The subject invention generally pertains to servicing wells for extracting oil or other fluids and more specifically pertains to triggering the actuation of tongs used for assembling and disassembling a series of elongate members such as tubing, sucker rods, sinker bars and the like.
Wells for extracting oil or other fluids typically include various assemblies of interconnected elongate members disposed within a wellbore. Some examples of such elongate members include sucker rods, sinker bars, tubing, casing pipe, etc. Occasionally, wells need to be repaired or otherwise serviced, which may involve extracting and disassembling one or more of the elongate members. Current methods for servicing wells can be slow, manually intensive, and often dangerous.
Tongs device 12 is schematically illustrated to represent any powered tool, wrench or mechanism known for assembling or disassembling the series of elongate members 14 by respectively screwing or unscrewing the threaded joints interconnecting the series of elongate members 14. Depending on the type of elongate member and interconnecting joints, conventional tongs 12 are such that tongs 12 include suitable jaws for engaging one or more elongate members and, in some examples, for also engaging a coupling interconnecting two elongate members. In the illustrated example, tongs device 12 is connected to a powered actuator 18 (e.g., a robotic arm, linkage, track, etc.) for automatically deploying and retracting tongs device 12 relative to a targeted threaded joint. In some examples tongs device 12 is an open-face set of tongs, wherein deployment and retraction of tongs device 12 involves moving tongs device 12 horizontally (e.g., arrows 13 of
In the illustrated example, the series of elongate members 14 comprises a first set of elongate members 20, a second set of elongate members 22, and any number of additional sets of elongate members. The term, “set” refers to an assembled group of elements. In this example, the first set of elongate members 20 comprises a first plurality of elongate members 24 interconnected by a first plurality of joints 26, and the second set of elongate members 22 comprises a second plurality of elongate members 28 interconnected by a second plurality of joints 30. The first plurality of joints 26 includes a first lowermost joint 32 that connects the first set of elongate members 20 to the second set of elongate members 22. In some examples, the second plurality of joints 30 includes a second lowermost joint 34 that connects the second set of elongate members 22 to one or more additional sets of elongate members.
The term, “joint” refers to any threaded connection. Examples of joints 26, 30, 32 and 34 include, but are not limited to, two rods with male threaded ends screwed into a female threaded coupling; two pipes with male threaded ends screwed into a female threaded coupling; two rods each with male threads at one end and female threads at an opposite end, wherein one rod is screwed directly into the other one without a coupling between the two; and two pipes each with male threads at one end and female threads at an opposite end, wherein one pipe is screwed directly into the other one without a coupling between the two.
Additional elements useful in the currently described method for operating lifting device 10 and tongs device 12 include one or more conventional known elevator connectors 36 (e.g., clevis with a bail adapted to capture a joint, coupling, and/or shoulder of an elongate member), a computer 38, a joint sensor 40, a conventional known holding device 42 (e.g., a pneumatic slip), and a predetermined storage area 44 (e.g., a rack for holding one or more elongate members). Elevator connectors 36 are well known devices used for connecting a hook 46 of lifting device 10 to an upper end of an elongate member (e.g., members 24, 28, etc.) and/or a coupling attached thereto. In some examples, elevator connector 36 is also selectively used at the surface of a work platform 48 to engage the series of elongate members 14 to prevent them from falling back down into wellbore 16 when lifting device 10 disengages the upper end of the series of elongate members 14. Additionally and/or alternatively, holding device 42 can be used at the surface of work platform 48 to engage the series of elongate members 14 to prevent them from falling back down into wellbore 16 when lifting device 10 disengages the upper end of the series of elongate members 14.
The term, “computer” refers to any electronic controller or collection of controllers comprising one or more circuits. Examples of computer 38 include, but are not limited to, a microprocessor-based electric circuit, a programmable logic controller (PLC), a programmable circuit, a non-programmable circuit, a desktop computer, laptop computer, personal computer, industrial computer, microcomputer, IC based electric circuit (electric circuit with an integrated circuit chip), Internet/web based software, and various combinations thereof. In some examples, computer 38 provides a plurality of outputs (examples of which include, but are not limited to outputs 50, 52, 54 and 56) in response to a plurality of inputs (examples of which include, but are not limited to, inputs 58 and signal 60).
Joint sensor 40 is schematically illustrated to represent any means for sensing the presence of a joint and generating an electric signal 60 in response to sensing the presence of the joint. In some examples, joint sensor 40 is a non-contact proximity sensor (e.g., Hall Effect, optical detection, ultrasonic detection, laser, etc.), that generates signal 60 upon sensing the proximity of an enlarged-diameter section of the series of elongate members 14, wherein such an enlarged-diameter section is evidence of a joint.
Holding device 42 is schematically illustrated to represent any means for gripping or clamping a portion of the series of elongate members 14 or otherwise holding or maintaining the series of elongate members 14 at a desired elevation. In some examples, holding device 42 comprises one or more wedges that are pneumatically actuated to bind radially against an elongate member. In other examples, holding device 42 comprises one or more hydraulic cylinders that selectively extend and retract in a radial direction relative to an elongate member. In still other examples, a releasable second elevator connector 36 (or an equivalent thereof) at the surface of work platform 48 serves as such a holding device. Holding device 42 is shown in a holding position in
In some examples, the method of operation follows the sequence illustrated by
In
In
Referring also to
Referring to
A challenging problem with the aforementioned process is being able to efficiently and quickly withdraw assembled sets of elongate members. To do so, lifting device 10 needs to lift the series of elongate members 14 as rapidly as possible. This can be difficult because computer 38 needs to quickly determine which joints are to be skipped (e.g., a first plurality of skipped joints 70, a second plurality of skipped joints 90, etc.) and which ones need to be disconnected (e.g., first lowermost joint 32, second lowermost joint 34, etc.).
To this end, in some examples, a user 102 (
In the example where input 58 is a length input (e.g., the maximum or overall length of the first set of elongate members 20), computer 38 compares the length input to the lifting device's actual hook travel distance based on feedback from, for example, an encoder connected to lifting device 10 and uses the comparison to determine when the next joint to be disconnected arrives at target elevation 64. In cases where lifting device 10 does not employ an encoder or other means for sensing the hook's position or travel distance, a timer is used to measure the period between sequential joints passing sensor 40, and that information in combination with a known length of an individual elongate member 26 is used by computer 38 to determine when sufficient time has elapsed for a lowermost joint (e.g., joint 32 or 34, etc.) to reach target elevation 64. A sufficient elapsed time, for example, would be the period measured by the timer multiplied by the desired number of individual elongate members per each set of elongate members 20 or 22.
Once computer 38 includes one of the aforementioned means for determining which joints are to be skipped and which ones need to be disconnected, computer 38, in some examples, decelerates lifting device 10 just prior to a lowermost joint (e.g., joint 32 or 34) reaching target elevation 64 (block 104 of
Referring to
Although the invention is described with respect to a preferred embodiment, modifications thereto will be apparent to those of ordinary skill in the art. The aforementioned methods, for example, can readily be reversed to assemble and install a series of elongate members. The scope of the invention, therefore, is to be determined by reference to the following claims:
Number | Name | Date | Kind |
---|---|---|---|
4110688 | Bailey | Aug 1978 | A |
4119837 | Sheldon et al. | Oct 1978 | A |
4249831 | Sable et al. | Feb 1981 | A |
4269554 | Jackson | May 1981 | A |
4403666 | Willis | Sep 1983 | A |
4468959 | Roberts | Sep 1984 | A |
4481714 | Nelson | Nov 1984 | A |
4591006 | Hutchison et al. | May 1986 | A |
4604724 | Shaginian et al. | Aug 1986 | A |
4621974 | Krueger | Nov 1986 | A |
4650235 | Shaginian et al. | Mar 1987 | A |
4696207 | Boyadjieff | Sep 1987 | A |
5062756 | McArthur et al. | Nov 1991 | A |
5711382 | Hansen et al. | Jan 1998 | A |
5988299 | Hansen et al. | Nov 1999 | A |
6079490 | Newman | Jun 2000 | A |
6688389 | Connell et al. | Feb 2004 | B2 |
6877558 | Connell et al. | Apr 2005 | B2 |
6896056 | Mendez et al. | May 2005 | B2 |
7001065 | Dishaw et al. | Feb 2006 | B2 |
7006920 | Newman et al. | Feb 2006 | B2 |
7158446 | Gardner et al. | Jan 2007 | B2 |
7163335 | Dishaw et al. | Jan 2007 | B2 |
7249639 | Belik | Jul 2007 | B2 |
7461830 | Newman | Dec 2008 | B2 |
7518526 | Newman | Apr 2009 | B2 |
7571054 | Newman | Aug 2009 | B2 |
7588083 | Newman | Sep 2009 | B2 |
7672785 | Newman | Mar 2010 | B2 |
7677331 | Lowe et al. | Mar 2010 | B2 |
7717193 | Egilsson et al. | May 2010 | B2 |
7788054 | Newman | Aug 2010 | B2 |
7878254 | Abdollahi et al. | Feb 2011 | B2 |
20090084558 | Bloom | Apr 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20130008644 A1 | Jan 2013 | US |