None.
None.
None.
1 . Field of Invention
The present disclosure relates to the transfer of image forming material, such as toner, within an image forming apparatus. More particularly, the present disclosure relates to an apparatus and method for removing accumulated toner from a roller that transfers toner from a first region to a second region within an image forming device or an image forming device cartridge.
2 . Description of the Related Art
An image forming apparatus, such as an electrophotographic device, ink printer, copier, fax, all-in-one device or multi-functional device may use developing agents such as toner or ink, which may be disposed on media to form an image. The developing agent, such as toner, may be fixed to the media using an image fixing apparatus, which may apply heat and/or pressure to the toner. In a developer assembly in an image forming apparatus, a toner meter roller may be used to convey toner from an upper sump to a lower sump in a cartridge. However, there remains a need to provide a supply of toner in a relatively more consistent manner which may then reduce starvation of toner to the developer roller which is in contact with the photoconductive drum and/or allow a relatively more accurate estimate of toner consumption.
The present disclosure relates to a device and/or method for transferring a quantity of image forming material between selected regions in a printing device or printer cartridge. A roller may be employed having a surface that may include a recess capable of transferring a selected quantity of image forming material. The recess may include a convex surface. A wiper is configured to engage at least a portion of the roller surface and/or a surface in the recess to assist in the removal of image forming material. Such roller design and wiper configuration may therefore cooperate to improve the consistency of image forming material transfer.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings wherein:
It is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted,” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings.
As shown in sectional view in
The toner meter roller 30 may specifically be used to regulate toner consumption when monitored by associated hardware/software concerning the number of revolutions over a given period of time. For example, it may be assumed to a first approximation that the amount of toner delivered in one rotation of the roller is relatively consistent when evaluating toner consumption. However, if the toner 50 used varies in its bulk flow characteristics, toner may periodically accumulate and collect on the surface of the roller 30. The result may then be starvation of the developer roller and poor print quality and/or an incorrect determination of the amount of toner that may have been consumed. It may be noted that toner bulk flow characteristics may be understood as the flow of the solid toner, which may depend upon such variables as toner average particle size and/or particle size distribution, toner composition, toner geometry and/or circularity, environmental considerations, as well as the design and operation of the developer assembly in which the toner may ultimately be contained.
As shown in
A recess in the roller surface may therefore be understood as an area set into the roller surface, such as an indented or hollowed-out space, that may accommodate a desired amount of toner. For example, recessed regions 32 may assume the general shape of a pocket and may include one or more surfaces therein, such as a convex surface. The regions 32 may then assist in the delivery of toner from, e.g., the upper sump 22 to the lower sump 24.
Accordingly, it may now be appreciated that in an exemplary toner meter roller, the roller may be configured and be capable of transferring about 0.1-5.0 grams of toner per revolution, including all values and increments therein. For example, the toner meter roller may transfer about 1.0 to about 2.0 grams per revolution. More specifically, and again by way of example, it has been found that for a specific toner meter roller containing two recessed regions 32, each region may transfer about 0.6 grams of toner per revolution to the lower sump. Accordingly, for each revolution of such toner meter roller, a total of 1.2 grams of toner may be expected to be delivered to the lower sump, in the absence of any toner accumulating on the roller surface which would then reduce the roller's overall efficiency of toner transfer.
The recessed regions 32 are further illustrated in
With attention still directed at
The wiper 10 may also include openings 14. Such openings may therefore serve to reduce the potential for accumulation of toner on the wiper 10. Such accumulation of toner might otherwise ultimately stress the attachment points of the wiper to the housing. For example, the wiper 10 may be adhesively or mechanically attached to the housing by various conventional techniques. The openings 14 may therefore assume a variety of sizes and shapes that extend across the surface of the wiper 10 as currently illustrated, but not otherwise interfere with the flexibility and generally elastic nature of the wiper to remain biased against the roller. As also shown in
In addition, the wiper 10 may include a generally upstanding flange portion 12 which may engage with the roller 30 as shown and in particular, as illustrated in
Furthermore, due to the presence of flange portion 12 it may be appreciated that as the wiper travels across the surface of roller 30, it may provide a relative push type shear force vector to any accumulated toner and effectively remove/scrape toner form the roller surface. With attention to
The wiper 10 may be formed from a variety of materials. When selecting a material for wiper 10, and as one of several possible considerations, it may be useful to recognize that type of material that will not otherwise damage or actually remove or scrape roller material from the roller surface. As can be appreciated, this then may contaminate the toner within the cartridge. Accordingly, it is contemplated herein that for a roller material with a given Shore or Rockwell Hardness value, the wiper 10 may initially be selected from a material with a relatively lower value which may then assist in reducing the development of toner contamination over time within a given printing device. In that regard it may be appreciated that typical material utilized for roller 30 includes high impact polystyrene (HIPS) which may have a Rockwell Hardness value of between about 65-95R, depending upon the proportion of the resins (typically diene rubber and polystyrene) present in the material.
The wiper may therefore be formed from a variety of materials and assume a number of specific constructions, some examples of which are now shown in
In addition, the integral formed wiper shown in
In another exemplary embodiment, as shown in end view in
Attached to the body, by way of an appropriate adhesive or even mechanical attachment, may then be a triangular section 12A. The triangular portion 12A may therefore comprise the same or even a different polymer from the body. For instance, a polyacetal polymer such as DELRIN® from DuPont may be employed to form triangular portion 12A. It can therefore be appreciated that the triangular portion 12A may be selected to provide durability over time with respect to a consideration of its frictional engagement to a given roller surface. For example, with respect to the exemplary polyacetal material, it may be appreciated that such material may provide a static coefficient of less than or equal to about 0.20, or a dynamic coefficient of friction of less than or equal to about 0.35 . Such characteristics may therefore afford extended cleaning capability to remove accumulate toner. Other materials which may provide relatively low frictional engagement with the roller may include various other thermoplastics, e.g., polyamides, polysulphones, polyesters, ABS, etc.
As alluded to above, each of the exemplary wipers described herein as shown in
The foregoing description of several methods and an embodiment of the invention have been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to precise steps and/or forms disclosed, and obviously many modifications and variations are possible in light of the above teachings. It is intended that the scope of the invention be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
5012289 | Aldrich et al. | Apr 1991 | A |
5101237 | Molloy | Mar 1992 | A |
6510291 | Campbell et al. | Jan 2003 | B2 |
7152322 | Nakashima et al. | Dec 2006 | B2 |
7389072 | Hebner et al. | Jun 2008 | B2 |
20060023055 | Castle et al. | Feb 2006 | A1 |
20060182475 | Gopalanarayanan et al. | Aug 2006 | A1 |
20060257171 | Askren et al. | Nov 2006 | A1 |
20060263105 | Able et al. | Nov 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080219709 A1 | Sep 2008 | US |