1. Field of the Invention
The present invention relates to a toner cartridge and a printer to which the toner cartridge is attached.
2. Description of the Related Art
Japanese Patent Publication (KOKAI) No. 63-231469 discloses a method of discharging toner from a toner cartridge into a developing unit, which in turn discharges the toner as a developer material to an electrostatic latent image bearing body of an electrophotographic printer.
The toner cartridge is attached to the developing unit of the printer. The toner cartridge has a shutter provided on the underside thereof. When the shutter is rotated, the toner falls from the toner cartridge into a hopper of the developing unit. Thus, the toner is held in the developer.
Recent printers used in the network place demands on large capacity toner cartridges. With conventional printers, the hopper of the developing unit is full of toner before and/or during printing, resulting in increased toner pressure in the hopper. The increased toner pressure causes poor print results.
The present invention was made in view of the aforementioned drawbacks of the conventional apparatus.
An object of the invention is to provide a toner cartridge that discharges a certain amount of toner for subsequent immediate printing operations when the toner cartridge is attached to the printer and then discharges fractions of the remaining toner in succession.
Another object of the invention is to provide a toner cartridge in which fractions of toner in the toner cartridge are discharged into a hopper when a toner-low state of the hopper is detected.
A toner cartridge is removably attached to a printer and discharges toner into the hopper of the printer. When the toner is discharged into the hopper for a first time after the toner cartridge has been attached to the printer, the toner cartridge discharges a certain amount of toner for immediate printing operations. Thereafter, a toner-discharging mechanism operates to discharge fractions of the toner held in the toner cartridge in succession into the hopper upon a toner-low signal. The printer has a controller and a detector. The detector detects an amount of toner remaining in the hopper. The controller controls the toner-discharging mechanism in accordance with the loner-low signal, i.e., detection signal of the detector such that the toner in the hopper is replenished in accordance with the amount of toner consumed. The controller controls the toner-discharging mechanism only when the toner remaining in the hopper is below a threshold.
A toner cartridge is removably attached to a printer and discharges toner into a toner hopper. The toner cartridge comprises a first toner chamber and a second toner chamber. When the toner is discharged into the toner hopper for a first time after the toner cartridge has been attached to the printer, the first toner chamber discharges all of the toner therein into the toner hopper. When the toner is discharged into the toner hopper after the first toner chamber has discharged the toner into the toner hopper, the second toner chamber discharges fractions of the toner held therein in succession into the toner hopper.
A toner cartridge has a toner chamber that holds toner therein. The toner cartridge is removably attached to a printer and discharging the toner into a toner hopper of the printer. The toner cartridge has a toner-discharging opening through which the toner is discharged from the toner chamber into the toner hopper. A toner-discharging mechanism is disposed to close the toner discharging-opening and the toner is discharged from the toner chamber through the toner-discharging opening into the toner hopper. The toner-discharging mechanism discharges fractions of the toner held in the toner chamber in succession into the toner hopper.
Another toner cartridge is used with a printer which has a toner hopper for receiving toner from the toner cartridge. The toner cartridge has a toner-discharging opening through which the toner is discharged into the toner hopper and a toner-discharging mechanism disposed to close the toner-discharging opening. The printer includes a controller that controls the toner-discharging mechanism to discharge the toner into the toner hopper only when an amount of toner remaining in the toner hopper is below a threshold value and a printing operation is being performed.
Yet another toner cartridge is removably attachable to a printer having a toner hopper, and discharging toner into the toner hopper of the printer. The toner cartridge comprises a toner chamber that holds toner therein and a toner-discharging mechanism that directs the toner from said toner chamber into the toner hopper. Said toner-discharging mechanism has a recess that holds the toner therein and is rotatable.
A developing unit comprises a toner chamber that holds toner therein and a toner-discharging mechanism that directs the toner from said toner chamber into a toner hopper. Said toner-discharging mechanism has a recess that holds the toner therein and is rotatable.
A printer apparatus comprises a toner chamber that holds toner therein and a toner hopper into which the toner is supplied from said toner chamber. The printer apparatus further comprises a toner-discharging mechanism that directs the toner from said toner chamber into said toner hopper. Said toner-discharging mechanism has a toner-discharging opening and a shutter that opens and closes the toner-discharging opening. When the shutter opens the toner-discharging opening, the shutter is positioned relative to the toner-discharging opening in accordance with a remaining amount of toner in said toner hopper.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limiting the present invention, and wherein:
c are fragmentary cross-sectional side views of a relevant portion of
Embodiments of the invention will be described in detail with reference to the accompanying drawings.
First Embodiment
Construction
The structure of the developing unit 1 and cartridge 2 will be described with reference to
The developing unit 1 is covered with a frame 10. A photoconductive drum 3 is disposed in the frame 10 and serves as an image bearing body. Disposed around a photoconductive drum 3 are a charging roller 4, toner hopper 5, toner supplying roller 6, developing roller 7, developing blade 8, and cleaning blade 9. The charging roller 4 charges the surface of the photoconductive drum 3. The toner hopper 5 receives and holds toner, not shown, discharged from the toner cartridge 2. The developing roller 7 receives the toner that is negatively charged and delivered by an agitating bar, not shown, and supplying roller 6. The developing blade 8 serves to uniformly apply the toner to the surface of the developing roller 7. The cleaning roller 9 removes residual toner deposited on the surface of the photoconductive drum 2 after transfer.
An LED head 11 is disposed downstream of the charging roller 4 and upstream of the developing roller 7, and opposes the surface of the photoconductive drum 3. The LED head 11 illuminates the surface of the photoconductive drum 3 in accordance with print data to form an electrostatic latent image. A transfer roller 12 is in pressure contact with the surface of the photoconductive drum 3 and transfers the toner image formed on the photoconductive drum 3 onto a print medium, fed between the drum and the transfer roller 12 by a feed roller, not shown.
Referring to
The frame 13 has a partition 16 formed therein. The partition 16 extends along the longitudinally extending frame 13 to define a lower chamber 17 below the partition 16 and an upper chamber 18 above the partition 16. The upper chamber 18 has a larger volume than the lower chamber 17. The partition 16 has an opening 16a that extends along the longitudinally extending frame 13 such that the upper chamber 18 and lower chamber 17 communicate with each other through the opening 16a. The partition 16 has two downward slopes that define the opening 16a therebetween. A loosely wound coil-shaped agitator 19 is rotatably mounted in contact with the two slopes to close the opening 16a. The agitator 19 may be of other shapes, for example, the agitator may be a member having meshes formed therein.
The agitator 19 is rotatably supported at the longitudinal ends of the frame 13 and is fixed to short shafts 19a and 19b. The shafts 19a and 19b extend in opposite directions through the frame 13 and are rotatably supported by the frame 13. The shaft 19a is connected to a gear 20 that is located outside the frame 13. When the toner cartridge 2 is attached to the developing unit 1, the gear 20 meshes with a drive gear, not shown, on the image forming apparatus side. When the remaining toner in the hopper 5 reaches a certain level, the drive gear drives the agitator 19 under the control of a controller, not shown. The agitator rotates to agitate the toner, so that fractions of toner are discharged in succession, that is, the toner is discharged little by little from the upper chamber 18 through the lower chamber 17 into the hopper 5. The amount of toner that is delivered per unit time from the upper chamber 18 into the hopper 5 depends on the rotational speed of the agitator 19; less toner is delivered if the rotational speed is lower and more toner is delivered if the rotational speed is higher. Alternatively, the agitator 19 may be rotated at a constant speed but driven intermittently.
The lower chamber 17 and hopper 5 have the same volume or the lower chamber 17 has a smaller volume than the hopper 5. While the toner cartridge 2 of the first embodiment has two toner chambers 17 and 18, any number of chambers may be used.
When a display indicates to the user that the toner cartridge 2 has reached exhaustion, the user opens an access cover, not shown, of the image forming apparatus and replaces the toner cartridge 2 as shown in FIG. 1. Likewise, when the user attaches a toner cartridge to the image forming apparatus for the first time, the user attaches the toner cartridge in the same manner.
Then, the user rotates a lever, not shown, of the toner cartridge 2 to rotate the shutter 15 so that the opening 14 in the frame 13 of the toner cartridge 2 is aligned with the opening 21 formed in the shutter 15. When the openings 14 and 21 are aligned with each other, all of the toner held in the lower chamber 17 falls into the hopper 5 through the openings 14 and 21. The toner discharged from the lower chamber 17 is enough for immediate printing operations.
Operation
Upon power up, the image forming apparatus performs initial setup operations to become ready for printing. Thereafter, the agitator 19 is driven in rotation to deliver the toner into the hopper 5 only when a printing operation is being carried out and the remaining toner in the hopper reaches a certain level.
Thereafter, the toner is discharged little by little from the toner cartridge 2 into the hopper 5 so as not to supply more toner than the hopper 5 can hold. Thus, the toner pressure in the hopper 5 is maintained at a proper level, preventing poor print quality as well as providing a reliable image forming apparatus that prevents print quality from being deteriorated.
Second Embodiment
Elements of a second embodiment similar to those in the first embodiment have been given the same reference numerals and the description thereof is omitted.
Construction
Referring to
As shown in
Just as in the first embodiment, the gear 20 meshes with a drive gear, not shown, of a drive mechanism provided on the image forming apparatus side. The drive gear is driven in rotation by a later described stepping motor 42. Instead of the stepping motor, the drive mechanism may use an ordinary motor with a clutch, not shown, and detecting means, not shown, for detecting the number of rotations of the toner-discharging member 23.
Operation
A control system of the second embodiment will be described in terms of detection of the amount of toner remaining in the hopper 5 and control of rotation of the toner-discharging member 23.
Referring to
The operation of discharging toner from the toner cartridge 22 to the developing unit 1 will now be described.
When the display 41 indicates to the user that the toner cartridge 22 has reached exhaustion, the user opens an access cover, not shown, of the image forming apparatus and replaces the toner cartridge 22 as shown in FIG. 1. Likewise, when the user attaches a toner cartridge 22 to the image forming apparatus for the first time, the user attaches the toner cartridge 22 in the same manner.
Then, the user rotates a lever, not shown, of the toner cartridge 22 to rotate the shutter 15 so that the opening 14 in the frame 13 of the toner cartridge 22 is aligned with the opening 21 formed in the shutter 15.
Upon power up, the image forming apparatus performs initial setup operations to become ready for printing. Thereafter, if the toner-low detector 40 detects the toner-low state, then the toner-low detector 40 provides a detection signal to the controller 39. As long as the controller 39 is receiving the detection signal, the controller 39 controls the motor driver 43 to drive the stepping motor 42 to rotate the gear 20. Thus, the motor drives the toner-discharging member 23 in rotation. When the V-shaped space 23b is oriented upward, the space 23b receives toner therein from the upper chamber 18. When the V-shaped space 23b is oriented downward as the toner-discharging member 23 rotates, the toner in the V-shaped space falls through the lower chamber 17 into the hopper 5. When the toner-low detector 40 detects that the toner-low state has been removed, the controller 39 controls the motor driver 43 to stop driving the stepping motor 42. Thus, the stepping motor 42 stops so that the toner-discharging member 23 is prevented from further rotating. Thus, the toner is no longer discharged. The aforementioned operation is repeated to supply toner into the hopper 5 as the toner in the hopper is consumed.
The rotation of the toner-discharging member 23 may also be controlled in some other way. For example, the controller 39 estimates an amount of toner consumed based on a total amount of data that has been printed since the toner was supplied from the toner cartridge into the hopper 5 last time. When the controller 39 determines that the amount of toner consumed exceeds a certain value, a predetermined amount of toner is discharged into the hopper 5. An amount of toner that is delivered by the V-shaped space 23b at a time is known. Thus, the configuration may be modified such that the toner-discharging member 23 is rotated through a number of rotations in accordance with the amount of toner consumed since the toner was supplied from the toner cartridge into the hopper 5 last time. The toner-discharging member 23 is rotated through more rotations if the amount of printed data is large than if the amount of printed data is small.
The second embodiment offers the same advantages as the first embodiment.
Third embodiment
Construction
c are fragmentary cross-sectional side views of a relevant portion of FIG. 7A.
Referring to
The toner cartridge 24 has a shutter 47 of substantially the same structure as the shutter 15 of the first embodiment. The shutter 47 differs from the shutter 15 in that an opening 47a is larger than the opening 21. The rest of the construction is much the same as that of the first embodiment and the description thereof is omitted.
The toner cartridge 24 will be described in terms of the operation in which the toner cartridge discharges toner into the developing unit 1.
When a display, not shown, indicates to the user that the toner cartridge 24 has reached exhaustion, the user opens an access cover, not shown, of the image forming apparatus and replaces the toner cartridge 24 as shown in FIG. 7. Likewise, when the user attaches a toner cartridge to the image forming apparatus for the first time, the user also attaches the toner cartridge in the same manner.
At this moment, the shutter 47 is at a closing position relative to the frame 13 as shown in
Upon power up, the image forming apparatus performs initial setup operations to become ready for printing. Thereafter, the agitator 19 is driven in slow rotation to deliver fractions of toner, held in the large chamber 27, into the hopper in succession. In other words, the toner is delivered little by little into the hopper only when a printing operation is being carried out and the remaining toner in the hopper reaches a certain level.
As described above, the third embodiment offers the same advantages as the first and second embodiments.
Fourth embodiment
Construction
The shutter 31 has short shafts 33a and 33b at longitudinal ends thereof. The shutter has shafts 33a and 33b that project outwardly from the shutter 31 in the longitudinal direction of the shutter 31. The short shafts 33a and 33b extend in opposite directions through the frame 29 and outwardly from the frame 29, and are rotatably supported by the frame 29. The shaft 33a is fixedly connected to a manual lever 34 and the shaft 33b is securely connected to a gear 35.
As shown in
The control system of the aforementioned image forming apparatus will be described. Here, the description focuses on the detection of remaining toner in the hopper 5 and control of the rotation of the shutter 31.
Referring to
A toner-low detector 40 detects the remaining toner in the hopper 5. When the remaining amount of toner is less than a threshold value (i.e., “toner-low” condition), the toner detector 40 generates a toner-low signal. When the controller 44 receives the toner-low signal for a certain length of time, the controller 44 determines that the toner in the toner cartridge has been exhausted, and causes a display 41 to prompt the user to replace the toner cartridge 28.
A stepping motor 45 is connected to the drive gear 36. A motor driver 46 is capable of driving the stepping motor 45 to rotate either in the forward direction or in the reverse direction in accordance with the signal received from the controller 44. The controller 44 and motor driver 46 cooperate to control rotation of the drive gear 36 to either open or close the shutter 31. When the controller 44 receives the toner-low signal, the stepping motor 45 rotates in such a direction as to open the shutter 31. When the controller 44 does not receive the toner-low signal, the stepping motor 45 rotates in such a direction as to close the shutter 31. A plunger magnet may be used in place of the stepping motor 45. The rest of the construction is much the same as the first embodiment.
Operation
The toner-discharging operation of the toner cartridge 28 will be described.
When the toner-low condition is detected, a display 41 indicates to the user that the toner cartridge 28 has reached exhaustion, and prompts the user to replace the toner cartridge 28. The user rotates the access cover 37 of the image forming apparatus in a direction shown by arrow A as shown in FIG. 8 and then replaces the toner cartridge 28. Likewise, when the user attaches a new, unused toner cartridge 28 to the image forming apparatus for the first time, the user also attaches the toner cartridge 28 in the same manner.
Then, the user rotates the lever 34 in a direction shown by arrow C to an opening position where the opening 31 formed in the shutter 31 is aligned with the opening 30. Thus, the toner in the toner cartridge cascades into the hopper 5 through the openings 30 and 31 to fill up the hopper 5. The toner filling up the hopper is enough for immediate printing operations. Toner that fills up the hopper 5 is not detrimental because printing has not begun yet.
Then, when the user closes the access cover 37 by rotating the access cover 37 in a direction shown by arrow B shown in
The rotation of the drive gear 36 in the direction shown by arrow D causes the shutter 31 to completely close the opening 30. Thus, the opening 32 formed in the shutter 31 no longer overlaps the opening 30, so that the toner is not discharged from the toner cartridge into the hopper 5. Then, the image forming apparatus is now ready for printing. Because the toner is not discharged into the hopper 5 when a printing operation starts, the hopper 5 will not receive toner from the toner cartridge 28 during the printing operation.
After many times of printing operations, either continuously or intermittently, if the toner-low detector 40 detects the toner-low state, the toner-low detector 40 provides a toner-low signal to the controller 44.
As long as the controller 44 receives the toner-low signal from the toner-low detector 40, the controller 44 continues to cause the motor driver 46 to control the stepping motor 45, thereby rotating the drive gear 36 in the direction shown by arrow C. The drive gear 36 causes the idle gear 38 to rotate, which in turn causes the gear 35 to rotate in the direction shown by arrow C of FIG. 9. The gear 35 causes the shutter 31 to rotate in the direction shown by arrow C such that at least a part of the opening 32 overlaps the opening 30, thereby discharging the toner.
As soon as the toner-low detector 40 stops providing the toner-low signal to the controller, the controller 44 causes the motor driver 46 to control the stepping motor to rotate in the direction shown by arrow D in
Thus, the toner in the toner cartridge 28 falls into the hopper 5 so that a fraction of toner is discharged into the hopper. When the toner-low detector 40 no longer detects the toner-low condition, the toner-low detector 40 immediately stops outputting the toner-low signal to the controller 44. Then, the controller 44 quickly causes the motor driver 46 to control the stepping motor 45, thereby causing the drive gear 36 to rotate in the direction shown by arrow D shown in
Just as in the first embodiment, a predetermined sufficient amount of toner is immediately discharged for immediate printing operations when the toner cartridge 28 is replaced or toner is discharged to the image forming apparatus for the first time. This way of discharging toner provides an easy-to-use image forming apparatus. The invention prevents an excess amount of toner from being discharged into the hopper 5 during printing, preventing the toner pressure in the hopper 5 from increasing more than necessary. Thus, the invention provides a reliable image forming apparatus in which printing results are prevented from being deteriorated.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2000-64516 | Mar 2000 | JP | national |
This application is a division of prior U.S. patent application Ser. No. 09/801,501, filed Mar. 8, 2001 now U.S. Pat. No. 6,591,079, entitled “TONER CARTRIDGE AND PRINTER TO WHICH THE TONER CARTRIDGE IS ATTACHED”.
Number | Name | Date | Kind |
---|---|---|---|
3954331 | Smith | May 1976 | A |
5652947 | Izumizaki | Jul 1997 | A |
6236814 | Yago | May 2001 | B1 |
6345163 | Suzuki et al. | Feb 2002 | B1 |
Number | Date | Country |
---|---|---|
8-234551 | Feb 1995 | JP |
8-297405 | Nov 1996 | JP |
2000-214667 | Aug 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20030210929 A1 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09801501 | Mar 2001 | US |
Child | 10457677 | US |