The present disclosure relates to a toner bottle that accommodates toner.
Currently, image forming apparatuses form toner images by developing an electrostatic latent image formed on a photoreceptor by using toner in a development apparatus. When the toner in the development apparatus decreases, the toner cannot be supplied to the photoreceptor. Therefore, the image forming apparatus is configured so as to supply toner as appropriate to the development apparatus from a toner bottle attachable to the main body of the apparatus.
The toner bottle includes a cylindrical casing, a spiral rib protruding on the inner peripheral surface of the casing, and an outlet for discharging the toner. In the toner bottle, when the casing rotates, the spiral rib conveys the toner to the outlet.
Typically, in the image forming apparatus, there is no configuration for directly detecting the remaining amount of the toner in the toner bottle. In the conventional image forming apparatus, the consumption amount of the toner is estimated based on the number of printed sheets, and the estimated consumption amount is subtracted from the capacity of the toner bottle to estimate the remaining amount of the toner.
As a result, in order to prevent the toner from being completely consumed, the image forming apparatus notifies a user that, for example, “the toner has run out” when the estimated remaining amount of the toner becomes equal to or less than a predetermined amount. However, at the time of the notification, a substantial amount of the toner is usually remaining in the toner bottle. Nevertheless, since the user needs to replace the toner with a new one, usable toner is thrown away and wasted.
Thereupon, for example, Patent Document 1 (identified below) describes a method of detecting a remaining amount of toner in a toner bottle by measuring the weight of the toner bottle. In the configuration in Patent Document 1, a toner bottle 5 is supported by a support member 52, and the weight is detected based on the movement of the support member 52 moving in a rotation direction about a fulcrum 54.
However, with the configuration in Patent Document 1, in order to detect the weight, it is necessary for the toner bottle 5 and the support member 52 to move in the rotation direction with respect to a deflection member 55 about the fulcrum 54. Therefore, it is necessary to secure a space for the toner bottle 5 and the support member 52 to move, which consumes space and thus limits space saving. Moreover, in order to accurately measure the weight, it is necessary not to fix the toner bottle to surrounding members or to reduce the number of support points so that the toner bottle itself can move. However, the toner bottle has a weight of, for example, about 3 kg, and it becomes difficult to securely support the toner bottle if the number of support points is reduced.
An object of the present disclosure is to provide a toner bottle configured to detect a remaining amount of toner while solving the above problems.
A toner bottle according to an exemplary embodiment of the present disclosure is provided for supplying toner to a development apparatus. The exemplary toner bottle includes: a bottle portion which accommodates the toner in the bottle portion and is rotated by a drive force of a drive source; and a displacement sensor which is provided on a side of the bottle portion and detects a deflection amount of the side of the bottle portion.
When both ends of the toner bottle are supported, the sides of the bottle portion are deflected by self-weight or the weight of the toner. The deflection amount increases when a large amount of the toner remains in the bottle portion, and the deflection amount decreases when the toner decreases. Therefore, by providing the displacement sensor at the side of the bottle portion of the toner bottle to detect the deflection amount of the side of the bottle portion, it is possible to directly detect the remaining amount of the toner at the present time.
Note that, of the sides of the bottle portion, the vertically lower portion is expanded, and the vertically upper portion is contracted. That is, when the bottle portion rotates, the sides of the bottle portion are expanded and contracted. Therefore, the remaining amount of the toner can be calculated based on the maximum value and the minimum value of electric signals detected by the displacement sensor. Alternatively, the remaining amount of the toner may be calculated based on a difference between the maximum value and the minimum value or may be calculated based on a ratio between the maximum value and the minimum value.
Thus, according to the exemplary embodiments of the present disclosure, it is possible to detect the remaining amount of the toner.
As shown, the image forming apparatus 1 includes a transfer belt 21, a drive roller 50, driven rollers 51, a development apparatus 100, a development apparatus 101, a development apparatus 102, a development apparatus 103, a photosensitive drum 120, a photosensitive drum 121, a photosensitive drum 122, a photosensitive drum 123, a toner bottle 61, a toner bottle 62, a toner bottle 63 and a toner bottle 64. In other words, the image forming apparatus 1 includes a plurality of development apparatuses 101-103, a plurality of photosensitive drums 120-123, and a plurality of toner bottles 61-64.
In an exemplary aspect, each of the photosensitive drum 120, the photosensitive drum 121, the photosensitive drum 122 and the photosensitive drum 123 is irradiated with light based on image data, and an electrostatic latent image is formed on the side thereof. The development apparatus 100, the development apparatus 101, the development apparatus 102 and the development apparatus 103 supply toner to the corresponding photosensitive drum 120, photosensitive drum 121, photosensitive drum 122 and photosensitive drum 123, respectively. As a result, toner images are formed on the sides of the photosensitive drum 120, the photosensitive drum 121, the photosensitive drum 122 and the photosensitive drum 123.
The transfer belt 21 is stretched by the drive roller 50 and the driven rollers 51 and moves along the sides of the photosensitive drum 120, the photosensitive drum 121, the photosensitive drum 122 and the photosensitive drum 123. As a result, the toner images formed on the surfaces of the photosensitive drum 120, the photosensitive drum 121, the photosensitive drum 122 and the photosensitive drum 123 are transferred onto the surface of the transfer belt 21.
The toner images formed on the transfer belt 21 are secondarily transferred to a sheet by a secondary transfer unit (not shown). Thereafter, the sheet on which the toner images have been transferred is heated and pressurized by a fixing unit (not shown). As a result, the toner images are firmly fixed on the surface of the sheet.
The toner bottle 61, the toner bottle 62, the toner bottle 63 and the toner bottle 64 are detachably connected to the development apparatus 100, the development apparatus 101, the development apparatus 102 and the development apparatus 103, respectively. When the toners decrease inside the development apparatus 100, the development apparatus 101, the development apparatus 102 and the development apparatus 103, the toners are replenished from the toner bottle 61, the toner bottle 62, the toner bottle 63 and the toner bottle 64, respectively.
Therefore, in the following description, the toner bottle 61 will be described as a representative, but it should be appreciated that the description applies for each of toner bottles 62-64 as well.
As shown, the toner bottle 61 is formed by a bottle portion 601, which can also be considered a toner container, having a cylindrical shape. The bottle portion 601 accommodates the toner therein and is rotated by the drive force of a drive source (not shown) provided in the image forming apparatus.
A rib 605 having a spiral shape is provided on the inner peripheral surface of the bottle portion 601. When the rib 605 rotates in association with the rotation of the bottle portion 601, the toner 607 accommodated inside the bottle portion 601 is conveyed toward the outlet 603 along a rotation axis direction by the rib 605.
As shown in
The upper electrode 33 and the lower electrode 24 are connected to a detection circuit 31. The detection circuit 31 is configured to detect an electric signal (electric charge) generated in the piezoelectric film 36.
The piezoelectric film 36 can be any piezoelectric element that is configured to generate an electric signal by the expansion and the contraction, for example, a chiral polymer is preferably used as the piezoelectric element. The piezoelectric film 36 is more preferably a uniaxially stretched polylactic acid (PLA) and further preferably a poly-L-lactic acid (PLLA). The chiral polymer has a main chain with a spiral structure, is uniaxially stretched so that the molecules are oriented, and has piezoelectricity by crystallizing a part of the molecules. Then, the amount of electric charge generated by the uniaxially stretched chiral polymer is uniquely determined by the displacement amount (deflection amount of the bottle portion 601).
A piezoelectric constant of the uniaxially stretched PLLA belongs to a very high class among polymers. On the other hand, since the dielectric constant is low, a voltage output coefficient calculated by dividing the piezoelectric constant by the dielectric constant becomes very large. As a result, the piezoelectric film 36 made of PLLA can detect the deflection amount of the bottle portion 601 with high sensitivity and output a signal according to the deflection amount with high accuracy.
Moreover, since the piezoelectricity is generated by orientation treatment of the molecules by stretching or the like, it is unnecessary to perform poling treatment for the chiral polymer, unlike other polymers such as PVDF or piezoelectric ceramics. Therefore, the piezoelectric constant of PLLA does not fluctuate over time and is extremely stable.
Furthermore, since the polylactic acid has no pyroelectricity, the detected amount of electric charge does not change even when a sensor is disposed at a position close to a heat source (e.g., a fixing unit) in the image forming apparatus and the sensor conducts the heat from the heat source.
In the present embodiment, the piezoelectric film 36 is disposed so that a uniaxial stretching direction forms an angle of approximately 45° with respect to a longitudinal direction (Y direction in
In contrast, as shown in
According to the exemplary aspect, these deflection amounts are detected by the displacement sensor 611 provided on the side of the bottle portion 601 of the toner bottle 61.
As shown in
Therefore, the values of the electric signals detected by the displacement sensor 611 are values corresponding to the remaining amount of the toner 607.
The displacement sensor 611 is connected a control unit 20 shown in
The control unit 20 can include a processor, microprocessor, or the like that is configured to read out a program stored in a program storage unit 23 and execute predetermined processing. For example, the control unit 20 performs processing of calculating the remaining amount of the toner in the bottle portion 601 based on detection results of the displacement sensor 611.
The control unit 20 also performs processing of displaying the calculated remaining amount of the toner on a display unit 3. According to the exemplary aspect, the display unit 3 is an example of a notification unit. Thus, the displacement sensor 611 is configured to detect the deformation of the bottle portion 601 and simultaneously detect with high sensitivity dynamic sound vibration, high frequency components, of the toner 607 generated in the bottle portion 601. The control unit 20 may also be configured to determine the remaining amount of the toner in combination with this sound vibration. When the remaining amount of the toner decreases, the deflection amount of the bottle portion 601 also decreases so that the detection of the small amount of the toner becomes difficult. However, by performing the judgment of the detection of the remaining amount with dynamic sound signals of the toner, more accurate detection is possible.
According to the exemplary embodiments, a plurality of methods of calculating the remaining amount of the toner can be implemented. For example, the control unit 20 can be configured to calculate the difference between the maximum value and the minimum value outputted from the displacement sensor 611 to calculate the remaining amount of the toner 607. As described above, the deflection amount of the bottle portion 601 increases when a large amount of the toner 607 remains in the bottle portion 601, and the deflection amount of the bottle portion 601 decreases when the toner 607 in the bottle portion 601 decreases. Therefore, the difference between the maximum value and the minimum value of the electric signals outputted by the displacement sensor 611 corresponding to the deflection amount increases as the remaining amount of the toner 607 increases and decreases as the toner 607 decreases.
Alternatively, the control unit 20 can be configured to calculate the remaining amount of the toner 607 by calculating a ratio between the maximum value and the minimum value outputted from the displacement sensor 611. As described above, the deflection amount of the vertically lower side (point B in
In particular, since each individual of the displacement sensor 611 has a characteristic difference, each individual of the displacement sensor 611 has different output values even if each individual of the displacement sensor 611 has the same deflection amount of the bottle portion 601. However, the individual difference is canceled out by calculating the ratio between the maximum value and the minimum value. Therefore, the control unit 20 can calculate the remaining amount of the toner 607 irrespective of the individual difference of the displacement sensor 611.
Moreover, the control unit 20 is configured to perform correction (calibration) to cancel out the individual difference for each displacement sensor 611 when the remaining amount of the toner 607 is estimated by calculating the difference between the maximum value and the minimum value. For example, a value of the difference between the maximum value and the minimum value calculated at the time of shipment is all corrected to “0”.
With the above configuration, the control unit 20 can directly detect the remaining amount of the toner. In a case where the difference between the maximum value and the minimum value of the electric signals outputted by the displacement sensor 611 is calculated, the control unit 20 can judge that the remaining amount of the toner is 0 or near 0 when the value of the difference is less than a predetermined value. Alternatively, in a case where the ratio between the maximum value and the minimum value of the electric signals outputted by the displacement sensor 611 is calculated, the control unit 20 can judge that the remaining amount of the toner is 0 or near 0 when the ratio is 1 (or the ratio indicates a predetermined value near 1).
It is noted that, although the deflection amount of the bottle portion 601 is detected by using one displacement sensor 611 in this example, a plurality of displacement sensors 611 may be provided on the sides of the bottle portion 601 to detect the deflection amount of the bottle portion 601. In this case, the maximum value and the minimum value can be detected by each of the plurality of displacement sensors 611.
It is also noted that the control unit 20 can comprise a control unit, such as a microcomputer, for example, that is provided in the image forming apparatus 1 or by a control unit provided in the displacement sensor 611 or the toner bottle 61. When the control unit 20 is provided in the displacement sensor 611 or the toner bottle 61, information indicating the remaining amount of the toner is outputted from the displacement sensor 611 or the toner bottle 61.
Moreover, the notification unit (the display unit 3 in this example) may also be provided in the displacement sensor 611 or the toner bottle 61 or also serve as the notification unit (display unit) provided in the image forming apparatus 1.
Next,
As shown in
As shown in
Moreover, a thickness of the substrate 91 is changed as appropriate according to a size of the toner bottle (container) and a type of the toner (the fluid to be detected). The substrate 91 is an elastic body and made of, for example, SUS, phosphor bronze, nickel silver, glass epoxy, acrylic, PET or ABS.
The twist sensor 612 is, for example, a piezoelectric film sensor and has the same structure as the structure shown in
Moreover, in the piezoelectric film in this embodiment, the uniaxial stretching direction coincides with the longitudinal direction (Y direction shown in
As shown in
As described above, since the uniaxial stretching direction coincides with the longitudinal direction (Y direction shown in
If vibration is transmitted to the displacement sensor 90, there is a possibility that bending displacement occurs in the substrate 91. However, the possibility of the occurrence of the twist displacement due to the vibration is extremely low.
Therefore, the displacement sensor 90 outputs electric signals only when the displacement sensor 90 is in contact with the toner 607, and does not output electric signals when other vibration occurs. When the remaining amount of the toner 607 is large, the resistance when the displacement sensor 90 is in contact with the toner 607 increases and the twist displacement increases so that the output values of the outputted electric signals increase. When the remaining amount of the toner 607 decreases, the resistance when the displacement sensor 90 is in contact with the toner 607 decreases and the twist displacement decreases so that the output values of the outputted electric signals decrease. Moreover, when the remaining amount of the toner 607 is exhausted and the toner 607 does not contact the substrate 91 of the displacement sensor 90 even when the rotor 905 rotates, no electric signal is detected at all.
Therefore, the control unit 20 connected to the displacement sensor 90 can directly detect the remaining amount of the toner 607 based on the magnitude of the output values of the electric signals outputted from the displacement sensor 90.
Finally, it should be appreciated that the description of the above exemplary embodiments should be considered to be illustrative in all respects and not limited. The scope of the present invention is indicated not by the above embodiments but by the claims. Moreover, the scope of the present invention includes a scope equivalent to the claims.
Number | Date | Country | Kind |
---|---|---|---|
2015-242152 | Dec 2015 | JP | national |
The present application is a continuation of PCT/JP2016/081805 filed Oct. 27, 2016, which claims priority to Japanese Patent Application No. 2015-242152, filed Dec. 11, 2015, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20030161644 | Yokoi | Aug 2003 | A1 |
20030219263 | Tsuzuki | Nov 2003 | A1 |
20080044204 | Inoue | Feb 2008 | A1 |
20090310984 | Sakatani | Dec 2009 | A1 |
20130011165 | Inoue | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
H06218942 | Aug 1994 | JP |
2005316034 | Nov 2005 | JP |
2005331670 | Dec 2005 | JP |
2009139517 | Jun 2009 | JP |
2014085541 | May 2014 | JP |
Entry |
---|
International Search Report issued for PCT/JP2016/081805, dated Nov. 22, 2016. |
Written Opinion of the International Searching Authority issued for PCT/JP2016/081805, dated Nov. 22, 2016. |
Number | Date | Country | |
---|---|---|---|
20180188670 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2016/081805 | Oct 2016 | US |
Child | 15907604 | US |