The disclosed embodiments relate to firearms. More specifically the disclosed embodiments relate to methods and systems for modifying a magazine locking mechanism of a firearm, and a firearm with a locking magazine release.
Laws and policy controlling the sale and transfer of firearms continue to evolve. Some jurisdictions have considered or have passed various regulations attempting to prevent firearms from being sold that would enable a criminal or terrorist to shoot multiple rounds of ammunition in a short period of time. Such laws are often politically controversial. However, the result is a demand to develop new firearms that comply with such regulations or to develop methods and systems to modify existing firearms so that such firearms are compliant with the regulations.
An example of such a regulation passed in California classifies weapons with magazine release button that allow for the quick removal and reinstallation of magazines as assault rifles. This includes magazine release buttons that require tools to operate. The regulation requires current owners of such weapons to register the firearm as a registered assault weapon (RAW). Transfer of a RAW under the regulations is prohibited, event in the event of death.
For a firearm to not be considered an assault rifle, the firearm's action must be open for the magazine to be released. One way this is done is for the firearm to be at least partially disassembled to remove the magazine.
Examples of firearms that have a magazine release button to remove a magazine include the popular AR-15 rifle, including the many variations on the AR-15 platform, and the AR-308. An example of an AR-15 rifle 100 is shown in
Given the popularity of the AR-15, there are proposed methods of modifying the rifle to comply with the regulation. In these proposals, the rifle 100 is modified so that the magazine release button 102 is rendered inoperable until after the rifle 100 is disassembled such that the rifle cannot be fired. For example, the rifle is modified so that a magazine release button 102 will not work until a rear take down pin 108 is removed and the upper receiver 110 is pivoted away from the lower receiver 112 via the pivot pin 106.
In these previously proposed methods, the modifications to the gun may be considered unsightly. For example, the previous proposed modifications require a large, thick lever arm between the upper receiver and the magazine release button. Further, the required pivoting of the upper receiver with respect to the lower receiver for the magazine release button to enable is large, making the process awkward. Many of the proposed modifications also require epoxy to make the modified parts unremovable from the outside.
In some cases, the rifle will double feed. In this case, the bolt carrier group is partially locked back and one round is partially in the chamber, the second is either ½ in the mag and into the barrel area or inside of the gun. The safe way to clear this is to remove the magazine and drop out the extra rounds and to pull back the charging handle. Since the bolt is partially retracted, a user can't rotate the upper out of the way to clear the magazine release so a user has to clear this with the magazine in the firearm making it dangerous. In the other designs, the retracted or partially retracted bolt carrier group prevents the action from opening and releasing the magazine.
Accordingly, more convenient, safe, and attractive modifications are necessary to modify a rifle so that it can be compliant with such regulations.
Accordingly, systems and methods for modifying a firearm, and a firearm design have been developed that safely and conveniently allow for disassembly of a firearm to disengage the action to allow a magazine to be release. In one embodiment, a jig for modifying a magazine release mechanism is provided. The jig includes mounting blocks that are releasably attached to a take-down pin and a pivot pin of a lower receiver of a firearm, and a base plate attached to the mounting blocks. The base plate includes a plurality of drill gauges, at least one drill guide aperture, a magazine release button recess that removably attaches to a magazine release button; and at least one drill guide that is removably inserted into the at least one drill guide aperture.
In some embodiments, the base plate also includes at least one locating feature to position the jig on the lower receiver of the firearm. The at least one locating feature may include a lip protruding from a bottom surface and/or a vertical extension projecting from the bottom surface. The vertical extension may be aligned with the at least one drill guide aperture and may include a set screw drill hole aperture that extends through the vertical extension parallel to the bottom surface.
In one embodiment, the magazine release button recess is formed on a bottom surface of the base plate and overlaps the at least one drill guide aperture. The magazine release button recess may have an oval shape.
In another embodiment, a speed cam is provided that is configured to replace a take-down pin of a firearm having a lower and an upper receiver. The speed cam includes a head disposed at a first end that has a projection that interfaces with a lever arm, an annular groove disposed adjacent to the head that has at least one detent, an intermediate cylindrical surface disposed adjacent to the annular groove, a terminal cylindrical surface disposed at a second end, and cam surfaces disposed between the intermediate cylindrical surface and the terminal cylindrical surface. The cam surfaces interface with the upper receiver to define an open position between the upper receiver and the lower receiver, a locked position between the upper receiver and the lower receiver, and a removable position between the upper receiver and the lower receiver.
In one embodiment, the cam surfaces include a locking cam surface having a radius similar to the intermediate cylindrical surface and the terminal cylindrical surface. The locking cam surfaces hold the upper receiver next to the lower receiver in a locked position. The cam surfaces may also comprise an open cam surface having a radius less than the intermediate cylindrical surface and the terminal cylindrical surface. This smaller radius allows the upper receiver to pivot away from the lower receiver. In this position, the action is disengaged and the magazine may be released from the firearm.
The speed cam may further include an axial groove extending through the intermediate cylindrical surface and into the terminal cylindrical surface. The axial groove comprises a stop detent disposed toward the second end. The axial groove allows the speed cam to be pulled out to clear the upper receiver, allowing the upper receiver to be fully disassembled from the lower receiver.
In yet another embodiment, a firearm with a locking magazine release button is provided. The firearm includes a lower receiver having a magazine locking pin aperture on a top surface that extends to intersect with a magazine release button aperture in a side surface. An upper receiver is attached to the lower receiver via a pivot pin where the upper receiver may pivot relative to the lower receiver via the pivot pin.
A magazine is provided that releasably attaches to the lower receiver, and a magazine locking pin is included that is inserted into the magazine locking pin aperture. A magazine release button is disposed in the magazine release button aperture and includes a recessed locking catch. The magazine release button releases the magazine when the upper receiver is pivoted away from the lower receiver and the magazine locking pin does not extend into the magazine locking aperture. The magazine release button is inoperable to release the magazine when the upper receiver is next to the lower receiver and the magazine locking pin extends into the magazine locking aperture and engages the recessed locking catch.
In some embodiments, the firearm further comprises a take-down pin connecting the upper receiver and the lower receiver. The take-down pin locks the upper receiver to the lower receiver and prevents the upper receiving from pivoting away from the lower receiver. The magazine locking pin includes a large diameter portion and a small diameter portion, and a spring disposed within the magazine locking pin aperture biases the magazine locking pin out of the magazine locking pin aperture.
The magazine locking pin aperture may include a threaded hole in a sidewall thereof. The magazine locking pin may include a u-shaped recess defining a locking seat. A set screw disposed in the threaded hole engages the locking seat to lock the magazine locking pin within the magazine locking pin aperture. The firearm may include a speed cam as described above.
The firearm results in a locking and unlocking magazine release button that can release the magazine when the action is open a small amount where the bolt carrier group is partially or fully retracted. Legal magazine changes are facilitated when the bolt carrier group is fully retracted and held in place by the bolt catch.
The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views.
Described below are jigs, methods, and systems for modifying a firearm to have a locked magazine until an action of the firearm is disengaged. Reference is made throughout the specification and figures to an AR-15 rifle to facilitate explanation. However, the jigs, methods, and systems may be applied to several other weapons systems and are not limited to the AR-15.
The base plate 210 comprises drill guide holes that provide templates for modifying parts of the rifle. A magazine lock pin guide hole 212 is disposed on a center portion of the base plate 210 and extends through from the top side 202 to the bottom side 204. A magazine lock catch guide hole 214 is also provided extending from the top side 202 to the bottom side 204.
On the top side 202 of the base plate 210, a first depth gauge 216, a second depth gauge 218, and a third depth gauge 220 are provided. These depth gauges 216, 218, 220 accurately set drill depths for modified features of the rifle as will be discussed in more detail below. The depth gauges 216, 218, 220 extend from a lateral edge of the base plate 210 and are disposed towards the second end 208.
Additional depth gauges 226, 227 extend on the top side 202 of the base plate 210 from the first end. These depth gauges 226, 227 accurately set drill depths for other modified features of the rifle as discussed below. Apertures 222, 224 are provided to attach mounting blocks 230, as shown in
The base plate 210 further comprises a vertical extension 228 that projects downward from the bottom side 204. This feature further helps to orient the base plate 210 relative to the lower receiver of the rifle. Aperture 229 may be threaded and provides access to the magazine lock pin guide hole 212 to lock drill guides 232, 234 within the hole 212. Fasteners 236 are provided to attach the mounting blocks 230 and fix the drill guides 232, 234. The base plate also has a lip 240 projecting slightly from the bottom side 204 to reference the jig 200 to the lower receiver to provide the correct spacing between the lower receiver and the jig 200. The combination of the mounting blocks 230, the vertical extension 228 and lip 240 ensures the correct positioning of the jig 200 in each of the x-, y-, and z-directions (the x-direction referring to the direction from the first end 206 to the second end 208, the y-direction referring to a direction perpendicular to the x-direction and parallel with the top side 202 and bottom side 204 of the base plate 210, and the z-direction referring to a direction perpendicular to a plane defined by the top side 202 and the bottom side 204 of the base plate 210) as well as at the correct rotation position.
A retaining screw hole is formed on a side of the magazine locking pin hole by setting a drill depth of a drill bit 314 using the second drill gauge 218 as shown in
In
When the upper receiver 110 is pivoted away from the lower receiver 112, the spring biases the pin 500 upwards so that the small diameter portion 510 no longer protrudes into the magazine release button aperture 114. As shown in
The lever arm 990 comprises an arm portion 992 and an aperture 994 through which the fastener 998 may pass. The lever arm 900 further comprises a slot 996 on a rear side that engages the projection 910 so that a force applied on the arm portion 992 is transferred to the projection 910 to rotate the speed cam 902.
The first end 904 of the speed cam 902 further comprises an annular groove 916 between an intermediate cylindrical surface 914 and the head 908. The annular groove 916 comprises three detents 918. The annular groove 916 and detents 918 engage a projection or pin found in the upper receiver 112 of a firearm that typically engages with a conventional take down pin 108. The three detents 918 define three annular positions of the speed cam: a locked position, an open position, and removable position. The detents 918 provide tactile feedback to a user so that the user can feel when the speed cam assembly 900 is in one of the locked, open, and removable positions. The annular groove 916 allows the speed cam 902 to rotate with the pin of the upper receiver being held within the annular groove 915 by the head 908 and the intermediate cylindrical surface 914. This allows rotation of the speed cam 902 but prevents the removal of the speed cam 902.
On the second end 906 of the speed cam 902, a terminal cylindrical surface 920 is provided. The intermediate cylindrical surface 914 and terminal cylindrical surface 920 allow the speed cam to rotate within standard apertures of an upper and lower receiver 110, 112 that receive the take down pin 108.
In
In
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of this invention. In addition, the various features, elements, and embodiments described herein may be claimed or combined in any combination or arrangement.
This application is a divisional application of and claims priority to U.S. Non-Provisional patent application Ser. No. 15/653,474 filed on Jul. 18, 2017, which claims priority to U.S. Provisional Application No. 62/363,787 which was filed on Jul. 18, 2016, the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
8191298 | Cash | Jun 2012 | B2 |
8756845 | Harris | Jun 2014 | B2 |
9009986 | Chang | Apr 2015 | B1 |
9151555 | Huang | Oct 2015 | B1 |
9182186 | Prince | Nov 2015 | B1 |
9188399 | Findlay | Nov 2015 | B1 |
9243857 | Mills | Jan 2016 | B2 |
9310148 | Brown | Apr 2016 | B2 |
9341421 | Findlay | May 2016 | B2 |
9395130 | Jacobson | Jul 2016 | B2 |
9482478 | Newman | Nov 2016 | B2 |
9651327 | Hoon | May 2017 | B2 |
9791229 | Cross | Oct 2017 | B1 |
20040020092 | Christensen | Feb 2004 | A1 |
20140165439 | Fernandez | Jun 2014 | A1 |
20140223790 | Wilson | Aug 2014 | A1 |
20140317980 | Michel | Oct 2014 | A1 |
20150052793 | Cassady | Feb 2015 | A1 |
20160109198 | Gardner | Apr 2016 | A1 |
20160169601 | Newman | Jun 2016 | A1 |
20170016690 | Timmons | Jan 2017 | A1 |
20170209941 | Chang | Jul 2017 | A1 |
20170299292 | Daley | Oct 2017 | A1 |
20180058787 | Chang | Mar 2018 | A1 |
20180066908 | Klein | Mar 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20180187992 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62363787 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15653474 | Jul 2017 | US |
Child | 15909901 | US |