This invention relates to a tongue switch assembly for use in embedded or paved railway track systems.
Prior art tongue switch assemblies typically involve a single cast piece that includes flangeways, turnout rail segments and closure rail segments, with the principal separate and removable component being the tongue itself. This arrangement gives rise to certain difficulties. Movement of the tongue tends to wear the underlying surface of the assembly. If the wear becomes such that replacement is required, the entire assembly must be replaced.
One method used to connect the tongue to the underlying assembly is by pivoting it about the heel end (see e.g. U.S. Pat. No. 2,377,273 to Siebert). The pivot point consists of a pin extending downward from the tongue and inserted into a recess in the underlying switch base. A bearing surface is sometimes provided between the pin and the recess (see, e.g. U.S. Pat. No. 1,853,981 to Kimmel) to protect the pin or pivot from the impact and shearing forces it experiences when the train wheels pass over it. However, this bearing surface must be properly lubricated to ensure that the tongue moves smoothly and the entire pivot point must also be protected from the elements to ensure that it continues to function properly. It is therefore known to provide a cover plate, often integral to the wheel path, over the tongue heel to protect the pivot point (see e.g. U.S. Pat. No. 625,458 to Nichols). However, passage of the train over the cover plate tends to wear the cover plate and its hold down points.
Motion of the tongue between its two extreme positions requires a switch machine powerful enough to overcome not only the weight of the tongue itself, but also the frictional forces between the tongue and the underlying surface. It is therefore important to minimize this friction. One approach to reducing friction is to use lubricants spread on the slide plate surface. However, the application and replacement of lubricant is costly and time-consuming. It is also known to provide friction-reducing coverings for the slide surface. These coverings can take the form of a spray-coated ceramic, as in U.S. Pat. No. 4,890,804 to Teramoto, or a self-lubricating plastic insert, as in U.S. Pat. No. 5,127,613 to Germann. However, once the coating has worn away or if the slide surface itself is damaged, the entire assembly must be replaced. Another approach is to use a slide chair or roller assembly to carry the tongue. Slide chair or roller assemblies are more complex than simply applying lubricant, and they must frequently be replaced.
Tongue switch assemblies are often used in embedded or paved track systems (see e.g. U.S. Pat. No. 4,251,042 to Frank). In such systems, the tongue switch assembly is embedded in pavement or concrete, making it difficult to replace or maintain the switch.
Embedded tongue switch assemblies also present an additional problem when used in association with electric locomotives. In such cases, a current-carrying conductor rail typically lies inside an embedded trough that runs parallel to the load-bearing rails. A collector extends from the train to make physical contact with the conductor rail. When the switch is thrown, the conductor rail must be repositioned and reoriented to accommodate the new position of the tongue so that a consistent distance is maintained between the rail and the collector. It has been proposed to accomplish this by enclosing the conductor rail in a movable inner box assembly enclosed within a switchbox. Movement of the inner box assembly and its associated conductor rail is actuated by means of a lever arm mounted vertically between the switchbox and the load-bearing rail, with an arm extending the lever arm to the underside of the inner box assembly. However, such location of the lever arm would present particular difficulties in maintaining or replacing the lever arm. Access to the lever arm is difficult in that the entire switchbox must be disengaged and removed from its embedded position along with portions of the trackwork or the tongue switch assembly. In addition, it has been proposed to cast the outer shell of the movable switchbox as a single aluminum piece for ease of installation, but this would make it relatively weak and difficult to manufacture.
It is an object of the present invention to provide a tongue switch assembly that is easy to maintain, repair and replace as necessary, even in embedded or paved tracks.
It is a further object of the present invention to simplify the maintenance required for the wear surface of the tongue switch assembly by eliminating the need for lubricants.
It is yet a further object of the present invention to provide a pivot retainer for the tongue which is not subject to the impact and increased wear caused by passing trains.
It is another object of the present invention to provide a novel inner and outer switchbox assembly that is relatively easy to fabricate.
It is a further object of the present invention to provide a novel inner and outer switchbox assembly and associated lever arm that is easy to access and maintain, and that requires a minimum of adjustment in the field.
These and other objects of the invention will be appreciated by reference to the summary of the invention and to the detailed description of the preferred embodiment that follow.
The invention provides a modular tongue switch assembly wherein the major components are individually removable and replaceable. The overall assembly is easily transported, installed, replaced and maintained, even when installed in an embedded or paved track system.
The tongue switch assembly has as its major replaceable parts a tongue, several non-contiguous slide surface plate sections and a stock rail. These replaceable parts all rest on top of the underlying bed and base plates. The tongue is pivotally connected at its heel to one of the slide surface plate sections. A pivot retainer, consisting of a flat piece bolted down over the edge of the tongue heel, prevents displacement of the tongue from the pivot point when trains pass over the tongue. Upon removal of the pivot retainer, the tongue can be removed from the assembly for repair or replacement. The surfaces of the slide plate sections are finely machined, reducing the need for lubricant while still ensuring the tongue moves smoothly across the slide plate sections.
The slide plate sections are removably bolted to corresponding bed plate sections. The bed plate sections are welded to the base plate. These plates together provide strength and stability for the tongue switch assembly. The bed plate sections are narrower than the base plate and rest against the inner web of the stock rail, providing support and helping to keep the stock rail in position.
The stock rail is seated in a rail seat machined into the base plate. Floating brace block assemblies are bolted over the base and against the outer web of the stock rail, holding the stock rail in proper position. The floating brace block assemblies consist of a brace and a wedge block, bolted into place against a wedge block support welded to the base plate. This method of positioning and holding the stock rail in place allows relatively quick and simple removal of the stock rail, if necessary.
The invention also provides a novel inner and outer switchbox assembly that allows a conductor rail to be repositioned along with the tongue. The inner switchbox moves with the tongue, guided by a lever arm and rodding between the tongue and the inner switchbox. The conductor rail runs through the inner switchbox, and thus also moves with the tongue. This allows the train collector to maintain contact with the conductor rail at all points throughout the turn. The inner switchbox is a formed piece with welded ends, making it relatively easy to construct. Most of the switchbox assembly is completed before the tongue switch assembly is shipped to the customer, reducing installation time. The lever arm and rodding assembly between the tongue and the inner switchbox is placed on the field side of the box assembly. It is also placed horizontally, allowing access to both ends of the lever arm, to facilitate proper adjustment of the components of the box assembly. Any connections that must be made or adjusted in the field are thus relatively simple and accessible, further reducing maintenance and down time for the track.
In one of its aspects, the invention comprises a railroad tongue switch assembly having a substrate with a releasably engageable tongue that pivots about a pivot point and a stock rail removably seatable in the assembly.
The stock rail may be releasably held in place by removable braces which may be floating brace blocks, comprising a brace block, a wedge block support and a wedge block. The wedge block may be vertically bolted to the assembly substrate.
One or more slide plate sections, on which the tongue pivots, may be releasably attachable to the substrate, such as by bolts.
In another aspect of the invention, the tongue switch assembly may further comprise a retainer releasably mountable over the tongue pivot point. In one embodiment, the heel end of the tongue comprises a portion at rail level and a shoulder, at least a portion of said shoulder being lower than flange depth and the pivot retainer is attached to the substrate so as to overlay this heel end of the tongue.
In a further aspect of the invention, a seat for the stock rail is machined into the substrate. The substrate comprises a bottom surface and at least two top surfaces, all at different elevations. The stock rail may be removably seatable on the lower one of the top surfaces and the stock rail seat is machined into that lower one of the top surfaces.
In yet a further aspect, the tongue switch assembly may comprise one or more bed plate sections at least partially overlaying and secured to a base plate. The bed plate sections may be welded to the base plate. The stock rail seat may be machined into a top surface of the base plate that is not overlain by any of the bed plate sections.
In another aspect, the tongue switch assembly substrate has a machined seat to accommodate an end of a closure rail to which the assembly is to be connected.
In another embodiment, the tongue switch assembly comprises a substrate to which one or more slide plate sections are releasably attached, a pivoting tongue releasably engageable into one of the slide plate sections, a stock rail removably seatable on the substrate, and a stock rail seat machined into the substrate. In one aspect of this embodiment, the substrate comprises a bottom surface and at least two top surfaces, all at different elevations. The slide plate sections are attached on the higher one of the top surfaces, and the stock rail is seated on the lower one of the top surfaces. Further, the stock rail seat may be machined in the lower of the top surfaces.
In another aspect, the heel end of the tongue comprises a portion at rail level and a shoulder. At least a portion of the shoulder is lower than flange depth. The retainer is releasably attachable to said substrate so as to overlay the lower portion of the shoulder. Further, the lower portion of the shoulder may be laterally offset from the flangeway, and the retainer may cover substantially only the laterally offset portion of the shoulder when the retainer is attached to the substrate.
In another aspect, the invention comprises a box assembly for use in association with a railroad tongue switch assembly comprising a movable tongue. The box assembly comprises a first enclosure wherein a second enclosure is mounted for movement within the first enclosure, a rod assembly connecting the movable tongue to a lever arm mounted within the first enclosure and a slave rod connecting the lever arm to the second enclosure and at least one conductor rail mounted within the second enclosure.
The second enclosure of the box assembly may be mounted for sliding movement within the first enclosure. Further, the second enclosure may be pivotally mounted. A bolt and bronze bearing may be used to pivotally mount the second enclosure.
In another aspect of the invention, the lever arm within the first enclosure is mounted adjacent to the second enclosure and on the field side thereof. In a further aspect, the rod assembly between the tongue and the lever arm extends horizontally under the second enclosure.
In yet a further embodiment, the tongue switch assembly comprises a tongue switch, a box assembly and a pivot retainer, comprising a tongue pivotable on a plate and having a portion at rail level and a shoulder, at least a portion of which is lower than flange depth and a retainer releasably attachable to said plate so as to overlay the lower portion of the shoulder.
The foregoing was intended as a broad summary only and of only some of the aspects of the invention. It was not intended to define the limits or requirements of the invention. Other aspects of the invention will be appreciated by reference to the detailed description of the preferred embodiment and to the claims.
The preferred embodiment of the invention will be described by reference to the drawings in which:
a is a side view of the assembly shown in
The switch generally rests on base plate 12. Bed plate sections 13, 14, 15 are welded on top of base plate 12, as seen in
Stock rail 16 runs the length of the assembly. At the toe end of the switch, holes drilled into stock rail 16 allow joining with joint bar 34 to the closure rail, while similar holes at the heel end of the switch allow joining of stock rail 16 to the turnout rail, as seen in
The various components of the assembly are completely fabricated, with the exception of tongue 28, which is cast out of manganese steel. Fabricated parts are considered to be beneficial in the contemplated application, in that parts replacement is made easier and quicker.
Base plate 12, best shown in
The toe of the switch is shown in
Referring to
The profile of cast manganese steel tongue 28 is a Samson cut style, normally referred to in the industry as a Samson point. Tongue 28 pivots at tongue heel 30. The pivot point, which is best seen in
Tongue 28 is generally held in place by its own weight. As a result, a cover plate is not strictly required to hold down tongue 28. However, pivot retainer 66 provides additional restraint to tongue 28 when the wheels run over the switch, thus ensuring that the resulting vibrations and weight of the train do not displace tongue 28. The position of pivot retainer 66 is shown is
The surfaces of the slide plate sections 24, 25, 26 are finely machined to ensure smooth, low-friction motion of tongue 28 between the rails. No lubricant or other friction-reducing device is required. Should dirt or other contaminants scratch slide plate sections 24, 25, 26 such that they no longer function properly, any of slide plate sections 24, 25, 26 are easily removable by removing bolts 27. The widths of slide plate sections 24, 25, 26 are slightly narrower than the gap between web 72 of stock rail 16 and concrete barrier plate 22, as illustrated with slide plate section 26 in
Bed plate sections 13, 14, 15 act as a spacer between slide plate sections 24, 25, 26 and base plate 12, as well as a support for stock rail 16 and the entire tongue switch. Since bed plate sections 13, 14, 15 take up some of the height of stock rail 16, it allows slide plate sections 24, 25, 26 to be thinner, narrower and lighter, making them easier and cheaper to replace, if necessary. Bed plate sections 13, 14, 15 support the inside surface of stock rail web 72, as shown in
Stock rail 16 is not integrally cast as one piece with any of the underlying plates. The use of a non-integral stock rail 16 allows removal and replacement when the rail becomes damaged or worn, without replacing the entire assembly. Stock rail 16 must mate properly with tongue 28 to allow proper transfer of the train weight between the rail and tongue 28. To ensure this happens, stock rail 16 requires side head machining as in AREMA Plan No. 221-62, Detail 5100, which is incorporated herein by reference.
The floating brace block assembly 20 is best shown in
Each floating brace block assembly 20 includes a brace 44, a wedge block 46 and wedge block support 48. Brace 44 is placed on the field side of stock rail 16, resting against web 72 and on base 74 of the rail. The outer surface of brace 44 is angled. Wedge block 46 is then driven down between brace 44 and support 48. Wedge block 46 is bolted into place with bolts 50, making it movable and adjustable. There is no need to drill into stock rail 16 to position it, except to attach the turnout and closure rails and heel block 42. While wedge blocks are known in the railroad industry, their use in a floating brace block assembly, bolted in this manner, is considered to be novel.
Referring now to
Not all tongue switches require a box assembly, because not all switches will be used with an electrically-powered train. The invention therefore encompasses tongue switch assemblies with and without a box assembly. If the tongue switch requires a box assembly, lug 96 extends downward from tongue 28 through one of tongue lug slots 94, which run between slide plate sections 25 and 26, between bed plate sections 14 and 15 and through base plate 12 to connect tongue 28 and a rod assembly, as seen in
The position of tongue lug slot 94 through base plate 12, bed plate sections 14, 15 and slide plate sections 25, 26 can be seen in
Inner switchbox 90 contains the conductor rail, the positions of which are shown in dashed lines in
It will be appreciated by those skilled in the art that other variations to the preferred embodiment described herein may be practised without departing from the scope of the invention, such scope being properly defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2387824 | May 2002 | CA | national |
This Application is a Continuation of application Ser. No. 10/290,625, filed Nov. 7, 2002 now U.S. Pat. No. 6,955,326.
Number | Name | Date | Kind |
---|---|---|---|
625458 | Nichols | May 1899 | A |
832949 | Bailey | Oct 1906 | A |
1489285 | Steward et al. | Apr 1924 | A |
1493163 | Salsich | May 1924 | A |
1528569 | Salsich et al. | Mar 1925 | A |
1564340 | Garlick | Dec 1925 | A |
1585185 | Collins | May 1926 | A |
1853981 | Kimmel | Apr 1932 | A |
1854022 | Dixon | Apr 1932 | A |
1899408 | Bell, Jr. et al. | Feb 1933 | A |
2030231 | Steward et al. | Feb 1936 | A |
2069904 | Theodos | Feb 1937 | A |
2231232 | Theodos | Feb 1941 | A |
2377273 | Siebert | May 1945 | A |
3564236 | Ernst | Feb 1971 | A |
4005839 | Frank | Feb 1977 | A |
4251042 | Frank | Feb 1981 | A |
4634087 | Kempa | Jan 1987 | A |
4890804 | Teramoto et al. | Jan 1990 | A |
5224672 | Testart | Jul 1993 | A |
5451018 | Heinze et al. | Sep 1995 | A |
5577691 | Erich et al. | Nov 1996 | A |
6568601 | Maynard | May 2003 | B2 |
6601518 | Demmig et al. | Aug 2003 | B1 |
6955326 | O'Brien | Oct 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20050116118 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10290625 | Nov 2002 | US |
Child | 11003771 | US |