The present invention relates to tongue and groove floor, ceiling and wall panels sculpted out of a single piece of wood or other material, with a veneer atop each panel.
Floor panels, such as parquet floor panels, are typically made of an array of interlocking tongue and groove panels. However, often the grooves are gouged out of a single piece of wood, and the corresponding tongues are sculpted out of a single piece of wood, making their manufacture time consuming and subject to minute, small errors.
U.S. Pat. No. 2,257,048 of Fulbright describes a panel with multiple layers glued together.
The flooring of Martensson in his U.S. Pat. No. 6,101,778, uses a solid base layer with bonded profiled edges providing snap-together profiles. U.S. Pat. No. 2,283,135 of Bruce for flooring uses solid strips of wood with no veneer upper layer. The flooring of Martensson in his U.S. Pat. No. 6,101,778, uses a solid base layer with bonded profiled edges providing snap-together profiles. However, Martensson '778 requires coupling the respective tongue 7 and groove 6 to respective separate panels 1, each respective panel 1 having respective lower portions 15 which mate with corresponding flanges 16 and 14 extending respectively from tongue 7 and groove 6.
U.S. Pat. No. 2,283,135 of Bruce for flooring uses solid strips of wood with no veneer upper layer. Bruce 135 also uses nails 10 to attach elongated strips 1 to subflooring, a feature not required by Applicant's interlocking panels.
Martensson '778 therefore uses the idea of one side clamping to the other side, Martensson '778 also uses long panels, not interlocking square panels like the Applicant herein. Martensson '778 does not describe a system where oppositely located, coordinated rotating bits can sculpt not only the tongue and grooves of wall panels from solid blocks, and Martensson cannot sculpt panel edges by rounding or texturing them. Martensson does not describe using coordinated pairs of rotating bits that changes the surface topography of wall panels to the designer's liking and preferences. Martensson '778 does not describe a method of simultaneously cutting opposing sides of a floor panel at the same time, which would make the panels more uniform in structure.
It is therefore an object of the present invention to provide tongue and groove floor, ceiling and wall panels using multiple bonded sheet construction, with minimal or no gouging or sculpting of pieces of wood.
It is also an object to provide a panel made up of three sheets of substantially the same equal thickness, and to form respective protruding tongues and receptacle grooves from overlapping of the substantially equal thick sheets forming the panel.
It is also an object of the present invention to provide a relatively tight fit of the tongue portions into the respective groove portions of the assembled sheets forming each panel.
It is also an object of the present invention to be able to install multiple floor, ceiling or wall board panels in a single plane parallel to the surface upon which the panels are being installed.
Other objects which become apparent from the following description of the present invention.
In keeping with these objects and others which may become apparent, the floor, ceiling and wall panels of this invention are constructed of multiple board sheets, preferably three board sheets, of material bonded together using adhesive. The preferred material for each of the board sheets is plywood which may be of different or the same thickness for each. Other rigid durable sheet materials may be used such as flake board or composites incorporating wood materials. Materials such as foamed PVC can also be used for one or all three of the layers. The three pieces of plywood can be attached not only by adhesive, such as glue, but also by fasteners, such as nails, staples, etc. joining one or more of the three layers. The three pieces of plywood also can have plastic sheets inserted between the panels to reduce moisture between them. Also, the three layers can use different types of plywood. Optionally, each plywood board sheet layer can be treated differently to be water resistant, fire proof or insect resistant, etc. A typical fire resistant wood sealer such as described in U.S. Pat. No. 5,879,593 is mixed with the glue before the glue is applied between the layers. Optionally, waterproof glues, such as Gorilla® glue or Titebond® waterproof glue may be used. Fireproof glue, such as GB18583-2001/BS5852 manufactured by Stenzhen Gokangali Chemical Laboratory, Ltd. may be used and mixed with the glue. Insect resistant adhesives, such as manufactured by Henkel Adhesives can also be mixed with the glue and applied between the board layers.
In one embodiment for floor boards, all three board sheets are of identical size and shape (although the thickness may be different as desired). The shape, as described in the drawings, is either square or rectangular. (Other tiling shapes, such as hexagons or octagons, with straight sides may also be used.) By offsetting the middle board sheet layer so that two adjacent sides extend beyond the top and bottom board sheet layers which are in registration, a protruding tongue is developed on two adjacent sides while the opposite sides will have grooves. Thus such panels can be used to cover a large floor, ceiling or wall area using normal tongue-in-groove techniques by fitting the protruding tongues into the grooves of adjacent panels; a small amount of adhesive may be used in these fitted edges, but it is not essential in all applications. No routing of the edges is required to form the tongues or grooves.
In an alternate embodiment for walls and ceilings, the middle board sheet is smaller in size than the top and bottom board sheets which are in registration. The middle board sheet is centered within the top and bottom board sheets thus forming grooves on all four edges. To assemble these panels to cover a larger area, separate connecting slat tongues are used to connect the panels thereby acting as the tongues for a tongue-in-groove fit. By using a combination of short slat tongues and long slat tongues, large interconnected areas can be covered. By using slat tongues wider than the depth of two adjacent panel grooves, visible linear grooves the depth of the thickness of the top board sheet are formed between panels. They can be used to simulate a grout line in ceramic tile installations.
The top surface of each panel can be finished in a variety, of ways including grooving to simulate a parquet floor or patterns formed of veneers with oriented grain directions. It is also known that the pattern can be enhanced by one or more veneer pieces applied to the top of the assembled panels. Any appropriate sealant and/or stain can be used. Obviously the finish for a floor application would probably be different from that of a wall panel due to wear characteristics. Large inlay designs can be accommodated on several adjacent panels which are then assembled like a jigsaw puzzle to form a coherent design.
The tongue and the reciprocating groove are formed by attaching three panel board sheets, preferably plywood, together in a “sandwiched” overlying pattern. Because the plywood board sheets are flat, the tongues and corresponding grooves extend uni-directionally therefrom. They can be assembled by moving the tongue portions in one surface plane, such as horizontally for a floor or ceiling, and vertically for a wall. They do not need to be inserted at an angle and then locked in place by being moved in a non-planar fashion.
It is further noted that in the case the underlying wall to which the panels are being installed is warped and non-planar, an underlying layer of Sheetrock® wall board can be installed between the panels and underlying warped surface, to provide a relatively flat surface for installation of the array of panels.
In an alternate embodiment, the square or rectangular floor, wall, or ceiling panels are of different construction using a different fabrication method. The three-layer plus veneer construction of the embodiment above is replaced by a single solid layer with a veneer layer on top. The single layer is preferably a wood product such as plywood, high density fiberboard (HDF), or medium density fiberboard (MDF). The fabrication method involves the use of edge routing using a tongue cutter on one edge and a groove cutter on the opposite edge to form the edge shapes equivalent to those of the previous embodiment. If two routing heads are spaced apart the appropriate distance for a particular sized panel, a single pass can form a tongue on one edge and a groove on the opposite edge simultaneously. One cutter is spun clockwise while the second is spun counterclockwise to equalize the forces on the panel. Thus two passes are needed to form the edges of a panel. If the panel is square, the spacing of the two router heads need not be changed to form the edges orthogonal to the first ones formed. The veneer layer, which may be bamboo, birch, or other woods such as cherry wood, is adhesively bonded to the top surface as in the earlier embodiment.
It is further noted that the wood material can be as described in my co-pending patent application Ser. No. 12/380,928 filed Mar. 4, 2009. In that application, I describe a wood article of manufacture thus produced which can be a laminate panel of particle board of particular particle size and particle to glue ratios which provides a durable, lightweight and strong panel which gives the appearance of wood because its exterior veneer layer or layers are made from a thin wood veneer of approximately 0.35 to 0.70 millimeters in thickness. A preferable veneer thickness is 0.5 mm, although veneer thicknesses may range from 0.3 to 0.5 mm, although other suitable thicknesses may be used.
My co-pending application Ser. No. 12/380,928 describes that to keep the wood lightweight, the particles should be more than 1.0 mm and less than 5.0 mm in length, depth and width, preferably about 3.0 mm in length, depth and width so that they are small enough to have sufficient density for strength, but large enough to provide air spaces therebetween, to be filled by resin glue at a weight lighter than natural wood. The ratio of wood particles to glue should be preferably 100:10 to 100:12, i.e. 100 kg of raw wood particle material to mix with 10-12 kg of glue. The maximum permitted is 100:28, i.e. 100 kg wood particle to 28 gms glue. With the aforementioned parameters, the finished particle board density is 0.8 g/cm3. To keep the panels smooth and flat, sanding should be applied to keep height deviation within 0.1 mm. Also, to have sufficient glue without undue buildup or air bubbles, glue should be applied in the ratio of 320 g/m2. To further keep the panels smooth, the thin veneer layers with glue are heat and pressure treated at 110 C and pressure of about 1 cm2 per 7-8 kg. On the edges, veneer strips of about 1.5 cm in with and 0.5 to about 1 mm in thickness, with lengths of 1 meter or more, are applied at a pressure of approximately 200 pounds with a glue at approximately 200 degrees C. heat. For fireproofing, insect proofing or water proofing, a thin layer of Wood Fire Resisting Liquid is applied by putting the panels in a tank full of liquid of pressure more than 1, 2 Mp3P for at least 8 hours immersion, which will soak about 150 kg/cubic meter of product into the wood. At low ambient pressure, the wood must be soaked for at least 48 hours, as long as 80 to 100 kg/cubic meter is absorbed into the wood over the 48 hour period. Exterior brushing can also be applied in three layer coatings to a thickness of 0.5 kg/cubic meter. Although other fire resistant, water resistant and pest or mold resistant sealers can be applied, a typical fire resistant liquid wood sealer is described, for example, in U.S. Pat. No. 5,879,593, including a liquid composition of potassium hydroxide, sodium carbonate, silica and water.
My co-pending application Ser. No. 12/380,928 also describes a manufacturing system, method, and article of manufacture which is capable of producing a laminated product that has the appearance of traditional birch plywood. The laminated article of manufacture has an interior similar to that of particle board, but the laminated article of manufacture should has increased strength and lighter weight compared to that of other particle boards. Additionally, the laminated article of manufacture is capable of having at least one or a plurality of thin or ultra-thin veneers placed on opposing surfaces and opposing edges, and is capable of being painted. The laminated article of manufacture is capable of being manufactured from recycled biodegradable products. In the U.S. and Europe, the natural color of a natural wood surface having a clear coat with the texture of the wood showing through is highly desirable, especially that of Birch Wood grown in Northern Asia, (Northern China and Russia). Birch wood also has characteristics of surface hardness, beautiful texture, a minimum amount of scar marks, black lines, or mineral lines, does not easily break or change shape after having been cut in the format of veneer sheet (usually in the size of 4 feet by 8 feet, 0.3 mm to 0.5 mm in thickness), but these high quality veneers are becoming less and less available, because a 3 foot or larger diameter birch tree takes more than 60 years to grow, and there are only 3 to 5 sheets of 4 feet by 8 feet veneers in that tree. These 3 to 5 sheets of veneers, may be used on surfaces of 4 feet by 8 feet plywood, and used for the manufacture of 5 storage units for toys. One class room of furniture, however, needs at least 5 times of this amount of veneer, which means that a classroom's furniture needs five birch trees to manufacture the furniture.
My co-pending application Ser. No. 12/380,928 further describes a system which may be used instead of using birch veneer. Chinese Cottonwood (called Chinese Birch or Chinese beech) which grows on tree farms and takes approximately 7-10 years to grow, and which grows into a one and half foot diameter tree may be used. Veneers from these trees, however, have soft surfaces that may scratch easily. However, such veneers may be hardened by methods of the present invention, resulting in finished products that look substantially the same as Russian Birch, or other highly desired woods.
My co-pending application Ser. No. 12/380,928 also describes that by using the above wood materials and paint processes of the present invention, wood products can be made completely of recycled wood and veneers from fast growing Chinese trees, thus, minimizing impact to the environment.
My co-pending application Ser. No. 12/380,928 further describes a core of fresh or green wood and/or recycled wood products, which are processed down to a particle size of less than 5 mm, and preferably less than 3 mm, and bonded together with glue, opposing surface inner veneer bonded to opposing surfaces of the core with glue, opposing surface outer veneer bonded to opposing surface inner veneer with glue, opposing edge veneer bonded to opposing edges of the core with glue. Each of the veneers is preferably 0.5 mm thick, although suitable veneer thicknesses may range from 0.3 to 0.5 mm. The article of manufacture thus produced is a laminated wood product having a particle to glue ratios that provides a durable, lightweight, strong attractive product that gives the appearance of wood.
The present invention can best be understood in connection with the accompanying drawings. It is noted that the invention is not limited to the precise embodiments shown in drawings, in which:
FIG. 4BB is a close up partial detail view of the floor panel in
FIG. 5GG is a close-up detail view of the connecting slat shown in
FIG. “6L” is a close up detail thereof, taken along view line circle “6L” of
Each board sheet is preferably a rectangular cuboid, also called a rectangular parallelepiped, of which all faces are rectangular and where “rectangular” implies both rectangles and squares.
Each of the panels may be of one piece construction, plywood, or other suitable construction. A preferred embodiment of a floor panel system, as in
A floor panel system, comprising:
Each of the panels may be of one piece construction, plywood, or other suitable construction. Each board sheet is preferably a rectangular cuboid, also called a rectangular parallelepiped, of which all faces are rectangular and where “rectangular” implies both rectangles and squares.
A preferred embodiment of a wall panel system, as in
a wall or ceiling panel system, comprising:
Each top and bottom board sheets 11 and 14 of square panel 10 of
Each top and bottom board sheets of rectangular panels 10a of
As shown in
In an alternate embodiment, the wall panels can be installed on a ceiling, but preferably each square panel is 2 feet by 2 feet (60.96 cm×60.96 cm).
In an alternate embodiment for floor panel 1, as previously shown in
Each panel can vary in size, but is preferably 30 cm by 30 cm in length and width. The solid supporting layer is preferably 2 cm in height and the top veneer is preferably 0.6 cm in height, although it can be varied up to preferably 0.8 or 1.0 cm in height. Preferably the total panel height is between about 2.6 cm to 3.0 cm in height. The tongue portion protrudes out about 1.5 cm in two directions and the respective grooves are each about 1.5 cm in depth.
For example,
In the foregoing description, certain terms and visual depictions are used to illustrate the preferred embodiment. However, no unnecessary limitations are to be construed by the terms used or illustrations depicted, beyond what is shown in the prior art, since the terms and illustrations are exemplary only, and are not meant to limit the scope of the present invention.
It is further known that other modifications may be made to the present invention, without departing the scope of the invention, as noted in the appended Claims.
This application in part discloses and claims subject matter disclosed in my earlier filed patent application Ser. No. 12/386,825, filed on Apr. 23, 2009. This application also discloses and claims subject matter disclosed in my earlier filed patent application Ser. No. 12/380,928, filed on Mar. 4, 2009. These applications are incorporated by reference herein. Applicant claims priority under 35 USC §120 therefrom.
Number | Date | Country | |
---|---|---|---|
Parent | 12386825 | Apr 2009 | US |
Child | 13134981 | US | |
Parent | 12380928 | Mar 2009 | US |
Child | 12386825 | US |