The invention relates to a tool for forming a hollow section by the internal high pressure forming process and to an associated method.
German Patent Document DE 197 33 477 A1 discloses a tool and a method for forming a hollow section of the type mentioned at the beginning. The forming tool has at least one embossing punch which is displaceable transversely to the longitudinal extent of the hollow section and which makes an embossment on the outside of the hollow section after the forming operation. In addition, at least one perforating punch is arranged in the embossing punch coaxially thereto, this perforating punch perforating the hollow section after the embossing operation.
U.S. Pat. No. 6,470,546 B1 discloses a further tool and a further method for forming a hollow section, in which the forming tool has a wall section at which a side facing the hollow section is designed as a shaping die wall and which is displaceable transversely to the longitudinal extent of the hollow section. This wall section contains an embossing punch, by means of which a hole can be embossed in the hollow section after the forming operation.
German Patent Document DE 197 24 037 A1 discloses a tool for the internal high pressure forming of a hollow body and for cutting a flange on this hollow body. To this end, the tool has a cutting device which runs parallel to the longitudinal extent of the hollow section and has a cutting edge which is displaceable in the transverse direction of the hollow section. At the same time, a side of the cutting device facing the hollow section forms a shaping die wall, against which the hollow section bears during the internal high pressure forming.
German Patent Document DE 100 30 882 A1 discloses a further method for cutting a hollow body produced according to the internal high pressure forming process.
The present invention deals with the problem of specifying a method for internal high pressure forming with which in particular a rationalized production process can be achieved. Furthermore, a tool suitable for the abovementioned method is to be provided with which in particular various method steps can be combined.
The invention is based on the general idea of designing a tool for forming the hollow section according to the internal high pressure forming process and also for making an embossment on the outside of the hollow section and additionally for perforating the hollow section and furthermore also for cutting a flange on the hollow section. To this end, the tool has at least one embossing punch displaceable transversely to the longitudinal extent of the hollow section and also at least one perforating punch arranged coaxially in the embossing punch.
In addition, according to the invention, the embossing punch is arranged in such a way that it crosses and passes through a cutting device of the tool in a corresponding opening during the embossing operation, this cutting device extending parallel to the longitudinal extent of the hollow section and being displaceable in the transverse direction of the hollow section. In particular when a side of the cutting device facing the hollow section is designed as a shaping die wall, against which the hollow section bears at least during the internal high pressure forming, this results in simplified kinematics for the tool, and these kinematics can be used for shorter cycle times.
The solution according to the invention therefore offers the advantage that three method steps, namely the internal high pressure forming, the embossing and the perforating, can be carried out with a single tool, so that in particular no tool change is necessary, thereby resulting in a rationalized production sequence. The solution according to the invention therefore helps to streamline the production process and thus achieve time or cost advantages. In addition, the solution according to the invention ensures that the holes produced by the perforating punch have a very high accuracy of position and shape relative to the embossing and thus the quality of the hollow sections produced can be markedly increased. Compared with previous production methods in which the embossments and/or the holes are subsequently made in the already finish-shaped hollow sections, subsequent deformation and thus dimensional inaccuracy of the hollow section can now be avoided. Even for the case where the embossing is effected after the production of the holes, the solution according to the invention offers the great advantage that the embossing punch does not adversely affect the dimensional accuracy, that is to say the position and shape of the holes produced, by the embossing. In principle, with the tool according to the invention, first perforating and then embossing can be carried out after the internal high pressure forming, or vice versa.
According to another development of the solution according to the invention, the tool has a bottom die and a top die which are displaceable relative to one another. The embossing punch may be expediently mounted in a displaceable manner on or in one of these dies. In this way, a defined relative position prevails between the embossing punch and the respective die, a factor which improves the accuracy of the production process. In addition, the cutting device may either be integrated in one of the dies, the cutting edge then forming an integral part of the respective die, or else the cutting device may be designed as a separate component and be fastened to one of the dies in a fixed position, or the cutting device may be arranged on one of the dies in such a way as to be adjustable in stroke. The variants described of the arrangement of the cutting device on the tool already shows the wide range of possibilities that the invention opens up with regard to process-optimized arrangement variants of the cutting devices. For example, a design of the cutting device as a separate component which is fastened to one of the dies in a fixed position offers the advantage that, after a relatively large number of cutting operations, the cutting device or the cutting edge can be exchanged simply and quickly and thus the maintenance cost of the tool can be reduced. If the cutting device is arranged on one of the dies in such a way as to be adjustable in stroke, a markedly smoother mode of operation of the tool is obtained on account of the lower weight, to be moved, of the cutting device compared with the top or bottom die. On the other hand, the integration of the cutting device in one of the dies or the design of the cutting edge as an integral component offers the advantage that an especially precise and powerful cutting operation can be achieved as a result. Due to the many possible ways of arranging the cutting devices on one of the dies, the solution according to the invention therefore makes it possible to react in a flexible manner to the most varied requirements with regard to the material and/or workpiece to be processed.
According to a preferred embodiment of the invention, at least one hold-down, which fixes the flange of the hollow section at least during the cutting operation, is provided in the region of the cutting edge. Such a hold-down, in combination with a positioning device which, before and during the cutting and forming operation, presses the hollow section against that side of the cutting device which faces the hollow section, ensures that the hollow section is held in a fixed position during the cutting operation and thus ensures an exact cut of high quality. In addition, the hold-down provides for always identical positioning of the hollow section inside the tool, as a result of which a high reproducible dimensional accuracy and thus uniformity of the hollow sections to be produced is achieved.
Further important features and advantages of the invention follow from the drawings and from associated descriptions of the figures with respect to the drawings.
The abovementioned features and the features still to be explained below can be used not only in the respectively specified combination but also in other combinations or on their own without departing from the scope of the present invention.
Preferred exemplary embodiments of the invention are shown in the drawings and are described in more detail below, identical reference numerals relating to identical or functionally identical or similar components.
According to
To cut the flange 3 on the hollow section 2, the tool 1 has at least one cutting device 4, which runs parallel to the longitudinal extent, has a cutting edge 5 and is displaceable relative to the hollow section in the transverse direction of the hollow section 2. In this case, the cutting device 4 may be integrated in one of the dies 7 or 8, the cutting edge 5 then forming an integral part of the respective die 7 or 8. Alternatively, the cutting device 4 may also be designed as a separate component which is fastened on one of the two dies 7 or 8, here the top die 8, in a fixed position. As a third variant, the cutting device 4 may be arranged on one of the dies 7 or 8 in such a way as to be adjustable in stroke relative to the respective die 7, 8.
In the case of a cutting device 4 integrated in one of the dies 7 or 8, the flange 3 can be cut off or severed in an especially powerful and thus precise manner, as a result of which the quality of a subsequent end product can be markedly increased. On the other hand, the embodiment of the cutting device 4 as a separate component, which is fastened on one of the two dies 7 or 8 in a fixed position, offers the great advantage that the cutting edge 5, which may be designed, for example, as a parting blade, can be exchanged in a simple and cost-effective manner. Hardened metals, for example, which have an especially long service life, are suitable as cutting edge 5. The third embodiment variant, in which the cutting device 4 together with the cutting edge 5 is arranged in a displaceable manner on one of the dies 7 or 8, offers the advantage that the cutting operation can be isolated from a closing operation of the tool 1, i.e. from a movement of the top die 8 and the bottom die 7 toward one another.
According to
According to
Provided in the region of the cutting edge 5 is at least one hold-down 10 which fixes the flange 3 of the hollow section 2 at least during the cutting operation. According to the illustrations in
According to the illustration in
As mentioned above, the embossing of the hollow section 2 is effected against the internal high pressure pi and after the cutting operation, so that, with the embossing, an additional but facultative processing step can be carried out with the tool 1.
According to
In addition, the embossing or the perforating against the internal high pressure pi offers the advantage that embossments produced beforehand are not adversely affected by the perforating or perforations produced beforehand are not adversely affected by the embossing on account of the internal high pressure pi, so that a high quality of the hollow sections 2 produced can be achieved.
One possible method of cutting the hollow section 2 or of forming, embossing and/or perforating the hollow section 2 is to be briefly explained below:
According to
The cutting operation is effected after the positioning. To this end, according to
It can be seen from
After completion of the cutting operation, the hollow section blank 2′ is formed by internal high pressure forming and in the process changes in size and form in accordance with the illustration in
After the forming of the hollow section 2, an embossing punch 11 displaceable transversely to the longitudinal direction of the hollow section 2 can make an embossment on the outside of the hollow section 2 according to
In addition to or as an alternative to the embossing operation, a perforating punch 13 arranged in the embossing punch 11 coaxially thereto can perforate the hollow section 2 after the embossing operation has been completed (cf.
In this case, the embossing surface 15 of the embossing punch 11, this embossing surface 15 being arranged by way of example in the opening 12 of the cutting device 4, may form part of that side 6 of the cutting device 4 which is designed as a shaping die wall 17. However, it is also conceivable for the opening 12 not to open until during an embossing or perforating operation and for it to be closed during the cutting operation or during the forming operation, as a result of which the shaping die wall 17 is formed completely by that side 6 of the cutting device 4 which faces the hollow section 2.
According to
In summary, the essential features of the solution according to the invention can be characterized as follows:
In a tool 1 which is designed for forming a hollow section 2 according to the internal high pressure forming process, the invention makes provision for an embossing punch 11 for making an embossment and for a perforating punch 13 therein for making a hole in the hollow section 2. In addition, a cutting device 4 having a shaping die wall 17 may be provided.
The invention thus enables a plurality of processing steps to be combined, for example the trimming, the forming, the embossing and the perforating of the hollow section 2, in one production station, so that, with the tool 1 according to the invention, a plurality of processing steps hitherto separate from one another can be effected promptly and without removal of the hollow section 2 from the tool 1. In addition, the processing steps of embossing and perforating can be carried out optionally, so that, for example, cutting of the flange 3 and subsequent forming and/or subsequent embossing and/or subsequent perforating can be carried out with the tool 1 according to the invention.
That side 6 of the cutting device 4 which is designed as a shaping die wall 17 provides for multifunctional use of the cutting device 4, the cutting device 4 being simple to realize from the design point of view and at the same time constituting an especially successful design solution. In addition, due to the embossing punch 11 or perforating punch 13 acting against the internal high pressure pi, exact embossing or perforating of the hollow section 2 can be effected, during which the embossing and the perforating do not adversely affect one another, so that an end product of high quality can be achieved overall.
Number | Date | Country | Kind |
---|---|---|---|
103 50 151.7 | Oct 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP04/11239 | 10/8/2004 | WO | 4/3/2007 |