1. Field of the Disclosure
The present invention relates generally to electrophotographic image forming devices and more particularly to a toner cartridge having an alignment member for aligning with a developer unit in an electrophotographic image forming device.
2. Description of the Related Art
In order to reduce the premature replacement of components traditionally housed within a toner cartridge for an image forming device, toner cartridge manufacturers have begun to separate components having a longer life from those having a shorter life into separate replaceable units. Relatively longer life components such as a developer roll, a toner adder roll and a doctor blade are positioned in one replaceable unit (a developer unit). The image forming device's toner supply, which is consumed relatively quickly in comparison with the components housed in the developer unit, is provided in a reservoir in a separate replaceable unit in the form of a toner cartridge that mates with the developer unit. Toner flows periodically from a reservoir in the toner cartridge to the developer unit through an outlet port of the toner cartridge into an inlet port of the developer unit.
The position of the developer unit in the image forming device has some variability or play allowing the developer unit to move in order to maintain a constant force between the developer roll and a corresponding photoconductive drum for uniform printing. The variability of the position of the developer unit makes it difficult to precisely align the outlet port of the toner cartridge with the inlet port of the developer unit when the toner cartridge is installed in the image forming device. If the outlet port of the toner cartridge and the inlet port of the developer unit are not properly aligned when the two units are mated, toner leakage may occur which may result in mechanical and print quality defects. Further, if the ports are not properly aligned, an undesired force may be applied to the developer unit by the toner cartridge disturbing the positioning of the developer unit relative to the photoconductive drum which may result in non-uniform printing. Accordingly, a mechanism that provides proper alignment between the outlet port of the toner cartridge and the inlet port of the developer unit is desired.
A toner cartridge for use with a developer unit of an image forming device according to one example embodiment includes a housing having a front, a rear, a top, a bottom, a first side and a second side. The housing has a reservoir for holding toner. An outlet port is positioned on the housing for transferring toner from the reservoir to the developer unit. An alignment slot on the front of the housing is open at a bottom end of the alignment slot to receive an alignment pin of the developer unit. The alignment slot has a width that narrows from the bottom end of the alignment slot to a middle section of the slot and that widens from the middle section of the alignment slot to a top end of the alignment slot. In some embodiments, the toner cartridge includes a first guide proximate the first side and a second guide proximate the second side. The first and second guides each run along a portion of the front of the housing between the top and the bottom. The first and second guides are aligned with each other in a vertical direction between the top and the bottom and spaced from each other in a horizontal direction between the first side and the second side forming the alignment slot therebetween. In some embodiments, the first guide bows toward the second side and then back toward the first side as the first guide travels up the front of the housing and the second guide bows toward the first side and then back toward the second side as the second guide travels up the front of the housing.
A toner cartridge for use with a developer unit of an image forming device according to another example embodiment includes a housing having a front, a rear, a top, a bottom, a first side and a second side. The housing has a reservoir for holding toner. An outlet port on the front of the housing proximate the first side is positioned to transfer toner from the reservoir to the developer unit. A drive gear on the front of the housing has a center closer to the second side than the outlet port. The drive gear is positioned to receive rotational power when the toner cartridge is installed in the image forming device. An alignment slot extends along a portion of the front of the housing between the top and the bottom and is positioned between the outlet port and the drive gear in a horizontal direction between the first side and the second side and positioned above the outlet port and below the center of the drive gear in a vertical direction between the top and the bottom. The alignment slot is open at a bottom end of the alignment slot to receive an alignment pin of the developer unit. The alignment slot is configured to control the position of the alignment pin of the developer unit to align the developer unit with the toner cartridge as the toner cartridge is installed in the image forming device.
The accompanying drawings incorporated in and forming a part of the specification, illustrate several aspects of the present disclosure, and together with the description serve to explain the principles of the present disclosure.
In the following description, reference is made to the accompanying drawings where like numerals represent like elements. The embodiments are described in sufficient detail to enable those skilled in the art to practice the present disclosure. It is to be understood that other embodiments may be utilized and that process, electrical, and mechanical changes, etc., may be made without departing from the scope of the present disclosure. Examples merely typify possible variations. Portions and features of some embodiments may be included in or substituted for those of others. The following description, therefore, is not to be taken in a limiting sense and the scope of the present disclosure is defined only by the appended claims and their equivalents.
Image forming device 20 includes an image transfer section that includes one or more imaging stations 50. Each imaging station 50 includes a cartridge 100 and a developer unit 200 mounted on a common photoconductive unit 300. Each toner cartridge 100 includes a reservoir 102 for holding toner and an outlet port in communication with an inlet port of a corresponding developer unit 200 for transferring toner from reservoir 102 to developer unit 200 as discussed in greater detail below. One or more agitating members may be positioned within reservoir 102 to aid in moving the toner. Each developer unit 200 includes a toner reservoir 202 and a toner adder roll 204 that moves toner from reservoir 202 to a developer roll 206. The photoconductive unit 300 includes a charging roll 304 and a photoconductive (PC) drum 302 for each imaging station 50. PC drums 302 are mounted substantially parallel to each other. For purposes of clarity, developer unit 200, PC drum 302 and charging roll 304 are labeled on only one of the imaging stations 50. In the example embodiment illustrated, each imaging station 50 is substantially the same except for the color of toner.
Each charging roll 304 forms a nip with the corresponding PC drum 302. During a print operation, charging roll 304 charges the surface of PC drum 302 to a specified voltage such as, for example, −1000 volts. A laser beam from a printhead 52 associated with each imaging station 50 is then directed to the surface of PC drum 302 and selectively discharges those areas it contacts to form a latent image. In one embodiment, areas on PC drum 302 illuminated by the laser beam are discharged to approximately −300 volts. Developer roll 206, which forms a nip with the corresponding PC drum 302, then transfers toner to PC drum 302 to form a toner image. A metering device such as a doctor blade assembly can be used to meter toner onto developer roll 206 and apply a desired charge on the toner prior to its transfer to PC drum 302. The toner is attracted to the areas of PC drum 302 surface discharged by the laser beam from the printhead 52.
An intermediate transfer mechanism (ITM) 54 is disposed adjacent to the imaging stations 50. In this embodiment, ITM 54 is formed as an endless belt trained about a drive roll 56, a tension roll 58 and a back-up roll 60. During image forming operations, ITM 54 moves past imaging stations 50 in a clockwise direction as viewed in
A media sheet advancing through simplex path 34 receives the toner image from ITM 54 as it moves through the second transfer nip 64. The media sheet with the toner image is then moved along the media path 32 and into a fuser area 68. Fuser area 68 includes fusing rolls or belts 70 that form a nip 72 to adhere the toner image to the media sheet. The fused media sheet then passes through exit rolls 74 that are located downstream from the fuser area 68. Exit rolls 74 may be rotated in either forward or reverse directions. In a forward direction, the exit rolls 74 move the media sheet from simplex path 34 to an output area 76 on top 24 of image forming device 20. In a reverse direction, exit rolls 74 move the media sheet into duplex path 36 for image formation on a second side of the media sheet.
A monocolor image forming device 20 may include a single imaging station 50, as compared to a color image forming device 20 that may include multiple imaging stations 50.
With reference to
With reference back to
With reference back to
Toner cartridge 100 includes an outlet port 118 for transferring toner to developer unit 200 through inlet port 220 of developer unit 200 (
In the example embodiment shown, toner cartridge 100 also includes an engagement member such as a plunger 126 that is positioned to open shutter 120 of toner cartridge 100 and shutter 230 of developer unit 200 when toner cartridge 100 is installed and mated with developer unit 200 and an access door to image forming device 20 is closed. Plunger 126 extends through a channel 128 in housing 104. Channel 128 extends from rear 108 of housing 104 to front 107 of housing 104 below outlet port 118. Channel 128 includes a rear opening 128a and a front opening 128b. With reference to
Toner cartridge 100 further includes a drive gear 132 positioned on the front 107 of housing 104. Drive gear 132 meshes with and receives rotational power from drive gear 254 of developer unit 200 in order to provide rotational power to various paddles and/or agitators and an auger positioned within reservoir 102 for moving toner within reservoir 102 to outlet port 118. In the example embodiment illustrated, drive gear 132 is partially covered with only a few teeth exposed on a bottom portion thereof. Drive gear 132 is positioned on main section 114 of housing 104 above outlet port 118 closer to side 110 than outlet port 118.
Where multiple toner cartridges 100 are used with a single image forming device 20, toner cartridge 100 may include a keying structure 134 that prevents a toner cartridge 100 from being inserted in the wrong location. For example, where each toner cartridge 100 in image forming device 20 provides a different color toner, such as where toner cartridges having black, cyan, yellow and magenta toners are used, keying structure 134 prevents each toner cartridge 100 from being inserted into the location corresponding with any other color. For example, keying structure 134 may prevent a toner cartridge 100 containing cyan colored toner from being positioned in the location for a black, yellow or magenta toner cartridge. In the example embodiment illustrated, keying structure 134 is positioned on the front 107 of extension section 116 of housing 104 near side 110.
Toner cartridge 100 may include an electrical connector 136 having processing circuitry for communicating with a controller of image forming device 20. The processing circuitry may provide authentication functions, safety and operational interlocks, operating parameters and usage information related to toner cartridge 100. In the example embodiment illustrated, electrical connector 136 is positioned in a cavity 138 formed in the bottom 106 of housing 104. When toner cartridge 100 is installed in image forming device 20, contacts on electrical connector 136 mate with corresponding electrical contacts of image forming device 20 to establish a communications link to the controller of image forming device 20.
Toner cartridge 100 may also include various positioning members 140 that position toner cartridge 100 relative to developer unit 200 and frame 306 of PC unit 300 during insertion of toner cartridge 100 into image forming device 20. For example, positioning members 140 may include a combination of projections that project outwardly from front 107, rear 108 and/or sides 109, 110 of housing 104 and/or elongated slots formed as depressions in front 107, rear 108 and/or sides 109, 110 that mate with corresponding slots and/or projections, respectively, to ensure accurate positioning of toner cartridge 100. For example, positioning members 140 help ensure that outlet port 118 mates with inlet port 220 of developer unit 200, that drive gear 132 mates with drive gear 254, and that electrical connector 136 mates with corresponding electrical contacts.
With reference to
Each guide 152, 154 includes a first ramped surface 152a, 154a at a bottom portion thereof. The width W of a lead-in section 156a of slot 156 formed between first ramped surface 152a and first ramped surface 154a narrows as first ramped surfaces 152a, 154a travel up front 107 of housing 104. In this embodiment, first ramped surface 152a gradually projects further toward side 110 as first ramped surface 152a travels up front 107 and first ramped surface 154a gradually projects further toward side 109 as first ramped surface 154a travels up front 107. Each first ramped surface 152a, 154a ends at a respective peak 152b, 154b and then leads into a second ramped surface 152c, 154c as guides 152, 154 travel up front 107. The width W of slot 156 is narrowest at an alignment section 156b of slot 156 formed between peak 152b and peak 154b in the middle of slot 156. The width W of a lead-out section 156c of slot 156 widens as second ramped surfaces 152c, 154c travel up front 107. In this embodiment, second ramped surface 152c gradually projects further toward side 109 as second ramped surface 152c travels up front 107 and second ramped surface 154c gradually projects further toward side 110 as second ramped surface 154c travels up front 107. In other words, guide 152 gradually bows toward side 110 and then back toward side 109 as guide 152 travels up front 107 and guide 154 gradually bows toward side 109 and then back toward side 110 as guide 154 travels up front 107. Accordingly, in the example embodiment illustrated, first ramped surfaces 152a and 154a taper toward each other as guides 152 and 154 travel up front 107 and second ramped surfaces 152c and 154c taper away from each other as guides 152 and 154 travel up front 107. First ramped surfaces 152a, 154a are positioned below peaks 152b, 154b and peaks 152b, 154b are positioned below second ramped surfaces 152c, 154c. Alignment member 150 may be referred to as having an hour-glass shape because of the profile of guides 152 and 154. In the example embodiment illustrated, peaks 152b, 154b of guides 152, 154 include a surface that extends substantially vertically, substantially parallel to sides 109, 110.
In the example embodiment illustrated, guide 152 and guide 154 include multi-faceted surfaces 152a, 152b, 152c and 154a, 154b, 154c. However, the surfaces of guides 152 and 154 may be formed using any suitable geometry. For example, in another embodiment, guide 152 and guide 154 each includes a curved surface that includes a first ramped surface 152a, 154a, a peak 152b, 154b and a second ramped surface 152c, 154c. In the example embodiment illustrated, the surfaces 152a, 152b, 152c and 154a, 154b, 154c of each guide 152 and 154 are continuous; however, in another embodiment, the surfaces of each guide 152 and 154 are formed as separate segments.
When toner cartridge 100 is removed, this sequence is reversed. When the access door to image forming device 20 is opened, the actuation member disengages from rear end 126a of plunger 126 causing plunger 126 to return to its home position as a result of the bias applied by spring 130. This, in turn, causes shutter 120 of toner cartridge 100 and shutter 230 of developer unit 200 to return to their closed positions prior to toner cartridge 100 being removed so that toner does not leak from outlet port 118 or inlet port 220. As toner cartridge 100 is removed, drive gear 132 separates from drive gear 254 and actuation pin 250 reverses downward through slot 156 of alignment member 150 as upper seal member 234 separates from shutter 120. The width W at the top end of lead-out section 156c of slot 156 is large enough for lead-out section 156c to capture actuation pin 250 through the entire range of motion in the side-to-side direction of developer unit 200 in frame 306 as toner cartridge 100 is separated from developer unit 200.
The foregoing description illustrates various aspects of the present disclosure. It is not intended to be exhaustive. Rather, it is chosen to illustrate the principles of the present disclosure and its practical application to enable one of ordinary skill in the art to utilize the present disclosure, including its various modifications that naturally follow. All modifications and variations are contemplated within the scope of the present disclosure as determined by the appended claims. Relatively apparent modifications include combining one or more features of various embodiments with features of other embodiments.
This patent application is a divisional application of U.S. patent application Ser. No. 14/104,054, filed Dec. 12, 2013, entitled “Toner Cartridge having an Alignment Member for Aligning with a Developer Unit in an Electrophotographic Image Forming Device.”
Number | Name | Date | Kind |
---|---|---|---|
20050271425 | Shimomura et al. | Dec 2005 | A1 |
20060171744 | Ikeda et al. | Aug 2006 | A1 |
20090142103 | Chaudhuri et al. | Jun 2009 | A1 |
20100322676 | Dawson et al. | Dec 2010 | A1 |
20130259532 | Kubota et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
2639648 | Sep 2013 | EP |
Entry |
---|
European Search Report dated Apr. 24, 2015 for European Patent Application No. 14197444.4. |
Number | Date | Country | |
---|---|---|---|
20150234317 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14104054 | Dec 2013 | US |
Child | 14700704 | US |