The present application is directed to toner transfer systems for an image forming device and, more specifically, toner transfer systems with a tension device to adjust tension on a transfer belt.
Image forming devices such as but not limited to printers, facsimile machines, copiers, and multi-functional devices, may include an image transfer belt. The belt functions to receive an image at a first location within the image forming device and transport the image to a second location. One embodiment includes a belt for use in an electrophotographic image formation process. The belt receives a toner image from one or more photoconductive members and transfers the toner image or images to a media sheet.
The belt may extend around a number of rolls, including a drive roll and a tension roll. The tension roll keeps the belt tight to provide drive capability at the drive roll. The tension may damage the belt, particularly when the tension is applied for extended periods of time and when the belt is in a hot environment. One environment that may damage the belt is a school that has been closed for the summer. The belt may take the form of the rolls it wraps around, which is referred to as belt set. Belt set may cause motion quality defects during image formation. Removing the tension from the belt may be beneficial to extend the life of the belt by preventing belt set.
Reducing an overall cost is also an important consideration when designing an image forming device. Cost is often a driving factor for consumers when making a purchasing decision. One manner of reducing the cost is to use parts for multiple functions. This eliminates additional parts thereby reducing the overall cost. Further, the reduction in parts may also provide improved maintenance because of fewer parts that may fail or otherwise become problematic.
The present application is directed to toner transfer systems in an image forming device. The systems may include a plurality of rolls comprising at least a drive roll and a tension roll. A transfer belt may extend around the plurality of rolls. At least one imaging station may be positioned in proximity to the transfer belt to form a toner image on the transfer belt. An arm with first and second ends may be positioned in proximity to the transfer belt. The arm may be pivotally movable between a first orientation that causes the tension roll to be at a first position. This first position may cause a first amount of tension on the transfer belt that may allow the toner image to be formed on the transfer belt and moved to a second transfer point. The arm may be movable to a second orientation that may be in contact with the tension roll that causes the tension roll to be at a second position. The second position may cause a second lesser amount of tension on the transfer belt.
The present application is directed to toner transfer systems with an adjustable transfer belt.
A better understanding of the toner transfer system is available with an overall discussion of the image forming device 100.
Each imaging station 150 includes a toner reservoir 154 to contain the toner. One or more agitating members may further be positioned within the reservoir 154 to move the toner. A toner adder roll 155 is positioned in the reservoir 154 to move the toner to a developer roll 156. The imaging stations 150 also include a photoconductive member 153 that receives toner from the developer roll 156. A charging member 152 is positioned to charge the photoconductive (PC) member 153. In one embodiment, each of the imaging stations 150 is substantially the same except for the color of toner. For purposes of clarity in
During image formation, the surface of the PC member 153 is charged to a specified voltage such as −1000 volts, for example. A laser beam from a printhead 191 is directed to the surface of the PC drum 153 and discharges those areas it contacts to form a latent image. In one embodiment, areas on the PC drum 153 illuminated by the laser beam are discharged to approximately −300 volts. The developer roll 156 then transfers toner to the PC drum 153 to form a toner image. The toner is attracted to the areas of the PC drum 153 surface discharged by the laser beam from the printhead 190.
The transfer belt 20 is disposed adjacent to each of the imaging stations 150. In this embodiment, the transfer belt 20 is formed as an endless belt trained about a plurality of support rolls. In this embodiment, the support rolls include a backup roll 30a, tension roll 30b, and a drive roll 30c. During image forming operations, the transfer belt 20 moves past the imaging stations 150 in a clockwise direction as viewed in
The transfer belt 20 rotates and collects the one or more toner images from the one or more imaging stations 150 and then conveys the toner images to a media sheet at a second transfer area. The second transfer area includes a second transfer nip 140 formed between the back-up roll 30a and a second transfer roll 70.
A media path 144 extends through the device 100 for moving the media sheets through the imaging process. Media sheets are initially stored in an input tray 130 or introduced into the body 101 through a manual feed 148. The media sheet receives the toner image from the transfer belt 20 as it moves through the second transfer nip 140. The media sheets with toner images are then moved along the media path 144 and into a fuser area 180. Fuser area 180 includes fusing rolls or belts 181 that form a nip to adhere the toner image to the media sheet. The fused media sheets then pass through exit rolls 145 that are located downstream from the fuser area 180. Exit rolls 145 may be rotated in either forward or reverse directions. In a forward direction, the exit rolls 145 move the media sheet from the media path 144 to an output area 147. In a reverse direction, the exit rolls 145 move the media sheet into a duplex path 146 for image formation on a second side of the media sheet.
A controller 190 is included within the image forming device 100 to control the overall printing process including creation and timing of the toner images, and movement of the media sheets. Controller 190 may include a microprocessor with associated memory. In one embodiment, controller 190 includes a microprocessor, random access memory, read only memory, and an input/output interface. A control panel 151 may be operatively connected to the controller 190. The control panel 151 includes one or more input buttons and a display screen. The control panel 151 provides for a user to input commands as necessary.
The tension roll 30b is mounted on a member 85 that is connected to a pivoting shaft 86. A biasing member 87 extends between the body 101 and the member 85. The biasing member 87 applies a force to pivot the member 85 outward and away from the back up roll 30a. This biasing force causes the tension roll 30b positioned on the end of the member 85 to contact against an inner surface of the transfer belt 20 and maintain the desired tension on the transfer belt 20. The tension is adequate for the transfer belt 20 to be rotated by around the support rolls 30.
The tensioning device 10 is positioned adjacent to the transfer belt 20 to adjust a position of one of the support rolls 30 thereby adjusting the tension on the transfer belt 20. In the embodiment of
The tensioning device 10 includes an arm 11 with a first end 12 and a second end 13 each including contact surfaces 15, 16, respectively. The arm 11 is pivotally positioned about an intermediate pivot 14. In one embodiment, the second end 13 is closer to the pivot 14 than the first end 12. The arm 11 is further connected to the second transfer roll 70. In the embodiment of
The tensioning device 10 further includes a contact mechanism 80 that moves the arm 11 from the first orientation to a second orientation. In one embodiment as illustrated in
Contact mechanism 80 is further movable to a second position as illustrated in
Movement of the arm 11 to the second orientation also moves the second transfer roll 70. In one embodiment, the second transfer roll 70 moves away from the backup roll 30a. This spacing may be beneficial to remove media sheets from the second transfer nip 140 in the event of a jam.
In the embodiments of
The embodiments of
In one embodiment, the tensioning device 10 is used throughout the life of the image forming device 100. The user is able to adjust the tension by entering commands to the controller 190 through the input panel 151. This enables the user to control the tension on the transfer belt 20 as necessary.
In another embodiment, the contact mechanism 80 operates a single time to adjust the tension on the transfer belt 20. In one embodiment, the tensioning device 10 is initially set with the arm 11 in the second orientation to lessen the tension. This may occur during assembly of the image forming device 100. Prior to operating the image forming device 100, the tensioning device 10 is activated to move the arm 11 to the second orientation to allow image formation. The activation of the tensioning device 10 may occur automatically through the controller 190 when the image forming device 100 is initially activated by the user prior to first use. Alternatively, the user may be prompted to enter commands through the input panel 151 to activate the tensioning device 10.
In the embodiments of
The embodiments described above include the tensioning device 10 operatively connected to the tension roll 30b. In other embodiments, the tensioning device 10 is operatively connected to either the backup roll 30a or the drive roll 30c.
Spatially relative terms such as “under”, “below”, “lower”, “over”, “upper”, and the like, are used for ease of description to explain the positioning of one element relative to a second element. These terms are intended to encompass different orientations of the device in addition to different orientations than those depicted in the figures. Further, terms such as “first”, “second”, and the like, are also used to describe various elements, regions, sections, etc and are also not intended to be limiting. Like terms refer to like elements throughout the description.
As used herein, the terms “having”, “containing”, “including”, “comprising” and the like are open ended terms that indicate the presence of stated elements or features, but do not preclude additional elements or features. The articles “a”, “an” and “the” are intended to include the plural as well as the singular, unless the context clearly indicates otherwise.
The present invention may be carried out in other specific ways than those herein set forth without departing from the scope and essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
7133631 | Ito et al. | Nov 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20090142097 A1 | Jun 2009 | US |