The present invention generally relates to a toner container which is attached to an image forming apparatus such as a copying machine, a printer, a facsimile machine, and a multifunctional peripheral having the above functions and an image forming apparatus using the toner container.
Conventionally, in an image forming apparatus such as a copying machine, a toner container having a cylindrical shape (toner bottle) has been used by being detachably attached to the image forming apparatus (for example, see Patent Document 1).
In Patent Document 1, a toner container (toner bottle), which is detachably attached to an image forming apparatus main body, is mainly formed of a container main body and a cap section. A spiral protrusion is formed on an inner circumferential surface of the container main body, and when the container main body is rotated, toners contained in the container main body are carried to an opening part of the toner container. The cap section is connected to the container main body and is supported by the image forming apparatus main body without being rotated by the rotation of the container main body. The toners output from the opening part of the container main body are output from a toner output opening of the cap section. The toners output from the toner output opening are supplied to a developing device.
In addition, a shutter member for opening or closing the toner output opening is formed in the cap section of the toner container. The shutter member opens or closes the toner output opening by being interfaced with attaching or detaching of the toner container to or from the image forming apparatus main body.
In a case where the toner container in Patent Document 1 is compared with a toner container without having a cap section, when the toner container in Patent Document 1 is replaced with a new one, stains caused by toners can be decreased. That is, since a toner outlet is opened or closed by interfacing with an attaching or detaching operation of the toner container, a user is prevented from being stained by the toners due to a direct touch of the toner outlet. In addition, since the direction of the toner outlet is a direct downward direction, an amount of toners remaining near the toner outlet may be small as a result of being dropped with the toner's own weight when the toners have been almost consumed (at the toner end time). With this, the stains caused by the toners near the toner outlet can be decreased when the container is replaced with a new one.
However, a slight amount of toners is adhered onto a part surrounding the toner outlet, and the adhered toners are dropped into the image forming apparatus main body when the toner container is replaced with a new one. In particular, stains caused by the dropped toners have been remarkable at the part surrounding a toner supplying opening of the image forming apparatus main body. Consequently, an unsatisfying impression has been given to the user.
In order to solve the above problem, it is conceivable that a shutter member is formed to open or close the toner outlet by rotating the toner container in a state where the toner container is attached to the image forming apparatus main body and a main body side shutter is formed to open or close a toner supplying opening of the image forming apparatus main body.
However, in this case, in order not to generate a toner supplying fault to the image forming apparatus main body, the main body side shutter of the image forming apparatus main body must be surely opened together with an opening operation of the shutter member of the toner container, and the toner outlet of the toner container must be surely connected to the toner supplying opening of the image forming apparatus.
In a preferred embodiment of the present invention, there is provided a toner container and an image forming apparatus in which a toner supplying fault does not occur from a toner container to an image forming apparatus main body of the image forming apparatus and toners dropped from the toner container to a part surrounding a toner supplying opening of the image forming apparatus main body is hardly visible by a user and the dropped toners do not give an unsatisfying impression to the user when the toner container is replaced with a new one.
To achieve one or more of these and other advantages, according to one aspect of the present invention, there is provided a toner container having a cylindrical shape which is detachably attached to an image forming apparatus main body of an image forming apparatus. The toner container includes a toner outlet formed at a circumferential surface of the toner container for discharging toners contained in the toner container, a shutter member formed at the circumferential surface of the toner container for opening or closing the toner outlet together with a rotational operation of the toner container in a state where the toner container is attached to the image forming apparatus main body, and a guiding member formed at a part surrounding the toner outlet configured to protrude from the circumferential surface of the toner container for guiding an opening or closing operation of the shutter member in a circumferential direction of the toner container. The image forming apparatus main body includes a toner supplying opening configured to be connected to the toner outlet, and a main body side shutter for opening or closing the toner supplying opening. When the shutter member of the toner container is opened, an end surface of the guiding member pushes the main body side shutter together with the opening operation of the shutter member and the toner outlet is opened, and the toner outlet is connected to the toner supplying opening.
According to an embodiment of the present invention, when a shutter member opens a toner outlet, an end surface of a guiding member pushes a main body side shutter, and a toner supplying opening is opened. With this, the toner supplying opening is connected to the toner outlet. Therefore, even if toners are adhered onto a surrounding part of the toner supplying opening, the shutter member is surely engaged with the main body side shutter, and the shutter is surely opened by interfacing with the opening operation of the shutter member. With this, an abnormal connection of the toner outlet with the toner supplying opening can be prevented. In addition, since toners dropped from the toner container to a part surrounding the toner supplying opening are hidden by the main body side shutter, stains caused by the dropped toners is hardly visible by a user when the toner container is replaced with a new one. Thus, an unsatisfying impression is not given to the user.
Features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings, in which:
Referring to the drawings, embodiments of the present invention are described in detail.
Referring to
First, a structure and operations of an image forming apparatus are described.
As shown in
An intermediate transfer unit 15 is provided under the toner container storing section 31. The intermediate transfer unit 15 includes an intermediate transfer belt 8. Image forming sections 6Y, 6M, 6C, and 6K corresponding to the four colors yellow, magenta, cyan, and black are positioned to face the intermediate transfer belt 8.
Toner supplying devices 60Y, 60M, 60C, and 60K are provided under the corresponding toner containers 32Y, 32M, 32C, and 32K. Toners contained in the toner containers 32Y, 32M, 32C, and 32K are supplied to corresponding developing devices in the image forming sections 6Y, 6M, 6C, and 6K by the corresponding toner supplying devices 60Y, 60M, 60C, and 60K.
Some elements in
In the following, since elements for processing the corresponding colors yellow, magenta, cyan and black are substantially identical to each other, in some cases, elements for the yellow color having suffix Y are described as representative.
As shown in
Each of the image forming sections 6M, 6C, and 6K has a structure substantially identical to the structure of the image forming section 6Y and forms a corresponding color image. Therefore, in the following, the image forming section 6Y is mainly described while omitting the descriptions of the image forming sections 6M, 6C, and 6K.
In
The surface of the photoconductor drum 1Y reaches a position where laser beams L are radiated from an exposing device 7 (see
Then the surface of the photoconductor drum 1Y on which the electrostatic latent image has been formed reaches a position facing the developing device 5Y, the electrostatic latent image is developed at the position, and a yellow toner image is formed (the developing process).
Then the surface of the photoconductor drum 1Y on which the toner image has been formed reaches a position facing the intermediate transfer belt 8 and a primary transfer bias roller 9Y, and the toner image on the photoconductor drum 1Y is transferred onto the intermediate transfer belt 8 at the position (a primary transferring process). At this time, a small amount of toners which have not been transferred onto the intermediate transfer belt 8 remain on the photoconductor drum 1Y.
Then the surface of the photoconductor drum 1Y reaches a position facing the cleaning section 2Y and the toners remaining on the surface of the photoconductor drum 1Y are mechanically removed by a cleaning blade 2a (the cleaning process).
Finally, the surface of the photoconductor drum 1Y reaches a position facing the discharging section and electric charges remaining on the surface of the photoconductor drum 1Y are discharged.
By the above processes, the image forming process on the photoconductor drum 1Y is completed.
The above image forming process is performed in the image forming sections 6M, 6C, and 6K, similar to in the image forming section 6Y. That is, the laser beams L corresponding to image information are radiated onto the corresponding photoconductor drums 1M, 1C, and 1K from the exposing device 7 positioned under the image forming sections 6M, 6C, and 6K. Specifically, the exposing device 7 causes a light source to emit the laser beams L and radiates the laser beams L onto the corresponding photoconductor drums 1M, 1C, and 1K via plural optical elements while the laser beams L are scanned by a rotating polygon mirror.
After the developing process, the toner images formed on the corresponding photoconductor drums 1Y, 1M, 1C, and 1K are transferred onto the intermediate transfer belt 8 by being superposed. With this, a color image is formed on the intermediate transfer belt 8.
Returning to
Primary transfer nips are formed by sandwiching the intermediate transfer belt 8 between the four primary transfer bias rollers 9Y, 9M, 9C, and 9K and the four photoconductor drums 1Y, 1M, 1C, and 1K. A transfer bias voltage whose polarity is inverted relative to the polarity of the toners is applied to the four primary transfer bias rollers 9Y, 9M, 9C, and 9K.
The intermediate transfer belt 8 sequentially passes through the primary transfer nips of the primary transfer bias rollers 9Y, 9M, 9C, and 9K by being moved in the arrow direction. With this, the toner images on the corresponding photoconductor drums 1Y, 1M, 1C, and 1K are primarily transferred onto the intermediate transfer belt 8 by being superposed.
The intermediate transfer belt 8 onto which the toner images have been transferred by being superposed reaches a position facing a secondary transfer roller 19. A secondary transfer nip is formed at the position where the intermediate transfer belt 8 is sandwiched between the secondary transfer backup roller 12 and the secondary transfer roller 19. Then, the four-color toner image formed on the intermediate transfer belt 8 is transferred onto a recording medium P (for example, paper) carried to the position of the secondary nip (a secondary transferring process). At this time, toners which have not been transferred onto the recording medium P remain on the intermediate transfer belt 8.
Then the intermediate transfer belt 8 reaches a position facing the intermediate transfer cleaning section and the toners remaining on the intermediate transfer belt 8 are removed at the position.
With this, the transfer process which is performed on the intermediate transfer belt 8 is completed.
The recording medium P is carried to the position of the secondary nip from a paper feeding section 26 at a lower part of the image forming apparatus main body 100 via a paper feeding roller 27, a pair of registration rollers 28, and so on.
Specifically, the plural recording media P (many pieces of paper) are stored in the paper feeding section 26 by being stacked. When the paper feeding roller 27 is rotated counterclockwise, a top recording medium P is carried to a position between the pair of registration rollers 28.
The recording medium P carried to the pair of registration rollers 28 is temporarily stopped at a roller nip position of the pair of registration rollers 28 whose rotation is stopped. Then the pair of registration rollers 28 is rotated again by matching the timing of the color image on the intermediate transfer belt 8, and the recording medium P is carried to the secondary transfer nip. With this, the color image is transferred onto the recording medium P.
The recording medium P onto which the color image has been transferred at the position of the secondary transfer nip is carried to a fixing section 20 and the color image on the recording medium P is fixed by heat and pressure from a corresponding fixing belt and a pressure applying roller of the fixing section 20.
The recording medium P on which the color image has been formed is output to a stacking section 30 via a pair of paper outputting rollers 29. When plural recording media P are output, the output plural recording media P are sequentially stacked on the stacking section 30.
By the above processes, the image forming process in the image forming apparatus main body 100 is completed.
Next, returning to
The developing device 5Y includes a developing roller 51Y facing the photoconductor drum 1Y, a doctor blade 52Y facing the developing roller 51Y, developer containers 53Y and 54Y, two carrying screws 55Y in the corresponding developer containers 53Y and 54Y, and a concentration detecting sensor 56Y for detecting a toner concentration in a developer G.
The developing roller 51Y includes a magnet (not shown) secured inside the developing roller 51Y and a sleeve (not shown) which is rotated around the magnet. The developer G (two-component developer) formed of carrier particles (toner carrier) and toners is contained in the developer containers 53Y and 54Y. The developer container 54Y is connected to a toner dropping route 64Y via an opening formed at an upper side of the developer container 54Y.
Next, operations of the developing device 5Y are described.
The sleeve of the developing roller 51Y is rotated in the arrow direction shown in
The toner concentration of the developer G in the developing device 5Y is adjusted to be a value within a predetermined range. Specifically, toners contained in the toner container 32Y (see
The toners supplied to the developer container 54Y are mixed with the developer G in the developer container 54Y, and the developer G is circulated in the two developer containers 53Y and 54Y while the developer G is stirred by the carrying screws 55Y. The developer G is moved in the direction perpendicular to the plane of the paper of
The toners in the developer G are adhered to carrier particles by a friction charge with the carrier particles and are carried on the developing roller 51Y with the carrier particles by a magnetic force formed on the developing roller 51Y.
The developer G carried on the developing roller 51Y reaches the doctor blade 52Y by being carried in the arrow direction. The amount of the developer G on the developing roller 51Y is adjusted to be a suitable value by the doctor blade 52Y and the developer G whose amount is adjusted is carried to a position facing the photoconductor drum 1Y. The position is a developing region. The toners in the developer G are adhered onto an electrostatic latent image formed on the photoconductor drum 1Y by an electric field generated in the developing region. The developer G remaining on the developing roller 51Y reaches an upper part in the developer container 53Y by the rotation of the sleeve and the remaining developer G is dropped from the developing roller 51Y.
Next, referring to
In
The structure of each of the toner supplying devices 60Y, 60M, 60C, and 60K is substantially equal, and the structure of each of the toner containers 32Y, 32M, 32C, and 32K is substantially equal. Therefore, the toner supplying device 60Y and the toner container 32Y are described as representative.
In
With this, the toners contained in the toner container 32Y are discharged from the toner outlet W and are stored in a toner tank of the toner supplying device 60Y.
In
That is, when the toner container 32Y is suitably rotated by the driving section 71, the toners are suitably supplied to a toner tank 61Y of the toner supplying device 60. When the service life of each of the toner containers 32Y, 32M, 32C, and 32K has passed; that is, when almost all toners in the toner container 32Y have been consumed, an old one is replaced with a new one.
In
In
In
The gear 92 which engages with the gear 91 transmits the driving force to the gear 81 positioned at the front side of the toner supplying device 60Y via the driving force transmitting shaft 81a. The driving force transmitted to the gear 81 rotates the toner carrying screw 62Y and the toner stirring member 65Y via the gear train formed of the gears 81 through 84. The structure of the toner supplying device 60Y at the front side where the toner carrying screw 62Y and the toner stirring member 65Y are positioned is described below in detail by referring to
As shown in
Specifically, as shown in
In addition, in the inserting openings 110Y, 110M, 110C, and 110K, second guide grooves 112Y, 112M, 112C, and 112K; into which corresponding protrusion members 32Y1d and 32Y1e, 32M1d and 32M1e, 32C1d and 32C1e, and 32K1d and 32K1e (see
The second guide grooves 112Y, 112M, 112C, and 112K are positioned at the same sides (in
Since the second guide grooves 112Y, 112M, 112C, and 112K in the corresponding inserting openings 110Y, 110M, 110C, and 110K are positioned at the right sides in
In
With this, when the toner container 32Y is attached to or detached from the image forming apparatus main body 100, the movement of the toner container 32Y in the short length direction (the lateral direction of the paper of
In the first embodiment of the present invention, the toner containers 32Y, 32M, 32C, and 32K are detachably attached to the corresponding toner supplying devices 60Y, 60M, 60C, and 60K. As shown in
Specifically, four antennas 121Y, 121M, 121C, and 121K are positioned on a surface of the antenna substrate 120. The four antennas 121Y, 121M, 121C, and 121K communicate with corresponding electronic substrates 32Y1c, 32M1c, 32C1c, and 32K1c (see
Information is transmitted and received between the electronic substrates 32Y1c, 32M1c, 32C1c, and 32K1c of the toner containers 32Y, 32M, 32C, and 32K, and the antennas 121Y, 121M, 121C, and 121K of the antenna substrate 120 positioned in the image forming main body 100. The information to be communicated with each other is, for example, the production serial number of the toner container, the recycled number of the toner container, the kind of toners, the production lot number of toners, the production date of toners, the manufacturer of toners, the amount of toners in the toner container, the color of toners, and a usage history of the image forming apparatus main body 100.
In the first embodiment of the present invention, since the electronic substrates 32Y1c, 32M1c, 32C1c, and 32K1c face the corresponding antennas 121Y, 121M, 121C, and 121K; the communications between the electronic substrates 32Y1c, 32M1c, 32C1c, and 32K1c and the corresponding antennas 121Y, 121M, 121C, and 121K are performed in good conditions. In addition, since the antennas 121Y, 121M, 121C, and 121K are positioned under the supporting part 115 of the toner storing section 31, the toner supplying device 60Y, 60M, 60C, and 60K (the image forming apparatus main body 100) are not large sized in the long length direction. With this, cost of components to be used in the image forming apparatus main body 100 and manufacturing cost of the image forming apparatus main body 100 can be relatively low, and the installing capability of the image forming apparatus main body 100 in an office can be increased.
Specifically, when the engaging section 32Y2b (see
Since it is preferable that the electronic substrate 32Y1c of the toner container 32Y is positioned to face the antenna substrate 120, the electronic substrate 32Y1c is positioned at the back side relative to the position of the toner outlet W.
That is, the electronic substrate 32Y1c is positioned at the back side of the toner supplying opening 60Ya of the image forming apparatus main body 100. Therefore, when the toner container 32Y is attached to or detached from the toner supplying device 60Y, the electronic substrate 32Y1c passes through an adjacent position over the toner supplying opening 60Ya. Consequently, there is a risk that the electronic substrate 32Y1c is contaminated by a small amount of a powder smoke of the toners. In order to solve the above problem, the shutter 89 (the main body side shutter) closes the toner supplying opening 60Ya.
Referring to
In
The toner tank 61Y is under the toner outlet W of the cap section 32Y1 of the toner container 32Y and stores the toners discharged from the toner outlet W of the toner container 32Y via the toner supplying opening 60Ya. The bottom part of the toner tank 61Y is connected to an upstream side of a toner carrying section (the toner carrying screw 62Y and the toner carrying tube 63Y).
The toner end sensor 66Y is on a wall surface of the toner tank 61Y at a position having a predetermined height from the bottom surface of the toner tank 61Y. The toner end sensor 66Y detects a signal when the amount of the toners stored in the toner tank 61Y becomes a value less than a predetermined value. As the toner end sensor 66Y, a piezoelectric sensor can be used.
In
The toner stirring member 65Y (rotating member) is at an inner center position of the toner tank 61Y near the toner end sensor 66Y for preventing the toners stored in the toner tank 61Y from being condensed. The toner stirring member 65Y includes a flexible member 65Ya, and rotates in the arrow direction clockwise as shown in
As shown in
In
The toner carrying screw 62Y carries the toners by being rotated in a predetermined direction, and the toner carrying tube 63Y has an inner wall adjacent to the toner carrying screw 62Y. As described above, the toner carrying section includes the toner carrying screw 62Y and the toner carrying tube 63Y.
The toner carrying screw 62Y is a screw member in which a helicoid is spirally formed on a shaft and is rotatably supported in the toner carrying tube 63Y via bearings (not shown). As shown in
The upstream side of the toner carrying tube 63Y is connected to the toner tank 61Y and the downstream side of the toner carrying tube 63Y is connected to the toner dropping route 64Y via the toner dropping opening 64Ya (see
As described above, in the first embodiment of the present invention, the toners stored in the toner tank 61Y are carried in the obliquely upward direction by the toner carrying screw 62Y and the toner carrying tube 63Y, and the carried toners are supplied to the developing device 5Y by the toner's own weight via the toner dropping route 64Y. With this, even if the rotation of the toner carrying screw 62Y is stopped when the supply of the toners to the developing device 5Y is stopped, the toners remaining in the toner carrying tube 63Y are hardly dropped into the developing device 5Y via the toner dropping route 64Y.
Specifically, the toners remaining at a position separated from the toner dropping opening 64Ya slide toward the toner tank 61Y along the oblique toner carrying tube 63Y or stay at the position. In addition, the toners remaining at a position near the toner dropping opening 64Ya in the toner carrying tube 63Y are not greatly dropped from the toner dropping opening 64Ya by the toner's own weight even if the apparatus is subjected to a great shock, and the toners slide toward the toner tank 61Y along the oblique toner carrying tube 63Y or stay at the position.
Therefore, even if the rotation and non-rotation of the toner carrying screw 62Y are repeated, the amount of toners to be supplied to the developing device 5Y can be controlled at high accuracy; that is, the toners can be stably supplied to the developing device 5Y. Consequently, the variation of the toner concentration in the developer G can be prevented. That is, the image density of an output image can be prevented from being high, the toners can be prevented from being scattered, and the background image can be prevented from being degraded.
In addition, even if the rotation and non-rotation of the toner carrying screw 62Y are repeated, a large amount of toners remaining in the toner carrying tube 63Y are not supplied to the developing device 5Y. Therefore, the amount of toners remaining in the toner tank 61Y is not greatly varied. Consequently, error detection by the toner end sensor 66Y can be prevented.
In
In addition, as shown in
As shown in
Supply opening guides 69Y are at positions which sandwich the toner supplying opening 60Ya of the toner tank 61Y. The supply opening guides 69Y guide the flange W2 of the toner outlet W (see
As shown in
In addition, the toner supplying device 60Y includes a sliding surface (not shown) on which the shutter 89 slides in the circumferential direction of the toner supplying device 60Y. In order to fill a gap between the sliding surface and the shutter 89, a sealing member can be adhered onto the sliding surface.
The shutter 89 opens or closes the toner supplying opening 60Ya by being pushed by the cap section 32Y1 (a guiding member 32Y1g and a contacting section 32Y1h) together with an opening or closing operation of the shutter member 32Y1a. With this, the toner outlet W of the toner container 32Y is connected to the toner supplying opening 60Ya of the toner supplying device 60Y. The above elements are described below in detail.
As described above, the antenna substrate 120 (see
In the first embodiment of the present invention, since the antenna 121Y communicates with the electronic substrate 32Y1c without contact, the powder smoke of the toners are prevented from being dropped on the antenna 121Y as described below.
As shown in
Brim sections (not shown) are positioned between the antenna substrate 120 and the corresponding antennas 121M, 121C, and 121K.
Therefore, even if the attaching and detaching operations of the toner container 32Y to and from the toner supplying device 60Y are repeated, toners adhered onto the toner container 32Y can be prevented from being dropped on the antenna 121Y. Consequently, a communication failure between the antenna 121Y and the electronic substrate 32Y1c can be prevented.
As shown in
In addition, as shown in
In addition, since the brim section 31Ya is formed to be the curved surface, the toner container 32Y can be smoothly attached to or detached from the toner supplying device 60Y by being guided with the brim section 31Ya. With this, vibrations of the toner containers 32Y at the attaching or detaching operation of the toner container 32Y can be decreased, and toners adhered onto the toner container 32Y can be prevented from being flown and dropped.
The inventors of the present embodiment have performed an experiment. In the experiment, the toner container 32Y containing 200 g of toners was attached to and detached from the toner supplying device 60Y 30 times, and an amount of toners dropped and adhered onto the antenna 121Y was measured. The toners adhered onto the antenna 121Y were collected on a transparent tape, and the toners on the transparent tape were optically measured by using an ID measuring instrument X-Rite. When the ID value measured by the ID measuring instrument is great, the amount of adhered toners is great.
In the results of the experiment, when the brim section 31Ya was not the curved surface, the ID value was 0.09, when the brim section 31Ya was not the curved surface and the partition section 31Yb was formed, the ID value was 0.04, and when the brim section 31Ya was the curved surface and the partition section 31Yb was not formed, the ID value was 0.06. Further, when the brim section 31Ya was not formed, the ID value was 0.98. Therefore, when the brim section 31Ya was formed, an excellent effect was obtained.
Next, referring to
As shown in
The container main body 32Y2 includes an opening section and the opening section is connected to the inside of the cap section 32Y1. A spiral protrusion 32Y2a is formed on the inner wall of the container main body 32Y2. The container main body 32Y2 is rotated in a predetermined direction by receiving a driving force from the driving coupling member 90 of the image forming apparatus main body 100 for engaging with the engaging sections 32Y2b formed at the bottom of the toner container 32Y. With this, toners in the toner container 32Y are carried toward the cap section 32Y1.
The toners discharged from the opening section of the container main body 32Y2 are output from the toner outlet W formed at the circumferential surface of the cap section 32Y1, and are supplied to the toner tank 61Y of the toner supplying device 60Y via the toner supplying opening 60Ya (see
As shown in
In
The number of the engaging sections 32Y2b of the toner container 32Y can be three or more by forming the three or more claw members of the driving coupling member 90 of the image forming apparatus main body 100 in which the distribution angle is determined to be a suitable angle with the rotational center axis of the container main body 32Y2 as the reference. In this case, when the toner container 32Y is rotated, torque variation can be decreased. However, a probability may be increased in which the engaging sections 32Y2b interfere with the claw members when the toner container 32Y is attached to the image forming apparatus main body 100. Therefore, the number of the engaging sections 32Y2b and the claw sections must be determined by considering the toner outputting capability from the toner container 32Y determined by the torque variation and the attaching capability of the toner container 32Y to the image forming apparatus 100 determined by the interference between the engaging sections 32Y2b and the claw sections.
When the toner container 32Y is attached to the toner supplying device 60Y, the cap section 32Y1 is secured to the toner supplying device 60Y. That is, after attaching the toner container 32Y to the toner supplying device 60Y, the cap section 32Y1 is not rotated, and only the container main body 32Y2, which is rotatably supported by the cap section 32Y1, is rotated.
The sealing capability between the cap section 32Y1 and the container main body 32Y2 is obtained by a sealing member 32Y20b (see
As shown in
The cap section 32Y1 is formed by engaging a cap section main body 32Y10 with the handle main body 32Y20 (see
The shutter member 32Y1a opens or closes the toner outlet W when the toner container 32Y is attached to or detached from the toner supplying device 60Y.
Specifically, when the toner container 32Y is attached to the toner supplying device 60 (the image forming apparatus main body 100), a user inserts the container main body 32Y2 of the toner container 32Y into the inserting opening 110Y (see
After this, when the toner container 32Y is further pushed while the rotation is stopped, the protrusion member 32Y1d and the rib 32Y1e exceed the second guide grooves 112Y. After engaging the engaging sections 32Y2b formed at the bottom of the toner container 32Y with the driving coupling member 90 of the image forming apparatus main body 100, when the handle part 32Y1b is manually rotated by approximately 90 degrees clockwise, the protrusion member 32Y1d is engaged with a stopping member of the toner supplying device 60Y, the toner container 32Y is stopped, and the toner outlet W is opened. At this time, the toner outlet W engages with toner supplying opening 60Ya of the toner tank 61Y (see
When the toner container 32Y is detached from the toner supplying device 60Y (the image forming apparatus 100), an operation reverse to the above attaching operation is performed.
In addition, the toner supplying opening 60Ya is opened when the shutter 89 of the toner supplying device 60Y is pushed by the cap section 32Y1 by the movement of the shutter member 32Y1a (the rotation of the cap section 32Y1 of the toner container 32Y) (see
In
In
In
The electronic substrate 32Y1c has a function of, for example, an RFID, and as described above, communicates with the antenna substrate 120 (see
The protrusion member 32Y1d (non-compatible identification member) prevents a different type of toner container from being attached to the image forming apparatus main body 100 in the long length direction. For example, when a manufacturer produces an image forming apparatus under a model name of another company, and supplies a toner container under the name of the company, the protrusion member 32Y1d is formed to identify the toner container 32Y. The protrusion member 32Y1d is formed to sandwich the electronic substrate 32Y1c with the shutter member 32Y1a when the toner outlet W is closed.
The protrusion member 32Y1d includes three protrusions right after the molding. When a toner container is used between different image forming apparatuses, the breaking position of the protrusion is different between the toner containers. For example, when two image forming apparatuses are manufactured under two model names of different companies, the protrusion at the upper position is broken for a first company and the protrusions at the upper and lower positions are broken for a second company. In this case, the shape of the grove, through which the protrusion member 32Y1d passes, is changed in the image forming apparatus main body 100.
In
In addition, in
When the shutter member 32Y1a has closed the toner outlet W (states shown in see
Specifically, as shown in
As shown in
With this, even if the toner container 32Y is not attached to the image forming apparatus main body 100 and is put on a flat surface, for example a floor, the shutter member 32Y1a and the protrusion member 32Y1d form the supporting points and the electronic substrate 32Y1c does not contact the flat surface. Therefore, the electronic substrate 32Y1c is prevented from being broken, the image forming apparatus is prevented from being large sized in the inserting direction of the toner container 32Y, and the sensitivity of the communications between the electronic substrate 32Y1c and the antenna 121Y of the image forming apparatus main body 100 is not restricted.
As shown in
In
In
In addition, as described above, even if the elastic member 125 is compressed in a state where the shutter member 32Y1a closes the toner outlet w, the electronic substrate 32Y1c does not contact a flat surface by the supporting points formed by the shutter member 32Y1a and the protrusion member 32Y1d when the toner container 32Y is put on the flat surface. With this, even if the elastic member 125 is deformed by an external force, the electronic substrate 32Y1c can be prevented from being broken.
As described above, in the first embodiment of the present invention, the antenna substrate 120 is formed in which the antennas 121Y, 121M, 121C, and 121K for facing the electronic substrates 32Y1c, 32M1c, 32C1c, and 32K1c positioned on the corresponding circumferential surfaces of the toner containers 32Y, 32M, 32C, and 32K are formed on the supporting part 115. With this, the image forming apparatus main body 100 (the toner supplying devices 60Y, 60M, 60C, and 60K) is not caused to be great in the toner container inserting direction, can be manufactured at low cost with relatively low-cost components, and the assembling ability of the image forming apparatus main body 100 can be high.
Next, the structure and operations of the guiding member 32Y1g and the shutter member 32Y1a in the toner container 32Y, and the shutter 89 (main body side shutter) are described in detail.
As shown in
When the shutter member 32Y1a opens the toner outlet W, an end surface 32Y1g1 of the guiding member 32Y1g pushes the shutter 89 (see
Therefore, even if toners are adhered onto the surrounding part of the toner supplying opening 60Ya, the shutter member 32Y1a is surely engaged with the shutter 89, and the shutter 89 is surely opened by interfacing with the opening operation of the shutter member 32Y1a (the rotational operation of the cap section 32y1). With this, an abnormal connection of the toner outlet W with the toner supplying opening 60Ya can be prevented. In addition, since toners dropped from the toner container 32Y to a part surrounding the toner supplying opening 60Ya are hidden by the shutter 89, stains caused by the dropped toners is hardly visible by the user when the toner container 32Y is replaced with a new one. Thus, an unsatisfying impression is not given to the user.
In the first embodiment of the present invention, in addition to the end surface 32Y1g1, the pushing member 32Y1k is formed which pushes the shutter 89 together with the end surface 32Y1g1 when the shutter member 32Y1a opens the toner outlet W. The pushing member 32Y1K is a step formed in the circumferential surface of the cap section 32Y1 so that the surface of the step becomes the same level as the end surface 32Y1g1 of the guiding member 32Y1g. The pushing member 32Y1k pushes the shutter 89 (see
The shutter 89 is pushed in a balanced manner by forming the pushing member 32Y1k. The shape of the pushing member 32Y1k is not limited to that shown in
As shown in
With this, since toners dropped from the toner container 32Y to a part surrounding the toner supplying opening 60Ya are hidden by the shutter 89, stains caused by the dropped toners is hardly visible by the user when the toner container 32Y is replaced with a new one. Thus, an unsatisfying impression is not given to the user.
As shown in
As shown in
As shown in
As shown in
With this, in the manufacturing process of the toner container 32Y, in a case where the shutter member 32Y1a is assembled with the cap section 32Y1 to be guided by a guiding member (not shown) formed in the cap section 32Y1, when the shutter member 32Y1a is assembled in a wrong direction, the protrusions 32Y1a10 are run on the circumferential surface of the cap section 32Y1, and the shutter member 32Y1a cannot be assembled with the cap section 32Y1. That is, the shutter member 32Y1a is formed to assemble with the cap section 32Y1 in only the one direction (the right direction). With this, the productivity of the toner container 32Y can be increased.
As shown in
With this, when the shutter member 32Y1a is moved to open the toner outlet W, the elastic part 32Y1a2 runs over the slope part 32Y1p by being deformed. That is, when a force having a predetermined amount or more is not applied to the shutter member 32Y1a, the elastic part 32Y1a2 does not run over the slope part 32Y1p, and the toner outlet W is not opened.
Therefore, toners in the toner container 32Y are prevented from being leaked in cases in which a small external force is applied to the shutter member 32Y1a of the toner container 32Y during the transportation of the toner container 32Y and a user accidentally touches the shutter member 32Y1 of the toner container 32Y. The overlapping amount (the running over amount) between the elastic part 32Y1a2 and the slope part 32Y1p is determined to be approximately 0.1 to 1.0 mm.
As shown in
With this, when this case is compared with a case where the shutter member 32Y1a is supported by the cap section 32Y1 at one side, in this case, the rough movement of the shutter member 32Y1a relative to the cap section 32Y1 does not occur in the circumferential direction of the cap section 32Y1. Therefore, the sealing capability by the elastic member 125 (see
As described above, in the first embodiment of the present invention, the brim section 32Y1a1 is formed to cover the opening 85a of the toner receiving section 85 in the shutter member 32Y1a which opens or closes the toner outlet W in a attaching or detaching state of the toner container 32Y to or from the toner supplying device 60Y. With this, stains caused by toners when the toner container 32Y is replaced with a new one can be decreased, and the toners collected in the toner receiving section 85 are not visible from the user, and thus an unsatisfying impression is not given to the user.
In
H1≧H2
That is, the guiding section 32Y1g enters into the toner supplying device 60Y.
With this, when the toner container 32Y is attached to the toner supplying device 60Y, the shutter member 32Y1a of the toner container 32Y is surely engaged with the shutter 89 (of the main body side). The thickness of the shutter 89 is determined to be the distance H2 or less.
In
With this, toners hardly remain in the cap section 32Y1 when the toners have been almost consumed (at the toner end time). Specifically, when the remaining amount of toners in the toner container 32Y becomes small, toners on the slant surface 32Y1n slide down and are discharged from the toner outlet W.
In order to surely obtain the above effect, in
As described above, in the first embodiment of the present invention, when the shutter member 32Y1a of the toner container 32Y is opened, the end surface 32Y1g1 of the guiding member 32Y1g pushes the shutter 89 together with the opening operation of the shutter member 32Y1a. With this, the toner supplying opening 60Ya of the toner supplying device 60Y is opened, and the toner outlet W of the toner container 32Y is connected to the toner supplying opening 60Ya. Therefore, toners are smoothly supplied to the toner supplying device 60Y from the toner container 32Y. Even if toners are dropped from the toner container 32Y to a part surrounding the toner supplying opening 60Ya, the dropped toners are not visible from a user, and the unsatisfying impression is not given to the user.
In addition, as described above, in the first embodiment of the present invention, the antennas 121Y, 121M, 121C, and 121K for facing the electronic substrates 32Y1c, 32M1c, 32C1c, and 32K1c positioned on the corresponding circumferential surfaces of the toner containers 32Y, 32M, 32C, and 32K arrayed on the supporting part 115 of the image forming apparatus main body 100 are positioned on the antenna substrate 120. With this, the image forming apparatus main body 100 (the toner supplying devices 60Y, 60M, 60C, and 60K) is not caused to be great in size in the toner container inserting direction, and as a result, can be manufactured at low cost with relatively low-cost components, and the assembling efficiency of the image forming apparatus main body 100 can be high.
Next, referring to
When the second embodiment of the present invention is compared with the first embodiment of the present invention, in the second embodiment of the present invention, the head part of the toner container 32Y has a circular cone shape, and the scrapers 32Y30 are not positioned at the opening of the container main body 32Y2.
As shown in
In the second embodiment of the present invention, as described above, the head part of the container main body 32Y has the circular cone shape toward the opening of the container main body 32Y2. As shown in
With this, when toners reach the circular cone-shaped part by being carried toward the opening of the container main body 32Y2, since the moving speed of the toners is accelerated, stagnation of the toners at the circular cone-shaped part whose space is small can be prevented.
In the second embodiment of the present invention, since the circular cone-shape part is formed, the toners are led to the position of the inner diameter position of the sealing member 32Y20b of the cap section 32Y1 from the opening of the container main body 32Y2 on a slope, and the toners are smoothly carried to the toner outlet W. Therefore, the toners can be carried to the toner outlet W without including the scrapers 32Y30. When the cost of the scrapers 32Y30 is affordable, the scrapers 32Y30 are effective to stir the toners at positions surrounding the toner outlet W and the opening of the container main body 32Y2.
Similar to the first embodiment of the present invention, in the second embodiment of the present invention, in order that the toner container 32Y can be operated by being attached to the toner supplying device 60Y, the cap section 32Y1 of the toner container 32Y includes the toner outlet W, the shutter member 32Y1a, the guiding member 32Y1g, the contacting section 32Y1h, the pushing member 32Y1k, the electronic substrate 32Y1c, the protrusion member 32Y1d, the protrusion member 32Y1e, the guide rib 32Y1f, the handle part 32Y1d, the elastic member 125, the brim section 32Y1a1, the elastic part 32Y1a2, the stopping part 32Y1a3, the protrusions 32Y1a4, the protrusions 32Ya10, and the slope part 32Y1p.
When the shutter member 32Y1a is opened (closed) (the cap section 32Y1 of the toner container 32Y is rotated), the shutter 89 (of the image forming apparatus main body side) of the toner supplying device 60Y is pushed by the cap section 32Y1 (the guiding member 32Y1g and the contacting section 32Y1h), and the toner supplying opening 60Ya is opened (closed).
When the toner container 32Y is put on an arbitrary flat surface in a state where the shutter member 32Y1a closes the toner outlet W, the electronic substrate 32Y1c does not contact the flat surface so that the shutter member 32Y1a and the protrusion member 32Y1d become the supporting points contacting the flat surface.
Similar to the first embodiment of the present invention, in the second embodiment of the present invention, as described in the first embodiment of the present invention, the antennas 121Y, 121M, 121C, and 121K for facing the electronic substrates 32Y1c, 32M1c, 32C1c, and 32K1c positioned on the corresponding circumferential surfaces of the toner containers 32Y, 32M, 32C, and 32K arrayed on the supporting part 115 of the image forming apparatus main body 100 are positioned on the antenna substrate 120. Therefore, communications between the electronic substrates 32Y1c, 32M1c, 32C1c, and 32K1c and the corresponding antennas 121Y, 121M, 121C, and 121K are performed in good conditions. Further, the image forming apparatus main body 100 (the toner supplying devices 60Y, 60M, 60C, and 60K) is not caused to be great in size in the toner container inserting direction, and as a result, can be manufactured at low cost with relatively low-cost components, and the assembling efficiency of the image forming apparatus main body 100 can be high.
Similar to the first embodiment of the present invention, in the second embodiment of the present invention, as described in the first embodiment of the present invention, when the shutter member 32Y1a of the toner container 32Y is opened, the end surface 32Y1g1 of the guiding member 32Y1g pushes the shutter 89 together with the opening operation of the shutter member 32Y1a. With this, the toner supplying opening 60Ya of the toner supplying device 60Y is opened, and the toner outlet W of the toner container 32Y is connected to the toner supplying opening 60Ya. Therefore, toners are smoothly supplied to the toner supplying device 60Y from the toner container 32Y. Even if toners are dropped from the toner container 32Y to a part surrounding the toner supplying opening 60Ya, the dropped toners are not visible from a user, and the unsatisfying impression is not given to the user.
Referring to
When the third embodiment of the present invention is compared with the first embodiment of the present invention, in the third embodiment of the present invention, a carrying member 320 is formed inside the toner container 32Y.
As shown in
The carrying member 320 is rotatably supported by two parts of a head part and a tail part of the container main body. The carrying member 320 includes plural stirring blades 320a and an engaging member 321 (driven coupling member) which engages with the driving coupling member 90. With this, the carrying member 320 is rotated in a predetermined direction by receiving a driving force from the driving coupling member 90 of the image forming apparatus main body 100, and carries toners in the toner container 32Y in the long length direction (the left direction in
As shown in
In the third embodiment of the present invention, the shutter member 32Y1a for opening or closing the toner outlet W, the electronic substrate 32Y1c, and so on are formed on the circumferential surface of the toner container 32Y (the container main body).
In addition, as shown in
In the first embodiment of the present invention, when the toner container 32Y is put on an arbitrary flat surface, the electronic substrate 32Y1c does not contact the flat surface so that the shutter member 32Y1a and the protrusion member 32Y1d become the supporting points contacting the flat surface. However, in the third embodiment of the present invention, the shutter member 32Y1a and one end of the toner container 32Y form supporting points and the electronic substrate 32Y1c does not contact the flat surface.
That is, as shown in
In addition, in the third embodiment of the present invention, as described in the first embodiment of the present invention, the container main body of the toner container 32Y includes the toner outlet W, the shutter member 32Y1a, the guiding member 32Y1g, the contacting section 32Y1h, the pushing member 32Y1k, the electronic substrate 32Y1c, and so on.
When the shutter member 32Y1a is opened (closed) (the toner container 32Y is rotated), the shutter 89 (of the image forming apparatus main body side) of the toner supplying device 60Y is pushed by the container main body (the guiding member 32Y1g and the contacting section 32Y1h), and the toner supplying opening 60Ya is opened (closed).
Similar to the first embodiment of the present invention, in the third embodiment of the present invention, as described in the first embodiment of the present invention, the antennas 121Y, 121M, 121C, and 121K for facing the electronic substrates 32Y1c, 32M1c, 32C1c, and 32K1c positioned on the corresponding circumferential surfaces of the toner containers 32Y, 32M, 32C, and 32K arrayed on the supporting part 115 of the image forming apparatus main body 100 are positioned on the antenna substrate 120.
Therefore, communications between the electronic substrates 32Y1c, 32M1c, 32C1c, and 32K1c and the corresponding antennas 121Y, 121M, 121C, and 121K are performed in good conditions. Further, the image forming apparatus main body 100 (the toner supplying devices 60Y, 60M, 60C, and 60K) is not caused to be great in size in the toner container inserting direction, can be manufactured at low cost with relatively low-cost components, and the assembling efficiency of the image forming apparatus main body 100 can be high.
Similar to the first embodiment of the present invention, in the third embodiment of the present invention, as described in the first embodiment of the present invention, when the shutter member 32Y1a of the toner container 32Y is opened, the end surface 32Y1g1 of the guiding member 32Y1g pushes the shutter 89 together with the opening operation of the shutter member 32Y1a. With this, the toner supplying opening 60Ya of the toner supplying device 60Y is opened, and the toner outlet W of the toner container 32Y is connected to the toner supplying opening 60Ya. Therefore, toners are smoothly supplied to the toner supplying device 60Y from the toner container 32Y. Even if toners are dropped from the toner container 32Y to a part surrounding the toner supplying opening 60Ya, the dropped toners are not visible from a user, and the unsatisfying impression is not given to the user.
In the first through third embodiments of the present invention, only toners are contained in the toner containers 32Y, 32M, 32C, and 32K. However, when an image forming apparatus uses a two-component developer, the toner containers 32Y, 32M, 32C, and 32K can contain corresponding two-component developers formed of toners and carrier particles (toner carrier). In this case, the same effects as those in the first through third embodiments of the present invention can be obtained.
In addition, in the first through third embodiments of the present invention, a part or all of the corresponding image forming sections 6Y, 6M, 6C, and 6K can be included in the corresponding process cartridges. In this case, the same effects as those in the first through third embodiments of the present invention can be obtained.
In addition, in
With this, in a tandem type image forming apparatus in which plural image forming sections 6Y, 6M, 6C, and 6K are arrayed in parallel, when the image forming section 6Y (process cartridge) is attached to or detached from the image forming apparatus main body 100, the image forming section 6Y and the toner supplying device 60Y do not interfere with each other. Therefore, in the image forming apparatus main body 100, the length in the vertical direction from the toner containers 32Y, 32M, 32C, and 32K to the image forming sections 6Y, 6M, 6C, and 6K can be shortened, and the variation of the amount of toners to be supplied to the corresponding developing devices 5Y, 5M, 5C, and 5K can be prevented.
Further, the present invention is not limited to the specifically disclosed embodiments, and variations and modifications may be made without departing from the scope of the present invention. That is, in the embodiments of the present invention, the number of elements, the positions of the corresponding elements, and the shapes of the corresponding elements are not limited to the specifically disclosed embodiments.
Number | Date | Country | Kind |
---|---|---|---|
2008-231266 | Sep 2008 | JP | national |
2008-234344 | Sep 2008 | JP | national |
2008-248371 | Sep 2008 | JP | national |
2008-249424 | Sep 2008 | JP | national |
This application is a continuation of and claims the benefit of priority under 35 U.S.C. §120 from U.S. application Ser. No. 13/720,628, filed Dec. 19, 2012, which is a continuation of Ser. No. 12/682,895, filed Apr. 14, 2010 (Now U.S. Pat. No. 8,369,738), which is a 371 of International Application No. PCT/JP2009/064082, filed Aug. 4, 2009, and claims the benefit of priority under 35 U.S.C. §119 from Japanese Patent Application No. 2008-231266, filed on Sep. 9, 2008, Japanese Patent Application No. 2008-234344, filed on Sep. 12, 2008, Japanese Patent Application No. 2008-248371, filed on Sep. 26, 2008, and Japanese Patent Application No. 2008-249424, filed on Sep. 29, 2008, with the Japanese Patent Office, and the entire contents of each of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5630198 | Makino | May 1997 | A |
6298208 | Kawamura et al. | Oct 2001 | B1 |
6336020 | Ishikawa et al. | Jan 2002 | B1 |
6345164 | Yokomori et al. | Feb 2002 | B1 |
6389257 | Harumoto et al. | May 2002 | B1 |
6490422 | Harumoto | Dec 2002 | B2 |
6947685 | Arimitsu et al. | Sep 2005 | B2 |
7162189 | Tsuda et al. | Jan 2007 | B2 |
7184691 | Kita et al. | Feb 2007 | B2 |
7277664 | Katsuyama et al. | Oct 2007 | B2 |
7321744 | Hosokawa et al. | Jan 2008 | B2 |
7409180 | Seo | Aug 2008 | B2 |
7574162 | Yamane | Aug 2009 | B2 |
7634204 | Ohta | Dec 2009 | B2 |
7809313 | Kitaoka | Oct 2010 | B2 |
7826779 | Mase et al. | Nov 2010 | B2 |
7917087 | Harumoto | Mar 2011 | B2 |
20040203413 | Harumoto | Oct 2004 | A1 |
20050135841 | Murakami et al. | Jun 2005 | A1 |
20060034642 | Taguchi et al. | Feb 2006 | A1 |
20060104671 | Murakami et al. | May 2006 | A1 |
20060182469 | Koyama et al. | Aug 2006 | A1 |
20070154243 | Taguchi et al. | Jul 2007 | A1 |
20070212119 | Kurenuma et al. | Sep 2007 | A1 |
20080080903 | Noguchi | Apr 2008 | A1 |
20080260432 | Ohyama et al. | Oct 2008 | A1 |
20090087214 | Utsunomiya et al. | Apr 2009 | A1 |
20090317140 | Yoshida et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
62-208696 | Sep 1987 | JP |
10-055103 | Feb 1998 | JP |
10-171229 | Jun 1998 | JP |
2001-013749 | Jan 2001 | JP |
2001-075455 | Mar 2001 | JP |
2001-083792 | Mar 2001 | JP |
2001183895 | Jul 2001 | JP |
2002062784 | Feb 2002 | JP |
2003-066703 | Mar 2003 | JP |
2004020910 | Jan 2004 | JP |
3571584 | Sep 2004 | JP |
2004-287404 | Oct 2004 | JP |
2004-326125 | Nov 2004 | JP |
2005-173568 | Jun 2005 | JP |
2005-221831 | Aug 2005 | JP |
2006-171199 | Jun 2006 | JP |
2006-178146 | Jul 2006 | JP |
2006-201362 | Aug 2006 | JP |
2006-221079 | Aug 2006 | JP |
2007-148320 | Jun 2007 | JP |
2007-149032 | Jun 2007 | JP |
2007-156260 | Jun 2007 | JP |
2007-199505 | Aug 2007 | JP |
2007199457 | Aug 2007 | JP |
2007-292968 | Nov 2007 | JP |
4014335 | Nov 2007 | JP |
2008-083476 | Apr 2008 | JP |
2008-096852 | Apr 2008 | JP |
2008151968 | Jul 2008 | JP |
2009-098624 | May 2009 | JP |
Entry |
---|
Japanese Office Action mailed May 30, 2013 for Japanese Patent Application No. 2008-231266. |
Japanese Office Action mailed May 28, 2013 for Japanese Patent Application No. 2008-248371. |
Japanese Office Action mailed May 17, 2013 for Japanese Patent Application No. 2009-172527. |
Japanese Office Action mailed Jul. 2, 2013 for Japanese Patent Application No. 2009-172494. |
Japanese Office Action mailed Jun. 28, 2013 for Japanese Patent Application No. 2008-023714. |
Number | Date | Country | |
---|---|---|---|
20140050509 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13720628 | Dec 2012 | US |
Child | 14066965 | US | |
Parent | 12682895 | US | |
Child | 13720628 | US |