None
1. Field of the Disclosure
The present disclosure relates generally to toner cartridges used in electrophotographic image forming devices and, more particularly, to a toner cartridge having an angled exit port surface.
2. Description of the Related Art
In order to reduce the premature replacement of components traditionally housed within a toner cartridge for an image forming device, toner cartridge manufacturers have begun to separate components having a longer life from those having a shorter life into separate replaceable units. Relatively longer life components such as a developer roll, a toner adder roll, a doctor blade and a photoconductive drum are positioned in one replaceable unit (an “imaging unit”). The image forming device's toner supply, which is consumed relatively quickly in comparison with the components housed in the imaging unit, is provided in a reservoir in a separate replaceable unit in the form of a toner cartridge that mates with the imaging unit. In this configuration, the number of components housed in the toner cartridge is reduced in comparison with traditional toner cartridges. As a result, in systems utilizing a separate toner cartridge and imaging unit, the toner cartridge is often referred to as a “toner bottle” even though the toner cartridge is more complex than a mere bottle for holding toner.
In devices utilizing a separate toner cartridge and imaging unit, toner is fed from an exit port on the toner cartridge into an entrance port on the imaging unit. It is important that the exit port on the toner cartridge and the entrance port on the imaging unit are precisely aligned. If the exit port on the toner cartridge is misaligned with the entrance port on the imaging unit, severe toner leakage may occur resulting in mechanical and print quality defects. The requirement for precise alignment must be balanced with the need to permit the user to easily load and unload the imaging unit and the toner cartridge into and out of the image forming device.
A toner cartridge for an electrophotographic image forming device according to one example embodiment includes a housing having a top, a bottom, a front, and a rear positioned between a first side and a second side of the housing. The housing has an elongated shape extending from the first side to the second side. The housing defines a reservoir for containing toner therein. An exit port on the front of the housing is in fluid communication with the reservoir. A port surface surrounding the exit port is positioned to seal against a corresponding surface when the toner cartridge is installed in the image forming device. The port surface is angled upward with respect to the bottom of the housing and faces generally downward.
A toner cartridge for an electrophotographic image forming device according to another example embodiment includes a housing having a top, a bottom, a front, and a rear positioned between a first side and a second side of the housing. The housing has an elongated shape extending from the first side to the second side. The housing defines a reservoir for containing toner therein. A rotatable shaft is positioned within the reservoir and extends between the first side and the second side. At least one agitator extends from the rotatable shaft for agitating toner within the reservoir. A channel open to the reservoir and positioned on the front of the housing extends between the first side and the second side. An exit port on the front of the housing is in fluid communication with the channel. A rotatable auger is positioned along a length of the channel for moving toner from the reservoir to the exit port. A port surface surrounding the exit port is positioned to seal against a corresponding surface when the toner cartridge is installed in the image forming device. The port surface is angled with respect to a line formed by a centerline of the rotatable shaft and a centerline of the rotatable auger by between about 3 degrees upward with respect to the line and about 14 degrees downward with respect to the line. The port surface is angled upward with respect to the bottom of the housing.
The accompanying drawings incorporated in and forming a part of the specification, illustrate several aspects of the present disclosure, and together with the description serve to explain the principles of the present disclosure.
In the following description, reference is made to the accompanying drawings where like numerals represent like elements. The embodiments are described in sufficient detail to enable those skilled in the art to practice the present disclosure. It is to be understood that other embodiments may be utilized and that process, electrical, and mechanical changes, etc., may be made without departing from the scope of the present disclosure. Examples merely typify possible variations. Portions and features of some embodiments may be included in or substituted for those of others. The following description, therefore, is not to be taken in a limiting sense and the scope of the present disclosure is defined only by the appended claims and their equivalents.
Referring now to the drawings and particularly to
In the example embodiment shown in
Controller 28 includes a processor unit and associated memory 29 and may be formed as one or more Application Specific Integrated Circuits (ASICs). Memory 29 may be any volatile or non-volatile memory of combination thereof such as, for example, random access memory (RAM), read only memory (ROM), flash memory and/or non-volatile RAM (NVRAM). Alternatively, memory 29 may be in the form of a separate electronic memory (e.g., RAM, ROM, and/or NVRAM), a hard drive, a CD or MD drive, or any memory device convenient for use with controller 28. Controller 28 may be, for example, a combined printer and scanner controller.
In the example embodiment illustrated, controller 28 communicates with print engine 30 via a communications link 50. Controller 28 communicates with imaging unit 32 and processing circuitry 44 thereon via a communications link 51. Controller 28 communicates with toner cartridge 35 and processing circuitry 45 therein via a communications link 52. Controller 28 communicates with media feed system 38 via a communications link 53. Controller 28 communicates with scanner system 40 via a communications link 54. User interface 36 is communicatively coupled to controller 28 via a communications link 55. Processing circuitry 44, 45 may provide authentication functions, safety and operational interlocks, operating parameters and usage information related to imaging unit 32 and toner cartridge 35, respectively. Controller 28 processes print and scan data and operates print engine 30 during printing and scanner system 40 during scanning.
Computer 24, which is optional, may be, for example, a personal computer, including memory 60, such as RAM, ROM, and/or NVRAM, an input device 62, such as a keyboard and/or a mouse, and a display monitor 64. Computer 24 also includes a processor, input/output (I/O) interfaces, and may include at least one mass data storage device, such as a hard drive, a CD-ROM and/or a DVD unit (not shown). Computer 24 may also be a device capable of communicating with image forming device 22 other than a personal computer such as, for example, a tablet computer, a smartphone, or other electronic device.
In the example embodiment illustrated, computer 24 includes in its memory a software program including program instructions that function as an imaging driver 66, e.g., printer/scanner driver software, for image forming device 22. Imaging driver 66 is in communication with controller 28 of image forming device 22 via communications link 26. Imaging driver 66 facilitates communication between image forming device 22 and computer 24. One aspect of imaging driver 66 may be, for example, to provide formatted print data to image forming device 22, and more particularly to print engine 30, to print an image. Another aspect of imaging driver 66 may be, for example, to facilitate collection of scanned data from scanner system 40.
In some circumstances, it may be desirable to operate image forming device 22 in a standalone mode. In the standalone mode, image forming device 22 is capable of functioning without computer 24. Accordingly, all or a portion of imaging driver 66, or a similar driver, may be located in controller 28 of image forming device 22 so as to accommodate printing and/or scanning functionality when operating in the standalone mode.
Print engine 30 includes laser scan unit (LSU) 31, toner cartridge 35, imaging unit 32, and fuser 37, all mounted within image forming device 22. Imaging unit 32 is removably mounted in image forming device 22 and includes a developer unit 34 that houses a toner sump and a toner delivery system. The toner delivery system includes a toner adder roll that provides toner from the toner sump to a developer roll. A doctor blade provides a metered uniform layer of toner on the surface of the developer roll. Imaging unit 32 also includes a cleaner unit 33 that houses a photoconductive drum and a waste toner removal system. Toner cartridge 35 is also removably mounted in imaging forming device 22 in a mating relationship with developer unit 34 of imaging unit 32. An exit port on toner cartridge 35 communicates with an entrance port on developer unit 34 allowing toner to be periodically transferred from toner cartridge 35 to resupply the toner sump in developer unit 34.
The electrophotographic printing process is well known in the art and, therefore, is described briefly herein. During a printing operation, laser scan unit 31 creates a latent image on the photoconductive drum in cleaner unit 33. Toner is transferred from the toner sump in developer unit 34 to the latent image on the photoconductive drum by the developer roll to create a toned image. The toned image is then transferred to a media sheet received by imaging unit 32 from media input tray 39 for printing. Toner remnants are removed from the photoconductive drum by the waste toner removal system. The toner image is bonded to the media sheet in fuser 37 and then sent to an output location or to one or more finishing options such as a duplexer, stapler or a hole-punch.
Referring now to
With reference to
With reference to
With reference to
With reference to
When shutter 150 is in the open position, radial opening 154a is aligned with exit port 152 in order to permit toner to exit toner cartridge 100 through exit port 152. When shutter 150 is open, toner may be delivered from reservoir 104 of toner cartridge 100 to imaging unit 180 by rotating paddle(s) 136 and auger 144 as desired. Specifically, as paddle(s) 136 rotate, they deliver toner from toner reservoir 104 into open portion 146a of channel 146. As auger 144 rotates, it delivers toner received in channel 146 into the open end of shutter 150. Toner passes through the internal channel in shutter 150 and out of radial opening 154a and exit port 152 into a corresponding entrance port 188 in developer unit 182 (
Lever 160 may be rotated to open or close shutter 150 by any suitable method known in the art. For example, it will be appreciated that shutter 150 preferably remains closed unless toner cartridge 100 is installed in image forming device 22. Accordingly, in one embodiment, lever 160 and shutter 150 are biased toward the closed position by a biasing member such as a spring. Lever 160 and shutter 150 may be rotated to the open position as toner cartridge 100 reaches its final position in image forming device 22 by an opposing force provided by an element on imaging unit 180 or image forming device 22. For example, a pin or other type of projection on imaging unit 180 or image forming device 22 may engage lever 160 or a mechanical linkage thereto to rotate lever 160 as toner cartridge 100 reaches its final position. Further, lever 160 and shutter 150 may be rotated to the open position when a door in image forming device 22 permitting access to toner cartridge 100 is closed. For example, a plunger or other projection extending from an internal portion of the door may engage lever 160 or a mechanical linkage thereto to provide the opposing force. A combination of these methods may also be used as desired. Lever 160 may also be rotated by a solenoid or drive transmission provided on side wall 112 of toner cartridge 100. The solenoid or drive transmission may be actuated by a drive mechanism in image forming device 22.
Exit port 152 is surrounded by a port surface 170 on front 114 of toner cartridge 100. In one embodiment, port surface 170 is substantially planar. Port surface 170 mates against foam seal 190 when toner cartridge 100 mates with developer unit 182 to prevent toner from leaking as it passes from exit port 152 of toner cartridge 100 to entrance port 188 of developer unit 182. With reference to
The angle of port surface 170 ensures proper seating of port surface 170 on seal 190 of entrance port 188 on developer unit 182.
The foregoing description illustrates various aspects of the present disclosure. It is not intended to be exhaustive. Rather, it is chosen to illustrate the principles of the present disclosure and its practical application to enable one of ordinary skill in the art to utilize the present disclosure, including its various modifications that naturally follow. All modifications and variations are contemplated within the scope of the present disclosure as determined by the appended claims. Relatively apparent modifications include combining one or more features of various embodiments with features of other embodiments.
Number | Name | Date | Kind |
---|---|---|---|
5083158 | Kashima et al. | Jan 1992 | A |
5587777 | Miyaji et al. | Dec 1996 | A |
5608501 | Makino | Mar 1997 | A |
5758233 | Coffey et al. | May 1998 | A |
5768661 | Coffey et al. | Jun 1998 | A |
6014536 | Ban et al. | Jan 2000 | A |
6128453 | Ban et al. | Oct 2000 | A |
6259874 | Murakami et al. | Jul 2001 | B1 |
6266505 | Ban et al. | Jul 2001 | B1 |
6594458 | Ban et al. | Jul 2003 | B2 |
6771922 | Blanck et al. | Aug 2004 | B2 |
6782219 | Yoshino et al. | Aug 2004 | B2 |
6792228 | Ban et al. | Sep 2004 | B2 |
6853828 | Ban et al. | Feb 2005 | B2 |
6968139 | Ban et al. | Nov 2005 | B2 |
6978101 | Ban et al. | Dec 2005 | B2 |
6999704 | Hayashi et al. | Feb 2006 | B2 |
7272336 | Dawson et al. | Sep 2007 | B1 |
7386250 | Ban et al. | Jun 2008 | B2 |
7548710 | Gayne et al. | Jun 2009 | B2 |
7606520 | Dawson | Oct 2009 | B2 |
8165505 | Kojima | Apr 2012 | B2 |
20030223775 | Yoshino et al. | Dec 2003 | A1 |
20060067725 | Miyabe et al. | Mar 2006 | A1 |
20060140664 | Takami | Jun 2006 | A1 |
20060171744 | Ikeda et al. | Aug 2006 | A1 |
20070212118 | Nagae et al. | Sep 2007 | A1 |
20070223965 | Takagi | Sep 2007 | A1 |
20080101821 | Gayne et al. | May 2008 | A1 |
20090142103 | Chaudhuri et al. | Jun 2009 | A1 |
20100221039 | Kawai et al. | Sep 2010 | A1 |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority dated Feb. 1, 2013 for PCT Application No. PCT/US12/65148 (7 pages). |
International Search Report and Written Opinion of the International Searching Authority dated Jan. 31, 2013 for PCT Application No. PCT/US12/65149 (7 pages). |
International Search Report and Written Opinion of the International Searching Authority dated Jan. 31, 2013 for PCT Application No. PCT/US12/65152 (6 pages). |
International Search Report and Written Opinion of the International Searching Authority dated Jan. 28, 2013 for PCT Application No. PCT/US12/65147 (12 pages). |
Co-pending U.S. Appl. Nos. 13/340,876, 13/340,881, 13/340,884, 13/340,911 and U.S. Appl. Nos. 13/340,935, filed Dec. 30, 2011 and U.S. Appl. Nos. 13/780,060 and 13/780,042, filed Feb. 28, 2013. |