting AEC output and mixing it with the microphone signal causes a redaction of the audio output signal from the signal captured by the microphone(s). Moreover, AEC is an iterative process, whereby the error during each iteration of the AEC is used to update the filter for the next iteration of the AEC. Using this process, over successive iterations, the AEC “converges” to an effective cancellation of the reference signal from the measured signal.
However, being an iterative process, an AEC may take some time to converge to an effective cancellation of the reference signal from the measured signal. For instance, example AEC processes might take 700 milliseconds or longer to converge, depending on the noise in the acoustic environment. If the AEC already active and stable (i.e., converged) when an acknowledgement tone is outputted—perhaps because the device is playing back other audio content, such as music—then the AEC may effectively cancel the acknowledgement tone (in addition to the other audio content). However, if instead the AEC is inactive (i.e., not active and stable) when the acknowledgement tone is outputted, then the AEC is unlikely to have enough time to converge and thereby cancel the acknowledgement tone effectively, as the reference signal might be only a few hundred milliseconds in length.
To facilitate effective cancellation of an acknowledgement tone whether the AEC is active or not, example networked microphone devices described herein may implement two acoustic echo cancellations processes. If the networked microphone device is playing back audio content (e.g., music) via one or more audio drivers when a wake word is detected in captured audio, the networked microphone device runs (or continue running) a first AEC to cancel the acoustic echo of the acknowledgement tone from the captured audio. The first AEC also cancels the acoustic echo of the played back audio content. Conversely, if the one or more audio drivers of the networked microphone device are idle when the wake word is detected in the captured audio, the networked microphone device activates a second AEC to cancel the acoustic echo of the acknowledgement tone from the captured audio.
As compared with the first AEC, the second AEC is designed to converge significantly faster, thereby enabling the second AEC to cancel the acknowledgement tone effectively, even where the acknowledgement tone is only a few hundred milliseconds in length. In particular, the second AEC may converge more quickly than the first AEC by cancelling acoustic echo from only the specific frequency ranges (a.k.a., frequency “bins”) in which the acknowledgement tone has content. In contrast, the first AEC is configured to cancel acoustic echo across the entire audible frequency spectrum (e.g., 20 Hz-20,000 Hz). By processing a subset of the frequency range that the first AEC processes, the second AEC may converge significantly faster (e.g., quickly enough to converge and cancel an acknowledgement tone that is only a few hundred milliseconds in length). In practice, in example implementations, such techniques have increased the rate of convergence by 91.44% as compared with a full-spectrum acoustic echo cancellation process.
Example techniques described herein may involve selecting among different acoustic echo cancellers implemented in a networked microphone device. An example implementation may involve capturing, via the one or more microphones, first audio within an acoustic environment, determining whether the one or more speakers are (a) playing back audio content or (b) idle, determining whether the one or more speakers are (a) playing back audio content or (b) idle, and identifying a set of frequency bands of the full audible frequency spectrum in which the audible tone in acknowledgment of the detected wake word has content.
The example implementation may further involve in response to detecting the wake word for the voice service and before playing an audible tone in acknowledgement of the detected wake word on the one or more speakers, activating either (a) a first sound canceller or (b) a second sound canceller. Activating either the (a) first sound canceller or (b) the second sound canceller may involve when the one or more speakers are playing back audio content, activating the first sound canceller, the first sound canceller configured to cancel audio output from the one or more speakers in a full audible frequency spectrum, and when the one or more speakers are idle, activating the second sound canceller process, the second sound canceller configured to cancel audio output from the one or more speakers in the identified frequency bands of the full audible frequency spectrum in which the audible tone in acknowledgment of the detected wake word has content.
The example implementation may also involve in response to detecting the wake word for the voice service and after activating either (a) the first sound canceller or (b) the second sound canceller, outputting the audible tone in acknowledgement of the detected wake word via the one or more speakers, and capturing, via the one or more microphones, second audio within the acoustic environment. The second audio includes sound produced by the one or more speakers in outputting the audible tone in acknowledgement of the detected wake word. The implementation may further involve cancelling the audible tone in acknowledgement of the detected wake word from the captured second audio using the activated audio canceller.
This example implementation may be embodied as a method, a device configured to carry out the implementation, a system of devices configured to carry out the implementation, or a non-transitory computer-readable medium containing instructions that are executable by one or more processors to carry out the implementation, among other examples. It will be understood by one of ordinary skill in the art that this disclosure includes numerous other embodiments, including combinations of the example features described herein. Further, any example operation described as being performed by a given device to illustrate a technique may be performed by any suitable devices, including the devices described herein. Yet further, any device may cause another device to perform any of the operations described herein.
While some examples described herein may refer to functions performed by given actors such as “users” and/or other entities, it should be understood that this description is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves.
The various playback, network microphone, and controller devices 102-104 and/or other network devices of the media playback system 100 may be coupled to one another via point-to-point and/or over other connections, which may be wired and/or wireless, via a local area network (LAN) via a network router 106. For example, the playback device 102j (designated as “LEFT”) may have a point-to-point connection with the playback device 102a (designated as “RIGHT”). In one embodiment, the LEFT playback device 102j may communicate over the point-to-point connection with the RIGHT playback device 102a. In a related embodiment, the LEFT playback device 102j may communicate with other network devices via the point-to-point connection and/or other connections via the LAN.
The network router 106 may be coupled to one or more remote computing device(s) 105 via a wide area network (WAN) 107. In some embodiments, the remote computing device(s) may be cloud servers. The remote computing device(s) 105 may be configured to interact with the media playback system 100 in various ways. For example, the remote computing device(s) may be configured to facilitate streaming and controlling playback of media content, such as audio, in the home environment. In one aspect of the technology described in greater detail below, the remote computing device(s) 105 are configured to provide an enhanced VAS 160 for the media playback system 100.
In some embodiments, one or more of the playback devices 102 may include an on-board (e.g., integrated) network microphone device. For example, the playback devices 102a-e include corresponding NMDs 103a-e, respectively. Playback devices that include network devices may be referred to herein interchangeably as a playback device or a network microphone device unless expressly stated otherwise.
In some embodiments, one or more of the NMDs 103 may be a stand-alone device. For example, the NMDs 103f and 103g may be stand-alone network microphone devices. A stand-alone network microphone device may omit components typically included in a playback device, such as a speaker or related electronics. In such cases, a stand-alone network microphone device might not produce audio output or may produce limited audio output (e.g., relatively low-quality output relative to quality of output by a playback device).
In some embodiments, one or more network microphone devices can be assigned to a playback device or a group of playback devices. In some embodiments, a network microphone device can be assigned to a playback device that does not include an onboard network microphone device. For example, the NMD 103f may be assigned to one or more of the playback devices 102 in its vicinity, such as one or both of the playback devices 102i and 1021 in the kitchen and dining room spaces, respectively. In such a case, the NMD 103f may output audio through the playback device(s) to which it is assigned. Further details regarding assignment of network microphone devices are described, for example, in U.S. application Ser. No. 15/098,867 filed on Apr. 14, 2016, and titled “Default Playback Device Designation,” and U.S. application Ser. No. 15/098,892 filed on Apr. 14, 2016 and titled “Default Playback Devices.” Each of these applications is incorporated herein by reference in its entirety.
In some embodiments, a network microphone device may be configured such that it is dedicated exclusively to a particular VAS. In one example, the NMD 103a in the living room space may be dedicated exclusively to the enhanced VAS 160. In such case, the NMD 102a might not invoke any other VAS except the enhanced VAS 160. In a related example, other ones of the NMDs 103 may be configured to invoke the enhanced 160 VAS and one or more other VASes, such as a traditional VAS. Other examples of bonding and assigning network microphone devices to playback devices and/or VASes are possible. In some embodiments, the NMDs 103 might not be bonded or assigned in a particular manner.
Further aspects relating to the different components of the example media playback system 100 and how the different components may interact to provide a user with a media experience may be found in the following sections. While discussions herein may generally refer to the example media playback system 100, technologies described herein are not limited to applications within, among other things, the home environment as shown in
a. Example Playback Devices
A playback device may further include a user interface 236. The user interface 236 may facilitate user interactions independent of or in conjunction with one or more of the controller devices 104. In various embodiments, the user interface 236 includes one or more of physical buttons and/or graphical interfaces provided on touch sensitive screen(s) and/or surface(s), among other possibilities, for a user to directly provide input. The user interface 236 may further include one or more of lights and the speaker(s) to provide visual and/or audio feedback to a user.
In some embodiments, the processor 212 may be a clock-driven computing component configured to process input data according to instructions stored in the memory 216. The memory 216 may be a tangible computer-readable medium configured to store instructions executable by the processor 212. For example, the memory 216 may be data storage that can be loaded with one or more of the software components 214 executable by the processor 212 to achieve certain functions. In one example, the functions may involve a playback device retrieving audio data from an audio source or another playback device. In another example, the functions may involve a playback device sending audio data to another device on a network. In yet another example, the functions may involve pairing of a playback device with one or more other playback devices to create a multi-channel audio environment.
Certain functions may involve a playback device synchronizing playback of audio content with one or more other playback devices. During synchronous playback, a listener should not perceive time-delay differences between playback of the audio content by the synchronized playback devices. U.S. Pat. No. 8,234,395 filed Apr. 4, 2004, and titled “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is hereby incorporated by reference in its entirety, provides in more detail some examples for audio playback synchronization among playback devices.
The memory 216 may be further configured to store data associated with a playback device. For example, the memory may store data corresponding to one or more zones and/or zone groups a playback device is a part of. One or more of the zones and/or zone groups may be named according to the room or space in which device(s) are located. For example, the playback and network microphone devices in the living room space shown in
The memory 216 may be further configured to store other data. Such data may pertain to audio sources accessible by a playback device or a playback queue that the playback device (or some other playback device(s)) may be associated with. The data stored in the memory 216 may be stored as one or more state variables that are periodically updated and used to describe the state of the playback device. The memory 216 may also include the data associated with the state of the other devices of the media system, and shared from time to time among the devices so that one or more of the devices have the most recent data associated with the system. Other embodiments are also possible.
The audio processing components 218 may include one or more digital-to-analog converters (DAC), an audio preprocessing component, an audio enhancement component or a digital signal processor (DSP), and so on. In some embodiments, one or more of the audio processing components 218 may be a subcomponent of the processor 212. In one example, audio content may be processed and/or intentionally altered by the audio processing components 218 to produce audio signals. The produced audio signals may then be provided to the audio amplifier(s) 210 for amplification and playback through speaker(s) 212. Particularly, the audio amplifier(s) 210 may include devices configured to amplify audio signals to a level for driving one or more of the speakers 212. The speaker(s) 212 may include an individual transducer (e.g., a “driver”) or a complete speaker system involving an enclosure with one or more drivers. A particular driver of the speaker(s) 212 may include, for example, a subwoofer (e.g., for low frequencies), a mid-range driver (e.g., for middle frequencies), and/or a tweeter (e.g., for high frequencies). In some cases, each transducer in the one or more speakers 212 may be driven by an individual corresponding audio amplifier of the audio amplifier(s) 210. In addition to producing analog signals for playback, the audio processing components 208 may be configured to process audio content to be sent to one or more other playback devices for playback.
Audio content to be processed and/or played back by a playback device may be received from an external source, such as via an audio line-in input connection (e.g., an auto-detecting 3.5 mm audio line-in connection) or the network interface 230.
The network interface 230 may be configured to facilitate a data flow between a playback device and one or more other devices on a data network. As such, a playback device may be configured to receive audio content over the data network from one or more other playback devices in communication with a playback device, network devices within a local area network, or audio content sources over a wide area network such as the Internet. In one example, the audio content and other signals transmitted and received by a playback device may be transmitted in the form of digital packet data containing an Internet Protocol (IP)-based source address and IP-based destination addresses. In such a case, the network interface 230 may be configured to parse the digital packet data such that the data destined for a playback device is properly received and processed by the playback device.
As shown, the network interface 230 may include wireless interface(s) 232 and wired interface(s) 234. The wireless interface(s) 232 may provide network interface functions for a playback device to wirelessly communicate with other devices (e.g., other playback device(s), speaker(s), receiver(s), network device(s), control device(s) within a data network the playback device is associated with) in accordance with a communication protocol (e.g., any wireless standard including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The wired interface(s) 234 may provide network interface functions for a playback device to communicate over a wired connection with other devices in accordance with a communication protocol (e.g., IEEE 802.3). While the network interface 230 shown in
In some embodiments, a playback device and one other playback device may be paired to play two separate audio components of audio content. For example, the LEFT playback device 102j in the Living Room may be configured to play a left channel audio component, while the RIGHT playback device 102a may be configured to play a right channel audio component, thereby producing or enhancing a stereo effect of the audio content. Similarly, the playback device 1021 designated to the Dining Room may be configured to play a left channel audio component, while the playback device 102i designated to the Kitchen may be configured to play a right channel audio component. Paired playback devices may further play audio content in synchrony with other playback devices. Paired playback device may also be referred to as “bonded playback devices.
In some embodiments, one or more of the playback devices may be sonically consolidated with one or more other playback devices to form a single, consolidated playback device. A consolidated playback device may include separate playback devices each having additional or different speaker drivers through which audio content may be rendered. For example, a playback device designed to render low frequency range audio content (e.g., the playback device 102k designated as a subwoofer or “SUB”) may be consolidated with a full-frequency playback device (e.g., the playback device 102b designated as “FRONT”) to render the lower frequency range of the consolidated device. In such a case, the full frequency playback device, when consolidated with the low frequency playback device, may be configured to render only the mid and high frequency components of audio content, while the low-frequency playback device renders the low frequency component of the audio content. The consolidated playback device may be paired or consolidated with one or more other playback devices. For example,
As discussed above, a playback device may include a network microphone device, such as one of the NMDs 103, as show in
By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including a “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Any other past, present, and/or future playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, it is understood that a playback device is not limited to the example illustrated in
b. Example Playback Zone Configurations
Referring back to the media playback system 100 of
In one example, one or more playback zones in the environment of
A network microphone device may receive voice inputs from a user in its vicinity. A network microphone device may capture a voice input upon detection of the user speaking the input. For instance, in the example shown in
As suggested above, the zone configurations of the media playback system 100 may be dynamically modified. As such, the media playback system 100 may support numerous configurations. For example, if a user physically moves one or more playback devices to or from a zone, the media playback system 100 may be reconfigured to accommodate the change(s). For instance, if the user physically moves the playback device 102c from the Balcony zone to the Office zone, the Office zone may now include both the playback devices 102c and 102d. In some cases, the use may pair or group the moved playback device 102c with the Office zone and/or rename the players in the Office zone using, e.g., one of the controller devices 104 and/or voice input. As another example, if one or more playback devices 102 are moved to a particular area in the home environment that is not already a playback zone, the moved playback device(s) may be renamed or associated with a playback zone for the particular area.
Further, different playback zones of the media playback system 100 may be dynamically combined into zone groups or split up into individual playback zones. For example, the Dining Room zone and the Kitchen zone may be combined into a zone group for a dinner party such that playback devices 102i and 1021 may render audio content in synchrony. As another example, playback devices 102 consolidated in the Living Room zone for the previously described consolidated TV arrangement may be split into (i) a television zone and (ii) a separate listening zone. The television zone may include the FRONT playback device 102b. The listening zone may include the RIGHT, LEFT, and SUB playback devices 102a, 102j, and 102k, which may be grouped, paired, or consolidated, as described above. Splitting the Living Room zone in such a manner may allow one user to listen to music in the listening zone in one area of the living room space, and another user to watch the television in another area of the living room space. In a related example, a user may implement either of the NMD 103a or 103b to control the Living Room zone before it is separated into the television zone and the listening zone. Once separated, the listening zone may be controlled by a user in the vicinity of the NMD 103a, and the television zone may be controlled by a user in the vicinity of the NMD 103b. As described above, however, any of the NMDs 103 may be configured to control the various playback and other devices of the media playback system 100.
c. Example Controller Devices
The memory 316 of a controller device may be configured to store controller application software and other data associated with the media playback system 100 and a user of the system 100. The memory 316 may be loaded with one or more software components 314 executable by the processor 312 to achieve certain functions, such as facilitating user access, control, and configuration of the media playback system 100. A controller device communicates with other network devices over the network interface 330, such as a wireless interface, as described above.
In one example, data and information (e.g., such as a state variable) may be communicated between a controller device and other devices via the network interface 330. For instance, playback zone and zone group configurations in the media playback system 100 may be received by a controller device from a playback device, a network microphone device, or another network device, or transmitted by the controller device to another playback device or network device via the network interface 306. In some cases, the other network device may be another controller device.
Playback device control commands such as volume control and audio playback control may also be communicated from a controller device to a playback device via the network interface 330. As suggested above, changes to configurations of the media playback system 100 may also be performed by a user using the controller device. The configuration changes may include adding/removing one or more playback devices to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or consolidated player, separating one or more playback devices from a bonded or consolidated player, among others.
The user interface(s) 340 of a controller device may be configured to facilitate user access and control of the media playback system 100, by providing controller interface(s) such as the controller interfaces 400a and 400b (collectively “controller interface 440”) shown in
The playback control region 442 (
The playback zone region 443 (
For example, as shown, a “group” icon may be provided within each of the graphical representations of playback zones. The “group” icon provided within a graphical representation of a particular zone may be selectable to bring up options to select one or more other zones in the media playback system to be grouped with the particular zone. Once grouped, playback devices in the zones that have been grouped with the particular zone will be configured to play audio content in synchrony with the playback device(s) in the particular zone. Analogously, a “group” icon may be provided within a graphical representation of a zone group. In this case, the “group” icon may be selectable to bring up options to deselect one or more zones in the zone group to be removed from the zone group. Other interactions and implementations for grouping and ungrouping zones via a user interface such as the user interface 400 are also possible. The representations of playback zones in the playback zone region 443 (
The playback status region 444 (
The playback queue region 446 may include graphical representations of audio content in a playback queue associated with the selected playback zone or zone group. In some embodiments, each playback zone or zone group may be associated with a playback queue containing information corresponding to zero or more audio items for playback by the playback zone or zone group. For instance, each audio item in the playback queue may comprise a uniform resource identifier (URI), a uniform resource locator (URL) or some other identifier that may be used by a playback device in the playback zone or zone group to find and/or retrieve the audio item from a local audio content source or a networked audio content source, possibly for playback by the playback device.
In one example, a playlist may be added to a playback queue, in which case information corresponding to each audio item in the playlist may be added to the playback queue. In another example, audio items in a playback queue may be saved as a playlist. In a further example, a playback queue may be empty, or populated but “not in use” when the playback zone or zone group is playing continuously streaming audio content, such as Internet radio that may continue to play until otherwise stopped, rather than discrete audio items that have playback durations. In an alternative embodiment, a playback queue can include Internet radio and/or other streaming audio content items and be “in use” when the playback zone or zone group is playing those items. Other examples are also possible.
When playback zones or zone groups are “grouped” or “ungrouped,” playback queues associated with the affected playback zones or zone groups may be cleared or re-associated. For example, if a first playback zone including a first playback queue is grouped with a second playback zone including a second playback queue, the established zone group may have an associated playback queue that is initially empty, that contains audio items from the first playback queue (such as if the second playback zone was added to the first playback zone), that contains audio items from the second playback queue (such as if the first playback zone was added to the second playback zone), or a combination of audio items from both the first and second playback queues. Subsequently, if the established zone group is ungrouped, the resulting first playback zone may be re-associated with the previous first playback queue, or be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Similarly, the resulting second playback zone may be re-associated with the previous second playback queue, or be associated with a new playback queue that is empty, or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Other examples are also possible.
With reference still to
The sources region 448 may include graphical representations of selectable audio content sources and selectable voice assistants associated with a corresponding VAS. The VASes may be selectively assigned. In some examples, multiple VASes, such as AMAZON's ALEXA® and another voice service, may be invokable by the same network microphone device. In some embodiments, a user may assign a VAS exclusively to one or more network microphone devices, as discussed above. For example, a user may assign first VAS to one or both of the NMDs 102a and 102b in the living room space shown in
d. Example Audio Content Sources
The audio sources in the sources region 448 may be audio content sources from which audio content may be retrieved and played by the selected playback zone or zone group. One or more playback devices in a zone or zone group may be configured to retrieve for playback audio content (e.g., according to a corresponding URI or URL for the audio content) from a variety of available audio content sources. In one example, audio content may be retrieved by a playback device directly from a corresponding audio content source (e.g., a line-in connection). In another example, audio content may be provided to a playback device over a network via one or more other playback devices or network devices.
Example audio content sources may include a memory of one or more playback devices in a media playback system such as the media playback system 100 of
In some embodiments, audio content sources may be regularly added or removed from a media playback system such as the media playback system 100 of
e. Example Network Microphone Devices
The microphone(s) 224 may be a plurality of microphones arranged to detect sound in the environment of the network microphone device. In one example, the microphone(s) 224 may be arranged to detect audio from one or more directions relative to the network microphone device. The microphone(s) 224 may be sensitive to a portion of a frequency range. In one example, a first subset of the microphone(s) 224 may be sensitive to a first frequency range, while a second subset of the microphone(2) 224 may be sensitive to a second frequency range. The microphone(s) 224 may further be arranged to capture location information of an audio source (e.g., voice, audible sound) and/or to assist in filtering background noise. Notably, in some embodiments the microphone(s) 224 may have a single microphone rather than a plurality of microphones.
A network microphone device may further include wake-word detector 552, beam former 553, acoustic echo canceller (AEC) 554, and speech/text conversion 555 (e.g., voice-to-text and text-to-voice). In various embodiments, one or more of the wake-word detector 552, beam former 553, AEC 554, and speech/text conversion 555 may be a subcomponent of the processor 212, or implemented in software stored in memory 216 which is executable by the processor 212.
The wake-word detector 552 is configured to monitor and analyze received audio to determine if any wake words are present in the audio. The wake-word detector 552 may analyze the received audio using a wake word detection algorithm. If the wake-word detector 552 detects a wake word, a network microphone device may process voice input contained in the received audio. Example wake word detection algorithms accept audio as input and provide an indication of whether a wake word is present in the audio. Many first- and third-party wake word detection algorithms are known and commercially available. For instance, operators of a voice service may make their algorithm available for use in third-party devices. Alternatively, an algorithm may be trained to detect certain wake-words.
In some embodiments, the wake-word detector 552 runs multiple wake word detections algorithms on the received audio simultaneously (or substantially simultaneously). As noted above, different voice services (e.g. AMAZON's ALEXA®, APPLE's SIRI®, or MICROSOFT's CORTANA®) each use a different wake word for invoking their respective voice service. To support multiple services, the wake word detector 552 may run the received audio through the wake word detection algorithm for each supported voice service in parallel.
The beam former 553 and AEC 554 are configured to detect an audio signal and determine aspects of voice input within the detect audio, such as the direction, amplitude, frequency spectrum, etc. For example, the beam former 553 and AEC 554 may be used in a process to determine an approximate distance between a network microphone device and a user speaking to the network microphone device. In another example, a network microphone device may detective a relative proximity of a user to another network microphone device in a media playback system.
In some embodiments, a network microphone device may output an audible and/or visible response upon detection of the wake word portion 557a. In addition or alternately, a network microphone device may output an audible and/or visible response after processing a voice input and/or a series of voice inputs (e.g., in the case of a multi-turn request).
The voice utterance portion 557b may include, for example, one or more spoken commands 558 (identified individually as a first command 558a and a second command 558b) and one or more spoken keywords 559 (identified individually as a first keyword 559a and a second keyword 559b). In one example, the first command 557a can be a command to play music, such as a specific song, album, playlist, etc. In this example, the keywords 559 may be one or words identifying one or more zones in which the music is to be played, such as the Living Room and the Dining Room shown in
In some embodiments, the media playback system 100 is configured to temporarily reduce the volume of audio content that it is playing while detecting the wake word portion 557a. The media playback system 100 may restore the volume after processing the voice input 557, as shown in
f. Example Network System
The remote computing device(s) 105 include a system controller 612 comprising one or more processors, an intent engine 602, and a memory 616. The memory 616 may be a tangible computer-readable medium configured to store instructions executable by the system controller 612 and/or one or more of the playback, network microphone, and/or controller devices 102-104.
The intent engine 662 is configured to process a voice input and determine an intent of the input. In some embodiments, the intent engine 662 may be a subcomponent of the system controller 612. The intent engine 662 may interact with one or more database(s), such as one or more VAS database(s) 664, to process voice inputs. The VAS database(s) 664 may reside in the memory 616 or elsewhere, such as in memory of one or more of the playback, network microphone, and/or controller devices 102-104. In some embodiments, the VAS database(s) 664 may be updated for adaptive learning and feedback based on the voice input processing. The VAS database(s) 664 may store various user data, analytics, catalogs, and other information for NLU-related and/or other processing.
The remote computing device(s) 105 may exchange various feedback, information, instructions, and/or related data with the various playback, network microphone, and/or controller devices 102-104 of the media playback system 100. Such exchanges may be related to or independent of transmitted messages containing voice inputs. In some embodiments, the remote computing device(s) 105 and the media playback system 100 may exchange data via communication paths as described herein and/or using a metadata exchange channel as described in U.S. application Ser. No. 15/131,244 filed Apr. 18, 2016, and titled “Metadata exchange involving a networked playback system and a networked microphone system, which is incorporated by reference in its entirety.
Processing of a voice input by devices of the media playback system 100 may be carried out at least partially in parallel with processing of the voice input by the remote computing device(s) 105. Additionally, the speech/text conversion components 555 of a network microphone device may convert responses from the remote computing device(s) 105 to speech for audible output via one or more speakers.
In some examples, one or more individual playback devices 102 can have an on-board (e.g., integrated) NMD, such as one of the playback devices 102a-e, which include corresponding NMDs 104a-e, respectively. In some instances, an NMD can be a stand-alone device, such as the NMD 104f or the NMD 10fg. A stand-alone NMD may omit components, such as a speaker or related electronics, in which case it might not produce audio output or may produce limited audio output (e.g., relatively low quality output relative to the quality of output by a playback device). For instance, a playback device might have more transducers and/or larger transducers (e.g., a woofer) and/or more powerful amplifiers as compared with a stand-alone NMD so as to produce a higher quality output than the stand-alone NMD.
In some examples, one or more NMDs can be assigned to a playback device, a group, and/or or a bonded-set of playback devices. For instance, the NMD 104f may be assigned to the playback device 102a in the living room and/or the playback device 102i in the kitchen. In such implementations, the NMD may be assigned to a single voice assistant service, such as AMAZON® Alexa® or another voice assistant service. Further details regarding assignment of playback devices and NMDs are described, for example, in: application Ser. No. 15/098,867 filed on Apr. 14, 2016, titled “Default Playback Device Designation;” application Ser. No. 15/098,892 filed on Apr. 14, 2016, titled “Default Playback Devices;” application Ser. No. 15/237,133, titled “Audio Response Playback;” and application Ser. No. 15/229,855 filed on Aug. 5, 2016, titled “Determining Direction of Networked Microphone Device Relative to Audio Playback Device.” Each of these applications are incorporated by reference in their entirety.
Further discussions relating to the different components of the example media playback system 100 and how the different components may interact to provide a user with a media experience may be found in the following sections. While discussions herein may generally refer to the example media playback system 100, technologies described herein are not limited to applications within, among other things, the home environment as shown in
a. First Example Acoustic Echo Cancellation Pipeline
As discussed above, some embodiments described herein may involve acoustic echo cancellation.
In operation, acoustic echo cancellation pipeline 800a is activated when playback device 102 is playing back audio content. As noted above, acoustic echo cancellation can be used to remove acoustic echo (i.e., the sound of the audio playback and reflections and/or other acoustic artifacts from the acoustic environment) from the signal captured by microphone(s) of the networked microphone device. When effective, acoustic echo cancellation improves the signal-to-noise ratio of a voice input with respect to other sound within the acoustic environment. In some implementations, when audio playback is paused or otherwise idle, the acoustic echo cancellation pipeline 800a is bypassed or otherwise disabled.
As shown in
At block 870a, the measured signal is pre-processed in advance of acoustic echo cancellation. Pre-processing of the measured signal may involve analog-to-digital conversion of the microphone array signals. Other pre-processing may include sample rate conversion, de-jittering, de-interleaving, or filtering, among other examples. The term “measured signal” is generally used to refer to the signal captured by the microphone array 224 before and after any pre-processing.
As shown in
As noted above, although the acoustic echo cancellation pipeline 800a is shown by way of example as being illustrated within the playback device 102, the acoustic echo cancellation pipeline 800a may alternatively be implemented within a dedicated NMD such as NMD 103f-g of
At block 870b, the reference signal is pre-processed in advance of acoustic echo cancellation. Pre-processing of the reference signal may involve sample rate conversion, de-jittering, de-interleaving, time-delay, or filtering, among other examples. The term “measured signal” is generally used to refer to the signal captured by the microphone array 224 before and after any pre-processing.
Pre-processing the measured signal and the reference signals readies the signals for mixing during acoustic echo cancellation. For instance, since audio content is output by the speakers 222 before the microphone array 224 captures a representation of that same content, time-delay is introduced to the reference signal to time-align the measured and reference signals. Similarly, since the respective sample rates of analog-to-digital conversation of the analog microphone signals and the reference signal from the audio processing components 218 may be different, sample rate conversation of one or both of the signals may convert the signal(s) into the same or otherwise compatible sample rates. In some examples, other similar pre-processing is performed in blocks 870a and 870b to render the measured signals and reference signals compatible.
At block 871a, the measured and reference signals are converted into the short-time Fourier transform domain. Acoustic echo cancellation in the STFT domain may lessen the processing requirements of acoustic echo cancellation as compared with acoustic echo cancellation in other domains, such as the Frequency-Dependent Adaptive Filter (“FDAF”) domain. As such, by processing in the STFT domain, additional techniques for acoustic echo cancellation may become practical. However, while acoustic echo cancellation is shown in the STFT domain by way of example, AEC in other domains (e.g., the FDAF domain) can be implemented in alternative examples.
As those of ordinary skill in the art will appreciate, a STFT is a transform used to determine the sinusoidal frequency and phase content of local sections (referred to as “frames” or “blocks”) of a signal as it changes over time. To compute STFTs of the measured and reference signals, each signal is divided into a plurality of frames. In an example implementation, each frame is 16 milliseconds (ms) long. The number of samples in a 16 ms frame may vary based on the sample rate of the measured and reference signals.
Given a signal x(n), the signal is transformed to the STFT domain by:
Xk[m]=Σn+0N−1×[n+mR]wA[n]ωNkn,
where k is the frequency index, m is the frame index, N is the frame size, R is the frame shift size, wA [n] is an analysis window of size N, and
Referring now to AEC 554 (
To cancel the acoustic echo from the measured signal, the measured signal and the model signal are provided to a redaction function 873. The redaction function 873 redacts the model signal from the measured signal, thereby cancelling the estimated acoustic echo from the measured signal yielding an output signal. In some examples, the redaction function 873 redacts the model signal from the measured signal by inverting the model signal via inverter 874 and mixing the inverted model signal with a frame of the measured signal with mixer 875. In effect, this mixing removes the audio playback (the reference signal) from the measured signal, thereby cancelling the echo (i.e., the audio playback and associated artifacts) from the measured signal. Alternate implementations may use other techniques for redaction.
At block 871b, the output signal of AEC 554 is transformed back by applying the inverse STFT. The inverse STFT is applied by:
x[n]=ΣmΣk=0N−1Xk[m]wS[n−mR]ωN−k(n−mR),
where ws[n] is a synthesis window.
After block 871b, the output signal is provided to a voice input processing pipeline at block 877. Voice input processing may involve wake word detection, voice/speech conversion, and/or sending one or more voice utterances to a voice assistant service, among other examples.
Turning now in more detail to internal aspects of the AEC 554, at block 872, the reference signal in the STFT domain is passed through the adaptive filter 872. As noted above, the adaptive filter 872 is a transfer function that adapts during each iteration of the AEC 554 in an attempt to transform the reference signal into the measured signal with diminishing error. Passing a frame of the reference signal through adaptive filter 872 yields a frame of a model signal. The model signal is an estimate of the acoustic echo of the reference signal (i.e., the audio that is being cancelled).
Within examples, adaptive filter 872 implements multi-delay adaptive filtering. To illustrate example multi-delay adaptive filtering, let N be the multi-delay filter (MDF) block size, K be the number of blocks and F2N denote the 2N×2N Fourier transform matrix, and the frequency-domain signals for frame m are:
e(m)=F2N[01×N,e(mN), . . . ,e(mN+N−1)]T,
Xk(m)=diag{F2N[x((m−k−1)N−1), . . . ,x((m−k+1)N−1)]T},
d(m)=F2N[01×N,d(mN), . . . ,d(mN+N−1)]T,
where d(m) is the modeled signal, e(m) is the modeling error, and Xk (m) is the measured signal. The MDF algorithm then becomes:
e(m)=d(m)−ŷ(m),
ŷ(m)=Σk=0K−1G1Xk(m)ĥk(m−1),
with model update:
∀k: ĥk(m)=ĥk(m−1)+G2μm(m)∇ĥk(m), and
∇ĥk(m)=PX
where G1 and G2 are matrices which select certain time-domain parts of the signal in the frequency domain,
The matrix PX
PX
where β is the smoothing term. This example also assumes a fixed step-size (how much the filter is adapted during each iteration) for each partition μ(m)=μ0I, however the step size may be varied in some implementations.
Example implementations of adaptive filter 872 implement cross-band filtering. To illustrate such filtering, let y[n] be the near-end measured signal, which includes the near-end speech and/or noise v [n] mixed with the acoustic echo d[n]=h [n] * x [n], where h [n] is the impulse response of the system, x [n] is the far-end reference signal, and * is the convolution operator. Let x[m]=[x[mR], x[mR+N−1]]T be the mth reference signal vector, wA=[wA [0], . . . , wA[N−1]]T be the analysis window vector, (F)k+1,n+1=wNkn, k, n=0 . . . , N−1 be the N×N discrete Fourier transform matrix, and x[m]=F(wAºx[m])=[X0[m], . . . , XN−1 [M]]T be the DFT of the windowed reference signal vector, where º is the Hadamard (element-wise) product operator and {·}T is the transpose operator.
Given a transfer function H, the acoustic echo can be represented in the STFT domain as
d[m]=Σi=0M−1Hi[m−1]x[m−i],
where d[m] is the DFT of the mth frame echo signal, Hi is the ith impulse response matrix (i.e., the filter for the mth iteration of AEC 554), x[m] is the DFT of the mth frame reference signal, and M is the filter length in the STFT domain.
Given the foregoing, acoustic echo cancellation by AEC 554 can be expressed in the STFT domain as:
x[m]=F(wAº[x[mR], . . . ,x[mR+N−1]]T), where x[m] is the reference signal,
y[m]=F(wAº[y[mR], . . . ,y[mR+N−1]]T), where y[m] is the measured signal,
and
e[m]=y[m]{circumflex over (d)}[m]=y[m]−Σi=0M−1Ĥi[m−1]x[m−i],
where e[m] is the output signal. As noted above, the redaction function 808 redacts the model signal d[m] from the measured signal.
At block 876, an update filter is determined. As noted above, ultimately, the update filter is multiplied by the filter used in the current iteration of the AEC 554 to yield the filter for the next iteration of the AEC 554. Generally, during the first iterations of the AEC 554, some error exists in the cancellation of the echo from the measured signal. However, over successive iterations of the AEC 554, this error is diminished. In particular, during each iteration of the AEC554, the adaptive filter 872 is updated for the next iteration based on error from the current iteration. In this way, during successive iterations of the AEC 554, the AEC 554 mathematically converges to a cancellation of the audio playback by the speakers 222 (
In the first iteration of the AEC 554, an initial filter is utilized, as no adaptation has yet occurred. In some implementations, the initial filter is a transfer function representing the acoustic coupling between the speakers 222 and the microphones 224 in an anechoic chamber. In some embodiments, the initial filter comprises a transfer function generated, for example using measurements performed in an anechoic chamber. The generated transfer function can represent an acoustic coupling between the speakers 222 and the microphones 224 without any room effect. Such an initial filter could be used in any acoustic environment. Alternatively, in an effort to start the adaptive filter in a state that more closely matches the actual acoustic environment in which the playback device is located, a transfer function representing an acoustic coupling between the speakers 222 and the microphones 224 may be determined during a calibration procedure that involves microphones 224 recording audio output by speakers 222 in a quiet room (e.g., with minimal noise). Other initial filters may be used as well, although a filter that poorly represents the acoustic coupling between the speakers 222 and the microphones 224 may provide a less-optimal starting point for AEC 554 and result in to additional iterations of AEC 554 before convergence occurs.
In subsequent iterations of the AEC 554, the adaptive filter 872 can continue to adapt. During each nth iteration of the AEC, an n+1th instance of the adaptive filter 872 is determined for the next iteration of the AEC 554. In particular, during the nth iteration of the AEC 554, the nth instance of the adaptive filter is multiplied by an nth update filter to yield the n+1th instance of the adaptive filter. The nth update filter is based on the modelling error of the filter during the nth iteration.
To illustrate, let Ĥ be an adaptive filter matrix. As noted above, the model signal (i.e., the estimated acoustic echo) can be written as
{circumflex over (d)}[m]=Σi=0M−1Ĥi[m−1]x[m−i],
and the adaptive filter matrix can be updated from iteration to iteration using
Ĥi[m]=Ĥi[m−1]+GºΔĤi[m],i=0, . . . M−1,
where ΔĤi[m] is an update matrix for the filter coefficients matrix and G=Σk=−KKPk is a matrix that selects the 2K+1 diagonal bands. P is a permutation matrix defined as
For a filter having K blocks, to improve the modeling accuracy, 2K cross-terms, or 2K off-diagonal bands are added around the main diagonal terms of H without increasing the computational complexity to an impractical extent. In this example, Ĥ has 2K+1 diagonal bands. The matrix G limits the number of crossband filters that are useful for system identification in the STFT domain since increasing the number of crossband filters does not necessarily lead to a lower steady-state error.
As noted above, the nth update filter is based on the modelling error of the filter during the nth iteration. Using a least mean squares algorithm, the update filter is given by
ĤiLMS[m]=μe[m]xH[m−i],
where e[m]=y[m]{circumflex over (d)}[m] is the error signal vector in the STFT domain, μ>0 is a step-size, and {·}H is the Hermitian transpose operator.
As an alternative to the least mean squares, the AEC 554 may implement a normalized least mean squares algorithm to improve noise-robustness. Under an NMLS algorithm, the update filter is given by:
ΔĤiNLMS[m]=μe[m](n[m]ºx[m−1])H,
where the reference signal is normalized by its signal power before being multiplied by the error signal. As noted above, during an nth iteration, the update filter is multiplied by the adaptive filter for the nth iteration to yield the adaptive filter for the n+1 iteration. Given the example above, the adaptive filter is represented as:
Ĥi[m]=Ĥi[m−1]+GºΔĤi[m],i=0, . . . ,M−1.
In example implementations, acoustic echo cancellation pipeline 800a may be integrated into an audio processing pipeline that includes additional audio processing of microphone-captured audio such as beam forming, blind source separation, and frequency gating before the microphone-captured audio is processed as a voice input to a voice service.
b. Second Example Acoustic Echo Cancellation Pipeline
As shown in
The AEC 554 is configured to cancel audio output from speakers 222 (
Like the AEC 554, the TIC 854 is an acoustic echo canceller and may include generally similar components and have similar functionality to the AEC 554. However, in contrast to the AEC 554, the TIC 854 is configured to cancel audio output from the speakers 222 in the frequency bands of the full audible frequency spectrum in which the acknowledgment tone has content. Example acknowledgment tones, being tones, may have content in relatively few frequency bins. Further, as compared with full range audio content that is user-selectable, the frequency bands of the full audible frequency spectrum in which a given acknowledgment tone has content may be known (e.g., pre-determined), perhaps by playback device 102 or during manufacturing. Alternatively, the frequency bands of the full audible frequency spectrum in which a given acknowledgment tone has content may be determined by the playback device, perhaps in advance of using the TIC 854 to cancel the acknowledgment tone.
To illustrate, as described above with respect to AEC 554, example filters (e.g., adaptive filter 872) may filter in the STFT domain. When filtering certain frequency bands (frequency “bins”), the filter is shorter than when filtering the full audible frequency spectrum. For instance, referring to the example above, the transfer function H can be shorter (i.e., include fewer elements with transfer functions). This reduces the complexity of the second sound cancellation process, allowing the TIC 854 to converge significantly faster than the AEC 554, which has a longer filter so as to be able to cancel acoustic echo across a significantly larger frequency range (i.e., the full audible frequency spectrum). Note that attempting to cancel full range acoustic echo with the TIC 854 will typically not result in effective acoustic echo cancellation, as the TIC 854 is configured to cancel acoustic echo in a subset of the full range by way of its filter.
As noted above, switching between the AEC 554 and the TIC 854 is performed using the de-mux 881a, the de-mux 881b, and the mux 882 based on control signal(s) from the AEC/TIC Control 883. This switching mechanism is shown by way of example. In some examples, equivalent switching is implemented programmatically, such as in implementations where the AEC 554 and the TIC 854 are implemented in a processor (e.g., a digital signal processor (“DSP”) of playback device 102 (
In
As noted above, being an iterative process, the AEC 554 takes some time to converge to an effective cancellation of acoustic echo from an inactive state (e.g., ˜700 ms or more, depending on the processing capabilities and algorithm implemented). As such, if the AEC 554 were activated instead of the TIC 854 when the speakers 222 are inactive and the playback device 102 detects a wake word, the AEC 554 is unlikely to converge in time to effectively cancel acoustic echo of an audible tone coming shortly after a wake word (in acknowledgment of detecting the wake word). However, as described above, the TIC 854 is designed to converge more quickly than AEC 554, and as such will typically be able to converge in time to cancel the acoustic echo of the audible tone in acknowledgment of the wake word.
Under certain reset conditions, the AEC/TIC Reset 884 will reset the input states of the AEC/TIC Control 883. Input states may include event detection (i.e., the detection of a wake word) and the presence or absence of audio playback via the speakers 222. This allows the AEC/TIC Control 883 to select either (a) the AEC 554 or (b) the TIC 854 under new input conditions, such as another wake word or a change in playback status of the playback device 102 (
In certain conditions, both the AEC 554 and the TIC 854 may be bypassed. Namely, when the speakers 222 are inactive, the AEC 554 may be inactive as well, as there is no full-range acoustic echo of the playback device 102 to cancel. Further, the TIC 854 may be inactive as well until activated by the detection of a wake word. In such conditions, the speakers 222 are expected to be remain idle (until a wake word is detected or playback of audio content is started) and both the AEC 554 and the TIC 854 can be bypassed, as there is no acoustic echo to cancel (either from playback of the acknowledgment tone or from playback of other audio content). Note that if the speakers 222 return to an idle state after the TIC 854 cancels the acoustic echo of an acknowledgment tone, then the TIC 854 can be bypassed.
c. Example State Machine
In some instances, the AEC/TIC Control 883 and the AEC/TIC Reset 884 are configured as a state machine.
However, during operation, the states may change. In particular, at block 904, the state machine 900 determines whether the speakers 222 are active or inactive. In some examples, determines whether the speakers 222 are active or inactive involves determining whether an audio signal is passing through an audio playback pipeline (e.g., an audio playback pipeline implemented by the audio processing components 218 and/or the audio amplifiers 220, perhaps in a DSP). Alternatively, determining whether speakers 222 are active or inactive involves referencing a state variable (e.g., “driversIdle”) that is maintained in the memory 216 (
If the speakers 222 are inactive, the state machine 900 proceeds to block 906, where the state machine 900 determines whether an acknowledgement tone is about to be played. Determining whether determines an acknowledgement tone is about to be played may involve referencing a state variable (e.g., “ackTone”) that is maintained in the memory 216 by the playback device 102. A wake word detector (e.g., the wake word detector 552) may set ackTone to “true” in response to detecting a wake word in captured audio.
However, if the speakers 222 are active, the state machine 900 proceeds to block 908a, where the AEC 554 is run to cancel the acoustic echo of audio content being played back by the speakers 222. As noted above, the AEC 554 is configured to cancel full-range acoustic echo. If the wake word detector 552 detects a wake word (and the playback device 102 responsively outputs an audible tone in acknowledgment) while the speakers 222 are already active playing other audio content, then the AEC 554 cancels the acoustic echo of the audible tone (perhaps in addition to the acoustic echo of the audio content).
Referring back to block 906, if an acknowledgement tone is about to be played (and the speakers 222 are idle), the state machine 900 proceeds to block 908b, where the TIC 854 is run to cancel the acoustic echo of the acknowledgement tone when the tone is played back by the speakers 222. To effectively cancel the acknowledgement tone, the TIC 854 is run prior to the acknowledgement tone being played back by the speakers 222. For instance, the TIC 854 is activated at least one frame prior to the acknowledgement tone being played back by speakers 222, where the TIC 854 implements an acoustic echo cancellation algorithm that processes input signals on a frame-by-frame basis, as described with reference to the AEC 554 in
If no acknowledgement tone is about to be played (and the speakers 222 are idle), the state machine 900 proceeds to block 910 and bypasses both the AEC 554 and the TIC 854. State machine 900 then returns to the initial condition at block 902. The state machine 900 may loop through blocks 902, 904, 906, and 908, thereby bypassing the AEC 554 and the TIC 854 while the speakers 222 remain idle and no wake word is detected (e.g., while “driversIdle”==true and “ackTone”==false).
At block 912a, the state machine 900 may determine whether a reset condition for AEC 554 has occurred. Example reset conditions of block 912a include the speakers 222 becoming inactive (e.g., “driversIdle” being set to true) or the expiration of a timer. If a reset condition is detected, the state machine 900 returns to block 902. However, if no reset condition is detected, then the state machine 900 returns to block 908a to continue running the AEC 554 (e.g., if audio content playback is on-going).
Similarly, at block 912b, the state machine 900 may determine whether a reset condition for the TIC 854 has occurred. For instance, an example reset condition for the TIC 854 is completion of the process of cancelling the acoustic echo of the acknowledgment tone using the TIC 854. In particular, when the TIC 854 completes the process of cancelling the acoustic echo of the acknowledgment tone, the TIC 854 is reset in block 912b so that the TIC 854 can return to an idle state (and be bypassed) if appropriate.
Other reset conditions are related to audio playback. For example, a reset condition may be that the speakers 222 becoming active playing audio content (e.g., “driversIdle” being set to false). In such circumstances, the state machine 900 should return to the initial condition, so that AEC 554 can be run to cancel full-range acoustic echo. Alternatively, the TIC 854 may be reset upon the expiration of a timer. A timer may limit the length of the TIC 854 to allow the AEC 854 to be run instead of the TIC 854 if audio playback (other than the acknowledgment tone) starts during playback of the acknowledgment tone.
Some reset conditions are related to user input. For instance, playback of the acknowledgment tone may be deactivated via a voice command, user input via a control device (e.g., control device 104 of
As discussed above, embodiments described herein may involve acoustic echo cancellation.
a. Capture First Audio within Acoustic Environment
At block 1002, the implementation 1000 captures first audio within an acoustic environment. For instance, the implementation 1000 can be configured to capture audio within an acoustic environment via a playback device that includes an NMD (e.g., the playback device 102a-e of
Capturing audio may involve recording audio within an acoustic environment, as well as processing of the recorded audio, such as analog-to-digital conversation. The implementation may capture audio in an effort to detect voice inputs, such as the voice input 557 of
In some instances, the implementation 1000 may capture audio within an acoustic environment while one or more playback devices are also playing back audio content within the acoustic environment. In such instances, the captured first audio includes audio signals representing the acoustic echo caused by playback of the audio content in the acoustic environment. The captured audio may also include other noise present in the acoustic environment.
b. Determine Whether One or More Speakers are (A) Playing Audio Content or (B) Idle
At block 1004, the implementation 1000 determines whether one or more speakers are playing back audio content or idle. For instance, the implementation 1000 can be configured to determine whether the speakers 222 are playing back audio content or idle via the playback device 102. Determining whether the speakers 222 are playing back audio content may involve determining whether an audio signal is passing through the audio playback pipeline of the playback device 102 (e.g., through a DSP of the playback device 102), as described above with reference to block 904 of
Alternatively, determining whether the speakers 222 are playing back audio content may involve the implementation 1000 referencing a state variable, as also described above with reference to block 904 of
c. Detect Wake Word
In
d. Activate Either (A) a First Sound Canceller or (B) a Second Sound Canceller
At block 1008, the implementation 1000 activates either (A) a first sound canceller or (B) a second sound canceller. For instance, when the one or more speakers 222 are playing back audio content, the implementation 1000 activates a first sound canceller (e.g., the AEC 554) configured to cancel audio output from the one or more speakers 222 in a full audible frequency spectrum. Alternatively, when the one or more speakers are idle, the implementation 1000 activates a second sound canceller (e.g., the TIC 854) in response to detecting the wake word. The second sound canceller is configured to cancel audio output from the one or more speakers in the frequency bands of the full audible frequency spectrum in which the audible tone in acknowledgment of the detected wake word has content.
In some instances, the implementation 1000 includes an acoustic echo cancellation pipeline, such as acoustic echo cancellation pipeline 800b of
e. Output Acknowledgement Tone
At block 1010, the implementation 1000 outputs the acknowledgment tone. For instance, the implementation 1000 outputs an acknowledgment tone via the speakers 222 of the playback device 102 in response to detecting the wake word in block 906, thereby acknowledging detection of the wake word. In some examples, a digital representation (e.g., a file) of the acknowledgment tone is stored in memory 216. Alternatively, the acknowledgment tone is streamed from a remote computing system, such as a server of a streaming content service, or the control device 104 (
f. Capturing Second Audio within the Acoustic Environment
At block 1012, the implementation 1000 captures second audio within the acoustic environment. For example, the implementation 1000 can be configured to capture second audio within an acoustic environment via a playback device or an NMD, as described above with respect to block 1002. Capturing audio may involve recording audio within an acoustic environment, as well as processing of the recorded audio, such as analog-to-digital conversation.
As described in
g. Cancel Acknowledgment Tone from the Captured Second Audio Using the Activated Sound Canceller
At block 1014, the implementation 1000 cancels the acknowledgment tone from the captured second audio using the activated sound canceller. In particular, the implementation 1000 cancels the acknowledgment tone using the sound canceller activated in block 1014. In an example, the implementation 1000 provides the captured second audio and the acknowledgment tone as measured and reference signals, respectively, to the TIC 854, which then provides an output signal with the acoustic echo of the acknowledgment tone removed. In another example, the implementation 1000 provides the captured second audio and a compound audio signal (including the acknowledgment tone and audio content being played back by playback 102) as measured and reference signals, respectively, to AEC 554, which then provides an output signal with the acoustic echo of the acknowledgment tone and the acoustic echo of the audio content being played back by playback 102 removed.
h. Additional Functionality
In some examples, the implementation 1000 may perform additional functions. Some examples functions are provided to illustrate examples. Such examples should not be considered limiting.
In some examples, the implementation 1000 identifies a set of frequency bands of the full audible frequency spectrum in which an audible tone in acknowledgment of the detected wake-word has content. For instance, implementation 1000 measures spectral content of the audible tone in the frequency domain (e.g., using a discrete Fourier transform) and identifies, from the spectral content of the audible tone in the frequency domain, a set of the frequency bands in which the audible tone has content. The implementation 1000 may then configure (e.g., instruct) the second sound canceller (e.g., the TIC 854) to process only the set of frequency bins in which the audible tone has content.
Such an embodiment may be useful in embodiments in which the acknowledgment tone is modifiable. If the acknowledgment tone is known and static, the second sound canceller (e.g., the TIC 854) can be pre-configured to process only the set of frequency bins in which the audible tone has content. Other examples are possible as well.
As noted above, in some examples, detecting the wake word triggers an event detector, which ultimately causes the implementation 1000 to perform one or more responsive functions. In some examples, this event detector is reset upon detecting one or more reset events, which allows the implementation 1000 to select a different sound canceller if different conditions arise. Detecting the reset event may include one of: (i) cancelling the audible tone from the captured second audio using the activated sound canceller; (ii) expiration of a timer on the activated sound canceller; (iii) initiation of audio content playback via the one or more speakers; (iv) cancellation of a voice input corresponding to the wake-word detected within the captured first audio content via a control interface; (v) muting of the one or more microphones; and (iv) de-activation of the audible tone via the control interface. Other example reset events are described in connection with blocks 912a and 912b of
The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.
(Feature 1) A method to be performed by a system, the method comprising: capturing, via the one or more microphones, first audio within an acoustic environment; determining whether the one or more speakers are (a) playing back audio content or (b) idle; detecting, within the captured first audio content, a wake-word for a voice service; identifying a set of frequency bands of the full audible frequency spectrum in which an audible tone in acknowledgment of the detected wake-word has content; in response to detecting the wake-word for the voice service and before playing an audible tone in acknowledgement of the detected wake-word on the one or more speakers, activating either (a) a first sound canceller or (b) a second sound canceller, wherein activating either the (a) first sound canceller or (b) the second sound canceller comprises: when the one or more speakers are playing back audio content, activating the first sound canceller, the first sound canceller configured to cancel audio output from the one or more speakers in a full audible frequency spectrum; and when the one or more speakers are idle, activating the second sound canceller, the second sound canceller configured to cancel audio output from the one or more speakers in the identified frequency bands of the full audible frequency spectrum in which the audible tone in acknowledgment of the detected wake-word has content; and in response to detecting the wake-word for the voice service and after activating either (a) the first sound canceller or (b) the second sound canceller, outputting the audible tone in acknowledgement of the detected wake-word via the one or more speakers; capturing, via the one or more microphones, second audio within the acoustic environment, wherein the second audio comprises sound produced by the one or more speakers in outputting the audible tone in acknowledgement of the detected wake-word; and cancelling the audible tone in acknowledgement of the detected wake-word from the captured second audio using the activated sound canceller.
(Feature 2) The method of feature 1, wherein identifying the set of frequency bands of the full audible frequency spectrum in which an audible tone in acknowledgment of the detected wake-word has content comprises: measuring spectral content of the audible tone in the frequency domain; identifying, from the spectral content of the audible tone in the frequency domain, a set of the frequency bands in which the audible tone has content; and instructing the second sound canceller to process only the set of frequency bins in which the audible tone has content.
(Feature 3) The method of feature 3, wherein audio captured by the one or more microphones is divided into frames for processing by the either (a) the first sound canceller or (b) the second sound canceller, and wherein activating either (a) the first sound canceller or (b) the second sound canceller before playing the audible tone in acknowledgement of the detected wake-word comprises activating either (a) the first sound canceller or (b) the second sound canceller at least one frame before outputting the audible tone in acknowledgement of the detected wake-word via the one or more speakers.
(Feature 4) The method of feature 1, wherein detecting, within the captured first audio content, the wake-word for the voice service comprises triggering an event detector in response to detecting the wake-word, and wherein the operations further comprise resetting the event detector upon detecting a reset event.
(Feature 5) The method of feature 1, wherein detecting the reset event comprises at least one of: (i) cancelling the audible tone from the captured second audio using the activated sound canceller; (ii) expiration of a timer on the activated sound canceller; (iii) initiation of audio content playback via the one or more speakers; (iv) cancellation of a voice input corresponding to the wake-word detected within the captured first audio content via a control interface; (v) muting of the one or more microphones; and (iv) de-activation of the audible tone via the control interface.
(Feature 6) The method of feature 1, wherein determining whether the one or more speakers are (a) playing back audio content or (b) idle comprises determining that the one or more speakers are playback back audio content based on an audio stage of the system passing an audio signal representing the audio content.
(Feature 7) The method of feature 1, wherein the system includes a playback device comprising a network interface and the one or more speakers and a networked-microphone device comprising a network interface, the one or more microphones, the one or more processors, and the data storage storing instructions executable by the one or more processors, and wherein the playback device and the networked-microphone device are connected via the network interface of the playback device and the network interface of the networked-microphone device.
(Feature 8) The method of feature 1, wherein the system includes a playback device comprising a housing in which the one or more speakers and the one or more microphones are housed.
(Feature 9) A tangible, non-transitory computer-readable medium having stored therein instructions executable by one or more processors to cause a device to perform the method of any of features 1-8.
(Feature 10) A device configured to perform the method of any of features 1-8.
(Feature 11) A media playback system configured to perform the method of any of features 1-8.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
This application claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 15/718,521, entitled “Tone Interference Cancellation,” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4741038 | Elko et al. | Apr 1988 | A |
4941187 | Slater | Jul 1990 | A |
4974213 | Siwecki | Nov 1990 | A |
5036538 | Oken et al. | Jul 1991 | A |
5440644 | Farinelli et al. | Aug 1995 | A |
5588065 | Tanaka et al. | Dec 1996 | A |
5740260 | Odom | Apr 1998 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
5923902 | Inagaki | Jul 1999 | A |
5949414 | Namikata et al. | Sep 1999 | A |
6032202 | Lea et al. | Feb 2000 | A |
6088459 | Hobelsberger | Jul 2000 | A |
6256554 | DiLorenzo | Jul 2001 | B1 |
6301603 | Maher et al. | Oct 2001 | B1 |
6311157 | Strong | Oct 2001 | B1 |
6366886 | Dragosh et al. | Apr 2002 | B1 |
6404811 | Cvetko et al. | Jun 2002 | B1 |
6408078 | Hobelsberger | Jun 2002 | B1 |
6469633 | Wachter et al. | Oct 2002 | B1 |
6522886 | Youngs et al. | Feb 2003 | B1 |
6594347 | Calder et al. | Jul 2003 | B1 |
6594630 | Zlokarnik et al. | Jul 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6611604 | Irby et al. | Aug 2003 | B1 |
6631410 | Kowalski et al. | Oct 2003 | B1 |
6757517 | Chang | Jun 2004 | B2 |
6778869 | Champion | Aug 2004 | B2 |
6937977 | Gerson | Aug 2005 | B2 |
7099821 | Visser et al. | Aug 2006 | B2 |
7103542 | Doyle | Sep 2006 | B2 |
7130608 | Hollstrom et al. | Oct 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7143939 | Henzerling | Dec 2006 | B2 |
7174299 | Fujii et al. | Feb 2007 | B2 |
7228275 | Endo et al. | Jun 2007 | B1 |
7236773 | Thomas | Jun 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7356471 | Ito et al. | Apr 2008 | B2 |
7383297 | Atsmon et al. | Jun 2008 | B1 |
7391791 | Balassanian et al. | Jun 2008 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7577757 | Carter et al. | Aug 2009 | B2 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7661107 | Van et al. | Feb 2010 | B1 |
7702508 | Bennett | Apr 2010 | B2 |
7792311 | Holmgren et al. | Sep 2010 | B1 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7961892 | Fedigan | Jun 2011 | B2 |
7987294 | Bryce et al. | Jul 2011 | B2 |
8014423 | Thaler et al. | Sep 2011 | B2 |
8019076 | Lambert | Sep 2011 | B1 |
8032383 | Bhardwaj et al. | Oct 2011 | B1 |
8041565 | Bhardwaj et al. | Oct 2011 | B1 |
8045952 | Oureshey et al. | Oct 2011 | B2 |
8073125 | Zhang et al. | Dec 2011 | B2 |
8073681 | Baldwin et al. | Dec 2011 | B2 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8136040 | Fleming | Mar 2012 | B2 |
8165867 | Fish | Apr 2012 | B1 |
8234395 | Millington | Jul 2012 | B2 |
8239206 | Lebeau et al. | Aug 2012 | B1 |
8255224 | Singleton et al. | Aug 2012 | B2 |
8284982 | Bailey | Oct 2012 | B2 |
8290603 | Lambourne | Oct 2012 | B1 |
8340975 | Rosenberger | Dec 2012 | B1 |
8364481 | Strope et al. | Jan 2013 | B2 |
8385557 | Tashev et al. | Feb 2013 | B2 |
8386261 | Mellott et al. | Feb 2013 | B2 |
8386523 | Mody et al. | Feb 2013 | B2 |
8423893 | Ramsay et al. | Apr 2013 | B2 |
8428758 | Naik et al. | Apr 2013 | B2 |
8453058 | Coccaro et al. | May 2013 | B1 |
8473618 | Spear et al. | Jun 2013 | B2 |
8483853 | Lambourne | Jul 2013 | B1 |
8484025 | Moreno et al. | Jul 2013 | B1 |
8588849 | Patterson et al. | Nov 2013 | B2 |
8600443 | Kawaguchi et al. | Dec 2013 | B2 |
8710970 | Oelrich et al. | Apr 2014 | B2 |
8738925 | Park et al. | May 2014 | B1 |
8775191 | Sharifi et al. | Jul 2014 | B1 |
8831761 | Kemp et al. | Sep 2014 | B2 |
8831957 | Taubman et al. | Sep 2014 | B2 |
8848879 | Coughlan et al. | Sep 2014 | B1 |
8861756 | Zhu et al. | Oct 2014 | B2 |
8874448 | Kauffmann et al. | Oct 2014 | B1 |
8938394 | Faaborg et al. | Jan 2015 | B1 |
8942252 | Balassanian et al. | Jan 2015 | B2 |
8983383 | Haskin | Mar 2015 | B1 |
8983844 | Thomas et al. | Mar 2015 | B1 |
9015049 | Baldwin et al. | Apr 2015 | B2 |
9042556 | Kallai et al. | May 2015 | B2 |
9060224 | List | Jun 2015 | B1 |
9094539 | Noble | Jul 2015 | B1 |
9098467 | Blanksteen et al. | Aug 2015 | B1 |
9124650 | Maharajh et al. | Sep 2015 | B2 |
9124711 | Park et al. | Sep 2015 | B2 |
9148742 | Koulomzin et al. | Sep 2015 | B1 |
9190043 | Krisch et al. | Nov 2015 | B2 |
9208785 | Ben-David et al. | Dec 2015 | B2 |
9215545 | Dublin et al. | Dec 2015 | B2 |
9245527 | Lindahl | Jan 2016 | B2 |
9251793 | Lebeau et al. | Feb 2016 | B2 |
9253572 | Beddingfield, Sr. et al. | Feb 2016 | B2 |
9262612 | Cheyer | Feb 2016 | B2 |
9263042 | Sharifi | Feb 2016 | B1 |
9275637 | Salvador et al. | Mar 2016 | B1 |
9288597 | Carlsson et al. | Mar 2016 | B2 |
9300266 | Grokop | Mar 2016 | B2 |
9304736 | Whiteley et al. | Apr 2016 | B1 |
9307321 | Unruh | Apr 2016 | B1 |
9318107 | Sharifi | Apr 2016 | B1 |
9319816 | Narayanan | Apr 2016 | B1 |
9324322 | Torok et al. | Apr 2016 | B1 |
9335819 | Jaeger et al. | May 2016 | B1 |
9361878 | Boukadakis | Jun 2016 | B2 |
9368105 | Freed et al. | Jun 2016 | B1 |
9373329 | Strope et al. | Jun 2016 | B2 |
9374634 | Macours | Jun 2016 | B2 |
9386154 | Baciu et al. | Jul 2016 | B2 |
9390708 | Hoffmeister | Jul 2016 | B1 |
9401058 | De La Fuente et al. | Jul 2016 | B2 |
9412392 | Lindahl et al. | Aug 2016 | B2 |
9426567 | Lee et al. | Aug 2016 | B2 |
9431021 | Scalise et al. | Aug 2016 | B1 |
9443527 | Watanabe et al. | Sep 2016 | B1 |
9472201 | Sleator | Oct 2016 | B1 |
9472203 | Ayrapetian et al. | Oct 2016 | B1 |
9484030 | Meaney et al. | Nov 2016 | B1 |
9489948 | Chu et al. | Nov 2016 | B1 |
9494683 | Sadek | Nov 2016 | B1 |
9509269 | Rosenberg | Nov 2016 | B1 |
9510101 | Polleros | Nov 2016 | B1 |
9514476 | Kay et al. | Dec 2016 | B2 |
9514752 | Sharifi | Dec 2016 | B2 |
9516081 | Tebbs et al. | Dec 2016 | B2 |
9536541 | Chen et al. | Jan 2017 | B2 |
9548053 | Basye et al. | Jan 2017 | B1 |
9548066 | Jain et al. | Jan 2017 | B2 |
9552816 | Vanlund et al. | Jan 2017 | B2 |
9554210 | Ayrapetian et al. | Jan 2017 | B1 |
9560441 | McDonough, Jr. et al. | Jan 2017 | B1 |
9576591 | Kim et al. | Feb 2017 | B2 |
9601116 | Casado et al. | Mar 2017 | B2 |
9615170 | Kirsch et al. | Apr 2017 | B2 |
9615171 | O'Neill et al. | Apr 2017 | B1 |
9626695 | Balasubramanian et al. | Apr 2017 | B2 |
9632748 | Faaborg et al. | Apr 2017 | B2 |
9633186 | Ingrassia, Jr. et al. | Apr 2017 | B2 |
9633368 | Greenzeiger et al. | Apr 2017 | B2 |
9633660 | Haughay et al. | Apr 2017 | B2 |
9633661 | Typrin et al. | Apr 2017 | B1 |
9633671 | Giacobello et al. | Apr 2017 | B2 |
9633674 | Sinha et al. | Apr 2017 | B2 |
9640179 | Hart et al. | May 2017 | B1 |
9640183 | Jung et al. | May 2017 | B2 |
9641919 | Poole et al. | May 2017 | B1 |
9646614 | Bellegarda et al. | May 2017 | B2 |
9648564 | Cui et al. | May 2017 | B1 |
9653060 | Hilmes et al. | May 2017 | B1 |
9653075 | Chen et al. | May 2017 | B1 |
9659555 | Hilmes et al. | May 2017 | B1 |
9672821 | Krishnaswamy et al. | Jun 2017 | B2 |
9674587 | Triplett et al. | Jun 2017 | B2 |
9685171 | Yang | Jun 2017 | B1 |
9691378 | Meyers et al. | Jun 2017 | B1 |
9691379 | Mathias et al. | Jun 2017 | B1 |
9697826 | Sainath et al. | Jul 2017 | B2 |
9697828 | Prasad et al. | Jul 2017 | B1 |
9698999 | Mutagi et al. | Jul 2017 | B2 |
9704478 | Vitaladevuni et al. | Jul 2017 | B1 |
9721566 | Newendorp et al. | Aug 2017 | B2 |
9721568 | Polansky et al. | Aug 2017 | B1 |
9721570 | Beal et al. | Aug 2017 | B1 |
9728188 | Rosen et al. | Aug 2017 | B1 |
9734822 | Sundaram et al. | Aug 2017 | B1 |
9736578 | Iyengar et al. | Aug 2017 | B2 |
9743204 | Welch et al. | Aug 2017 | B1 |
9743207 | Hartung | Aug 2017 | B1 |
9747011 | Lewis et al. | Aug 2017 | B2 |
9747899 | Pogue et al. | Aug 2017 | B2 |
9747920 | Ayrapetian et al. | Aug 2017 | B2 |
9747926 | Sharifi et al. | Aug 2017 | B2 |
9749760 | Lambourne | Aug 2017 | B2 |
9754605 | Chhetri | Sep 2017 | B1 |
9762967 | Clarke et al. | Sep 2017 | B2 |
9769420 | Moses | Sep 2017 | B1 |
9779725 | Sun et al. | Oct 2017 | B2 |
9779735 | Civelli et al. | Oct 2017 | B2 |
9811314 | Plagge et al. | Nov 2017 | B2 |
9813810 | Nongpiur | Nov 2017 | B1 |
9813812 | Berthelsen et al. | Nov 2017 | B2 |
9818407 | Secker-Walker et al. | Nov 2017 | B1 |
9820036 | Tritschler et al. | Nov 2017 | B1 |
9820039 | Lang | Nov 2017 | B2 |
9826306 | Lang | Nov 2017 | B2 |
9865259 | Typrin et al. | Jan 2018 | B1 |
9865264 | Gelfenbeyn et al. | Jan 2018 | B2 |
9881616 | Beckley et al. | Jan 2018 | B2 |
9900723 | Choisel et al. | Feb 2018 | B1 |
9916839 | Scalise et al. | Mar 2018 | B1 |
9947316 | Millington et al. | Apr 2018 | B2 |
9947333 | David | Apr 2018 | B1 |
9972318 | Kelly et al. | May 2018 | B1 |
9972343 | Thorson et al. | May 2018 | B1 |
9973849 | Zhang et al. | May 2018 | B1 |
9979560 | Kim et al. | May 2018 | B2 |
10013381 | Mayman et al. | Jul 2018 | B2 |
10013995 | Lashkari et al. | Jul 2018 | B1 |
10026401 | Mutagi et al. | Jul 2018 | B1 |
10048930 | Vega et al. | Aug 2018 | B1 |
10049675 | Haughay | Aug 2018 | B2 |
10051366 | Buoni et al. | Aug 2018 | B1 |
10051600 | Zhong et al. | Aug 2018 | B1 |
10057698 | Drinkwater et al. | Aug 2018 | B2 |
RE47049 | Zhu et al. | Sep 2018 | E |
10068573 | Aykac et al. | Sep 2018 | B1 |
10074369 | Devaraj et al. | Sep 2018 | B2 |
10074371 | Wang et al. | Sep 2018 | B1 |
10079015 | Lockhart et al. | Sep 2018 | B1 |
10108393 | Millington et al. | Oct 2018 | B2 |
10115400 | Wilberding | Oct 2018 | B2 |
10116748 | Farmer et al. | Oct 2018 | B2 |
10127911 | Kim et al. | Nov 2018 | B2 |
10134399 | Lang et al. | Nov 2018 | B2 |
10136204 | Poole et al. | Nov 2018 | B1 |
10152969 | Reilly et al. | Dec 2018 | B2 |
10181323 | Beckhardt et al. | Jan 2019 | B2 |
10186265 | Lockhart et al. | Jan 2019 | B1 |
10192546 | Piersol et al. | Jan 2019 | B1 |
10224056 | Torok et al. | Mar 2019 | B1 |
10225651 | Lang | Mar 2019 | B2 |
10248376 | Keyser-Allen et al. | Apr 2019 | B2 |
10276161 | Hughes et al. | Apr 2019 | B2 |
10297256 | Reilly et al. | May 2019 | B2 |
10339917 | Aleksic et al. | Jul 2019 | B2 |
10346122 | Morgan | Jul 2019 | B1 |
10354650 | Gruenstein et al. | Jul 2019 | B2 |
10365887 | Mulherkar | Jul 2019 | B1 |
10365889 | Plagge et al. | Jul 2019 | B2 |
10366688 | Gunn et al. | Jul 2019 | B2 |
10366699 | Dharia et al. | Jul 2019 | B1 |
10374816 | Leblang et al. | Aug 2019 | B1 |
10381001 | Gunn et al. | Aug 2019 | B2 |
10381002 | Gunn et al. | Aug 2019 | B2 |
10381003 | Wakisaka et al. | Aug 2019 | B2 |
10388272 | Thomson et al. | Aug 2019 | B1 |
10433058 | Torgerson et al. | Oct 2019 | B1 |
10445057 | Vega et al. | Oct 2019 | B2 |
10469966 | Lambourne | Nov 2019 | B2 |
10499146 | Lang et al. | Dec 2019 | B2 |
10510340 | Fu et al. | Dec 2019 | B1 |
10511904 | Buoni et al. | Dec 2019 | B2 |
10522146 | Tushinskiy | Dec 2019 | B1 |
10546583 | White et al. | Jan 2020 | B2 |
10573321 | Smith et al. | Feb 2020 | B1 |
10586540 | Smith et al. | Mar 2020 | B1 |
10599287 | Kumar et al. | Mar 2020 | B2 |
10602268 | Soto | Mar 2020 | B1 |
10614807 | Beckhardt et al. | Apr 2020 | B2 |
10621981 | Sereshki | Apr 2020 | B2 |
10622009 | Zhang et al. | Apr 2020 | B1 |
10624612 | Sumi et al. | Apr 2020 | B2 |
10645130 | Corbin et al. | May 2020 | B2 |
10672383 | Thomson et al. | Jun 2020 | B1 |
10679625 | Lockhart et al. | Jun 2020 | B1 |
10681460 | Woo et al. | Jun 2020 | B2 |
10694608 | Baker et al. | Jun 2020 | B2 |
10712997 | Wilberding et al. | Jul 2020 | B2 |
10740065 | Jarvis et al. | Aug 2020 | B2 |
10762896 | Yavagal et al. | Sep 2020 | B1 |
10847143 | Millington et al. | Nov 2020 | B2 |
10848885 | Lambourne | Nov 2020 | B2 |
RE48371 | Zhu et al. | Dec 2020 | E |
10878811 | Smith et al. | Dec 2020 | B2 |
10897679 | Lambourne | Jan 2021 | B2 |
10943598 | Singh et al. | Mar 2021 | B2 |
10971158 | Patangay et al. | Apr 2021 | B1 |
20010042107 | Palm | Nov 2001 | A1 |
20020022453 | Balog et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020034280 | Infosino | Mar 2002 | A1 |
20020046023 | Fujii et al. | Apr 2002 | A1 |
20020072816 | Shdema et al. | Jun 2002 | A1 |
20020116196 | Tran | Aug 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20030015354 | Edwards et al. | Jan 2003 | A1 |
20030038848 | Lee et al. | Feb 2003 | A1 |
20030040908 | Yang et al. | Feb 2003 | A1 |
20030070182 | Pierre et al. | Apr 2003 | A1 |
20030070869 | Hlibowicki | Apr 2003 | A1 |
20030072462 | Hlibowicki | Apr 2003 | A1 |
20030095672 | Hobelsberger | May 2003 | A1 |
20030130850 | Badt et al. | Jul 2003 | A1 |
20030157951 | Hasty | Aug 2003 | A1 |
20030235244 | Pessoa et al. | Dec 2003 | A1 |
20040024478 | Hans et al. | Feb 2004 | A1 |
20040093219 | Shin et al. | May 2004 | A1 |
20040105566 | Matsunaga et al. | Jun 2004 | A1 |
20040127241 | Shostak | Jul 2004 | A1 |
20040128135 | Anastasakos et al. | Jul 2004 | A1 |
20040234088 | McCarty et al. | Nov 2004 | A1 |
20050031131 | Browning et al. | Feb 2005 | A1 |
20050031132 | Browning et al. | Feb 2005 | A1 |
20050031133 | Browning et al. | Feb 2005 | A1 |
20050031134 | Leske | Feb 2005 | A1 |
20050031137 | Browning et al. | Feb 2005 | A1 |
20050031138 | Browning et al. | Feb 2005 | A1 |
20050031139 | Browning et al. | Feb 2005 | A1 |
20050031140 | Browning | Feb 2005 | A1 |
20050047606 | Lee et al. | Mar 2005 | A1 |
20050077843 | Benditt | Apr 2005 | A1 |
20050164664 | DiFonzo et al. | Jul 2005 | A1 |
20050195988 | Tashev et al. | Sep 2005 | A1 |
20050201254 | Looney et al. | Sep 2005 | A1 |
20050207584 | Bright | Sep 2005 | A1 |
20050235334 | Togashi et al. | Oct 2005 | A1 |
20050268234 | Rossi et al. | Dec 2005 | A1 |
20050283330 | Laraia et al. | Dec 2005 | A1 |
20050283475 | Beranek et al. | Dec 2005 | A1 |
20060004834 | Pyhalammi et al. | Jan 2006 | A1 |
20060023945 | King et al. | Feb 2006 | A1 |
20060041431 | Maes | Feb 2006 | A1 |
20060093128 | Oxford | May 2006 | A1 |
20060104451 | Browning et al. | May 2006 | A1 |
20060147058 | Wang | Jul 2006 | A1 |
20060190269 | Tessel et al. | Aug 2006 | A1 |
20060190968 | Jung et al. | Aug 2006 | A1 |
20060247913 | Huerta et al. | Nov 2006 | A1 |
20060262943 | Oxford | Nov 2006 | A1 |
20070018844 | Sutardja | Jan 2007 | A1 |
20070019815 | Asada et al. | Jan 2007 | A1 |
20070033043 | Hyakumoto | Feb 2007 | A1 |
20070071206 | Gainsboro et al. | Mar 2007 | A1 |
20070071255 | Schobben | Mar 2007 | A1 |
20070076131 | Li et al. | Apr 2007 | A1 |
20070076906 | Takagi et al. | Apr 2007 | A1 |
20070140058 | McIntosh et al. | Jun 2007 | A1 |
20070140521 | Mitobe et al. | Jun 2007 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20070147651 | Mitobe et al. | Jun 2007 | A1 |
20070201639 | Park et al. | Aug 2007 | A1 |
20070254604 | Kim | Nov 2007 | A1 |
20080037814 | Shau | Feb 2008 | A1 |
20080090537 | Sutardja | Apr 2008 | A1 |
20080090617 | Sutardja | Apr 2008 | A1 |
20080146289 | Korneluk et al. | Jun 2008 | A1 |
20080182518 | Lo | Jul 2008 | A1 |
20080207115 | Lee et al. | Aug 2008 | A1 |
20080208594 | Cross et al. | Aug 2008 | A1 |
20080221897 | Cerra et al. | Sep 2008 | A1 |
20080247530 | Barton et al. | Oct 2008 | A1 |
20080248797 | Freeman et al. | Oct 2008 | A1 |
20080291896 | Tuubel et al. | Nov 2008 | A1 |
20080301729 | Broos et al. | Dec 2008 | A1 |
20090003620 | McKillop et al. | Jan 2009 | A1 |
20090005893 | Sugii et al. | Jan 2009 | A1 |
20090010445 | Matsuo | Jan 2009 | A1 |
20090018828 | Nakadai et al. | Jan 2009 | A1 |
20090043206 | Towfiq et al. | Feb 2009 | A1 |
20090052688 | Ishibashi et al. | Feb 2009 | A1 |
20090076821 | Brenner et al. | Mar 2009 | A1 |
20090153289 | Hope et al. | Jun 2009 | A1 |
20090191854 | Beason | Jul 2009 | A1 |
20090197524 | Haff et al. | Aug 2009 | A1 |
20090220107 | Every et al. | Sep 2009 | A1 |
20090228919 | Zott et al. | Sep 2009 | A1 |
20090238377 | Ramakrishnan et al. | Sep 2009 | A1 |
20090238386 | Usher et al. | Sep 2009 | A1 |
20090248397 | Garcia et al. | Oct 2009 | A1 |
20090249222 | Schmidt et al. | Oct 2009 | A1 |
20090264072 | Dai | Oct 2009 | A1 |
20090323907 | Gupta et al. | Dec 2009 | A1 |
20090326949 | Douthitt et al. | Dec 2009 | A1 |
20100014690 | Wolff et al. | Jan 2010 | A1 |
20100023638 | Bowman | Jan 2010 | A1 |
20100035593 | Franco et al. | Feb 2010 | A1 |
20100070922 | DeMaio et al. | Mar 2010 | A1 |
20100075723 | Min et al. | Mar 2010 | A1 |
20100088100 | Lindahl | Apr 2010 | A1 |
20100092004 | Kuze | Apr 2010 | A1 |
20100161335 | Whynot | Jun 2010 | A1 |
20100172516 | Lastrucci | Jul 2010 | A1 |
20100178873 | Lee et al. | Jul 2010 | A1 |
20100179874 | Higgins et al. | Jul 2010 | A1 |
20100185448 | Meisel | Jul 2010 | A1 |
20100211199 | Naik et al. | Aug 2010 | A1 |
20110033059 | Bhaskar et al. | Feb 2011 | A1 |
20110035580 | Wang et al. | Feb 2011 | A1 |
20110044461 | Kuech et al. | Feb 2011 | A1 |
20110044489 | Saiki et al. | Feb 2011 | A1 |
20110066634 | Phillips et al. | Mar 2011 | A1 |
20110091055 | Leblanc | Apr 2011 | A1 |
20110103615 | Sun | May 2011 | A1 |
20110145581 | Malhotra et al. | Jun 2011 | A1 |
20110170707 | Yamada et al. | Jul 2011 | A1 |
20110182436 | Murgia et al. | Jul 2011 | A1 |
20110202924 | Banguero et al. | Aug 2011 | A1 |
20110218656 | Bishop et al. | Sep 2011 | A1 |
20110267985 | Wilkinson et al. | Nov 2011 | A1 |
20110276333 | Wang et al. | Nov 2011 | A1 |
20110280422 | Neumeyer et al. | Nov 2011 | A1 |
20110285808 | Feng et al. | Nov 2011 | A1 |
20110289506 | Trivi et al. | Nov 2011 | A1 |
20110299706 | Sakai | Dec 2011 | A1 |
20120020486 | Fried et al. | Jan 2012 | A1 |
20120022863 | Cho et al. | Jan 2012 | A1 |
20120022864 | Leman et al. | Jan 2012 | A1 |
20120078635 | Rothkopf et al. | Mar 2012 | A1 |
20120086568 | Scott et al. | Apr 2012 | A1 |
20120123268 | Tanaka et al. | May 2012 | A1 |
20120128160 | Kim et al. | May 2012 | A1 |
20120131125 | Seidel et al. | May 2012 | A1 |
20120148075 | Goh et al. | Jun 2012 | A1 |
20120162540 | Ouchi et al. | Jun 2012 | A1 |
20120163603 | Abe et al. | Jun 2012 | A1 |
20120177215 | Bose et al. | Jul 2012 | A1 |
20120183149 | Hiroe | Jul 2012 | A1 |
20120224715 | Kikkeri | Sep 2012 | A1 |
20120297284 | Matthews, III et al. | Nov 2012 | A1 |
20120308044 | Vander et al. | Dec 2012 | A1 |
20120308046 | Muza | Dec 2012 | A1 |
20130006453 | Wang et al. | Jan 2013 | A1 |
20130024018 | Chang et al. | Jan 2013 | A1 |
20130034241 | Pandey et al. | Feb 2013 | A1 |
20130039527 | Jensen et al. | Feb 2013 | A1 |
20130058492 | Silzle et al. | Mar 2013 | A1 |
20130066453 | Seefeldt | Mar 2013 | A1 |
20130080146 | Kato et al. | Mar 2013 | A1 |
20130124211 | McDonough | May 2013 | A1 |
20130148821 | Sorensen | Jun 2013 | A1 |
20130170647 | Reilly et al. | Jul 2013 | A1 |
20130179173 | Lee et al. | Jul 2013 | A1 |
20130183944 | Mozer et al. | Jul 2013 | A1 |
20130191119 | Sugiyama | Jul 2013 | A1 |
20130191122 | Mason | Jul 2013 | A1 |
20130198298 | Li et al. | Aug 2013 | A1 |
20130211826 | Mannby | Aug 2013 | A1 |
20130216056 | Thyssen | Aug 2013 | A1 |
20130262101 | Srinivasan | Oct 2013 | A1 |
20130315420 | You | Nov 2013 | A1 |
20130317635 | Bates et al. | Nov 2013 | A1 |
20130322462 | Poulsen | Dec 2013 | A1 |
20130322665 | Bennett et al. | Dec 2013 | A1 |
20130324031 | Loureiro | Dec 2013 | A1 |
20130329896 | Krishnaswamy et al. | Dec 2013 | A1 |
20130331970 | Beckhardt et al. | Dec 2013 | A1 |
20130332165 | Beckley et al. | Dec 2013 | A1 |
20130339028 | Rosner et al. | Dec 2013 | A1 |
20140003611 | Mohammad et al. | Jan 2014 | A1 |
20140003625 | Sheen et al. | Jan 2014 | A1 |
20140003635 | Mohammad et al. | Jan 2014 | A1 |
20140005813 | Reimann | Jan 2014 | A1 |
20140006026 | Lamb et al. | Jan 2014 | A1 |
20140006825 | Shenhav | Jan 2014 | A1 |
20140019743 | DeLuca | Jan 2014 | A1 |
20140034929 | Hamada et al. | Feb 2014 | A1 |
20140046464 | Reimann | Feb 2014 | A1 |
20140064501 | Olsen et al. | Mar 2014 | A1 |
20140073298 | Rossmann | Mar 2014 | A1 |
20140075306 | Rega | Mar 2014 | A1 |
20140075311 | Boettcher et al. | Mar 2014 | A1 |
20140094151 | Klappert et al. | Apr 2014 | A1 |
20140100854 | Chen et al. | Apr 2014 | A1 |
20140109138 | Cannistraro et al. | Apr 2014 | A1 |
20140122075 | Bak et al. | May 2014 | A1 |
20140136195 | Abdossalami et al. | May 2014 | A1 |
20140145168 | Ohsawa et al. | May 2014 | A1 |
20140146983 | Kim et al. | May 2014 | A1 |
20140163978 | Basye et al. | Jun 2014 | A1 |
20140164400 | Kruglick | Jun 2014 | A1 |
20140167931 | Lee et al. | Jun 2014 | A1 |
20140168344 | Shoemake et al. | Jun 2014 | A1 |
20140172953 | Blanksteen | Jun 2014 | A1 |
20140181271 | Millington | Jun 2014 | A1 |
20140192986 | Lee et al. | Jul 2014 | A1 |
20140195252 | Gruber et al. | Jul 2014 | A1 |
20140207457 | Biatov et al. | Jul 2014 | A1 |
20140214429 | Pantel | Jul 2014 | A1 |
20140215332 | Lee et al. | Jul 2014 | A1 |
20140219472 | Huang et al. | Aug 2014 | A1 |
20140222436 | Binder et al. | Aug 2014 | A1 |
20140229184 | Shires | Aug 2014 | A1 |
20140244013 | Reilly | Aug 2014 | A1 |
20140244712 | Walters et al. | Aug 2014 | A1 |
20140249817 | Hart et al. | Sep 2014 | A1 |
20140252386 | Ito et al. | Sep 2014 | A1 |
20140254805 | Su et al. | Sep 2014 | A1 |
20140258292 | Thramann et al. | Sep 2014 | A1 |
20140259075 | Chang et al. | Sep 2014 | A1 |
20140269757 | Park et al. | Sep 2014 | A1 |
20140270282 | Tammi et al. | Sep 2014 | A1 |
20140274185 | Luna et al. | Sep 2014 | A1 |
20140274203 | Ganong, III et al. | Sep 2014 | A1 |
20140274218 | Kadiwala et al. | Sep 2014 | A1 |
20140277650 | Zurek et al. | Sep 2014 | A1 |
20140291642 | Watabe et al. | Oct 2014 | A1 |
20140310002 | Nitz et al. | Oct 2014 | A1 |
20140310614 | Jones | Oct 2014 | A1 |
20140340888 | Ishisone et al. | Nov 2014 | A1 |
20140357248 | Tonshal et al. | Dec 2014 | A1 |
20140363022 | Dizon et al. | Dec 2014 | A1 |
20140363024 | Apodaca | Dec 2014 | A1 |
20140365227 | Cash et al. | Dec 2014 | A1 |
20140369491 | Kloberdans et al. | Dec 2014 | A1 |
20140372109 | Iyer et al. | Dec 2014 | A1 |
20150006176 | Pogue et al. | Jan 2015 | A1 |
20150006184 | Marti et al. | Jan 2015 | A1 |
20150010169 | Popova et al. | Jan 2015 | A1 |
20150014680 | Yamazaki et al. | Jan 2015 | A1 |
20150016642 | Walsh et al. | Jan 2015 | A1 |
20150018992 | Griffiths et al. | Jan 2015 | A1 |
20150019201 | Schoenbach | Jan 2015 | A1 |
20150019219 | Tzirkel-Hancock et al. | Jan 2015 | A1 |
20150036831 | Klippel | Feb 2015 | A1 |
20150039303 | Lesso et al. | Feb 2015 | A1 |
20150063580 | Huang et al. | Mar 2015 | A1 |
20150086034 | Lombardi et al. | Mar 2015 | A1 |
20150091709 | Reichert et al. | Apr 2015 | A1 |
20150092947 | Gossain et al. | Apr 2015 | A1 |
20150104037 | Lee et al. | Apr 2015 | A1 |
20150106085 | Lindahl | Apr 2015 | A1 |
20150110294 | Chen et al. | Apr 2015 | A1 |
20150112672 | Giacobello et al. | Apr 2015 | A1 |
20150124975 | Pontoppidan | May 2015 | A1 |
20150128065 | Torii et al. | May 2015 | A1 |
20150134456 | Baldwin | May 2015 | A1 |
20150154976 | Mutagi | Jun 2015 | A1 |
20150161990 | Sharifi | Jun 2015 | A1 |
20150169279 | Duga | Jun 2015 | A1 |
20150170645 | Di et al. | Jun 2015 | A1 |
20150172843 | Quan | Jun 2015 | A1 |
20150179181 | Morris et al. | Jun 2015 | A1 |
20150180432 | Gao et al. | Jun 2015 | A1 |
20150181318 | Gautama et al. | Jun 2015 | A1 |
20150189438 | Hampiholi et al. | Jul 2015 | A1 |
20150200454 | Heusdens et al. | Jul 2015 | A1 |
20150201271 | Diethorn et al. | Jul 2015 | A1 |
20150221678 | Yamazaki et al. | Aug 2015 | A1 |
20150222563 | Burns et al. | Aug 2015 | A1 |
20150222987 | Angel, Jr. et al. | Aug 2015 | A1 |
20150228274 | Leppanen et al. | Aug 2015 | A1 |
20150228803 | Koezuka et al. | Aug 2015 | A1 |
20150237406 | Ochoa | Aug 2015 | A1 |
20150243287 | Nakano et al. | Aug 2015 | A1 |
20150245152 | Ding et al. | Aug 2015 | A1 |
20150245154 | Dadu et al. | Aug 2015 | A1 |
20150249889 | Iyer et al. | Sep 2015 | A1 |
20150253292 | Larkin et al. | Sep 2015 | A1 |
20150253960 | Lin et al. | Sep 2015 | A1 |
20150254057 | Klein et al. | Sep 2015 | A1 |
20150263174 | Yamazaki et al. | Sep 2015 | A1 |
20150271593 | Sun et al. | Sep 2015 | A1 |
20150277846 | Yen et al. | Oct 2015 | A1 |
20150280676 | Holman et al. | Oct 2015 | A1 |
20150296299 | Klippel et al. | Oct 2015 | A1 |
20150302856 | Kim et al. | Oct 2015 | A1 |
20150319529 | Klippel | Nov 2015 | A1 |
20150325267 | Lee et al. | Nov 2015 | A1 |
20150331663 | Beckhardt et al. | Nov 2015 | A1 |
20150334471 | Innes et al. | Nov 2015 | A1 |
20150338917 | Steiner et al. | Nov 2015 | A1 |
20150341406 | Rockefeller et al. | Nov 2015 | A1 |
20150346845 | Di et al. | Dec 2015 | A1 |
20150348548 | Piernot et al. | Dec 2015 | A1 |
20150348551 | Gruber et al. | Dec 2015 | A1 |
20150355878 | Corbin | Dec 2015 | A1 |
20150363061 | De, III et al. | Dec 2015 | A1 |
20150363401 | Chen et al. | Dec 2015 | A1 |
20150370531 | Faaborg | Dec 2015 | A1 |
20150371657 | Gao | Dec 2015 | A1 |
20150371659 | Gao | Dec 2015 | A1 |
20150371664 | Bar-Or et al. | Dec 2015 | A1 |
20150380010 | Srinivasan et al. | Dec 2015 | A1 |
20150382047 | Van Os et al. | Dec 2015 | A1 |
20160007116 | Holman | Jan 2016 | A1 |
20160021458 | Johnson et al. | Jan 2016 | A1 |
20160026428 | Morganstern et al. | Jan 2016 | A1 |
20160029142 | Isaac et al. | Jan 2016 | A1 |
20160035321 | Cho et al. | Feb 2016 | A1 |
20160036962 | Rand et al. | Feb 2016 | A1 |
20160042748 | Jain et al. | Feb 2016 | A1 |
20160044151 | Shoemaker et al. | Feb 2016 | A1 |
20160050488 | Matheja et al. | Feb 2016 | A1 |
20160057522 | Choisel et al. | Feb 2016 | A1 |
20160072804 | Chien et al. | Mar 2016 | A1 |
20160077710 | Lewis et al. | Mar 2016 | A1 |
20160086609 | Yue et al. | Mar 2016 | A1 |
20160088392 | Huttunen et al. | Mar 2016 | A1 |
20160093304 | Kim et al. | Mar 2016 | A1 |
20160094718 | Mani et al. | Mar 2016 | A1 |
20160094917 | Wilk et al. | Mar 2016 | A1 |
20160098393 | Hebert | Apr 2016 | A1 |
20160098992 | Renard et al. | Apr 2016 | A1 |
20160103653 | Jang | Apr 2016 | A1 |
20160104480 | Sharifi | Apr 2016 | A1 |
20160111110 | Gautama et al. | Apr 2016 | A1 |
20160125876 | Schroeter et al. | May 2016 | A1 |
20160127780 | Roberts et al. | May 2016 | A1 |
20160133259 | Rubin et al. | May 2016 | A1 |
20160134966 | Fitzgerald et al. | May 2016 | A1 |
20160134982 | Iyer | May 2016 | A1 |
20160154089 | Altman | Jun 2016 | A1 |
20160155442 | Kannan et al. | Jun 2016 | A1 |
20160155443 | Khan et al. | Jun 2016 | A1 |
20160157035 | Russell et al. | Jun 2016 | A1 |
20160162469 | Santos | Jun 2016 | A1 |
20160171976 | Sun et al. | Jun 2016 | A1 |
20160173578 | Sharma et al. | Jun 2016 | A1 |
20160173983 | Berthelsen et al. | Jun 2016 | A1 |
20160180853 | Vanlund et al. | Jun 2016 | A1 |
20160189716 | Lindahl et al. | Jun 2016 | A1 |
20160196499 | Khan et al. | Jul 2016 | A1 |
20160203331 | Khan et al. | Jul 2016 | A1 |
20160210110 | Feldman | Jul 2016 | A1 |
20160212538 | Fullam et al. | Jul 2016 | A1 |
20160216938 | Millington | Jul 2016 | A1 |
20160225385 | Hammarqvist | Aug 2016 | A1 |
20160232451 | Scherzer | Aug 2016 | A1 |
20160234204 | Rishi et al. | Aug 2016 | A1 |
20160234615 | Lambourne | Aug 2016 | A1 |
20160239255 | Chavez et al. | Aug 2016 | A1 |
20160240192 | Raghuvir | Aug 2016 | A1 |
20160241976 | Pearson | Aug 2016 | A1 |
20160253050 | Mishra et al. | Sep 2016 | A1 |
20160260431 | Newendorp et al. | Sep 2016 | A1 |
20160283841 | Sainath et al. | Sep 2016 | A1 |
20160302018 | Russell et al. | Oct 2016 | A1 |
20160314782 | Klimanis | Oct 2016 | A1 |
20160316293 | Klimanis | Oct 2016 | A1 |
20160322045 | Hatfield et al. | Nov 2016 | A1 |
20160336519 | Seo et al. | Nov 2016 | A1 |
20160343866 | Koezuka et al. | Nov 2016 | A1 |
20160343949 | Seo et al. | Nov 2016 | A1 |
20160343954 | Seo et al. | Nov 2016 | A1 |
20160345114 | Hanna et al. | Nov 2016 | A1 |
20160352915 | Gautama | Dec 2016 | A1 |
20160353217 | Starobin et al. | Dec 2016 | A1 |
20160353218 | Starobin et al. | Dec 2016 | A1 |
20160357503 | Triplett et al. | Dec 2016 | A1 |
20160364206 | Keyser-Allen et al. | Dec 2016 | A1 |
20160366515 | Mendes et al. | Dec 2016 | A1 |
20160372688 | Seo et al. | Dec 2016 | A1 |
20160373269 | Okubo et al. | Dec 2016 | A1 |
20160373909 | Rasmussen et al. | Dec 2016 | A1 |
20160379634 | Yamamoto et al. | Dec 2016 | A1 |
20170003931 | Dvortsov et al. | Jan 2017 | A1 |
20170012207 | Seo et al. | Jan 2017 | A1 |
20170012232 | Kataishi et al. | Jan 2017 | A1 |
20170019732 | Mendes et al. | Jan 2017 | A1 |
20170025615 | Seo et al. | Jan 2017 | A1 |
20170025630 | Seo et al. | Jan 2017 | A1 |
20170026769 | Patel | Jan 2017 | A1 |
20170034263 | Archambault et al. | Feb 2017 | A1 |
20170039025 | Kielak | Feb 2017 | A1 |
20170040018 | Tormey | Feb 2017 | A1 |
20170041724 | Master et al. | Feb 2017 | A1 |
20170060526 | Barton et al. | Mar 2017 | A1 |
20170062734 | Suzuki et al. | Mar 2017 | A1 |
20170070478 | Park et al. | Mar 2017 | A1 |
20170076212 | Shams et al. | Mar 2017 | A1 |
20170076720 | Gopalan et al. | Mar 2017 | A1 |
20170078824 | Heo | Mar 2017 | A1 |
20170083285 | Meyers et al. | Mar 2017 | A1 |
20170084277 | Sharifi | Mar 2017 | A1 |
20170084292 | Yoo | Mar 2017 | A1 |
20170084295 | Tsiartas et al. | Mar 2017 | A1 |
20170090864 | Jorgovanovic | Mar 2017 | A1 |
20170092278 | Evermann et al. | Mar 2017 | A1 |
20170092297 | Sainath et al. | Mar 2017 | A1 |
20170092299 | Matsuo | Mar 2017 | A1 |
20170092889 | Seo et al. | Mar 2017 | A1 |
20170092890 | Seo et al. | Mar 2017 | A1 |
20170094215 | Western | Mar 2017 | A1 |
20170103754 | Higbie et al. | Apr 2017 | A1 |
20170103755 | Jeon et al. | Apr 2017 | A1 |
20170110124 | Boesen et al. | Apr 2017 | A1 |
20170110144 | Sharifi et al. | Apr 2017 | A1 |
20170117497 | Seo et al. | Apr 2017 | A1 |
20170123251 | Nakada et al. | May 2017 | A1 |
20170125037 | Shin | May 2017 | A1 |
20170125456 | Kasahara | May 2017 | A1 |
20170133007 | Drewes | May 2017 | A1 |
20170133011 | Chen et al. | May 2017 | A1 |
20170134872 | Silva et al. | May 2017 | A1 |
20170139720 | Stein | May 2017 | A1 |
20170140449 | Kannan | May 2017 | A1 |
20170140748 | Roberts et al. | May 2017 | A1 |
20170140759 | Kumar et al. | May 2017 | A1 |
20170177585 | Rodger et al. | Jun 2017 | A1 |
20170178662 | Ayrapetian et al. | Jun 2017 | A1 |
20170180561 | Kadiwala et al. | Jun 2017 | A1 |
20170188150 | Brunet et al. | Jun 2017 | A1 |
20170188437 | Banta | Jun 2017 | A1 |
20170193999 | Aleksic et al. | Jul 2017 | A1 |
20170206896 | Ko et al. | Jul 2017 | A1 |
20170206900 | Lee et al. | Jul 2017 | A1 |
20170214996 | Yeo | Jul 2017 | A1 |
20170236512 | Williams et al. | Aug 2017 | A1 |
20170236515 | Pinsky et al. | Aug 2017 | A1 |
20170242649 | Jarvis et al. | Aug 2017 | A1 |
20170242651 | Lang et al. | Aug 2017 | A1 |
20170242653 | Lang et al. | Aug 2017 | A1 |
20170242657 | Jarvis et al. | Aug 2017 | A1 |
20170243576 | Millington et al. | Aug 2017 | A1 |
20170243587 | Plagge et al. | Aug 2017 | A1 |
20170245076 | Kusano et al. | Aug 2017 | A1 |
20170255612 | Sari et al. | Sep 2017 | A1 |
20170257686 | Gautama et al. | Sep 2017 | A1 |
20170270919 | Parthasarathi et al. | Sep 2017 | A1 |
20170278512 | Pandya et al. | Sep 2017 | A1 |
20170287485 | Civelli et al. | Oct 2017 | A1 |
20170330565 | Daley et al. | Nov 2017 | A1 |
20170332168 | Moghimi et al. | Nov 2017 | A1 |
20170346872 | Naik et al. | Nov 2017 | A1 |
20170352357 | Fink | Dec 2017 | A1 |
20170353789 | Kim et al. | Dec 2017 | A1 |
20170357475 | Lee et al. | Dec 2017 | A1 |
20170357478 | Piersol et al. | Dec 2017 | A1 |
20170366393 | Shaker et al. | Dec 2017 | A1 |
20170374454 | Bernardini et al. | Dec 2017 | A1 |
20180018964 | Reilly et al. | Jan 2018 | A1 |
20180018967 | Lang et al. | Jan 2018 | A1 |
20180020306 | Sheen | Jan 2018 | A1 |
20180025733 | Qian et al. | Jan 2018 | A1 |
20180033428 | Kim et al. | Feb 2018 | A1 |
20180040324 | Wilberding | Feb 2018 | A1 |
20180047394 | Tian et al. | Feb 2018 | A1 |
20180053504 | Wang et al. | Feb 2018 | A1 |
20180054506 | Hart et al. | Feb 2018 | A1 |
20180061396 | Srinivasan et al. | Mar 2018 | A1 |
20180061402 | Devaraj et al. | Mar 2018 | A1 |
20180061404 | Devaraj et al. | Mar 2018 | A1 |
20180061419 | Melendo Casado et al. | Mar 2018 | A1 |
20180061420 | Patil et al. | Mar 2018 | A1 |
20180062871 | Jones et al. | Mar 2018 | A1 |
20180084367 | Greff et al. | Mar 2018 | A1 |
20180088900 | Glaser et al. | Mar 2018 | A1 |
20180091898 | Yoon et al. | Mar 2018 | A1 |
20180091913 | Hartung et al. | Mar 2018 | A1 |
20180096683 | James et al. | Apr 2018 | A1 |
20180096696 | Mixter | Apr 2018 | A1 |
20180107446 | Wilberding et al. | Apr 2018 | A1 |
20180108351 | Beckhardt et al. | Apr 2018 | A1 |
20180122372 | Wanderlust | May 2018 | A1 |
20180122378 | Mixter et al. | May 2018 | A1 |
20180130469 | Gruenstein et al. | May 2018 | A1 |
20180132217 | Stirling-Gallacher | May 2018 | A1 |
20180132298 | Birnam et al. | May 2018 | A1 |
20180137861 | Ogawa | May 2018 | A1 |
20180165055 | Yu et al. | Jun 2018 | A1 |
20180167981 | Jonna et al. | Jun 2018 | A1 |
20180174597 | Lee et al. | Jun 2018 | A1 |
20180182390 | Hughes et al. | Jun 2018 | A1 |
20180190285 | Heckman et al. | Jul 2018 | A1 |
20180197533 | Lyon et al. | Jul 2018 | A1 |
20180199146 | Sheen | Jul 2018 | A1 |
20180204569 | Nadkar et al. | Jul 2018 | A1 |
20180205963 | Matei et al. | Jul 2018 | A1 |
20180210698 | Park et al. | Jul 2018 | A1 |
20180218747 | Moghimi et al. | Aug 2018 | A1 |
20180219976 | Decenzo et al. | Aug 2018 | A1 |
20180225933 | Park et al. | Aug 2018 | A1 |
20180228006 | Baker et al. | Aug 2018 | A1 |
20180233136 | Torok et al. | Aug 2018 | A1 |
20180233137 | Torok et al. | Aug 2018 | A1 |
20180233139 | Finkelstein et al. | Aug 2018 | A1 |
20180234765 | Torok et al. | Aug 2018 | A1 |
20180262793 | Lau et al. | Sep 2018 | A1 |
20180262831 | Matheja et al. | Sep 2018 | A1 |
20180270565 | Ganeshkumar | Sep 2018 | A1 |
20180277107 | Kim | Sep 2018 | A1 |
20180277113 | Hartung et al. | Sep 2018 | A1 |
20180277119 | Baba et al. | Sep 2018 | A1 |
20180277133 | Deetz et al. | Sep 2018 | A1 |
20180293484 | Wang et al. | Oct 2018 | A1 |
20180308470 | Park et al. | Oct 2018 | A1 |
20180314552 | Kim et al. | Nov 2018 | A1 |
20180324756 | Ryu et al. | Nov 2018 | A1 |
20180335903 | Coffman et al. | Nov 2018 | A1 |
20180336274 | Choudhury et al. | Nov 2018 | A1 |
20180358009 | Daley et al. | Dec 2018 | A1 |
20180365567 | Kolavennu et al. | Dec 2018 | A1 |
20180367944 | Heo et al. | Dec 2018 | A1 |
20190012141 | Piersol et al. | Jan 2019 | A1 |
20190013019 | Lawrence | Jan 2019 | A1 |
20190014592 | Hampel et al. | Jan 2019 | A1 |
20190033446 | Bultan et al. | Jan 2019 | A1 |
20190042187 | Truong et al. | Feb 2019 | A1 |
20190043492 | Lang | Feb 2019 | A1 |
20190066672 | Wood et al. | Feb 2019 | A1 |
20190074025 | Lashkari et al. | Mar 2019 | A1 |
20190079724 | Feuz et al. | Mar 2019 | A1 |
20190081507 | Ide | Mar 2019 | A1 |
20190082255 | Tajiri et al. | Mar 2019 | A1 |
20190088261 | Lang et al. | Mar 2019 | A1 |
20190090056 | Rexach et al. | Mar 2019 | A1 |
20190098400 | Buoni et al. | Mar 2019 | A1 |
20190104119 | Giorgi et al. | Apr 2019 | A1 |
20190104373 | Wodrich et al. | Apr 2019 | A1 |
20190108839 | Reilly et al. | Apr 2019 | A1 |
20190115011 | Khellah et al. | Apr 2019 | A1 |
20190130906 | Kobayashi et al. | May 2019 | A1 |
20190163153 | Price et al. | May 2019 | A1 |
20190172452 | Smith et al. | Jun 2019 | A1 |
20190173687 | Mackay et al. | Jun 2019 | A1 |
20190179607 | Thangarathnam et al. | Jun 2019 | A1 |
20190179611 | Wojogbe et al. | Jun 2019 | A1 |
20190182072 | Roe et al. | Jun 2019 | A1 |
20190206412 | Li et al. | Jul 2019 | A1 |
20190220246 | Orr et al. | Jul 2019 | A1 |
20190237067 | Friedman et al. | Aug 2019 | A1 |
20190239008 | Lambourne | Aug 2019 | A1 |
20190239009 | Lambourne | Aug 2019 | A1 |
20190243603 | Keyser-Allen et al. | Aug 2019 | A1 |
20190243606 | Jayakumar et al. | Aug 2019 | A1 |
20190281397 | Lambourne | Sep 2019 | A1 |
20190287546 | Ganeshkumar | Sep 2019 | A1 |
20190295563 | Kamdar et al. | Sep 2019 | A1 |
20190297388 | Panchaksharaiah et al. | Sep 2019 | A1 |
20190304443 | Bhagwan | Oct 2019 | A1 |
20190311710 | Eraslan et al. | Oct 2019 | A1 |
20190311712 | Firik et al. | Oct 2019 | A1 |
20190311720 | Pasko | Oct 2019 | A1 |
20190317606 | Jain et al. | Oct 2019 | A1 |
20190342962 | Chang et al. | Nov 2019 | A1 |
20190364375 | Soto et al. | Nov 2019 | A1 |
20200007987 | Woo et al. | Jan 2020 | A1 |
20200034492 | Verbeke et al. | Jan 2020 | A1 |
20200051554 | Kim et al. | Feb 2020 | A1 |
20200092687 | Devaraj et al. | Mar 2020 | A1 |
20200105256 | Fainberg et al. | Apr 2020 | A1 |
20200175989 | Lockhart et al. | Jun 2020 | A1 |
20200184980 | Wilberding | Jun 2020 | A1 |
20200193973 | Tolomei et al. | Jun 2020 | A1 |
20200211556 | Mixter et al. | Jul 2020 | A1 |
20200213729 | Soto | Jul 2020 | A1 |
20200216089 | Garcia et al. | Jul 2020 | A1 |
20200336846 | Rohde et al. | Oct 2020 | A1 |
20200395006 | Smith et al. | Dec 2020 | A1 |
20200395010 | Smith et al. | Dec 2020 | A1 |
20200395013 | Smith et al. | Dec 2020 | A1 |
20200409652 | Wilberding et al. | Dec 2020 | A1 |
20210035561 | D'Amato et al. | Feb 2021 | A1 |
20210035572 | D'Amato et al. | Feb 2021 | A1 |
20210118429 | Shan | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
2017100486 | Jun 2017 | AU |
2017100581 | Jun 2017 | AU |
101310558 | Nov 2008 | CN |
101480039 | Jul 2009 | CN |
101661753 | Mar 2010 | CN |
101686282 | Mar 2010 | CN |
101907983 | Dec 2010 | CN |
102123188 | Jul 2011 | CN |
102256098 | Nov 2011 | CN |
102567468 | Jul 2012 | CN |
103052001 | Apr 2013 | CN |
103181192 | Jun 2013 | CN |
103210663 | Jul 2013 | CN |
103546616 | Jan 2014 | CN |
103811007 | May 2014 | CN |
104010251 | Aug 2014 | CN |
104035743 | Sep 2014 | CN |
104053088 | Sep 2014 | CN |
104092936 | Oct 2014 | CN |
104104769 | Oct 2014 | CN |
104538030 | Apr 2015 | CN |
104575504 | Apr 2015 | CN |
104635539 | May 2015 | CN |
104865550 | Aug 2015 | CN |
105187907 | Dec 2015 | CN |
105204357 | Dec 2015 | CN |
105206281 | Dec 2015 | CN |
105284076 | Jan 2016 | CN |
105493442 | Apr 2016 | CN |
106028223 | Oct 2016 | CN |
106375902 | Feb 2017 | CN |
106531165 | Mar 2017 | CN |
106708403 | May 2017 | CN |
107004410 | Aug 2017 | CN |
107919123 | Apr 2018 | CN |
1349146 | Oct 2003 | EP |
1389853 | Feb 2004 | EP |
2166737 | Mar 2010 | EP |
2683147 | Jan 2014 | EP |
3128767 | Feb 2017 | EP |
2351021 | Sep 2017 | EP |
3270377 | Jan 2018 | EP |
3285502 | Feb 2018 | EP |
2001236093 | Aug 2001 | JP |
2003223188 | Aug 2003 | JP |
2004347943 | Dec 2004 | JP |
2004354721 | Dec 2004 | JP |
2005242134 | Sep 2005 | JP |
2005250867 | Sep 2005 | JP |
2005284492 | Oct 2005 | JP |
2006092482 | Apr 2006 | JP |
2007013400 | Jan 2007 | JP |
2007142595 | Jun 2007 | JP |
2008079256 | Apr 2008 | JP |
2008158868 | Jul 2008 | JP |
2010141748 | Jun 2010 | JP |
2013037148 | Feb 2013 | JP |
2014071138 | Apr 2014 | JP |
2014137590 | Jul 2014 | JP |
2015161551 | Sep 2015 | JP |
2015527768 | Sep 2015 | JP |
2016095383 | May 2016 | JP |
2017072857 | Apr 2017 | JP |
20100036351 | Apr 2010 | KR |
100966415 | Jun 2010 | KR |
20100111071 | Oct 2010 | KR |
20130050987 | May 2013 | KR |
20140035310 | Mar 2014 | KR |
20140112900 | Sep 2014 | KR |
200153994 | Jul 2001 | WO |
2003093950 | Nov 2003 | WO |
2008048599 | Apr 2008 | WO |
2012166386 | Dec 2012 | WO |
2013184792 | Dec 2013 | WO |
2014064531 | May 2014 | WO |
2014159581 | Oct 2014 | WO |
2015017303 | Feb 2015 | WO |
2015037396 | Mar 2015 | WO |
2015131024 | Sep 2015 | WO |
2015178950 | Nov 2015 | WO |
2016014142 | Jan 2016 | WO |
2016022926 | Feb 2016 | WO |
2016033364 | Mar 2016 | WO |
2016057268 | Apr 2016 | WO |
2016085775 | Jun 2016 | WO |
2016165067 | Oct 2016 | WO |
2016171956 | Oct 2016 | WO |
2016200593 | Dec 2016 | WO |
2017039632 | Mar 2017 | WO |
2017058654 | Apr 2017 | WO |
2017138934 | Aug 2017 | WO |
2017147075 | Aug 2017 | WO |
2017147936 | Sep 2017 | WO |
2018027142 | Feb 2018 | WO |
2018067404 | Apr 2018 | WO |
Entry |
---|
US 9,299,346 B1, 03/2016, Hart et al. (withdrawn) |
Notice of Allowance dated Dec. 15, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages. |
Notice of Allowance dated Jan. 15, 2020, issued in connection with U.S. Appl. No. 16/439,009, filed Jun. 12, 2019, 9 pages. |
Notice of Allowance dated Mar. 15, 2019, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 9 pages. |
Notice of Allowance dated Oct. 15, 2019, issued in connection with U.S. Appl. No. 16/437,437, filed Jun. 11, 2019, 9 pages. |
Notice of Allowance dated Oct. 15, 2020, issued in connection with U.S. Appl. No. 16/715,713, filed Dec. 16, 2019, 9 pages. |
Notice of Allowance dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 9 pages. |
Notice of Allowance dated Aug. 17, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 9 pages. |
Notice of Allowance dated Jul. 17, 2019, issued in connection with U.S. Appl. No. 15/718,911, filed Sep. 28, 2017, 5 pages. |
Notice of Allowance dated Jun. 17, 2020, issued in connection with U.S. Appl. No. 16/141,875, filed Sep. 25, 2018, 6 pages. |
Notice of Allowance dated Sep. 17, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 6 pages. |
Notice of Allowance dated Apr. 18, 2019, issued in connection with U.S. Appl. No. 16/173,797, filed Oct. 29, 2018, 9 pages. |
Notice of Allowance dated Dec. 18, 2019, issued in connection with U.S. Appl. No. 16/434,426, filed Jun. 7, 2019, 13 pages. |
Notice of Allowance dated Feb. 18, 2020, issued in connection with U.S. Appl. No. 16/022,662, filed Jun. 28, 2018, 8 pages. |
Notice of Allowance dated Jul. 18, 2019, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 9 pages. |
Notice of Allowance dated Jul. 18, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 8 pages. |
Notice of Allowance dated Aug. 19, 2020, issued in connection with U.S. Appl. No. 16/271,560, filed Feb. 8, 2019, 9 pages. |
Notice of Allowance dated Dec. 19, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 9 pages. |
Notice of Allowance dated Jul. 19, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 7 pages. |
Notice of Allowance dated Aug. 2, 2019, issued in connection with U.S. Appl. No. 16/102,650, filed Aug. 13, 2018, 5 pages. |
Notice of Allowance dated Dec. 2, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 11 pages. |
Notice of Allowance dated Sep. 2, 2020, issued in connection with U.S. Appl. No. 16/214,711, filed Dec. 10, 2018, 9 pages. |
Notice of Allowance dated Jul. 20, 2020, issued in connection with U.S. Appl. No. 15/984,073, filed May 18, 2018, 12 pages. |
Notice of Allowance dated Mar. 20, 2018, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 7 pages. |
Notice of Allowance dated Sep. 20, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 7 pages. |
Notice of Allowance dated Feb. 21, 2020, issued in connection with U.S. Appl. No. 16/416,752, filed May 20, 2019, 6 pages. |
Notice of Allowance dated Jan. 21, 2020, issued in connection with U.S. Appl. No. 16/672,764, filed Nov. 4, 2019,10 pages. |
Notice of Allowance dated Oct. 21, 2019, issued in connection with U.S. Appl. No. 15/946,585, filed Apr. 5, 2018, 5 pages. |
Notice of Allowance dated Aug. 22, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Sep. 22, 2016, 5 pages. |
Notice of Allowance dated Jan. 22, 2018, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 9 pages. |
Notice of Allowance dated Jul. 22, 2020, issued in connection with U.S. Appl. No. 16/131,409, filed Sep. 14, 2018, 13 pages. |
Notice of Allowance dated Jul. 22, 2020, issued in connection with U.S. Appl. No. 16/790,621, filed Feb. 13, 2020, 10 pages. |
Notice of Allowance dated Apr. 24, 2019, issued in connection with U.S. Appl. No. 16/154,469, filed Oct. 3, 2018, 5 pages. |
Notice of Allowance dated Aug. 26, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 9 pages. |
Notice of Allowance dated Apr. 27, 2020, issued in connection with U.S. Appl. No. 16/700,607, filed Dec. 2, 2019, 10 pages. |
Notice of Allowance dated Mar. 27, 2019, issued in connection with U.S. Appl. No. 16/214,666, filed Dec. 10, 2018, 6 pages. |
Notice of Allowance dated Mar. 28, 2018, issued in connection with U.S. Appl. No. 15/699,982, filed Sep. 8, 2017, 17 pages. |
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 13 pages. |
Notice of Allowance dated Jun. 29, 2020, issued in connection with U.S. Appl. No. 16/216,357, filed Dec. 11, 2018, 8 pages. |
Notice of Allowance dated May 29, 2020, issued in connection with U.S. Appl. No. 16/148,879, filed Oct. 1, 2018, 6 pages. |
Notice of Allowance dated Apr. 3, 2019, issued in connection with U.S. Appl. No. 16/160,107, filed Oct. 15, 2018, 7 pages. |
Notice of Allowance dated Jul. 30, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 5 pages. |
Notice of Allowance dated Jul. 30, 2019, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 9 pages. |
Notice of Allowance dated Mar. 30, 2020, issued in connection with U.S. Appl. No. 15/973,413, filed May 7, 2018, 5 pages. |
Notice of Allowance dated Nov. 30, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 5 pages. |
Notice of Allowance dated Oct. 30, 2019, issued in connection with U.S. Appl. No. 16/131,392, filed Sep. 14, 2018, 9 pages. |
Notice of Allowance dated Oct. 30, 2020, issued in connection with U.S. Appl. No. 16/528,016, filed Jul. 31, 2019, 10 pages. |
Notice of Allowance dated May 31, 2019, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 9 pages. |
Notice of Allowance dated Mar. 4, 2020, issued in connection with U.S. Appl. No. 16/444,975, filed Jun. 18, 2019, 10 pages. |
Notice of Allowance dated Feb. 5, 2020, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 9 pages. |
Notice of Allowance dated Oct. 5, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2018, 10 pages. |
Advisory Action dated Apr. 23, 2021, issued in connection with U.S. Appl. No. 16/219,702, filed Dec. 13, 2018, 3 pages. |
Anonymous: “What are the function of 4 Microphones on iPhone 6S/6S+?”, ETrade Supply, Dec. 24, 2015, XP055646381, Retrieved from the Internet: URL:https://www.etradesupply.com/blog/4-microphones-iphone-6s6s-for/ [retrieved on Nov. 26, 2019]. |
Australian Patent Office, Australian Examination Report Action dated Apr. 7, 2021, issued in connection with Australian Application No. 2019333058, 2 pages. |
Australian Patent Office, Examination Report dated Jun. 28, 2021, issued in connection with Australian Patent Application No. 2019395022, 2 pages. |
Canadian Patent Office, Canadian Examination Report dated Mar. 9, 2021, issued in connection with Canadian Application No. 3067776, 5 pages. |
Chinese Patent Office, Chinese Office Action and Translation dated Jul. 2, 2021, issued in connection with Chinese Application No. 201880077216.4, 22 pages. |
Chinese Patent Office, Chinese Office Action and Translation dated Mar. 30, 2021, issued in connection with Chinese Application No. 202010302650.7, 15 pages. |
Chinese Patent Office, First Office Action and Translation dated May 27, 2021, issued in connection with Chinese Application No. 201880026360.5, 15 pages. |
Chinese Patent Office, First Office Action and Translation dated Dec. 28, 2020, issued in connection with Chinese Application No. 201880072203.8, 11 pages. |
European Patent Office, European EPC Article 94.3 dated Feb. 23, 2021, issued in connection with European Application No. 17200837.7, 8 pages. |
European Patent Office, European EPC Article 94.3 dated Feb. 26, 2021, issued in connection with European Application No. 18789515.6, 8 pages. |
European Patent Office, European Extended Search Report dated Nov. 25, 2020, issued in connection with European Application No. 20185599.6, 9 pages. |
European Patent Office, European Office Action dated Jan. 21, 2021, issued in connection with European Application No. 17792272.1, 7 pages. |
Final Office Action dated Feb. 10, 2021, issued in connection with U.S. Appl. No. 16/219,702, filed Dec. 13, 2018, 9 pages. |
Final Office Action dated Feb. 10, 2021, issued in connection with U.S. Appl. No. 16/402,617, filed May 3, 2019, 13 pages. |
Final Office Action dated Jul. 15, 2021, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 22 pages. |
Final Office Action dated Jun. 15, 2021, issued in connection with U.S. Appl. No. 16/819,755, filed Mar. 16, 2020, 12 pages. |
Final Office Action dated Feb. 22, 2021, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 20 pages. |
Final Office Action dated Feb. 22, 2021, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 12 pages. |
Final Office Action dated Jun. 4, 2021, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 38 pages. |
Final Office Action dated Jun. 8, 2021, issued in connection with U.S. Appl. No. 16/271,550, filed Feb. 8, 2019, 41 pages. |
First Action Interview Office Action dated Mar. 8, 2021, issued in connection with U.S. Appl. No. 16/798,967, filed Feb. 24, 2020, 4 pages. |
Hans Speidel: “Chatbot Training: How to use training data to provide fully automated customer support”, Jun. 29, 2017, pp. 1-3, XP055473185, Retrieved from the Internet: URL:https://www.crowdguru.de/wp-content/uploads/Case-Study-Chatbot-training-How-to-use-training-data-to-provide-fully-automated-customer-support.pdf [retrieved on May 7, 2018]. |
Indian Patent Office, Examination Report dated May 24, 2021, issued in connection with Indian Patent Application No. 201847035595, 6 pages. |
Indian Patent Office, Examination Report dated Feb. 25, 2021, issued in connection with Indian Patent Application No. 201847035625, 6 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 1, 2021, issued in connection with International Application No. PCT/US2019/052129, filed on Sep. 20, 2019, 13 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jul. 1, 2021, issued in connection with International Application No. PCT/US2019/067576, filed on Dec. 19, 2019, 8 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Dec. 10, 2020, issued in connection with International Application No. PCT/US2019/033945, filed on May 25, 2018, 7 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 15, 2021, issued in connection with International Application No. PCT/US2019/054332, filed on Oct. 2, 2019, 9 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Mar. 25, 2021, issued in connection with International Application No. PCT/US2019/050852, filed on Sep. 12, 2019, 8 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Aug. 27, 2019, issued in connection with International Application No. PCT/US2018/019010, filed on Feb. 21, 2018, 9 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 7, 2021, issued in connection with International Application No. PCT/US2019/039828, filed on Jun. 28, 2019, 11 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 8, 2021, issued in connection with International Application No. PCT/US2019/052654, filed on Sep. 24, 2019, 7 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 8, 2021, issued in connection with International Application No. PCT/US2019/052841, filed on Sep. 25, 2019, 8 pages. |
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 8, 2021, issued in connection with International Application No. PCT/US2019/053253, filed on Sep. 26, 2019, 10 pages. |
International Bureau, International Preliminary Report on Patentability, dated Jun. 17, 2021, issued in connection with International Application No. PCT/US2019/064907, filed on Dec. 6, 2019, 8 pages. |
International Bureau, International Preliminary Report on Patentability, dated Mar. 2, 2021, issued in connection with International Application No. PCT/US2019/048558, filed on Aug. 28, 2019, 8 pages. |
International Bureau, International Search Report and Written Opinion dated Dec. 11, 2019, issued in connection with International Application No. PCT/US2019/052129, filed on Sep. 20, 2019,18 pages. |
International Bureau, International Search Report and Written Opinion dated Nov. 13, 2018, issued in connection with International Application No. PCT/US2018/045397, filed on Aug. 6, 2018, 11 pages. |
International Bureau, International Search Report and Written Opinion dated Jan. 14, 2019, issued in connection with International Application No. PCT/US2018053472, filed on Sep. 28, 2018, 10 pages. |
International Bureau, International Search Report and Written Opinion dated Jul. 17, 2019, issued in connection with International Application No. PCT/US2019/032934, filed on May 17, 2019, 17 pages. |
International Bureau, International Search Report and Written Opinion dated Nov. 18, 2019, issued in connection with International Application No. PCT/US2019/048558, filed on Aug. 28, 2019, 11 pages. |
International Bureau, International Search Report and Written Opinion dated Apr. 23, 2021, issued in connection with International Application No. PCT/US2021/070007, filed on Jan. 6, 2021,11 pages. |
International Bureau, International Search Report and Written Opinion dated Jul. 24, 2018, issued in connection with International Application No. PCT/US2018/019010, filed on Feb. 21, 2018, 12 pages. |
International Bureau, International Search Report and Written Opinion, dated Feb. 27, 2019, issued in connection with International Application No. PCT/US2018/053123, filed on Sep. 27, 2018,16 pages. |
International Bureau, International Search Report and Written Opinion dated Sep. 27, 2019, issued in connection with International Application No. PCT/US2019/039828, filed on Jun. 28, 2019, 13 pages. |
International Bureau, International Search Report and Written Opinion dated Nov. 29, 2019, issued in connection with International Application No. PCT/US2019/053523, filed on Sep. 29, 2019, 14 pages. |
International Bureau, International Search Report and Written Opinion dated Sep. 4, 2019, issued in connection with International Application No. PCT/US2019/033945, filed on May 24, 2019, 8 pages. |
Japanese Patent Office, Decision of Refusal and Translation dated Jun. 8, 2021, issued in connection with Japanese Patent Application No. 2019-073348, 5 pages. |
Japanese Patent Office, English Translation of Office Action dated Nov. 17, 2020, issued in connection with Japanese Application No. 2019-145039, 5 pages. |
Non-Final Office Action dated Mar. 27, 2020, issued in connection with U.S. Appl. No. 16/790,621, filed Feb. 13, 2020, 8 pages. |
Non-Final Office Action dated May 27, 2020, issued in connection with U.S. Appl. No. 16/715,713, filed Dec. 16, 2019, 14 pages. |
Non-Final Office Action dated Oct. 27, 2020, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 13 pages. |
Non-Final Office Action dated Oct. 27, 2020, issued in connection with U.S. Appl. No. 16/715,984, filed Dec. 16, 2019, 14 pages. |
Non-Final Office Action dated Oct. 27, 2020, issued in connection with U.S. Appl. No. 16/819,755, filed Mar. 16, 2020, 8 pages. |
Non-Final Office Action dated Oct. 28, 2019, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages. |
Non-Final Office Action dated Mar. 29, 2019, issued in connection with U.S. Appl. No. 16/102,650, filed Aug. 13, 2018, 11 pages. |
Non-Final Office Action dated Sep. 29, 2020, issued in connection with U.S. Appl. No. 16/402,617, filed May 3, 2019, 12 pages. |
Non-Final Office Action dated Dec. 3, 2020, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages. |
Non-Final Office Action dated Jul. 3, 2019, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 7 pages. |
Non-Final Office Action dated May 3, 2019, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 14 pages. |
Non-Final Office Action dated Oct. 3, 2018, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 20 pages. |
Non-Final Office Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/718,521, filed Sep. 28, 2017, 39 pages. |
Non-Final Office Action dated Jun. 30, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 13 pages. |
Non-Final Office Action dated Apr. 4, 2019, issued in connection with U.S. Appl. No. 15/718,911, filed Sep. 28, 2017, 21 pages. |
Non-Final Office Action dated Aug. 4, 2020, issued in connection with U.S. Appl. No. 16/600,644, filed Oct. 14, 2019, 30 pages. |
Non-Final Office Action dated Jan. 4, 2019, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 6 pages. |
Non-Final Office Action dated Apr. 6, 2020, issued in connection with U.S. Appl. No. 16/424,825, filed May 29, 2019, 22 pages. |
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 32 pages. |
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 6 pages. |
Non-Final Office Action dated Mar. 6, 2020, issued in connection with U.S. Appl. No. 16/141,875, filed Sep. 25, 2018, 8 pages. |
Non-Final Office Action dated Sep. 6, 2017, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 13 pages. |
Non-Final Office Action dated Sep. 6, 2018, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 29 pages. |
Non-Final Office Action dated Sep. 8, 2020, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 19 pages. |
Non-Final Office Action dated Apr. 9, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages. |
Non-Final Office Action dated May 9, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 22 pages. |
Non-Final Office Action dated Sep. 9, 2020, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 29 pages. |
Notice of Allowance dated Dec. 2, 2019, issued in connection with U.S. Appl. No. 15/718,521, filed Sep. 28, 2017, 15 pages. |
Notice of Allowance dated Dec. 4, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 5 pages. |
Notice of Allowance dated Jul. 5, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 5 pages. |
Notice of Allowance dated Jul. 9, 2018, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 5 pages. |
Notice of Allowance dated Apr. 1, 2019, issued in connection with U.S. Appl. No. 15/935,966, filed Mar. 26, 2018, 5 pages. |
Notice of Allowance dated Aug. 1, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 9 pages. |
Notice of Allowance dated Aug. 10, 2020, issued in connection with U.S. Appl. No. 16/424,825, filed May 29, 2019, 9 pages. |
Notice of Allowance dated Apr. 11, 2018, issued in connection with U.S. Appl. No. 15/719,454, filed Sep. 28, 2017, 15 pages. |
Notice of Allowance dated Oct. 11, 2019, issued in connection with U.S. Appl. No. 16/437,476, filed Jun. 11, 2019, 9 pages. |
Notice of Allowance dated Sep. 11, 2019, issued in connection with U.S. Appl. No. 16/154,071, filed Oct. 8, 2018, 5 pages. |
Notice of Allowance dated Dec. 12, 2018, issued in connection with U.S. Appl. No. 15/811,468, filed Nov. 13, 2017, 9 pages. |
Notice of Allowance dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 8 pages. |
Notice of Allowance dated Jun. 12, 2019, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 7 pages. |
Notice of Allowance dated Sep. 12, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 15 pages. |
Notice of Allowance dated Dec. 13, 2017, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 9 pages. |
Notice of Allowance dated Feb. 13, 2019, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 10 pages. |
Notice of Allowance dated Jan. 13, 2020, issued in connection with U.S. Appl. No. 16/192,126, filed Nov. 15, 2018, 6 pages. |
Notice of Allowance dated Nov. 13, 2020, issued in connection with U.S. Appl. No. 16/131,409, filed Sep. 14, 2018, 11 pages. |
Notice of Allowance dated Aug. 14, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 10 pages. |
Notice of Allowance dated Aug. 14, 2020, issued in connection with U.S. Appl. No. 16/598,125, filed Oct. 10, 2019, 5 pages. |
Notice of Allowance dated Feb. 14, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 11 pages. |
Notice of Allowance dated Jun. 14, 2017, issued in connection with U.S. Appl. No. 15/282,554, filed Sep. 30, 2016, 11 pages. |
Notice of Allowance dated Nov. 14, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 5 pages. |
Final Office Action dated Apr. 11, 2019, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 17 pages. |
Final Office Action dated Aug. 11, 2017, issued in connection with U.S. Patent Application No. 15/131,776, filed Apr. 18, 2016, 7 pages. |
Final Office Action dated Dec. 11, 2019, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 10 pages. |
Final Office Action dated Sep. 11, 2019, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 13 pages. |
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 18 pages. |
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 20 pages. |
Final Office Action dated May 13, 2020, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 20 pages. |
Final Office Action dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages. |
Final Office Action dated Oct. 15, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages. |
Final Office Action dated Oct. 15, 2020, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 9 pages. |
Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 10 pages. |
Final Office Action dated May 18, 2020, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 31, 2018, 16 pages. |
Final Office Action dated Feb. 21, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 12 pages. |
Final Office Action dated May 21, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 21 pages. |
Final Office Action dated Jun. 22, 2020, issued in connection with U.S. Appl. No. 16/179,779, filed Nov. 2, 2018, 16 pages. |
Final Office Action dated Mar. 23, 2020, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages. |
Final Office Action dated Feb. 24, 2020, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 20 pages. |
Final Office Action dated Apr. 26, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 20 pages. |
Final Office Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 6 pages. |
Final Office Action dated Feb. 5, 2019, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 17 pages. |
Final Office Action dated Feb. 7, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 8 pages. |
Final Office Action dated Sep. 8, 2020, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 12 pages. |
Fiorenza Arisio et al. “Deliverable 1.1 User Study, analysis of requirements and definition of the application task,” May 31, 2012, http://dirha.fbk.eu/sites/dirha.fbk.eu/files/docs/DIRHA_D1.1., 31 pages. |
First Action Interview Office Action dated Aug. 14, 2019, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 4 pages. |
First Action Interview Office Action dated Jun. 15, 2020, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 4 pages. |
First Action Interview Office Action dated Jun. 2, 2020, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 10 pages. |
First Action Interview Office Action dated Jan. 22, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 3 pages. |
First Action Interview Office Action dated Jul. 5, 2019, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 4 pages. |
Freiberger, Kari, “Development and Evaluation of Source Localization Algorithms for Coincident Microphone Arrays,” Diploma Thesis, Apr. 1, 2010, 106 pages. |
Giacobello et al. “A Sparse Nonuniformly Partitioned Multidelay Filter for Acoustic Echo Cancellation,” 2013, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2013, New Paltz, NY, 4 pages. |
Giacobello et al. “Tuning Methodology for Speech Enhancement Algorithms using a Simulated Conversational Database and Perceptual Objective Measures,” 2014, 4th Joint Workshop on Hands-free Speech Communication and Microphone Arrays HSCMA, 2014, 5 pages. |
Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.” ICLR 2016, Feb. 15, 2016, 14 pages. |
Helwani et al. “Source-domain adaptive filtering for MIMO systems with application to acoustic echo cancellation”, Acoustics Speech and Signal Processing, 2010 IEEE International Conference, Mar. 14, 2010, 4 pages. |
Hirano et al. “A Noise-Robust Stochastic Gradient Algorithm with an Adaptive Step-Size Suitable for Mobile Hands-Free Telephones,” 1995, International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 4 pages. |
International Bureau, International Preliminary Report on Patentability, dated Apr. 11, 2019, issued in connection with International Application No. PCT/US2017/0054063, filed on Sep. 28, 2017, 9 pages. |
International Bureau, International Preliminary Report on Patentability, dated Feb. 20, 2020, issued in connection with International Application No. PCT/US2018/045397, filed on Aug. 6, 2018, 8 pages. |
International Bureau, International Preliminary Report on Patentability, dated Apr. 23, 2019, issued in connection with International Application No. PCT/US2017/057220, filed on Oct. 18, 2017, 7 pages. |
International Bureau, International Preliminary Report on Patentability, dated Mar. 31, 2020, issued in connection with International Application No. PCT/U.S. Pat. No. 2018053123, filed on Sep. 27, 2018, 12 pages. |
International Bureau, International Preliminary Report on Patentability, dated Mar. 31, 2020, issued in connection with International Application No. PCT/US2018053472, filed on Sep. 28, 2018, 8 pages. |
International Bureau, International Preliminary Report on Patentability, dated Mar. 31, 2020, issued in connection with International Application No. PCT/US2018053517, filed on Sep. 28, 2018, 10 pages. |
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018728, filed on Feb. 21, 2017, 8 pages. |
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018739, filed on Feb. 21, 2017, 7 pages. |
International Bureau, International Search Report and Written Opinion dated Nov. 10, 2020, issued in connection with International Application No. PCT/US2020/044250, filed on Jul. 30, 2020, 15 pages. |
International Bureau, International Search Report and Written Opinion dated Jul. 14, 2020, issued in connection with International Application No. PCT/US2020/017150, filed on Feb. 7, 2020, 27 pages. |
International Bureau, International Search Report and Written Opinion dated Nov. 18, 2019, issued in connection with International Application No. PCT/US2019052841, filed on Sep. 25, 2019, 12 pages. |
International Bureau, International Search Report and Written Opinion dated Mar. 2, 2020, issued in connection with International Application No. PCT/US2019064907, filed on Dec. 6, 2019, 11 pages. |
International Bureau, International Search Report and Written Opinion dated Dec. 20, 2019, issued in connection with International Application No. PCT/US2019052654, filed on Sep. 24, 2019, 11 pages. |
International Bureau, International Search Report and Written Opinion dated Sep. 21, 2020, issued in connection with International Application No. PCT/US2020/037229, filed on Jun. 11, 2020, 17 pages. |
International Bureau, International Search Report and Written Opinion dated Dec. 6, 2019, issued in connection with International Application No. PCT/US2019050852, filed on Sep. 12, 2019, 10 pages. |
International Bureau, International Search Report and Written Opinion dated Apr. 8, 2020, issued in connection with International Application No. PCT/US2019/067576, filed on Dec. 19, 2019, 12 pages. |
Japanese Patent Office, Notice of Reasons for Refusal and Translation dated Jun. 22, 2021, issued in connection with Japanese Patent Application No. 2020-517935, 4 pages. |
Japanese Patent Office, Office Action and Translation dated Mar. 16, 2021, issued in connection with Japanese Patent Application No. 2020-506725, 7 pages. |
Japanese Patent Office, Office Action and Translation dated Apr. 20, 2021, issued in connection with Japanese Patent Application No. 2020-513852, 9 pages. |
Japanese Patent Office, Office Action and Translation dated Feb. 24, 2021, issued in connection with Japanese Patent Application No. 2019-517281, 4 pages. |
Japanese Patent Office, Office Action and Translation dated Apr. 27, 2021, issued in connection with Japanese Patent Application No. 2020-518400, 10 pages. |
Japanese Patent Office, Office Action and Translation dated Jul. 6, 2021, issued in connection with Japanese Patent Application No. 2019-073349, 6 pages. |
Joseph Szurley et al, “Efficient computation of microphone utility in a wireless acoustic sensor network with multi-channel Wiener filter based noise reduction”, 2012 IEEE International Conference On Acoustics, Speech and Signal Processing, Kyoto, Japan, Mar. 25-30, 2012, pp. 2657-2660, XP032227701, DOI: 10.1109/ICASSP .2012.6288463 ISBN: 978-1-4673-0045-2. |
Korean Patent Office, Korean Examination Report and Translation dated Apr. 26, 2021, issued in connection with Korean Application No. 10-2021-7008937, 15 pages. |
Korean Patent Office, Korean Office Action and Translation dated Jan. 4, 2021, issued in connection with Korean Application No. 10-2020-7034425, 14 pages. |
Non-Final Office Action dated Jul. 12, 2021, issued in connection with U.S. Appl. No. 17/008,104, filed Aug. 31, 2020, 6 pages. |
Non-Final Office Action dated Jun. 18, 2021, issued in connection with U.S. Appl. No. 17/236,559, filed Apr. 21, 2021, 9 pages. |
Non-Final Office Action dated Apr. 21, 2021, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 9 pages. |
Non-Final Office Action dated Apr. 23, 2021, issued in connection with U.S. Appl. No. 16/660,197, filed Oct. 22, 2019, 9 pages. |
Non-Final Office Action dated Jun. 25, 2021, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 11 pages. |
Non-Final Office Action dated Jul. 8, 2021, issued in connection with U.S. Appl. No. 16/813,643, filed Mar. 9, 2020, 12 pages. |
Non-Final Office Action dated Jul. 9, 2021, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 18 pages. |
Non-Final Office Action dated Feb. 11, 2021, issued in connection with U.S. Appl. No. 16/876,493, filed May 18, 2020, 16 pages. |
Non-Final Office Action dated Mar. 11, 2021, issued in connection with U.S. Appl. No. 16/834,483, filed Mar. 30, 2020, 11 pages. |
Non-Final Office Action dated Apr. 12, 2021, issued in connection with U.S. Appl. No. 16/528,224, filed Jul. 31, 2019, 9 pages. |
Non-Final Office Action dated Jun. 23, 2021, issued in connection with U.S. Appl. No. 16/439,032, filed Jun. 12, 2019, 13 pages. |
Non-Final Office Action dated Mar. 29, 2021, issued in connection with U.S. Appl. No. 16/528,265, filed Jul. 31, 2019, 18 pages. |
Non-Final Office Action dated Jan. 6, 2021, issued in connection with U.S. Appl. No. 16/439,046, filed Jun. 12, 2019, 13 pages. |
Non-Final Office Action dated Apr. 9, 2021, issued in connection with U.S. Appl. No. 16/780,483, filed Feb. 3, 2020, 45 pages. |
Non-Final Office Action dated Feb. 9, 2021, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 16 pages. |
Notice of Allowance dated Mar. 31, 2021, issued in connection with U.S. Appl. No. 16/813,643, filed Mar. 9, 2020, 11 pages. |
Notice of Allowance dated Jun. 1, 2021, issued in connection with U.S. Appl. No. 16/219,702, filed Dec. 13, 2018, 8 pages. |
Notice of Allowance dated Jun. 1, 2021, issued in connection with U.S. Appl. No. 16/685,135, filed Nov. 15, 2019, 10 pages. |
Notice of Allowance dated Feb. 10, 2021, issued in connection with U.S. Appl. No. 16/138,111, filed Sep. 21, 2018, 8 pages. |
Notice of Allowance dated May 12, 2021, issued in connection with U.S. Appl. No. 16/402,617, filed May 3, 2019, 8 pages. |
Notice of Allowance dated Jan. 13, 2021, issued in connection with U.S. Appl. No. 16/539,843, filed Aug. 13, 2019, 5 pages. |
Notice of Allowance dated Jan. 14, 2021, issued in connection with U.S. Appl. No. 17/087,423, filed Nov. 2, 2020, 8 pages. |
Notice of Allowance dated Apr. 16, 2021, issued in connection with U.S. Appl. No. 16/798,967, filed Feb. 24, 2020, 16 pages. |
Notice of Allowance dated Feb. 17, 2021, issued in connection with U.S. Appl. No. 16/715,984, filed Dec. 16, 2019, 8 pages. |
Notice of Allowance dated Mar. 18, 2021, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 31, 2018, 8 pages. |
Notice of Allowance dated Mar. 19, 2021, issued in connection with U.S. Appl. No. 17/157,686, filed Jan. 25, 2021, 11 pages. |
Notice of Allowance dated Apr. 21, 2021, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 8 pages. |
Notice of Allowance dated Jan. 21, 2021, issued in connection with U.S. Appl. No. 16/600,644, filed Oct. 14, 2019, 7 pages. |
Notice of Allowance dated Jun. 23, 2021, issued in connection with U.S. Appl. No. 16/814,844, filed Mar. 10, 2020, 8 pages. |
Notice of Allowance dated May 26, 2021, issued in connection with U.S. Appl. No. 16/927,670, filed Jul. 13, 2020, 10 pages. |
Notice of Allowance dated May 28, 2021, issued in connection with U.S. Appl. No. 16/524,306, filed Jul. 29, 2019, 9 pages. |
Notice of Allowance dated Jan. 29, 2021, issued in connection with U.S. Appl. No. 16/290,599, filed Mar. 1, 2019, 9 pages. |
Notice of Allowance dated Mar. 29, 2021, issued in connection with U.S. Appl. No. 16/600,949, filed Oct. 14, 2019, 9 pages. |
Notice of Allowance dated Jun. 3, 2021, issued in connection with U.S. Appl. No. 16/876,493, filed May 18, 2020, 7 pages. |
Notice of Allowance dated Jun. 4, 2021, issued in connection with U.S. Appl. No. 16/528,265, filed Jul. 31, 2019, 17 pages. |
Notice of Allowance dated Jun. 7, 2021, issued in connection with U.S. Appl. No. 16/528,224, filed Jul. 31, 2019, 9 pages. |
Pre-Appeal Brief Decision mailed on Jun. 2, 2021, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 2 pages. |
Preinterview First Office Action dated Jan. 8, 2021, issued in connection with U.S. Appl. No. 16/798,967, filed Feb. 24, 2020,4 pages. |
Tsung-Hsien Wen et al.: “A Network-based End-to-End Trainable Task-oriented Dialogue System”, CORR ARXIV, vol. 1604.04562v1, Apr. 15, 2016, pp. 1-11, XP055396370, Stroudsburg, PA, USA. |
Notice of Allowance dated Feb. 6, 2019, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 9 pages. |
Notice of Allowance dated Feb. 6, 2020, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 7 pages. |
Notice of Allowance dated Apr. 7, 2020, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 7 pages. |
Notice of Allowance dated Apr. 7, 2020, issued in connection with U.S. Appl. No. 16/147,710, filed Sep. 29, 2018, 15 pages. |
Notice of Allowance dated Jun. 7, 2019, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 9 pages. |
Notice of Allowance dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 11 pages. |
Notice of Allowance dated Mar. 9, 2018, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 8 pages. |
Optimizing Siri on HomePod in Far-Field Settings. Audio Software Engineering and Siri Speech Team, Machine Learning Journal vol. 1, Issue 12. https://machinelearning.apple.com/2018/12/03/optimizing-siri-on-homepod-in-far-field-settings.html. Dec. 2018, 18 pages . |
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages. |
Preinterview First Office Action dated Aug. 5, 2019, issued in connection with U.S. Appl. No. 16/434,426, filed Jun. 7, 2019,4 pages. |
Preinterview First Office Action dated Mar. 25, 2020, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 6 pages. |
Preinterview First Office Action dated Sep. 30, 2019, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 4 pages. |
Preinterview First Office Action dated May 7, 2020, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 5 pages. |
Presentations at WinHEC 2000, May 2000, 138 pages. |
Restriction Requirement dated Aug. 14, 2019, issued in connection with U.S. Appl. No. 16/214,711, filed Dec. 10, 2018, 5 pages. |
Restriction Requirement dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 8 pages. |
Rottondi et al., “An Overview on Networked Music Performance Technologies,” IEEE Access, vol. 4, pp. 8823-8843, 2016, DOI: 10.1109/ACCESS.2016.2628440, 21 pages. |
Souden et al. “An Integrated Solution for Online Multichannel Noise Tracking and Reduction.” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19. No. 7, Sep. 7, 2011, 11 pages. |
Souden et al. “Gaussian Model-Based Multichannel Speech Presence Probability” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 5, Jul. 5, 2010, 6pages. |
Souden et al. “On Optimal Frequency-Domain Multichannel Linear Filtering for Noise Reduction.” IEEE Transactions an Audio, Speech, and Language Processing, vol. 18, No. 2, Feb. 2010, 17pages. |
Steven J. Nowlan and Geoffrey E. Hinton “Simplifying Neural Networks by Soft Weight-Sharing” Neural Computation 4, 1992, 21 pages. |
Tsiami et al. “Experiments in acoustic source localization using sparse arrays in adverse indoors environments”, 2014 22nd European Signal Processing Conference, Sep. 1, 2014, 5 pages. |
Tweet: “How to start using Google app voice commands to make your life easier Share This Story shop @Bullet”, Jan. 21, 2016, https://bgr.com/2016/01/21/best-ok-google-voice-commands/, 3 page. |
Ullrich et al. “Soft Weight-Sharing for Neural Network Compression.” ICLR 2017, 16 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
Vacher at al. “Recognition of voice commands by multisource ASR and noise cancellation in a smart home anvironment” Signal Processing Conference 2012 Proceedings of the 20th European, IEEE, Aug. 27, 2012, 5 pages. |
Vacher et al. “Speech Recognition in a Smart Home: Some Experiments for Telemonitoring,” 2009 Proceedings of the 5th Conference on Speech Technology and Human-Computer Dialogoue, Constant, 2009, 10 pages. |
“S Voice or Google Now?”; https://web.archive.org/web/20160807040123/lowdown.carphonewarehouse.com/news/s-voice-or-google-now/ . . . , Apr. 28, 2015; 4 pages. |
Wung et al. “Robust Acoustic Echo Cancellation in the Short-Time Fourier Transform Domain Using Adaptive Crossband Filters” IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP, 2014, p. 1300-1304. |
Xiao et al. “A Learning-Based Approach to Direction of Arrival Estimation in Noisy and Reverberant Environments,” 2015 IEEE International Conference On Acoustics, Speech and Signal Processing, Apr. 19, 2015, 5 pages. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.0 Owner's Manual; Copyright 2008, 501 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
Non-Final Office Action dated Sep. 10, 2018, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 17 pages. |
Non-Final Office Action dated Oct. 11, 2019, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 31, 2018, 14 pages. |
Non-Final Office Action dated Sep. 11, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 8 pages. |
Non-Final Office Action dated Sep. 11, 2020, issued in connection with U.S. Appl. No. 16/219,702, filed Dec. 13, 2018, 9 pages. |
Non-Final Office Action dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 11 pages. |
Non-Final Office Action dated Feb. 12, 2019, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 13 pages. |
Non-Final Office Action dated Jan. 13, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 11 pages. |
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 23 pages. |
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 16/160,107, filed Oct. 15, 2018, 8 pages. |
Non-Final Office Action dated Nov. 13, 2019, issued in connection with U.S. Appl. No. 15/984,073, filed May 18, 2018, 18 pages. |
Non-Final Office Action dated May 14, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 8 pages. |
Non-Final Office Action dated Sep. 14, 2017, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 16 pages. |
Non-Final Office Action dated Sep. 14, 2018, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 15 pages. |
Non-Final Office Action dated Apr. 15, 2020, issued in connection with U.S. Appl. No. 16/138,111, filed Sep. 21, 2018, 15 pages. |
Non-Final Office Action dated Dec. 15, 2020, issued in connection with U.S. Appl. No. 17/087,423, filed Nov. 2, 2020, 7 pages. |
Non-Final Office Action dated Jan. 15, 2019, issued in connection with U.S. Appl. No. 16/173,797, filed Oct. 29, 2018, 6 pages. |
Non-Final Office Action dated Nov. 15, 2019, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 17 pages. |
Non-Final Office Action dated Mar. 16, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 5 pages. |
Non-Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 16 pages. |
Non-Final Office Action dated Sep. 17, 2020, issued in connection with U.S. Appl. No. 16/600,949, filed Oct. 14, 2019, 29 pages. |
Non-Final Office Action dated Apr. 18, 2018, issued in connection with U.S. Appl. No. 15/811,468 filed Nov. 13, 2017, 14 pages. |
Non-Final Office Action dated Jan. 18, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 18 pages. |
Non-Final Office Action dated Oct. 18, 2019, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 27 pages. |
Non-Final Office Action dated Sep. 18, 2019, issued in connection with U.S. Appl. No. 16/179,779, filed Nov. 2, 2018, 14 pages. |
Non-Final Office Action dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 12 pages. |
Non-Final Office Action dated Dec. 19, 2019, issued in connection with U.S. Appl. No. 16/147,710, filed Sep. 29, 2018, 10 pages. |
Non-Final Office Action dated Feb. 19, 2020, issued in connection with U.S. Appl. No. 16/148,879, filed Oct. 1, 2018, 15 pages. |
Non-Final Office Action dated Sep. 2, 2020, issued in connection with U.S. Appl. No. 16/290,599, filed Mar. 1, 2019, 17 pages. |
Non-Final Office Action dated Feb. 20, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2016, 31 pages. |
Non-Final Office Action dated Jun. 20, 2019, issued in connection with U.S. Appl. No. 15/946,585, filed Apr. 5, 2018, 10 pages. |
Non-Final Office Action dated Aug. 21, 2019, issued in connection with U.S. Appl. No. 16/192,126, filed Nov. 15, 2018, 8 pages. |
Non-Final Office Action dated Feb. 21, 2019, issued in connection with U.S. Appl. No. 16/214,666, filed Dec. 10, 2018, 12 pages. |
Non-Final Office Action dated Jan. 21, 2020, issued in connection with U.S. Appl. No. 16/214,711, filed Dec. 10, 2018, 9 pages. |
Non-Final Office Action dated Jan. 21, 2020, issued in connection with U.S. Appl. No. 16/598,125, filed Oct. 10, 2019, 25 pages. |
Non-Final Office Action dated Oct. 21, 2019, issued in connection with U.S. Appl. No. 15/973,413, filed May 7, 2018, 10 pages. |
Non-Final Office Action dated Jul. 22, 2020, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages. |
Non-Final Office Action dated May 22, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 19 pages. |
Non-Final Office Action dated Sep. 22, 2020, issued in connection with U.S. Appl. No. 16/539,843, filed Aug. 13, 2019, 7 pages. |
Non-Final Office Action dated May 23, 2019, issued in connection with U.S. Appl. No. 16/154,071, filed Oct. 8, 2018, 36 pages. |
Non-Final Office Action dated Nov. 23, 2020, issued in connection with U.S. Appl. No. 16/524,306, filed Jul. 29, 2019, 14 pages. |
Non-Final Office Action dated Sep. 23, 2020, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 31, 2018, 17 pages. |
Non-Final Office Action dated Aug. 24, 2017, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 13 pages. |
Non-Final Office Action dated Jul. 24, 2019, issued in connection with U.S. Appl. No. 16/439,009, filed Jun. 12, 2019, 26 pages. |
Non-Final Office Action dated Jul. 25, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Jul. 22, 2016, 11 pages. |
Non-Final Office Action dated Dec. 26, 2018, issued in connection with U.S. Appl. No. 16/154,469, filed Oct. 8, 2018, 7 pages. |
Non-Final Office Action dated Jan. 26, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 16 pages. |
Non-Final Office Action dated Oct. 26, 2017, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 12 pages. |
Non-Final Office Action dated Jun. 27, 2018, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 16 pages. |
Non-Final Office Action dated Jun. 27, 2019, issued in connection with U.S. Appl. No. 16/437,437, filed Jun. 11, 2019, 8 pages. |
Non-Final Office Action dated Jun. 27, 2019, issued in connection with U.S. Appl. No. 16/437,476, filed Jun. 11, 2019, 8 pages. |
International Searching Authority, International Search Repod and Written Opinion dated Dec. 19, 2018, in connection with International Application No. PCT/US2018/053517, 13 pages. |
International Searching Authority, International Search Repod and Written Opinion dated Nov. 22, 2017, issued in connection with International Application No. PCT/US2017/054063, filed on Sep. 28, 2017, 11 pages. |
International Searching Authority, International Search Repod and Written Opinion dated Jan. 23, 2018, issued in connection with International Application No. PCT/US2017/57220, filed on Oct. 18, 2017, 8 pages. |
International Searching Authority, International Search Repod and Written Opinion dated May 23, 2017, issued in connection with International Application No. PCT/US2017/018739, Filed on Feb. 21, 2017, 10 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 23, 2017, issued in connection with International Application No. PCT/US2017/042170, filed on Jul. 14, 2017, 15 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2017/042227, filed on Jul. 14, 2017, 16 pages. |
International Searching Authority, International Search Report and Written Opinion dated May 30, 2017, issued in connection with International Application No. PCT/US2017/018728, Filed on Feb. 21, 2017, 11 pages. |
Japanese Patent Office, English Translation of Office Action dated Aug. 27, 2020, issued in connection with Japanese Application No. 2019-073349, 6 pages. |
Japanese Patent Office, English Translation of Office Action dated Jul. 30, 2020, issued in connection with Japanese Application No. 2019-517281, 26 pages. |
Japanese Patent Office, Non-Final Office Action and Translation dated Nov. 5, 2019, issued in connection with Japanese Patent Application No. 2019-517281, 6 pages. |
Japanese Patent Office, Office Action and Translation dated Nov. 17, 2020, issued in connection with Japanese Patent Application No. 2019-145039, 7 pages. |
Japanese Patent Office, Office Action and Translation dated Aug. 27, 2020, issued in connection with Japanese Patent Application No. 2019-073349, 6 pages. |
Japanese Patent Office, Office Action and Translation dated Jul. 30, 2020, issued in connection with Japanese Patent Application No. 2019-517281, 6 pages. |
Japanese Patent Office, Office Action and Translation dated Jul. 6, 2020, issued in connection with Japanese Patent Application No. 2019-073348, 10 pages. |
Japanese Patent Office, Office Action and Translation dated Oct. 8, 2019, issued in connection with Japanese Patent Application No. 2019-521032, 5 pages. |
Japanese Patent Office, Office Action Translation dated Nov. 5, 2019, issued in connection with Japanese Patent Application No. 2019-517281, 2 pages. |
Japanese Patent Office, Office Action Translation dated Oct. 8, 2019, issued in connection with Japanese Patent Application No. 2019-521032, 8 pages. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
Johnson, “Implementing Neural Networks into Modem Technology,” IJCNN'99. International Joint Conference on Neural Networks . Proceedings [Cat. No. 99CH36339], Washington, DC, USA, 1999, pp. 1028-1032, vol. 2, doi: 10.1109/IJCNN. 1999.831096. [retrieved on Jun. 22, 2020]. |
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 http://www.reviewsonline.com/articles/961906864.htm retrieved Jun. 18, 2014, 2 pages. |
Jose Alvarez and Mathieu Salzmann “Compression-aware Training of Deep Networks” 31st Conference on Neural Information Processing Systems, Nov. 13, 2017, 12pages. |
Korean Patent Office, Korean Office Action and Translation dated Aug. 16, 2019, issued in connection with Korean Application No. 10-2018-7027452, 14 pages. |
Korean Patent Office, Korean Office Action and Translation dated Apr. 2, 2020, issued in connection with Korean Application No. 10-2020-7008486, 12 pages. |
Korean Patent Office, Korean Office Action and Translation dated Mar. 25, 2020, issued in connection with Korean Application No. 10-2019-7012192, 14 pages. |
Korean Patent Office, Korean Office Action and Translation dated Aug. 26, 2020, issued in connection with Korean Application No. 10-2019-7027640, 16 pages. |
Korean Patent Office, Korean Office Action and Translation dated Mar. 30, 2020, issued in connection with Korean Application No. 10 2020 7004425, 5 pages. |
Korean Patent Office, Korean Office Action and Translation dated Sep. 9, 2019, issued in connection with Korean Application No. 10-2018-7027451, 21 pages. |
Korean Patent Office, Korean Office Action dated May 8, 2019, issued in connection with Korean Application No. 10-2018-7027451, 7 pages. |
Korean Patent Office, Korean Office Action dated May 8, 2019, issued in connection with Korean Application No. 10-2018-7027452, 5 pages. |
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages. |
Maja Taseska and Emanual A.P. Habets, “MMSE-Based Blind Source Extraction in Diffuse Noise Fields Using a Complex Coherence-Based a Priori Sap Estimator.” International Workshop on Acoustic Signal Enhancement 2012, Sep. 1-6, 2012, 4pages. |
Morales-Cordovilla et al. “Room Localization for Distant Speech Recognition,” Proceedings of Interspeech 2014, Sep. 14, 2014, 4 pages. |
Newman, Jared. “Chromecast Audio's multi-room support has arrived,” Dec. 11, 2015, https://www.pcworld.com/article/3014204/customer-electronic/chromcase-audio-s-multi-room-support-has . . . , 1 page. |
Ngo et al. “Incorporating the Conditional Speech Presence Probability in Multi-Channel Wiener Filter Based Noise Reduction in Hearing Aids.” EURASIP Journal on Advances in Signal Processing vol. 2009, Jun. 2, 2009, 11 pages. |
Non-Final Office Action dated Dec. 21, 2020, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 22 pages. |
Non-Final Office Action dated Dec. 9, 2020, issued in connection with U.S. Appl. No. 16/271,550, filed Feb. 8, 2019, 35 pages. |
Non-Final Office Action dated Jun. 1, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages. |
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 11 pages. |
Non-Final Office Action dated Nov. 3, 2017, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 11 pages. |
Non-Final Office Action dated Nov. 4, 2019, issued in connection with U.S. Appl. No. 16/022,662, filed Jun. 28, 2018, 16 pages. |
Non-Final Office Action dated Sep. 5, 2019, issued in connection with U.S. Appl. No. 16/416,752, filed May 20, 2019, 14 pages. |
Non-Final Office Action dated Feb. 7, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 12 pages. |
Non-Final Office Action dated Feb. 8, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 17 pages. |
Non-Final Office Action dated Mar. 9, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 13 pages. |
Non-Final Office Action dated Oct. 9, 2019, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 16 pages. |
Non-Final Office Action dated Jul. 1, 2020, issued in connection with U.S. Appl. No. 16/138,111, filed Sep. 21, 2018, 14 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 13 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 15 pages. |
Advisory Action dated Jun. 10, 2020, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 4 pages. |
Advisory Action dated Apr. 24, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 4 pages. |
Advisory Action dated Jun. 28, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 3 pages. |
Advisory Action dated Dec. 31, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 4 pages. |
Advisory Action dated Jun. 9, 2020, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 3 pages. |
Anonymous,. S Voice or Google Now—The Lowdown. Apr. 28, 2015, 9 pages, [online], [retrieved on Nov. 29, 2017], Retrieved from the Internet (URL:http://web.archive.org/web/20160807040123/http://lowdown.carphonewarehouse.com/news/s-voice-or-google-now/29958/). |
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages. |
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages. |
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages. |
Australian Patent Office, Australian Examination Report Action dated Apr. 14, 2020, issued in connection with Australian Application No. 2019202257, 3 pages. |
Australian Patent Office, Australian Examination Report Action dated Oct. 3, 2019, issued in connection with Australian Application No. 2018230932, 3 pages. |
Australian Patent Office, Australian Examination Report Action dated Aug. 7, 2020, issued in connection with Australian Application No. 2019236722, 4 pages. |
Australian Patent Office, Examination Report dated Oct. 30, 2018, issued in connection with Australian Application No. 2017222436, 3 pages. |
“Automatic Parameter Tying in Neural Networks” ICLR 2018, 14 pages. |
Bertrand et al. “Adaptive Distributed Noise Reduction for Speech Enhancement in Wireless Acoustic Sensor Networks” Jan. 2010, 4 pages. |
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages. |
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages. |
Canadian Patent Office, Canadian Office Action dated Nov. 14, 2018, issued in connection with Canadian Application No. 3015491, 3 pages. |
Chinese Patent Office, First Office Action and Translation dated Mar. 20, 2019, issued in connection with Chinese Application No. 201780025028.2, 18 pages. |
Chinese Patent Office, First Office Action and Translation dated Mar. 27, 2019, issued in connection with Chinese Application No. 201780025029.7, 9 pages. |
Chinese Patent Office, First Office Action and Translation dated Nov. 5, 2019, issued in connection with Chinese Application No. 201780072651 3, 19 pages. |
Chinese Patent Office, First Office Action dated Feb. 28, 2020, issued in connection with Chinese Application No. 201780061543.6, 29 pages. |
Chinese Patent Office, Second Office Action and Translation dated May 11, 2020, issued in connection with Chinese Application No. 201780061543.6, 17 pages. |
Chinese Patent Office, Second Office Action and Translation dated Jul. 18, 2019, issued in connection with Chinese Application No. 201780025029.7, 14 pages. |
Chinese Patent Office, Second Office Action and Translation dated Sep. 23, 2019, issued in connection with Chinese Application No. 201780025028.2, 15 pages. |
Chinese Patent Office, Second Office Action and Translation dated Mar. 31, 2020, issued in connection with Chinese Application No. 201780072651.3, 17 pages. |
Chinese Patent Office, Third Office Action and Translation dated Sep. 16, 2019, issued in connection with Chinese Application No. 201780025029.7, 14 pages. |
Chinese Patent Office, Third Office Action and Translation dated Aug. 5, 2020, issued in connection with Chinese Application No. 201780072651.3, 10 pages. |
Chinese Patent Office, Translation of Office Action dated Jul. 18, 2019, issued in connection with Chinese Application No. 201780025029.7, 8 pages. |
Cipriani,. The complete list of OK, Google commands—CNE. Jul. 1, 2016, 5 pages, [online], [retrieved on Jan. 15, 2020]. Retrieved from the Internet: (URL:https://web.archive.org/web/20160803230926/https://www.cnet.com/iow-to/complete-list-of-ok-google-commands/). |
Corrected Notice of Allowability dated Mar. 8, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 6 pages. |
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages. |
Dell, Inc. “Start Here,” Jun. 2000, 2 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
European Patent Office, European Extended Search Report dated Feb. 3, 2020, issued in connection with European Application No. 19197116.7, 9 pages. |
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 177570702, 8 pages. |
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 17757075.1, 9 pages. |
European Patent Office, European Extended Search Report dated Oct. 30, 2017, issued in connection with EP Application No. 17174435.2, 11 pages. |
European Patent Office, European Extended Search Report dated Aug. 6, 2020, issued in connection with European Application No. 20166332.5, 10 pages. |
European Patent Office, European Office Action dated Jul. 1, 2020, issued in connection with European Application No. 17757075.1, 7 pages. |
European Patent Office, European Office Action dated Jan. 14, 2020, issued in connection with European Application No. 17757070.2, 7 pages. |
European Patent Office, European Office Action dated Jan. 22, 2019, issued in connection with European Application No. 17174435.2, 9 pages. |
European Patent Office, European Office Action dated Sep. 23, 2020, issued in connection with European Application No. 18788976.1, 7 pages. |
European Patent Office, European Office Action dated Oct. 26, 2020, issued in connection with European Application No. 18760101.8, 4 pages. |
European Patent Office, European Office Action dated Aug. 30, 2019, issued in connection with European Application No. 17781608.9, 6 pages. |
European Patent Office, European Office Action dated Sep. 9, 2020, issued in connection with European Application No. 18792656.3, 10 pages. |
European Patent Office, Summons to Attend Oral Proceedings dated Dec. 20, 2019, issued in connection with European Application No. 17174435.2, 13 pages. |
Fadilpasic,“Cortana can now be the default PDA on your Android”, IT Pro Portal: Accessed via WayBack Machine; http://web.archive.org/web/20171129124915/https://www.itproportal.com/201- 5/08/11/cortana-can-now-be- . . . , Aug. 11, 2015, 6 pages. |
Final Office Action dated Oct. 6, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 25 pages. |
Final Office Action dated Nov. 10, 2020, issued in connection with U.S. Appl. No. 16/600,644, filed Oct. 14, 2019, 19 pages. |
Number | Date | Country | |
---|---|---|---|
20200380982 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15718521 | Sep 2017 | US |
Child | 16845946 | US |