1. Field of the Invention
Embodiments of the present invention generally relate to handling of wellbore tools. More particularly, embodiments of the present invention relate to an apparatus for positioning a tool.
2. Description of the Related Art
During a drilling operation, a drill string is used to form a wellbore. The drill string is made from multiple lengths of drill pipe. Typically, a tong is used to connect the drill pipe to the drill string. The tong rotates the drill pipe to screw the pin end of the drill pipe into the box end of the drill string. The tong provides the torque necessary to make-up (or break-out) the connection. At various times during the drilling operation, the tong is moved between several locations at the well site, such as at well centerline, mouse holes, or a storage position. Due to the size and the weight of the tong, the movement of the tong may be difficult. Therefore, there is a need for an apparatus and method for moving the tong at the well site.
The present invention generally relates to a tool for positioning a tool. In one aspect, an apparatus for positioning a tool at a well site is provided. The apparatus includes a first arm rotationally connected to a guide on a column. The apparatus further includes a second arm rotationally connected to the first arm. The second arm is also connected to a tool attachment member at a pivot point, wherein the pivot point is offset from the centerline of the tool. Additionally, the apparatus includes a flexible tension member having one end operatively connected to the guide and another end connected to the tool attachment member at a location closer to the centerline of the tool than the pivot point, wherein the flexible tension member is configured to maintain the tool in a specific orientation around the pivot point during the positioning operation.
In another aspect, an apparatus for positioning a tool at a wellsite is provided. The apparatus includes a first arm pivotally connected to a guide on a column. The apparatus further includes a second arm pivotally connected to the first arm and an attachment member, wherein the attachment member is configured to attach to the tool. The apparatus also includes a connecting member pivotally connected to the second arm and the guide. Additionally, the apparatus includes a cylinder and piston rod assembly pivotally connected to the guide and the first arm, wherein the cylinder and piston rod assembly is configured to rotate the first arm relative to the guide, which causes the second arm to move the tool between an extended position and a retracted position along a substantially horizontal plane.
In another aspect, an apparatus for positioning a tool at a wellsite is provided. The apparatus includes a first arm connected to a guide on a column at a first pivot point. The apparatus further includes a second arm connected to the first arm at a second pivot point and connected to a tool attachment member at a third pivot point. Additionally, the apparatus includes a connecting member attached to the second arm at a fourth pivot point and attached to the guide at a fifth pivot point, wherein the second pivot point is between the third pivot point and the fourth pivot point. The rotational movement of the first arm around the first pivot point causes the second arm to move the tool.
In a further aspect, a method of positioning a tool at a wellsite is provided. The method includes the step of attaching the tool to a positioning apparatus. The positioning apparatus comprises a first arm pivotally connected to a guide on a column, a second arm pivotally connected to the first arm and a connecting member pivotally connected to the second arm and the guide. The method further includes the step of rotating the first arm relative to the column thereby causing the second arm to move the tool along a substantially horizontal plane.
In yet a further aspect, a method of positioning a tool at a wellsite is provided. The method includes the step of attaching the tool to a positioning apparatus. The positioning apparatus comprises a first arm pivotally connected to a guide on a column, a second arm pivotally connected to the first arm and a flexible tension member operatively attached to the second arm and the guide. The method further includes the step of adjusting an orientation of the tool by manipulating the length of the flexible tension member. Additionally, the method includes the step of rotating the first arm relative to the column thereby causing the second arm to move the tool between a retracted position and an extended position.
In an additional aspect, an apparatus for positioning a tool at a wellsite is provided. The positioning apparatus includes a first arm rotationally connected to a base. The positioning apparatus further includes a second arm rotationally connected to the first arm. The positioning apparatus also includes an extension arm connected between the second arm and a tool attachment member. In addition, the positioning apparatus includes a stabilizing member connected to the tool attachment member. The stabilizing member is configured to maintain the tool in a specific orientation during a positioning operation.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Embodiments of the present invention generally relate to an apparatus for positioning a tool, such as a tong, a pipe-stabilizing tool, a gripping arm, welding equipment or any other wellbore equipment. To better understand the aspects of the present invention and the methods of use thereof, reference is hereafter made to the accompanying drawings.
As illustrated in
The first arm 125 is also connected to the guide 120 via the cylinder 130. The cylinder 130 includes a piston rod 140 that is movable relative to the cylinder 130. As the piston rod 140 extends outward from the cylinder 130, the first arm 125 rotates around the connection member 165 in a direction away from the column member 105. As the piston rod 140 retracts into the cylinder 130, the first arm 125 rotates around the connection member 165 in a direction toward the column member 105. In other words, the piston rod 140 of the cylinder 130 controls the movement of the arms 125, 150 of the positioning apparatus 100. In another embodiment, the cylinder 130 may be positioned between the first arm 125 and the second arm 150. The cylinders of the positioning apparatus 100 may be connected to the hydraulic system of the tool 50 such that the tool 50 and the positioning apparatus 100 may be operated by a single control panel on the tool 50 or by a remote control device.
In one embodiment, the cylinders used in the positioning apparatus 100 are hydraulic counterbalance cylinders. The hydraulic counterbalance cylinders are configured as a pipe break safety valve, whereby if hydraulic pressure is lost in the system, then the hydraulic counterbalance cylinders will lock in position. Generally, the hydraulic counterbalance cylinders include a check valve arrangement on the rod side that can be opened by pilot pressure. The pressure on the incoming line on the piston side of the cylinder is used to open the check valve arrangement on the rod side. If the pressure on the incoming line is lost, then the check valve arrangement closes and the rod is locked in place. The locking of the rod causes the positioning apparatus 100 to become locked so that the tool 50 will not be dropped if hydraulic pressure in the system is lost.
The second arm 150 is connected to the first arm 125 via the connection member 155. The second arm 150 is also connected to the guide 120 by a connecting member 110. The connecting member 110 may be any type of member that is capable of operating in tension, such as a rod, a rope, or a chain. As illustrated, the connecting member 110 is attached to the guide 120 via a connection member 185, and the connecting rod is attached to the second arm 150 via a connection member 180. Preferably, the connecting member 110 is a fixed length rod, which controls the movement of the second arm 150 as the first arm 125 rotates around the connection member 165. As will be described herein, the first arm 125 and the second arm 150 are configured such that the positioning apparatus 100 can move the tool 50 along a substantially horizontal path during the positioning operation.
The second arm 150 is connected to a tool attachment member 225 via a connection member 160. The tool attachment member 225 is able to rotate around the connection member 160 as the positioning apparatus 100 moves between the retracted position and the extended position. The tool attachment member 225 may be configured to grip and support the tool 50 during and after the positioning operation. In one embodiment, the tool attachment member 225 comprises a plurality of plates that are connected on a base portion of the tool 50. In another embodiment, the tool 50 may be welded to the attachment member 225. In a further embodiment, the attachment member 225 may comprise releasable jaws configured to hold the tool 50.
The positioning apparatus 100 may include a column member 105 mounted to the base plate 175. A guide 120 is disposed on the column member 105, and the guide 120 is rotationally fixed with respect to the column member 105. The column member 105 may be rotated about its longitudinal axis to place the tool 50 at any desired location about the column member 105. A rotational drive may be used to rotate the column member 105, such as a hydraulic motor (
As shown in
The tension member 115 is configured to stabilize the tool 50 such that the tool 50 is maintained in a specific orientation (e.g., a substantially vertical position or a tilted position) during the positioning operation. The tool 50 is free to pivot about the connection member 160; however, the tension member 115 prevents the tool 50 from pivoting beyond a set limit in one direction. The second arm 150 and the tension member 115 are attached to the tool attachment member 225 at a location that is offset from the center of gravity of the tool 50. As shown, the tension member 115 is connected to the attachment member 225 at a location closer to the center of gravity of the tool 50 than the second arm 150. The arrangement of the connection points to the tool 50 allows the tension member 115 to stabilize the tool 50 as the positioning apparatus 100 moves the tool 50 along a substantially horizontal plane during the positioning operation.
The tension member 115 may be fixed in length or the length may be adjustable. In one embodiment, the positioning apparatus 100 may include an adjustment mechanism (not shown) configured to adjust the length of the tension member 115 and thus the orientation of the tool 50. For example, if the adjustment mechanism increases the length of the tension member 115, then the tool 50 will pivot about the connection member 160 in a first direction. Alternatively, if the adjustment mechanism decreases the length of the tension member 115, then the tool 50 will pivot about the connection member 160 in a second opposite direction. As such, the adjustment mechanism can adjust the orientation of the tool 50 such that the tool 50 may be in a downward tilted orientation, a substantially vertical orientation, or upward tilted orientation. Further, the adjustment mechanism may adjust the orientation of the tool 50 prior to moving the tool 50 in the positioning operation or after moving the tool 50 to the desired position. Additionally, the adjustment mechanism may be configured to adjust the orientation of the tool 50 while the positioning apparatus 100 moves the tool 50 during the positioning operation. The adjustment mechanism may be any mechanism known in the art that is configured to adjust the length of the tension member 115, such as a lever mechanism, a turnbuckle, a hydraulic cylinder and roller (or pulley) arrangement or a sprocket arrangement. Additionally, the adjustment mechanism may be operated by manual manipulation or the adjustment mechanism may be controlled by a control system, such as the operating control system of the positioning apparatus 100.
As illustrated in
The positioning apparatus 300 further includes the extension arm 375. Generally, the extension arm 375 is used to extend the reach of the positioning apparatus 300 past the extended position. The extension arm 375 is an optional component that may be used to allow the tool 50 to be placed at the centerline of the wellbore, mouse holes, or another position offset from the centerline of the wellbore.
As shown in
The tension member 115 is connected to the arm attachment member 340 by a connection arrangement 370. The tension member 115 works in conjunction with the optional stabilizing member 380 to stabilize the tool 50 such that the tool 50 is maintained in a specific orientation (e.g., a substantially vertical position or a tilted position) during the positioning operation. The tool 50 is free to pivot about the connection member 360; however, the stabilizing member 380 and the tension member 115 prevent the tool 50 from pivoting beyond a set limit in one direction. The extension arm 375 and the stabilizing member 380 are attached to the tool attachment member 330 at a location that is offset from the center of gravity of the tool 50. The arrangement of the connection points to the tool 50 allows the stabilizing member 380 and the tension member 115 to stabilize the tool 50 as the positioning apparatus 300 moves the tool 50 along a substantially horizontal plane during the positioning operation. In another embodiment, the tension member 115 may be connected directly to the tool 50 or the tool attachment member 330.
The stabilizing member 380 may be fixed in length or the length may be adjustable at either connection point. In one embodiment, the positioning apparatus 300 may include an adjustment mechanism (not shown) configured to adjust the length of the stabilizing member 380 and thus the orientation of the tool 50. For example, if the adjustment mechanism increases the length of the stabilizing member 380, then the tool 50 will pivot about the connection member 360 in a first direction. Alternatively, if the adjustment mechanism decreases the length of the stabilizing member 380, then the tool 50 will pivot about the connection member 360 in a second opposite direction. As such, the adjustment mechanism can adjust the orientation of the tool 50 such that the tool 50 may be in a downward tilted orientation, a substantially vertical orientation, or upward tilted orientation. Further, the adjustment mechanism may adjust the orientation of the tool 50 prior to moving the tool 50 in the positioning operation or after moving the tool 50 to the desired position. Additionally, the adjustment mechanism may be configured to adjust the orientation of the tool 50 while the positioning apparatus 300 moves the tool 50 during the positioning operation. The adjustment mechanism may be any mechanism known in the art that is configured to adjust the length of the stabilizing member 380, such as a lever mechanism, a turnbuckle, a hydraulic cylinder and roller (or pulley) arrangement or a sprocket arrangement. Additionally, the adjustment mechanism may be operated by manual manipulation or the adjustment mechanism may be controlled by a control system, such as the operating control system of the positioning apparatus 300. In one embodiment, the stabilizing member 380 is a fixed length rod; however, the stabilizing member 380 may be any type of member that is capable of operating in tension, such as a rope, or a chain.
In another embodiment, the extension arm 375 may be rotated as the second arm 350 is rotated. The synchronization of the extension arm 375 and the second arm 350 may be accomplished by mechanical linkage and/or with connection with the control circuit on the positioning apparatus 300. In the case of mechanical linkage, the piston rod 140 causes the movement of the first arm 325, the second arm 350 and the extension arm 375. The movement of the piston rod 140 of the cylinder 130 causes the first arm 325 to pivot around the connection member 165. The connecting member 110 controls the rotation of the second arm 350 such that the upper end of the second arm 350 is maintained closer to the column 305 than the connection member 155. Hence, the lower end of the second arm 350 is pivoted away from the column 105. As the second arm 350 moves away from the column 105, the extension arm 375 is rotated around connection member 355.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. provisional patent application Ser. No. 61/281,590, filed Nov. 19, 2009, which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61281590 | Nov 2009 | US |