The present disclosure generally relates to electrophotography, and more particularly, to a toner supply arrangement for supplying toner to a plurality of toner replenishing sections or dispensers from a plurality of toner containers installed in association with a plurality of image marking engines or integrated printing system, and the like, based on an electrophotographic process.
Integrated or rack mounted printing systems allow usage of multiple marking engines to move up market (i.e. from office setting to entry print shop production) and to strategically reuse printing technologies to span particular markets. Demands on integrated systems include increases to the average monthly print volume. (AMPV). Often the AMPV increases at a faster rate than does the required productivity or print speed of the system. Demands on integrated systems can change the print volume and associated document run length demographics of the individual image marking engines compared to stand alone image marking engines. For example, print volume and document run length demographics of the marking engines can increase when combined as an integrated printing system. The effects can translate positively on the reliability of the system due to the ‘truth curve’ effect. However, the resultant increase in volume proportionately increases the required customer interactions or interventions with the individual image marking engines for consumables replacement. This situation can exacerbate the intrinsic problem of increased numbers of consumables in these integrated or rack mounted systems.
Individual image marking engines conventionally provided are generally arranged to accommodate toner in an amount commensurate with stand alone or individual use. In the case where copying is effected in a large quantity as described above, it becomes necessary to replenish the toner in one or more image marking engines frequently.
Accordingly, in an integrated printing system, for example, where copying is to be effected in large volumes and/or increased ink or toner coverage per sheet, it is desirable to arrange that the printing system can accommodate as much toner as possible whereby replenishment can be simplified and the frequency of same reduced.
Additionally, if the apparatus is capable of accommodating and transporting toner to the various image marking engines as needed, the amount of work for replenishing toner in the individual image marking engines can be reduced.
Accordingly, the present disclosure provides a toner supply arrangement for use in an integrated printing system which includes at least one toner container wherein the at least one toner container is adapted for supplying toner to at least two image marking engines. The arrangement further includes a distribution mechanism adapted to transport the toner from the at least one toner container to the at least two image marking engines.
The present disclosure also provides for a printing system comprising a plurality of integrated image making engines each having at least one toner dispenser. The printing system further includes a toner re-supply module integrated therewith having at least one toner container. The at least one toner container is in fluid communication with an associated at least one toner dispenser wherein the at least one container is adapted to supply the at least one dispenser. The fluid communication includes a distribution mechanism adapted to transport toner remotely from the at least one toner container to the associated at least one toner dispenser thereby maintaining the at least one toner dispenser in a substantially full condition.
Further, the present disclosure provides a method for printing comprising a toner supply module including at least one toner container wherein the at least one toner container is adapted for supplying toner to at least two image marking engines. Each image marking engine can have an associated toner dispenser. The method further provides for transporting toner from the at least one toner container to at least two toner dispensers associated with the at least two image marking engines including a distribution mechanism with a first and a second transport pipe for transporting the toner from the at least one toner container to the at least two image marking engines.
Increased demands on individual image marking engines in an integrated or rack mounted printing system can result from increases in volume demands and increases in color/black toner coverage in response to print requirements or print demographics from an entry level production shop market, for example. The average toner coverage per sheet can increase on a magnitude of from 5% ‘black’ and 95% ‘white’ (i.e. office setting) to upwards of 20-30% ‘color and black’ and 80-70% ‘white’ (i.e. print shop). The increase to toner coverage per sheet and overall volume demands, coupled with increase to run length demographics (i.e. job size), can result in a 2×, 3×, 4×, or more, order of magnitude increase in toner usage compared with a stand alone image marking engine in an office type environment. This increase to toner demands requires an increase to the frequency of toner replenishments or ‘machine interventions’. Existing toner bottles or dispensers are typically made to be as small as possible while conforming to target machine intervention intervals which may correspond to an ‘acceptability curve’ representing the frequency for which a user finds replenishing the toner bottle acceptable. Toner bottles associated with stand alone image marking engines may have, for example, enough capacity, based on typical usage rates, to last in the range of one month before requiring replacement, replenishment, or other user intervention. A one month replenishment frequency is one example of a target for toner replenishment intervals.
Before the description of the present disclosure proceeds, it is to be noted that like parts are designated by like reference numerals throughout the accompanying drawings. Referring now to the drawings, there is shown in
In the architecture of
Each image marking engine can include a developing apparatus generally having a developing section for feeding toner onto an electrostatic latent image to be formed on an outer peripheral photosensitive surface of a photosensitive or photoreceptor drum, and a dispenser, sub-hopper, or replenishing section for replenishing the toner to the developing section.
Although not illustrated, it is to be appreciated that the dispenser section can include a rotatable stirring vane for mixing and stirring toner and a detecting plate movably disposed therein to follow the surface level of toner, a sensor disposed at a predetermined level on a wall of the dispenser section for detecting the position of said detecting plate, a replenishing mechanism for replenishing the toner into the developing section, and a toner replenishing motor for respectively driving said stirring vane and the replenishing mechanism referred to above.
The toner supply arrangement related to the present disclosure and disposed within the developing apparatus can include four dispensers 140, 142, 144, 146 having similar shape and construction.
As shown in
Each of the re-supply containers can include a hopper portion having an opening at its upper portion and a toner transport pipe provided at the bottom portion of the hopper portion for communication therewith, and a lid or door member pivotally provided on the hopper portion so as to selectively open or close the upper opening of the hopper portion (not illustrated). The toner transport pipe can be extended into an upper portion of the respective dispenser for the developing apparatus, with a toner supply port formed at the forward end of said toner transport pipe being arranged to confront a toner receiving port of the dispenser. The auger or spiral member can be rotatably disposed to extend from the bottom portion of the hopper portion through the flexible toner transport pipe so as to be driven for rotation by a toner transport motor. At the bottom portion of the hopper member, a detecting plate for detecting presence or absence of toner can be provided, together with a sensor disposed at a predetermined level on a wall of the hopper portion for detecting the position of the detecting plate.
In the integrated printing system and the toner supply arrangement having constructions as described so far, when the toner is supplied to the photoreceptor drum from the developing apparatus, and the amount of the toner in the dispenser reduced, the toner corresponding in amount to the amount of reduction is replenished from the associated container.
In the container, upon energization of a motor, the spiral member starts rotation, and the toner within the hopper portion is transported towards the forward end of the toner transport pipe so as to be supplied by moving into the dispenser through the toner supply port, and thus, the toner level within the dispenser is restored to the predetermined value. Meanwhile, in a similar manner as in the dispenser, the detecting plate in the container is lowered as the toner is consumed, and upon arrival of the detecting plate at the predetermined level, the sensor is actuated, with a toner replenishing signal indicating such state.
When the toner in the container is consumed to be the empty state, the CPU detects the state based on the signal from the sensor and illuminates the lamp on the GUI. A control panel on the GUI of the integrated printing system can provide an empty state indicating lamp for indicating when any one of the containers is in the state of “toner empty”.
It is to be appreciated that the interventions for toner replenishment occurs when one or more of the toner containers require refill and can be initiated when the containers are at or near empty. At this point, when a toner container requires refill, it is to be appreciated that the associated dispenser is still full, or substantially full, and can act as a reserve toner supply. The resultant reserve toner supply can thus be of the magnitude of 6,000 to 10,000 prints, for example. It is to be appreciated that existing systems heretofore available, have only an associated toner dispenser including a sensor for detecting the volume of toner contained therein. The sensor detects when the toner in the toner dispenser reaches a certain level and alerts the operator via the GUI. The amount of toner remaining in the dispenser in this arrangement is of the magnitude of 100s of sheets. This toner amount is adequate when the job runs are in the 10s of sheets as is typical in office settings. But where the print jobs approach several hundred sheets (i.e. high volume production), this amount of forewarning proves inadequate because the job run length and resultant toner demands may exceed the remaining toner (reserve) supply. Thus, in the presently disclosed arrangement, not only are the number of machine interventions reduced, but large print jobs will not deplete the reserve amount of toner now existing in each of the toner dispensers when the replenishment sensor notifies the user that one or more containers require refill.
Referring now to
In the architecture of
Each image marking engine can include a developing apparatus generally having a developing section for feeding toner onto an electrostatic latent image to be formed on an outer peripheral photosensitive surface of a photosensitive or photoreceptor drum, and a dispenser replenishing the toner to the developing section.
The toner supply arrangement related to the present disclosure in accordance with
In the developing apparatus and the toner supply arrangement having constructions as described above, when the toner is supplied to the photoreceptor drum from the developing apparatus, and the amount of the toner in the dispenser reduced, the toner corresponding in amount to the amount of reduction is replenished from the associated container.
When the toner in the container is consumed to be the empty state, the CPU detects the state based on the signal from the sensor and illuminates the lamp on the GUI. A control panel of the integrated printing system can provide an empty state indicating lamp for indicating when any one of the containers is in the state of “toner empty”.
It is to be appreciated that each of the re-supply containers can include a capacity substantially greater than the associated dispensers integral with each image marking engine. Each dispenser can include a sensor for detecting toner levels whereby the corresponding re-supply container can refill the desired dispensers as needed. The ‘machine interventions’ for toner replenishment occurs when one or more of the toner containers require refill and can be initiated when the containers are at or near empty. At this point, it is to be appreciated that the associated dispensers are still full and can act as reserve toner supplies for the respective image marking engine. Refilling the containers can be accomplished while the image marking engines are operating.
In the embodiment shown in
It will be appreciated that variations of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims. In addition, the claims can encompass embodiments in hardware, software, or a combination thereof.
The following patents/applications, the disclosures of each being totally incorporated herein by reference are mentioned: application Ser. No. 11/212,367 (Attorney Docket No. 20031830-US-NP), filed Aug. 26, 2005, entitled “PRINTING SYSTEM,” by David G. Anderson, et al., and claiming priority to U.S. Provisional Application Ser. No. 60/631,651, filed Nov. 30, 2004, entitled “TIGHTLY INTEGRATED PARALLEL PRINTING ARCHITECTURE MAKING USE OF COMBINED COLOR AND MONOCHROME ENGINES”; U.S. Publication No. US-2006-0067756-A1 (Attorney Docket No. 20031867Q-US-NP), filed Sep. 27, 2005, entitled “PRINTING SYSTEM,” by David G. Anderson, et al., and claiming priority to U.S. Provisional Patent Application Ser. No. 60/631,918 (Attorney Docket No. 20031867-US-PSP), filed Nov. 30, 2004, entitled “PRINTING SYSTEM WITH MULTIPLE OPERATIONS FOR FINAL APPEARANCE AND PERMANENCE,” and U.S. Provisional Patent Application Ser. No. 60/631,921, filed Nov. 30, 2004, entitled “PRINTING SYSTEM WITH MULTIPLE OPERATIONS FOR FINAL APPEARANCE AND PERMANENCE”; U.S. Publication No. US-2006-0067757-A1 (Attorney Docket No. 20031867Q-US-NP), filed Sep. 27, 2005, entitled “PRINTING SYSTEM,” by David G. Anderson, et al., and claiming priority to U.S. Provisional Patent Application Ser. No. 60/631,918, Filed Nov. 30, 2004, entitled “PRINTING SYSTEM WITH MULTIPLE OPERATIONS FOR FINAL APPEARANCE AND PERMANENCE,” and U.S. Provisional Patent Application Ser. No. 60/631,921, filed Nov. 30, 2004, entitled. “PRINTING SYSTEM WITH MULTIPLE OPERATIONS FOR FINAL APPEARANCE AND PERMANENCE”; U.S. Pat. No. 6,973,286 (Attorney Docket A2423-US-NP), issued Dec. 6, 2005, entitled “HIGH RATE PRINT MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Barry P. Mandel, et al.; U.S. application Ser. No. 10/785,211 (Attorney Docket A3249P1-US-NP), filed Feb. 24, 2004, entitled “UNIVERSAL FLEXIBLE PLURAL PRINTER TO PLURAL FINISHER SHEET INTEGRATION SYSTEM,” by Robert M. Lofthus, et al.; U.S. Application No. US-2006-0012102-A1 (Attorney Docket A0723-US-NP), published Jan. 19, 2006, entitled “FLEXIBLE PAPER PATH USING MULTIDIRECTIONAL PATH MODULES,” by Daniel G. Bobrow; U.S. application Ser. No. 10/917,676 (Attorney Docket A3404-US-NP), filed Aug. 13, 2004, entitled “MULTIPLE OBJECT SOURCES CONTROLLED AND/OR SELECTED BASED ON A COMMON SENSOR,” by Robert M. Lofthus, et al.; U.S. Publication No. US-2006-0033771-A1 (Attorney Docket 20040184-US-NP), published Feb. 16, 2006, entitled “PARALLEL PRINTING ARCHITECTURE CONSISTING OF CONTAINERIZED IMAGE MARKING ENGINES AND MEDIA FEEDER MODULES,” by Robert M. Lofthus, et al.; U.S. Pat. No. 7,924,152 (Attorney Docket A4050-US-NP), issued Apr. 4, 2006, entitled “PRINTING SYSTEM WITH HORIZONTAL HIGHWAY AND SINGLE PASS DUPLEX,” by Robert M. Lofthus, et al.; U.S. Publication No. US-2006-0039728-A1 (Attorney Docket A3190-US-NP), published Feb. 23, 2006, entitled “PRINTING SYSTEM WITH INVERTER DISPOSED FOR MEDIA VELOCITY BUFFERING AND REGISTRATION,” by Joannes N. M. deJong, et al.; U.S. application Ser. No. 10/924,458 (Attorney Docket A3548-US-NP), filed Aug. 23, 2004, entitled “PRINT SEQUENCE SCHEDULING FOR RELIABILITY,” by Robert M. Lofthus, et al.; U.S. Publication No. US-2006-0039729-A1 (Attorney Docket No. A3419-US-NP), published Feb. 23, 2006, entitled “PARALLEL PRINTING ARCHITECTURE USING IMAGE MARKING ENGINE MODULES (as amended),” by Barry P. Mandel, et al.; U.S. Pat. No. 6,959,165 (Attorney Docket A2423-US-DIV), issued Oct. 25, 2005, entitled “HIGH RATE PRINT MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Barry P. Mandel, et al.; U.S. application Ser. No. 10/933,556 (Attorney Docket No. A3405-US-NP), filed Sep. 3, 2004, entitled “SUBSTRATE INVERTER SYSTEMS AND METHODS,” by Stan A. Spencer, et al.; U.S. application Ser. No. 10/953,953 (Attorney Docket No. A3546-US-NP), filed Sep. 29, 2004, entitled “CUSTOMIZED SET POINT CONTROL FOR OUTPUT STABILITY IN A TIPP ARCHITECTURE,” by Charles A. Radulski, et al.; U.S. application Ser. No. 10/999,326 (Attorney Docket 20040314-US-NP), filed Nov. 30, 2004, entitled “SEMI-AUTOMATIC IMAGE QUALITY ADJUSTMENT FOR MULTIPLE MARKING ENGINE SYSTEMS,” by Robert E. Grace, et al.; U.S. application Ser. No. 10/999,450 (Attorney Docket No. 20040985-US-NP), filed Nov. 30, 2004, entitled “ADDRESSABLE FUSING FOR AN INTEGRATED PRINTING SYSTEM,” by Robert M. Lofthus, et al.; U.S. application Ser. No. 11/000,158 (Attorney Docket No. 20040503-US-NP), filed Nov. 30, 2004, entitled “GLOSSING SYSTEM FOR USE IN A TIPP ARCHITECTURE,” by Bryan J. Roof; U.S. application Ser. No. 11/000,168 (Attorney Docket No. 20021985-US-NP), filed Nov. 30, 2004, entitled “ADDRESSABLE FUSING AND HEATING METHODS AND APPARATUS,” by David K. Biegelsen, et al.; U.S. application Ser. No. 11/000,258 (Attorney Docket No. 20040503Q-US-NP), filed Nov. 30, 2004, entitled “GLOSSING SYSTEM FOR USE IN A TIPP ARCHITECTURE,” by Bryan J. Roof; U.S. Pat. No. 6,925,283 (Attorney Docket A2423-US-DIV1), issued Aug. 2, 2005, entitled “HIGH PRINT RATE MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Barry P. Mandel, et al.; U.S. application Ser. No. 11/051,817 (Attorney Docket 20040447-US-NP), filed Feb. 4, 2005, entitled “PRINTING SYSTEMS,” by Steven R. Moore, et al.; U.S. application Ser. No. 11/069,020 (Attorney Docket 20040744-US-NP), filed Feb. 28, 2004, entitled “PRINTING SYSTEMS,” by Robert M. Lofthus, et al.; U.S. application Ser. No. 11/070,681 (Attorney Docket 20031659-US-NP), filed Mar. 2, 2005, entitled “GRAY BALANCE FOR A PRINTING SYSTEM OF MULTIPLE MARKING ENGINES,” by R. Enrique Viturro, et al.; U.S. application Ser. No. 11/081,473 (Attorney Docket 20040448-US-NP), filed Mar. 16, 2005, entitled “PRINTING SYSTEM,” by Steven R. Moore; U.S. application Ser. No. 11/084,280 (Attorney Docket 20040974-US-NP), filed Mar. 18, 2005, entitled “SYSTEMS AND METHODS FOR MEASURING UNIFORMITY IN IMAGES,” by Howard Mizes; U.S. application. Ser. No. 11/089,854 (Attorney Docket 20040241-US-NP), filed Mar. 25, 2005, entitled “SHEET REGISTRATION WITHIN A MEDIA INVERTER,” by Robert A. Clark, et al.; U.S. application Ser. No. 11/090,498 (Attorney Docket 20040619-US-NP), filed Mar. 25, 2005, entitled “INVERTER WITH RETURN/BYPASS PAPER PATH,” by Robert A. Clark; U.S. application Ser. No. 11/090,502 (Attorney Docket 20031468-US-NP), filed Mar. 25, 2005, entitled IMAGE QUALITY CONTROL METHOD AND APPARATUS FOR MULTIPLE MARKING ENGINE SYSTEMS,” by Michael C. Mongeon; U.S. application Ser. No. 11/093,229 (Attorney Docket 20040677-US-NP), filed Mar. 29, 2005, entitled “PRINTING SYSTEM,” by Paul C. Julien; U.S. application Ser. No. 11/095,872 (Attorney Docket 20040676-US-NP), filed Mar. 31, 2005, entitled “PRINTING SYSTEM,” by Paul C. Julien; U.S. application Ser. No. 11/094,864 (Attorney Docket 20040971-US-NP), filed Mar. 31, 2005, entitled “PRINTING SYSTEM,” by Jeremy C. deJong, et al.; U.S. application Ser. No. 11/095,378 (Attorney Docket 20040446-US-NP), filed Mar. 31, 2005, entitled “IMAGE ON PAPER REGISTRATION ALIGNMENT,” by Steven R. Moore, et al.; U.S. application Ser. No. 11/094,998 (Attorney Docket 20031520-US-NP), filed Mar. 31, 2005, entitled “PARALLEL PRINTING ARCHITECTURE WITH PARALLEL HORIZONTAL PRINTING MODULES,” by Steven R. Moore, et al.; U.S. application Ser. No. 11/102,899 (Attorney Docket 20041209-US-NP), filed Apr. 8, 2005, entitled “SYNCHRONIZATION IN A DISTRIBUTED SYSTEM,” by Lara S. Crawford, et al.; U.S. application Ser. No. 11/102,910 (Attorney Docket 20041210-US-NP), filed Apr. 8, 2005, entitled “COORDINATION IN A DISTRIBUTED SYSTEM,” by Lara S. Crawford, et al.; U.S. application Ser. No. 11/102,355 (Attorney Docket 20041213-US-NP), filed Apr. 8, 2005, entitled “COMMUNICATION IN A DISTRIBUTED SYSTEM,” by Markus P. J. Fromherz, et al.; U.S. application Ser. No. 11/102,332 (Attorney Docket 20041214-US-NP), filed Apr. 8, 2005, entitled “ON-THE-FLY STATE SYNCHRONIZATION IN A DISTRIBUTED SYSTEM,” by Haitham A. Hindi; U.S. application Ser. No. 11/109,558 (Attorney Docket 19971059-US-NP), filed Apr. 19, 2005, entitled “SYSTEMS AND METHODS FOR REDUCING IMAGE REGISTRATION ERRORS,” by Michael R. Furst, et al.; U.S. application Ser. No. 11/109,566 (Attorney Docket 20032019-US-NP), filed Apr. 19, 2005, entitled “MEDIA TRANSPORT SYSTEM,” by Barry P. Mandel, et al.; U.S. application Ser. No. 11/109,996 (Attorney Docket 20040704-US-NP), filed Apr. 20, 2005, entitled “PRINTING SYSTEMS,” by Michael C. Mongeon, et al.; U.S. application Ser. No. 11/115,766 (Attorney Docket 20040656-US-NP, Filed Apr. 27, 2005, entitled “IMAGE QUALITY ADJUSTMENT METHOD AND SYSTEM,” by Robert E. Grace; U.S. application Ser. No. 11/122,420 (Attorney Docket 20041149-US-NP), filed May 5, 2005, entitled “PRINTING SYSTEM AND SCHEDULING METHOD,” by Austin L. Richards; U.S. application Ser. No. 11/136,959 (Attorney Docket 20040649-US-NP), filed May 25, 2005, entitled “PRINTING SYSTEMS,” by Kristine A. German, et al.; U.S. application Ser. No. 11/137,634 (Attorney Docket 20050281-US-NP), filed May 25, 2005, entitled “PRINTING SYSTEM,” by Robert M. Lofthus, et al.; U.S. application Ser. No. 11/137,251 (Attorney Docket 20050382-US-NP), filed May 25, 2005, entitled “SCHEDULING SYSTEM,” by Robert M. Lofthus, et al.; U.S. Publication No. US-2006-0066885-A1 (Attorney Docket A3546-US-CIP), filed May 25, 2005, entitled “PRINTING SYSTEM,” by David G. Anderson, et al.; U.S. application Ser. No. 11/143,818 (Attorney Docket 200400621-US-NP), filed Jun. 2, 2005, entitled “INTER-SEPARATION DECORRELATOR,” by Edul N. Dalal, et al.; U.S. application Ser. No. 11/146,665 (Attorney Docket 20041296-US-NP), filed Jun. 7, 2005, entitled “LOW COST ADJUSTMENT METHOD FOR PRINTING SYSTEMS,” by Michael C. Mongeon; U.S. application Ser. No. 11/152,275 (Attorney Docket 20040506-US-NP), filed Jun. 14, 2005, entitled “WARM-UP OF MULTIPLE INTEGRATED MARKING ENGINES,” by Bryan J. Roof, et al.; U.S. application Ser. No. 11/156,778 (Attorney Docket 20040573-US-NP), filed Jun. 20, 2005, entitled “PRINTING PLATFORM,” by Joseph A. Swift; U.S. application Ser. No. 11/157,598 (Attorney Docket 20041435-US-NP), filed Jun. 21, 2005, entitled “METHOD OF ORDERING JOB QUEUE OF MARKING SYSTEMS,” by Neil A. Frankel; U.S. application Ser. No. 11/166,460 (Attorney Docket 20040505-US-NP), filed Jun. 24, 2005, entitled “GLOSSING SUBSYSTEM FOR A PRINTING DEVICE,” by Bryan J. Roof, et al.; U.S. application Ser. No. 11/166,581 (Attorney Docket 20040812-US-NP), filed Jun. 24, 2005, entitled “MIXED OUTPUT PRINT CONTROL METHOD AND SYSTEM,” by Joseph H. Lang, et al.; U.S. application Ser. No. 11/166,299 (Attorney Docket 20041110-US-NP), filed Jun. 24, 2005, entitled “PRINTING SYSTEM,” by Steven R. Moore; U.S. application Ser. No. 11/170,975 (Attorney Docket 20040983-US-NP), filed Jun. 30, 2005, entitled “METHOD AND SYSTEM FOR PROCESSING SCANNED PATCHES FOR USE IN IMAGING DEVICE CALIBRATION,” by R. Victor Klassen; U.S. application Ser. No. 11/170,873 (Attorney Docket 20040964-US-NP), filed Jun. 30, 2005, entitled “COLOR CHARACTERIZATION OR CALIBRATION TARGETS WITH NOISE-DEPENDENT PATCH SIZE OR NUMBER,” by R. Victor Klassen; U.S. application Ser. No. 11/170,845 (Attorney Docket 20040186-US-NP), filed Jun. 30, 2005, entitled “HIGH AVAILABILITY PRINTING SYSTEMS,” by Meera Sampath, et al.; U.S. application Ser. No. 11/189,371 (Attorney Docket 20041111-US-NP), filed Jul. 26, 2005, entitled “PRINTING SYSTEM,” by Steven R. Moore, et al.; U.S. application Ser. No. 11/208,871 (Attorney Docket 20041093-US-NP), filed Aug. 22, 2005, entitled “MODULAR MARKING ARCHITECTURE FOR WIDE MEDIA PRINTING PLATFORM,” by Edul N. Dalal, et al.; U.S. application Ser. No. 11/215,791 (Attorney Docket 2005077-US-NP), filed Aug. 30, 2005, entitled “CONSUMABLE SELECTION IN A PRINTING SYSTEM,” by Eric Hamby, et al.; U.S. application Ser. No. 11/222,260 (Attorney Docket 20041220-US-NP), filed Sep. 8, 2005, entitled “METHOD AND SYSTEMS FOR DETERMINING BANDING COMPENSATION PARAMETERS IN PRINTING SYSTEMS,” by Goodman, et al.; U.S. application Ser. No. 11/234,553 (Attorney Docket 20050371-US-NP), filed Sep. 23, 2005, entitled “MAXIMUM GAMUT STRATEGY FOR THE PRINTING SYSTEMS,” by Michael C. Mongeon; U.S. application Ser. No. 11/234,468 (Attorney Docket 20050262-US-NP), filed Sep. 23, 2005, entitled “PRINTING SYSTEM,” by Eric Hamby, et al.; U.S. application Ser. No. 11/247,778 (Attorney Docket 20031549-US-NP), filed Oct. 11, 2005, entitled “PRINTING SYSTEM WITH BALANCED CONSUMABLE USAGE,” by Charles Radulski, et al.; U.S. application Ser. No. 11/248,044 (Attorney Docket 20050303-US-NP), filed Oct. 12, 2005, entitled “MEDIA PATH CROSSOVER FOR PRINTING SYSTEM,” by Stan A. Spencer, et al.; and U.S. application Ser. No. 11/274,638 (Attorney Docket 20050689-US-NP), filed Nov. 15, 2005, entitled “GAMUT SELECTION IN MULTI-ENGINE SYSTEMS,” by Wencheng Wu, et al.; U.S. application Ser. No. 11/287,177 (Attorney Docket 20050909-US-NP), filed Nov. 23, 2005, entitled “MEDIA PASS THROUGH MODE FOR MULTI-ENGINE SYSTEM,” by Barry P. Mandel, et al.; U.S. application Ser. No. 11/287,685 (Attorney Docket 20050363-US-NP), filed Nov. 28, 2005, entitled “MULTIPLE IOT PPHOTORECEPTOR BELT SEAM SYNCHRONIZATION,” by Kevin M. Carolan; U.S. application Ser. No. 11/291,860 (Attorney Docket 20050966-US-NP), filed Nov. 30, 2005, entitled “MEDIA PATH CROSSOVER CLEARANCE FOR PRINTING SYSTEM,” by Keith L. Willis; U.S. application Ser. No. 11/292,388 (Attorney Docket 20051103-US-NP), filed Nov. 30, 2005, entitled “PRINTING SYSTEM,” by David A. Mueller; U.S. application Ser. No. 11/292,163 (Attorney Docket 20050489-US-NP), filed Nov. 30, 2005, entitled “RADIAL MERGE MODULE FOR PRINTING SYSTEM,” by Barry P. Mandel, et al.; U.S. application Ser. No. 11/291,583 (Attorney Docket 20041755-US-NP), filed Nov. 30, 2005, entitled “MIXED OUTPUT PRINTING SYSTEM,” by Joseph H. Lang; U.S. application Ser. No. 11/312,081 (Attorney Docket 20050330-US-NP), filed Dec. 20, 2005, entitled “PRINTING SYSTEM ARCHITECTURE WITH CENTER CROSS-OVER AND INTERPOSER BY-PASS PATH,” by Barry P. Mandel, et al.; U.S. application Ser. No. 11/314,828 (Attorney Docket 20051171-US-NP), filed Dec. 21, 2005, entitled “MEDIA PATH DIAGNOSTICS WITH HYPER MODULE ELEMENTS,” by David G. Anderson, et al; U.S. application Ser. No. 11/314,774 (Attorney Docket 20050137-US-NP), filed Dec. 21, 2005, entitled “METHOD AND APPARATUS FOR MULTIPLE PRINTER CALIBRATION USING COMPROMISE AIM,” by R. Victor Klassen; U.S. application Ser. No. 11/317,589 (Attorney Docket 20040327-US-NP), filed Dec. 23, 2005, entitled “UNIVERSAL VARIABLE PITCH INTERFACE INTERCONNECTING FIXED PITCH SHEET PROCESSING MACHINES,” by David K. Biegelsen, et al.; U.S. application Ser. No. 11/317,167 (Attorney Docket 20050823-US-NP), filed Dec. 23, 2005, entitled “PRINTING SYSTEM,” by Robert M. Lofthus, et al.; U.S. application Ser. No. 11/331,627 (Attorney Docket 20040445-US-NP), filed Jan. 13, 2006, entitled “PRINTING SYSTEM INVERTER APPARATUS”, by Steven R. Moore; U.S. application Ser. No. 11/341,733 (Attorney Docket 20041543-US-NP), filed Jan. 27, 2006, entitled “PRINTING SYSTEM AND BOTTLENECK OBVIATION”, by Kristine A. German; U.S. application Ser. No. 11/349,828 (Attorney Docket 20051118-US-NP), filed Feb. 8, 2005, entitled “MULTI-DEVELOPMENT SYSTEM PRINT ENGINE”, by Martin E. Banton; U.S. application Ser. No. 11/359,065 (Attorney Docket 20051624-US-NP), filed Feb. 22, 2005, entitled “MULTI-MARKING ENGINE PRINTING PLATFORM”, by Martin E. Banton; U.S. application Ser. No. 11/363,378 (Attorney Docket 20051536-US-NP), filed Feb. 27, 2006, entitled “SYSTEM FOR MASKING PRINT DEFECTS”, by Anderson, et al.; U.S. application Ser. No. 11/364,685 (Attorney Docket 20051434-US-NP), filed Feb. 28, 2006, entitled “SYSTEM AND METHOD FOR MANUFACTURING SYSTEM DESIGN AND SHOP SCHEDULING USING NETWORK FLOW MODELING”, by Hindi, et al.; U.S. application Ser. No. 11/378,046 (Attorney Docket 20051682-US-NP), filed Mar. 17, 2006, entitled “PAGE SCHEDULING FOR PRINTING ARCHITECTURES”, by Charles D. Rizzolo, et al.; U.S. application Ser. No. 11/378,040 (Attorney Docket 20050458-US-NP), filed Mar. 17, 2006, entitled “FAULT ISOLATION OF VISIBLE DEFECTS WITH MANUAL MODULE SHUTDOWN OPTIONS”, by Kristine A. German, et al.; U.S. application Ser. No. 11/399,100 (Attorney Docket 20051634-US-NP), filed Apr. 6, 2006, entitled “SYSTEMS AND METHODS TO MEASURE BANDING PRINT DEFECTS”, by Peter Paul; U.S. application Ser. No. 11/403,785 (Attorney Docket 20051623-US-NP), filed Apr. 13, 2006, entitled “MARKING ENGINE SELECTION”, by Martin E. Banton et al.