Tool assemblies with a gap locking member

Information

  • Patent Grant
  • 11259808
  • Patent Number
    11,259,808
  • Date Filed
    Thursday, February 13, 2020
    5 years ago
  • Date Issued
    Tuesday, March 1, 2022
    2 years ago
Abstract
A tool assembly includes an anvil and a cartridge assembly movable from an open position to a closed position, and a locking member movably supported on a distal portion of the cartridge assembly. The locking member is configured to move into a slot of the anvil as the anvil and cartridge assembly move toward the closed position to set a gap distance between the anvil and cartridge assembly.
Description
BACKGROUND
1. Technical Field

This disclosure is directed to a surgical stapling device and, more particularly, to a tool assembly of a surgical stapling device that defines a tissue gap and includes a locking member to maintain the tissue gap during firing of the tool assembly.


2. Background of Related Art

Surgical stapling devices are commonly used during a variety of surgical procedures to staple and/or cut tissue. Stapling and cutting of tissue can be accomplished more quickly using surgical stapling devices than can be accomplished using traditional suturing techniques. In addition, endoscopic stapling devices can be used to perform less invasive surgical procedures than possible using traditional suturing techniques. As such, the use of surgical stapling devices to perform certain surgical procedures to reduce patient trauma and improve patient recovery times is desirable.


Typically, linear endoscopic surgical stapling devices include a tool assembly that includes a staple cartridge and an anvil assembly that are movable in relation to each other between open and clamped positions. The staple cartridge defines a plurality of staple pockets that receive staples and the anvil assembly defines a plurality of staple deforming pockets. When the tool assembly is in the clamped position, the staple deforming pockets of the anvil assembly are aligned with the staple pockets of the staple cartridge such that legs of the staples are received and deformed within the staple deforming pockets when the stapling device is fired. The staple cartridge and the anvil assembly must be properly aligned to effect proper staple formation.


Generally, the staple cartridge and the anvil assembly have proximal ends that are secured to each other by a pivot member such that the staple cartridge and the anvil assembly can be pivoted from the open position in which distal ends of the staple cartridge and the anvil assembly are spaced from each other to the clamped position in which the staple cartridge and the anvil assembly are in juxtaposed alignment. During firing of the staples from the staple cartridge, forces on the staple cartridge and the anvil assembly for firing the staples tend to deflect the staple cartridge and anvil assembly outwardly away from each other. In certain stapling devices, a knife bar is provided that includes upper and lower beams that engage the anvil assembly and staple cartridge to minimize deflection of the anvil and cartridge assemblies during firing.


SUMMARY

One aspect of this disclosure is directed to a tool assembly including an anvil, a cartridge assembly, and a locking member. The anvil and the cartridge assembly each have a proximal portion and a distal portion. The proximal portion of the cartridge assembly is movably coupled to the proximal portion of the anvil. The distal portion of the anvil defines a first slot therein. The locking member is movably supported on the distal portion of the cartridge assembly. The locking member is configured for receipt in the first slot of the anvil to set a gap distance between the anvil and cartridge assembly when the anvil and cartridge assembly are in the closed position.


In aspects, the locking member may include a first latch arm configured for receipt in the first slot of the anvil when the anvil and cartridge assembly are in the closed position.


In aspects, the first latch arm may have an extension configured to be captured in the first slot of the anvil when the first latch arm distally translates.


In aspects, the locking member may include a second latch arm. The first and second latch arms may be disposed on opposite lateral sides of the cartridge assembly.


In aspects, the distal portion of the anvil may define a second slot therein configured for receipt of the second latch arm of the locking member.


In aspects, the first and second slots may be disposed on opposite lateral sides of the anvil.


In aspects, the tool assembly may further include a clamping member operably coupled to the proximal portion of each of the anvil and cartridge assembly and configured to move the anvil and cartridge assembly from an open position to a closed position. The locking member may be configured to be coupled to the clamping member, such that advancement of the clamping member moves the locking member into the first slot of the anvil to set a gap distance between the anvil and cartridge assembly.


In aspects, the locking member may include an elongate element and a first latch arm. The elongate element may have a proximal end portion configured to be coupled to the clamping member. The first latch arm may extend upwardly from a distal end portion of the elongate element. The first latch arm may be configured to translate distally into the first slot of the anvil in response to advancement of the clamping member.


In aspects, the clamping member may have a distally-extending latch member configured to couple to the proximal end portion of the elongate element of the locking member upon the anvil and cartridge assembly moving to the closed position.


In aspects, the latch member of the clamping member may have a protrusion, and the proximal end portion of the elongate element of the locking member may define an opening configured for removable receipt of the protrusion.


In aspects, the tool assembly may further include a sled slidably received in the cartridge assembly and configured to move from a proximal position to a distal position to advance staples from the cartridge assembly. The sled may be operably coupled to the clamping member, such that advancement of the sled from the proximal position toward the distal position distally translates the locking member.


In aspects, the tool assembly may further include an elongate plate slidably coupled to the cartridge assembly. The elongate plate may define a proximal slot in a proximal end portion of the elongate plate, and a distal slot in a distal end portion of the elongate plate. The clamping member may be received in the proximal slot and the locking member may be received in the distal slot.


In aspects, the locking member may be configured to lockingly engage the first slot in the anvil in response to advancement of the elongate plate by the clamping member.


In aspects, the locking member may be an I-beam having a bottom end portion received in the distal slot of the elongate plate, and a top end portion configured for receipt in the first slot of the anvil.


In aspects, the elongate plate may be configured to advance relative to the locking member a predetermined distance prior to engaging and advancing the locking member.


In aspects, the locking member may be pivotably supported by the distal portion of the cartridge assembly and configured to pivot into locking engagement with the slot as the anvil and cartridge assembly move toward the closed position.


In aspects, the tool assembly may further include a biasing member coupled to the locking member for resiliently biasing the locking member toward a locking position.


In aspects, the distal portion of the anvil may have a cam surface and a support ledge. The cam surface may be configured to pivot the locking member out of the locking position as the anvil and cartridge assembly move toward the closed position. The biasing member may be configured to pivot the locking member toward the locking position and onto the support ledge when the anvil and cartridge assembly enter the closed position.


In aspects, the locking member may include a top end portion including an extension configured to be supported on the support ledge of the anvil to prevent the anvil and cartridge assembly from moving out of the closed position. The locking member may include a bottom end portion pivotably supported in the cartridge assembly and coupled to the biasing member.


In another aspect of the disclosure, a tool assembly is provided and includes an anvil and a cartridge assembly each having a proximal portion and a distal portion. The proximal portion of the cartridge assembly is movably coupled to the proximal portion of the anvil. The distal portion of the anvil defines a slot therein. The tool assembly includes a clamping member and a locking member. The clamping member is operably coupled to the proximal portion of each of the anvil and cartridge assembly and configured to move the anvil and cartridge assembly from an open position to a closed position during a first advancement of the clamping member. The locking member is slidably supported on the distal portion of the cartridge assembly. The locking member is configured to be coupled to the clamping member upon the anvil and cartridge assembly moving to the closed position, such that a second advancement of the clamping member advances the locking member into locking engagement with the slot of the anvil to set a gap distance between the anvil and cartridge assembly.


As used herein, the terms parallel and perpendicular are understood to include relative configurations that are substantially parallel and substantially perpendicular up to about + or −10 degrees from true parallel and true perpendicular.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the disclosed linear surgical stapling device including a tool assembly are described herein below with reference to the drawings, wherein:



FIG. 1 is a side perspective view of an exemplary embodiment of the disclosed staple reload including a tool assembly in an open position;



FIG. 2 is an exploded perspective view of the tool assembly shown in FIG. 2 including a drive assembly;



FIG. 3A is a perspective view of a first side of components of the drive assembly of FIG. 2 illustrating first and second drive shafts of the drive assembly coupled to one another;



FIG. 3B is a perspective view of a second side of the components of the drive assembly of FIG. 3A;



FIG. 4 is a longitudinal cross-sectional view of the drive assembly of FIG. 3A illustrating a connector pin coupling the first and second firing shafts;



FIG. 5 is a longitudinal cross-sectional view of the drive assembly of FIG. 3A illustrating the connector pin disengaged from one of the firing shafts;



FIG. 6 is an enlarged perspective view of the tool assembly shown in FIG. 1 in the open position;



FIG. 7 is an enlarged perspective of the area of detail “7” indicated in FIG. 6;



FIG. 8 is an enlarged perspective of the area of detail “8” indicated in FIG. 6;



FIG. 9 is a perspective view of a channel and locking member of a cartridge assembly of the tool assembly shown in FIG. 2;



FIG. 10 is a perspective view of a clamping member and locking member of the cartridge assembly shown in FIG. 1 illustrated in a decoupled state;



FIG. 11 is a side perspective view of the tool assembly shown in FIG. 1 illustrating the locking member in a non-locking position;



FIG. 12 is an enlarged perspective view of the area of detail “12” shown in FIG. 11 illustrating the clamping member engaged to the locking member;



FIG. 13 is a top perspective view of the tool assembly of FIG. 1 illustrated in a closed position with the locking member shown in a locking position;



FIG. 14 is a bottom perspective view of the tool assembly of FIG. 13;



FIG. 15 is a longitudinal cross-sectional view of another exemplary embodiment of a tool assembly including a clamping member, an elongate locking plate, and a locking member;



FIG. 16 is a longitudinal cross-sectional view of the clamping member, the elongate locking plate, and the locking member shown in FIG. 15;



FIG. 17 is a perspective view of the locking member of FIG. 15;



FIG. 18 is a longitudinal cross-sectional view of the tool assembly of FIG. 15 illustrating the locking member in a non-locking position;



FIG. 19 is a longitudinal cross-sectional view of the clamping member, the elongate locking plate, and the locking member of FIG. 18 illustrating the elongate locking plate in an advanced position;



FIG. 20 is a longitudinal cross-sectional view of the tool assembly of FIG. 15 illustrating the clamping member, the elongate locking plate, and the locking member in a locking position;



FIG. 21 is a longitudinal cross-sectional view of the tool assembly of FIG. 15 illustrating the locking member in a retracted position;



FIG. 22 is a longitudinal cross-sectional view of the clamping member, the elongate locking plate, and the locking member of FIG. 21;



FIG. 23 is a longitudinal cross-sectional view of another exemplary embodiment of a tool assembly including a locking member illustrating the tool assembly shown in an open position;



FIG. 24 is longitudinal cross-sectional view of a distal end portion of the tool assembly of FIG. 23 with the tool assembly in a partially closed position and the locking member making an initial contact with an anvil;



FIG. 25 is a longitudinal cross-sectional view of the tool assembly of FIG. 23 with the tool assembly in a fully closed position and the locking member lockingly engaged to the anvil; and



FIG. 26 is a longitudinal cross-sectional view of the tool assembly of FIG. 23 illustrating the locking member disengaged from the anvil.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the disclosed tool assemblies will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. However, it is to be understood that the disclosed embodiments are merely exemplary of the disclosure and the present tool assemblies may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the disclosure in virtually any appropriately detailed structure.


The present disclosure provides a tool assembly including a locking member movably supported in a cartridge assembly of the tool assembly. An anvil of the tool assembly defines a slot in a distal end portion of the anvil. The locking member is positioned for receipt in the slot of the anvil when the tool assembly is approximated about tissue a selected distance. The locking member is configured to selectively lock the anvil and cartridge assembly to maintain a gap distance between distal ends of the anvil and cartridge assembly before, during, and/or after staples are fired from the tool assembly.


In this description, the term “proximal” is used generally to refer to that portion of the device that is closer to a clinician, while the term “distal” is used generally to refer to that portion of the device that is farther from the clinician. In addition, the term “clinician” is used generally to refer to medical personnel including doctors, nurses, and support personnel.


In FIG. 1, a staple reload is illustrated generally as staple reload 10 and is configured to be coupled to a handle assembly (not shown) of a surgical stapling device, such, as for example, a linear or curved surgical stapling device. In aspects, the staple reload 10 may be incorporated into and actuated by a robotic surgical system. The staple reload 10 generally includes a proximal body portion 18 and a tool assembly 20. The tool assembly 20 is articulatable relative to the proximal body portion 18 from a position aligned with a longitudinal axis “X” defined by the proximal body portion 18 to a position misaligned with the longitudinal axis “X.” The tool assembly includes an anvil 34 and a cartridge assembly 36 pivotably coupled to the anvil 34.


With reference to FIGS. 2-5, the staple reload 10 also includes a drive assembly 22 that includes a first, resilient firing shaft 24 supporting a sled 26 and a second, resilient firing shaft 28 supporting a clamping member 30. The first and second firing shafts 24, 28 each have a proximal end portion 24a, 28a and a distal end portion 24b, 28b. The proximal end portion 24a of the first firing shaft 24 is configured to be operably coupled to a drive rod 33 (FIG. 3B) for translating the first firing shaft 24 through the proximal body portion 18. The distal end portion 24b of the first firing shaft 24 abuts, is formed with, or is otherwise coupled to the sled 26 for translating the sled 26 through the cartridge assembly 36. As known in the art, the first firing shaft 24 can be moved from a retracted position to an advanced position to advance the actuation sled 26 through the tool assembly 20 to sequentially eject staples into tissue clamped by the tool assembly 20.


The distal end portion 28b of the second firing shaft 28 abuts, is formed with, or is otherwise coupled to the clamping member 30 for moving the clamping member 30 between proximal and distal positions for respectively opening and closing the tool assembly 20. The second firing shaft 28 may be fabricated from a pair of elongated laminates. In aspects, the second firing shaft 28 may be a monolithic structure. The clamping member 30 is configured to advance with the second firing shaft 24 the length of a slot 32 in the anvil 34 to close the tool assembly 20.


The proximal end portion 24a, 28a of each of the first and second firing shafts 24, 28 defines a pin hole 24c, 28c having received therein a connector pin 38 for detachably connecting the first and second firing shafts 24, 28 to one another. When the pin 38 is received in each hole 24c, 28c of the first and second firing shafts 24, 28 (FIGS. 3B and 4), advancement of the first firing shaft 24 drives a concomitant advancement of the second firing shaft 28. The pin 38 has a head 38a received in longitudinally-extending cutout 40 defined in an inner surface of the proximal body portion 18. The head 38a of the pin 38 is biased laterally into the cutout 40 and away from the first and second firing shafts 24, 28 by a biasing member 42 (e.g., a coil spring).


The cutout 40 has a proximal section 40a, and a distal section 40b recessed at a greater depth than the proximal section 40a. As the first and second firing shafts 24, 28 move distally a predetermined distance, corresponding with a closing of the tool assembly 20 by the clamping member 30, the pin 38 moves from the proximal section 40a of the cutout 40 toward the distal section 40b of the cutout 40. Due to the bias exerted on the head 38a of the pin 38 by the biasing member 42, the pin 38 is urged laterally into the distal section 40b of the cutout 40 (FIG. 5), whereby a tail end 38b of the pin 38 exits the hole 24c in the first firing shaft 24. With the pin 38 no longer engaged to both the first and second firing shafts 24, 28, continued advancement of the first firing shaft 24 fails to result in further advancement of the second firing shaft 28. As such, the sled 26 (FIG. 2) of the drive assembly 22 may advance through the tool assembly 20 to eject staples into tissue while the clamping member 30 is maintained in a position proximal of the tissue-engaging surfaces of the anvil 34 and cartridge assembly 36.



FIGS. 1, 2, and 6 illustrate the tool assembly 20 which includes the anvil 34 and cartridge assembly 36 movably coupled to one another. Each of the anvil 34 and the cartridge assembly 36 includes a proximal portion 34a, 36a and a distal portion 34b, 36b. The proximal portion 34a of the anvil 34 is coupled to the proximal portion 36a of the cartridge assembly 36 such that the tool assembly 20 can pivot between an open position (FIG. 1) and a closed position (FIG. 11). In embodiments, the cartridge assembly 36 includes a channel 44 (FIG. 2) that defines a longitudinal slot 46 and a staple cartridge 48 having a tissue contact surface 50. The staple cartridge 48 defines a plurality of staple pockets 52 and is received within the longitudinal slot 46 of the channel 44. In some embodiments, the staple cartridge 48 is adapted to be released from the channel 44 after firing of the tool assembly 20 and replaced with a new or loaded staple cartridge 48. Each of the staple pockets 52 is configured and dimensioned to receive a staple 54. In embodiments, the staple cartridge 48 has a tissue guide portion 56 that is angled away from the anvil 34 in the distal direction.


The anvil 34 defines a tissue engaging surface 58 and includes a distal end portion 34b that is angled from the tissue engaging surface 58 of the anvil 34 towards the cartridge assembly 36 at an obtuse angle. The angled distal end portion 34b of the anvil 34 forms a dissecting tip 60. In embodiments, the dissecting tip 60 is spaced from the tissue guide portion 56 of the staple cartridge 48 when the tool assembly 20 is in the clamped position and extends along an axis that is substantially parallel to an axis defined by the tissue guide portion 56. Alternately, the dissecting tip 60 may have other configurations.


With reference to FIGS. 2 and 6-10, the distal end portion 34b of the anvil 34 defines a first slot 62 and a second slot 64 (FIG. 13) in respective first and second lateral sides 66a, 66b of the anvil 34. Since the first and second slots 62, 64 are configured the same or similarly, only the first slot 62 will be described in detail. The first slot 62 may be formed as a cutout in the first lateral side 66a of the anvil 34 and has a transverse opening 68 (FIG. 7) oriented toward the cartridge assembly 36, and a longitudinal section 70 in communication with the transverse opening 68. The first lateral side 66a of the anvil 34 has a support ledge 72 that partially defines the longitudinal section 70 of the first slot 62.


The cartridge assembly 36 further includes a locking member 74 positioned in a groove 76 (FIG. 9) defined in an outer surface of the channel 44 of the cartridge assembly 36 and is slidable therein along the longitudinal axis of the cartridge assembly 36. The locking member 74 includes an elongate element 78 and a pair of first and second latch arms 80, 82 protruding perpendicularly from a distal end portion 78b of the elongate element 78. The elongate element 78 has a proximal end portion 78a configured to be coupled to the clamping member 30. In particular, the proximal end portion 78a of the elongate element 78 has an appendage 84 defining an opening 86 therein configured for removable receipt of a portion of the clamping member 30, as will be described.


As best shown in FIG. 10, the clamping member 30 has a latch member 88 extending distally from a bottom end portion thereof. The latch member 88 of the clamping member 30 has a protrusion 90 extending downwardly therefrom and configured for removable receipt in the opening 86 in the locking member 74 when the tool assembly 20 is in the closed configuration, such that advancement of the clamping member 30 causes advancement of the locking member 74.


The first and second latch arms 80, 82 of the locking member 74 extend around the outer surface of the channel 44 of the cartridge assembly 36 and are respectively disposed on opposite lateral sides of the cartridge assembly 36. Each of the first and second latch arms 80, 82 has a hook-shaped extension 92, 94 protruding inwardly. The extension 92, 94 of the first and second latch arms 80, 82 are configured for receipt in the respective first and second slots 62, 64 of the anvil 34 upon the tool assembly 20 moving to the closed position. The extension 92, 94 of the first and second latch arms 80, 82 are configured to cooperatively grasp the anvil 34 therebetween to prevent the anvil 34 and cartridge assembly 36 from separating from the closed position.


In operation, when the staple reload 10 is operably engaged to a handle assembly (not shown) of a surgical stapling device or a robotic surgical system, the staple reload 10 is actuated to move the tool assembly 20 from the open position (FIG. 1) to the closed position (FIG. 11) about tissue. The first firing shaft 24 of the drive assembly 22 translates distally while carrying the second firing shaft 28 therewith. Since the clamping member 30 is coupled to the second firing shaft 28, the clamping member 30 advances into engagement with cam surfaces 44a, 44b (FIGS. 9 and 12) on the channel 44 and/or the anvil 34. The clamping member 30 is advanced a predetermined distance to move the tool assembly 20 to the closed position.


As the anvil 34 and cartridge assembly 36 approximate, the extension 92, 94 of the first and second latch arms 80, 82 of the locking member 74 enter the respective first and second slots 62, 64 of the anvil 34 via the entry opening 68 of the slots 62, 64. At this stage, the locking member 74 is not yet preventing the tool assembly 20 from opening. Upon traveling the predetermined distance to close the tool assembly 20, the clamping member 30 abuts the proximal end portion 78a of the elongate element 78 of the locking member 74 (FIG. 12). In addition, upon closing the tool assembly 20, the protrusion 90 (FIG. 10) of the clamping member 30 enters the opening 86 in the elongate element 78 of the locking member 74. Accordingly, further advancement of the clamping member 30 causes the locking member 74 to advance from a proximal position to a distal position.


In the proximal position, as shown in FIG. 11, the extensions 92, 94 (FIG. 10) of the first and second latch arms 80, 82 of the locking member 74 are disposed proximally of the support ledges 72 of the anvil 34. As the locking member 74 moves to the distal position, the extensions 92, 94 of the first and second latch arms 80, 82 of the locking member 74 traverse the longitudinal section 70 of the first and second slots 62, 64 and engage the support ledges 72, as shown in FIGS. 13 and 14. When the first and second latch arms 80, 82 engage the support ledges 72 of the anvil 34, opening of the anvil 34 and cartridge assembly 36 is resisted, thereby setting a gap distance between the anvil 34 and cartridge assembly 36.


After the clamping member 30 advances the locking member 74 to the distal, locking position, the clamping member 30 is stopped from further advancing to the tissue-contacting surfaces/through the staple cartridge 44 of the tool assembly 20 by a distal limit of the slot 32 (FIG. 2) defined in the anvil 34. As described above, the second firing shaft 28 disengages the first firing shaft 24, allowing the first firing shaft 24 and the sled 26 to advance through the staple cartridge 48 independently of the clamping member 30 to eject staples from the staple cartridge 48.


After the sled 26 traverses to the distal end portion 36b of the cartridge assembly 36, the sled 26 may be retracted by retracting the first firing shaft 24. As the first firing shaft 24 retracts, the sled 26 engages the clamping member 30, whereby the clamping member 30 is moved proximally. Since the protrusion 90 of the clamping member 30 is received in the opening 86 in the elongate element 78 of the locking member 74, retraction of the clamping member 30 drives a retraction of the locking member 74. As the locking member 74 retracts, the first and second latch arms 80, 82 moves proximally within the respective first and second slots 62, 64 of the anvil 34 to disengage the extension 92, 94 of the first and second latch arms 80, 82 from the support ledge 72 of the anvil 34. With the locking member 74 of the cartridge assembly 36 out of locking engagement with the anvil 34, the tool assembly 20 is no longer prevented from moving out of the closed position.



FIGS. 15-22 illustrate another embodiment of a locking member 174 for setting the tissue gap of a tool assembly 120. The tool assembly 120 is similar to tool assembly 20 and will only be described in detail to describe differences between the two assemblies.


The tool assembly 120 includes an anvil 134 and a cartridge assembly 136 movably coupled to one another. The anvil 134 defines a slot 162 that extends through the distal end portion 134b thereof. The distal end portion 134b of the anvil 134 has a support ledge 172 that partially defines the slot 162. The cartridge assembly 136 includes a clamping member 130 disposed at the proximal end portion 136a thereof, a locking member 174 disposed at the distal end portion 136b thereof, and an elongated locking plate 178 interconnecting the clamping member 130 and the locking member 174.


The locking plate 178 is slidably coupled to the cartridge assembly 136 and defines a proximal slot 190 in a proximal end portion 178a of the elongate plate 178, and a distal slot 192 in a distal end portion 178b of the elongate plate 178. The clamping member 130 is received in the proximal slot 190 and the locking member 174 is received in the distal slot 192. The clamping member 130 is captured within the proximal slot 190 of the locking plate 178, such that translation of the clamping member 130 results in translation of the locking plate 178. The locking member 174 may be shaped as an I-beam having a bottom end portion 174a received in the distal slot 192 of the elongate plate 178, and a top end portion 174b configured for receipt in the slot 162 of the anvil 134. The distal slot 192 of the elongate locking plate 178 is sized to allow for relative movement between the locking plate 178 and the bottom end portion 174a of the locking member 174.


In operation, the clamping member 130 is advanced from a proximal position, as shown in FIG. 15, to a first distal position, as shown in FIG. 17, to move the tool assembly 120 from the open position to the closed position. As the clamping member 130 moves to the first, distal position, the locking plate 178 moves with the clamping member 130 a predetermined distance. Since the distal slot 192 is longer than the bottom end portion 174a of the locking member 174 (FIG. 16), the initial distal translation of the elongate plate 178 during closing of the tool assembly 120 does not result in translation of the locking member 174.


Upon closing the tool assembly 120, as shown in FIG. 18, the top end portion 174b of the locking member 174 is received in the slot 162 in the anvil 134. In this position, the anvil 134 and cartridge assembly 136 remain separable from one another. The clamping member 130 is further advanced, thereby advancing the elongate plate 178 into engagement with the bottom end portion 174a of the locking member 174, as shown in FIGS. 18 and 19. With the elongate plate 178 abutting the bottom end portion 174a of the locking member 174, further advancement of the elongate plate 178 via the advancing clamping member 130 drives the locking member 174 distally, whereby the top end portion 174b of the locking member 174 traverses the slot 162 in the anvil 134 and engages the support ledge 172, as shown in FIG. 20. With the top end portion 174b of the locking member 174 disposed on the support ledge 172 of the anvil 134 and the bottom end portion 174a of the locking member 174 disposed on the elongate plate 178 of the cartridge assembly 136, separation of the tool assembly 120 out of the closed position is resisted.


With reference to FIGS. 21 and 22, to allow for separation of the anvil 134 and cartridge assembly 136 from one another, the clamping member 130 is retracted, whereby the elongate plate 178 ultimately engages the bottom end portion 174a of the locking member 174. Further retraction of the elongate plate 178, via the clamping member 130, proximally translates the locking member 174 relative to the anvil 134 to disengage the top end portion 174b of the locking member 174 from the support ledge 172 of the anvil 134. With the locking member 174 disengaged from the anvil 134, further retraction of the clamping member 130 moves the tool assembly 120 from the closed position to the open position.



FIGS. 23-26 illustrate another embodiment of a locking member 260 for setting the tissue gap of a tool assembly 220. The tool assembly 220 is similar to tool assembly 20 and will only be described in detail to describe differences between the two assemblies.


The tool assembly 220 includes an anvil 234 and a cartridge assembly 236 movably coupled to one another. The anvil 234 defines a slot 262 that extends through a distal end portion 234b thereof. The distal end portion 234b of the anvil 234 has a cam surface 270 leading to a support ledge 272 that together partially define the slot 262. The cam surface 270 is angled proximally so that the support ledge 272 overhangs an entry opening 268 of the slot 262.


The cartridge assembly includes a locking member 274 pivotably supported in the distal end portion 236b of the cartridge assembly 236. The cartridge assembly 236 includes a biasing member 278 (e.g., a torsion spring) coupled to a bottom end portion 274a of the locking member 274 and an engagement surface 280 of the cartridge assembly 236. The biasing member 278 is configured to resiliently bias the locking member 274 toward a locking position, in which the locking member 274 is perpendicular to a longitudinal axis defined by the cartridge assembly 236. The locking member 274 includes a top end portion 274b having an extension 290 configured to be supported on the support ledge 272 of the anvil 234 to prevent the anvil 234 and cartridge assembly 236 from moving out of the closed position. The tool assembly 220 further includes a sled 226 (FIGS. 25 and 26), similar to the sled 26 described above, slidably supported in the cartridge assembly 236 for ejecting staples from the cartridge assembly 236.


In operation, as the tool assembly 220 moves from the open position, as shown in FIG. 23, toward a partially closed position, as shown in FIG. 24, the top end portion 274a of the locking member 274 engages the cam surface 270 of the anvil 234. The cam surface 270 pivots the locking member 274 out of the locking position, in the direction indicated by arrow “A” in FIG. 24, against the bias of the biasing member 278. As the anvil 234 and cartridge assembly 236 move toward the fully closed position, as shown in FIG. 25, the protrusion 290 of the locking member 274 passes further into the slot 262 of the anvil 234 and passed the support ledge 272. The biasing member 278 pivots the locking member 274 about the bottom end portion 274a thereof, in the direction indicated by arrow “B” in FIG. 25, to engage the protrusion 290 of the locking member 274 with the support ledge 272 of the anvil 234. In this position, the locking member 274 resists separation of the anvil 234 and cartridge assembly 236 from one another.


With reference to FIGS. 25 and 26, the sled 226 advances through the cartridge assembly 236 until it ejects all of the staples in the distal end portion 236b of the cartridge assembly 236, whereupon the sled 226 engages the bottom end portion 274a of the locking member 274. The locking member 274 rotates in the direction indicated by arrow “A” out of the locking position to disengage the protrusion 290 of the locking member 274 from the support ledge 272 of the anvil 234. With the locking member 274 disengaged from the support ledge 272 of the anvil 234, movement of the anvil 234 and cartridge assembly 236 out of the closed position is permitted.


While the tool assemblies described herein are shown in the drawings as linear tool assemblies, it is contemplated that the tool assemblies may be configured as curved tool assemblies with similar components and methods of operation.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of this disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. A tool assembly comprising: an anvil having a proximal portion and a distal portion, the distal portion of the anvil defining a first slot therein;a cartridge assembly having a proximal portion and a distal portion, the proximal portion of the cartridge assembly movably coupled to the proximal portion of the anvil such that the anvil and cartridge assembly are transitionable between an open position and a closed position;a locking member movably supported on the distal portion of the cartridge assembly, wherein the locking member is configured for receipt in the first slot of the anvil to set a gap distance between the anvil and cartridge assembly when the anvil and cartridge assembly are in the closed position; anda drive assembly supported in the cartridge assembly and configured to slide through the cartridge assembly to transition the anvil and cartridge assembly from the open position to the closed position and to fire staples from the cartridge assembly, wherein the drive assembly is further configured to distally translate the locking member relative to the anvil from a proximal position, to a distal position, in which the locking member maintains the anvil and cartridge assembly in the closed position.
  • 2. The tool assembly according to claim 1, wherein the locking member includes a first latch arm configured for receipt in the first slot of the anvil when the anvil and cartridge assembly are in the closed position.
  • 3. The tool assembly according to claim 2, wherein the first latch arm has an extension configured to be captured in the first slot of the anvil when the locking member distally translates.
  • 4. The tool assembly according to claim 2, wherein the locking member includes a second latch arm, the first and second latch arms disposed on opposite lateral sides of the cartridge assembly.
  • 5. The tool assembly according to claim 4, wherein the distal portion of the anvil defines a second slot therein configured for receipt of the second latch arm of the locking member.
  • 6. The tool assembly according to claim 5, wherein the first and second slots are disposed on opposite lateral sides of the anvil.
  • 7. The tool assembly according to claim 1, further comprising a clamping member operably coupled to and between the drive assembly and the proximal portion of each of the anvil and cartridge assembly and configured to move the anvil and cartridge assembly from the open position to the closed position in response to a distal translation of the drive assembly, wherein the locking member is configured to be coupled to the clamping member, such that advancement of the clamping member moves the locking member into the first slot of the anvil to set the gap distance between the anvil and cartridge assembly.
  • 8. The tool assembly according to claim 7, wherein the locking member includes: an elongate element having a proximal end portion configured to be coupled to the clamping member; anda first latch arm extending upwardly from a distal end portion of the elongate element and configured to translate distally into the first slot of the anvil in response to advancement of the clamping member.
  • 9. The tool assembly according to claim 8, wherein the clamping member has a distally-extending latch member configured to couple to the proximal end portion of the elongate element of the locking member upon the anvil and cartridge assembly moving to the closed position.
  • 10. The tool assembly according to claim 9, wherein the latch member of the clamping member has a protrusion, and the proximal end portion of the elongate element of the locking member defines an opening configured for removable receipt of the protrusion.
  • 11. The tool assembly according to claim 7, wherein the drive assembly includes a sled slidably received in the cartridge assembly and configured to move from a proximal position to a distal position to advance the staples from the cartridge assembly, wherein the sled is operably coupled to the clamping member, such that advancement of the sled from the proximal position toward the distal position distally translates the locking member.
  • 12. The tool assembly according to claim 7, further comprising an elongate plate slidably coupled to the cartridge assembly and defining a proximal slot in a proximal end portion of the elongate plate, and a distal slot in a distal end portion of the elongate plate, wherein the clamping member is received in the proximal slot and the locking member is received in the distal slot.
  • 13. The tool assembly according to claim 12, wherein the locking member is configured to lockingly engage the first slot in the anvil in response to advancement of the elongate plate by the clamping member.
  • 14. The tool assembly according to claim 12, wherein the locking member is an I-beam having a bottom end portion received in the distal slot of the elongate plate, and a top end portion configured for receipt in the first slot of the anvil.
  • 15. The tool assembly according to claim 12, wherein the elongate plate is configured to advance relative to the locking member a predetermined distance prior to engaging and advancing the locking member.
  • 16. A tool assembly comprising: an anvil having a proximal portion and a distal portion, the distal portion of the anvil defining a slot therein;a cartridge assembly having a proximal portion and a distal portion, the proximal portion of the cartridge assembly movably coupled to the proximal portion of the anvil;a clamping member operably coupled to the proximal portion of each of the anvil and cartridge assembly and configured to move the anvil and cartridge assembly from an open position to a closed position from a first advancement of the clamping member; anda locking member slidably supported on the distal portion of the cartridge assembly, wherein the locking member is configured to be operably coupled to the clamping member upon the anvil and cartridge assembly moving to the closed position, such that a second advancement of the clamping member advances the locking member into locking engagement with the slot of the anvil to set a gap distance between the anvil and cartridge assembly.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/817,807, filed on Mar. 13, 2019, the entire content of which is incorporated herein by reference.

US Referenced Citations (1428)
Number Name Date Kind
3499591 Green Mar 1970 A
3777538 Weatherly et al. Dec 1973 A
3882854 Hulka et al. May 1975 A
4027510 Hiltebrandt Jun 1977 A
4086926 Green et al. May 1978 A
4241861 Fleischer Dec 1980 A
4244372 Kapitanov et al. Jan 1981 A
4429695 Green Feb 1984 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4580712 Green Apr 1986 A
4589413 Malyshev et al. May 1986 A
4596351 Fedotov et al. Jun 1986 A
4602634 Barkley Jul 1986 A
4605001 Rothfuss et al. Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4633861 Chow et al. Jan 1987 A
4633874 Chow et al. Jan 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4728020 Green et al. Mar 1988 A
4752024 Green et al. Jun 1988 A
4784137 Kulik et al. Nov 1988 A
4863088 Redmond et al. Sep 1989 A
4869415 Fox Sep 1989 A
4892244 Fox et al. Jan 1990 A
4955959 Tompkins et al. Sep 1990 A
4978049 Green Dec 1990 A
4991764 Mericle Feb 1991 A
5014899 Presty et al. May 1991 A
5031814 Tompkins et al. Jul 1991 A
5040715 Green et al. Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5071430 de Salis et al. Dec 1991 A
5074454 Peters Dec 1991 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5106008 Tompkins et al. Apr 1992 A
5111987 Moeinzadeh et al. May 1992 A
5129570 Schulze et al. Jul 1992 A
5141144 Foslien et al. Aug 1992 A
5156315 Green et al. Oct 1992 A
5156614 Green et al. Oct 1992 A
5163943 Mohiuddin et al. Nov 1992 A
5170925 Madden et al. Dec 1992 A
5171247 Hughett et al. Dec 1992 A
5173133 Morin et al. Dec 1992 A
5180092 Crainich Jan 1993 A
5188274 Moeinzadeh et al. Feb 1993 A
5220928 Oddsen et al. Jun 1993 A
5221036 Takase Jun 1993 A
5242457 Akopov et al. Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5253793 Green et al. Oct 1993 A
5263629 Trumbull et al. Nov 1993 A
RE34519 Fox et al. Jan 1994 E
5275323 Schulze et al. Jan 1994 A
5282807 Knoepfler Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5312023 Green et al. May 1994 A
5318221 Green et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5328077 Lou Jul 1994 A
5330486 Wilk Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5336232 Green et al. Aug 1994 A
5344061 Crainich Sep 1994 A
5352238 Green et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5364001 Bryan Nov 1994 A
5364002 Green et al. Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5366133 Geiste Nov 1994 A
5376095 Ortiz Dec 1994 A
5379933 Green et al. Jan 1995 A
5381943 Allen et al. Jan 1995 A
5382255 Castro et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5405072 Zlock et al. Apr 1995 A
5407293 Crainich Apr 1995 A
5413268 Green et al. May 1995 A
5415334 Williamson et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417361 Williamson, IV May 1995 A
5423471 Mastri et al. Jun 1995 A
5425745 Green et al. Jun 1995 A
5431322 Green et al. Jul 1995 A
5431323 Smith et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5441193 Gravener Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5456401 Green et al. Oct 1995 A
5464300 Crainich Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5472132 Savage et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5482197 Green et al. Jan 1996 A
5484095 Green et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5486185 Freitas et al. Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5490856 Person et al. Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5501689 Green et al. Mar 1996 A
5505363 Green et al. Apr 1996 A
5507426 Young et al. Apr 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5529235 Boiarski et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5551622 Yoon Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554164 Wilson et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5573169 Green et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5607095 Smith et al. Mar 1997 A
5615820 Viola Apr 1997 A
5618291 Thompson et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5628446 Geiste et al. May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5630541 Williamson, IV et al. May 1997 A
5632432 Schulze et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636780 Green et al. Jun 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657921 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662259 Yoon Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662666 Onuki et al. Sep 1997 A
5665085 Nardella Sep 1997 A
5667517 Hooven Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5690269 Bolanos et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713505 Huitema Feb 1998 A
5715988 Palmer Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5732806 Foshee et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5749893 Vidal et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5769303 Knodel et al. Jun 1998 A
5769892 Kingwell Jun 1998 A
5772099 Gravener Jun 1998 A
5772673 Cuny et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5810811 Yates et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5836147 Schnipke Nov 1998 A
5862972 Green et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5871135 Williamson IV et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5878938 Bittner et al. Mar 1999 A
5893506 Powell Apr 1999 A
5894979 Powell Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5901895 Heaton et al. May 1999 A
5911352 Racenet et al. Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5922001 Yoon Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5980510 Tsonton et al. Nov 1999 A
5988479 Palmer Nov 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6079606 Milliman et al. Jun 2000 A
6099551 Gabbay Aug 2000 A
6109500 Alli et al. Aug 2000 A
6131789 Schulze et al. Oct 2000 A
6131790 Piraka Oct 2000 A
6155473 Tompkins et al. Dec 2000 A
6197017 Brock et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6279809 Nicolo Aug 2001 B1
6315183 Piraka Nov 2001 B1
6315184 Whitman Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6391038 Vargas et al. May 2002 B2
6398797 Bombard et al. Jun 2002 B2
6436097 Nardella Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6478804 Vargas et al. Nov 2002 B2
6488196 Fenton, Jr. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6544274 Danitz et al. Apr 2003 B2
6554844 Lee et al. Apr 2003 B2
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6592597 Grant et al. Jul 2003 B2
6594552 Nowlin et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6619529 Green et al. Sep 2003 B2
D480808 Wells et al. Oct 2003 S
6644532 Green et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6681978 Geiste et al. Jan 2004 B2
6698643 Whitman Mar 2004 B2
6716232 Vidal et al. Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6755338 Hahnen et al. Jun 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6817509 Geiste et al. Nov 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6843403 Whitman Jan 2005 B2
RE38708 Bolanos et al. Mar 2005 E
6877647 Green et al. Apr 2005 B2
6889116 Jinno May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6962594 Thevenet Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6994714 Vargas et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7032799 Viola et al. Apr 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7111769 Wales et al. Sep 2006 B2
7114642 Whitman Oct 2006 B2
7121446 Arad et al. Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7159750 Racenet et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7188758 Viola et al. Mar 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7213736 Wales et al. May 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238195 Viola Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7258262 Mastri et al. Aug 2007 B2
7267682 Bender et al. Sep 2007 B1
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7287682 Ezzat et al. Oct 2007 B1
7293685 Ehrenfels et al. Nov 2007 B2
7296722 Ivanko Nov 2007 B2
7296724 Green et al. Nov 2007 B2
7296772 Wang Nov 2007 B2
7300444 Nielsen et al. Nov 2007 B1
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7326232 Viola et al. Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7334717 Rethy et al. Feb 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7367485 Shelton, IV et al. May 2008 B2
7377928 Zubik et al. May 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7399310 Edoga et al. Jul 2008 B2
7401720 Durrani Jul 2008 B1
7401721 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7407074 Ortiz et al. Aug 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7419495 Menn et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438208 Larson Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7448525 Shelton, IV et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7458494 Matsutani et al. Dec 2008 B2
7461767 Viola et al. Dec 2008 B2
7462185 Knodel Dec 2008 B1
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464848 Green et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7473258 Clauson et al. Jan 2009 B2
7481347 Roy Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7513408 Shelton, IV et al. Apr 2009 B2
7517356 Heinrich Apr 2009 B2
7537602 Whitman May 2009 B2
7543729 Ivanko Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7543731 Green et al. Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7556185 Viola Jul 2009 B2
7556186 Milliman Jul 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7559453 Heinrich et al. Jul 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7571845 Viola Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7584880 Racenet et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7597230 Racenet et al. Oct 2009 B2
7600663 Green Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7631794 Rethy et al. Dec 2009 B2
7635073 Heinrich Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7635373 Ortiz Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7678121 Knodel Mar 2010 B1
7681772 Green et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7682368 Bombard et al. Mar 2010 B1
7690547 Racenet et al. Apr 2010 B2
7694865 Scirica Apr 2010 B2
7699205 Ivanko Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721935 Racenet et al. May 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7740160 Viola Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744628 Viola Jun 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753248 Viola Jul 2010 B2
7757924 Gerbi et al. Jul 2010 B2
7757925 Viola et al. Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766924 Bombard et al. Aug 2010 B1
7766928 Ezzat et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7789283 Shah Sep 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798385 Boyden et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7810690 Bilotti et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815090 Marczyk Oct 2010 B2
7815091 Marczyk Oct 2010 B2
7815092 Whitman et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819896 Racenet Oct 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7823761 Boyden et al. Nov 2010 B2
7824426 Racenet et al. Nov 2010 B2
7828186 Wales Nov 2010 B2
7828187 Green et al. Nov 2010 B2
7828188 Jankowski Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7834630 Damadian et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7841503 Sonnenschein et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7850703 Bombard et al. Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7861907 Green et al. Jan 2011 B2
7866524 Krehel Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866526 Green et al. Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7866528 Olson et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7886952 Scirica et al. Feb 2011 B2
7891532 Mastri et al. Feb 2011 B2
7891533 Green et al. Feb 2011 B2
7891534 Wenchell et al. Feb 2011 B2
7896214 Farascioni Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7901416 Nolan et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7909224 Prommersberger Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7913893 Mastri et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7922064 Boyden et al. Apr 2011 B2
7926691 Viola et al. Apr 2011 B2
7926692 Racenet et al. Apr 2011 B2
7934628 Wenchell et al. May 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7934631 Balbierz et al. May 2011 B2
7942300 Rethy et al. May 2011 B2
7942303 Shah May 2011 B2
7950560 Zemlok et al. May 2011 B2
7950561 Aranyi May 2011 B2
7950562 Beardsley et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954683 Knodel et al. Jun 2011 B1
7954684 Boudreaux Jun 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963431 Scirica Jun 2011 B2
7963432 Knodel et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7975894 Boyden et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7988026 Knodel et al. Aug 2011 B2
7988027 Olson et al. Aug 2011 B2
7988028 Farascioni et al. Aug 2011 B2
7992758 Whitman et al. Aug 2011 B2
7997468 Farascioni Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006885 Marczyk Aug 2011 B2
8006887 Marczyk Aug 2011 B2
8007505 Weller et al. Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011552 Ivanko Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8015976 Shah Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028882 Viola Oct 2011 B2
8028883 Stopek Oct 2011 B2
8028884 Sniffin et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8033441 Marczyk Oct 2011 B2
8033442 Racenet et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8038044 Viola Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056791 Whitman Nov 2011 B2
8061577 Racenet et al. Nov 2011 B2
8066166 Demmy et al. Nov 2011 B2
8070033 Milliman et al. Dec 2011 B2
8070034 Knodel Dec 2011 B1
8070035 Holsten et al. Dec 2011 B2
8074858 Marczyk Dec 2011 B2
8074859 Kostrzewski Dec 2011 B2
8074862 Shah Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8083119 Prommersberger Dec 2011 B2
8083120 Shelton, IV et al. Dec 2011 B2
8087563 Milliman et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091754 Ehrenfels et al. Jan 2012 B2
8091756 Viola Jan 2012 B2
8092493 Marczyk Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8096460 Blier et al. Jan 2012 B2
8100309 Marczyk Jan 2012 B2
8100310 Zemlok Jan 2012 B2
8102008 Wells Jan 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113409 Cohen et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8123101 Racenet et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8127976 Scirica et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8132706 Marczyk et al. Mar 2012 B2
8136713 Hathaway et al. Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8152041 Kostrzewski Apr 2012 B2
8157148 Scirica Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8162197 Mastri et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8167186 Racenet et al. May 2012 B2
8172121 Krehel May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8181837 Roy May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186557 Cohen et al. May 2012 B2
8186558 Sapienza May 2012 B2
8186559 Whitman May 2012 B1
8186560 Hess et al. May 2012 B2
8193044 Kenneth Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8205619 Shah et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210412 Marczyk Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8215532 Marczyk Jul 2012 B2
8216236 Heinrich et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8235272 Nicholas et al. Aug 2012 B2
8235273 Olson et al. Aug 2012 B2
8235274 Cappola Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8240536 Marczyk Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245897 Tzakis et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245931 Shigeta Aug 2012 B2
8252009 Weller et al. Aug 2012 B2
8256653 Farascioni Sep 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8256656 Milliman et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8272551 Knodel et al. Sep 2012 B2
8272553 Mastri et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8276594 Shah Oct 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8286847 Taylor Oct 2012 B2
8286848 Wenchell et al. Oct 2012 B2
8286850 Viola Oct 2012 B2
8292146 Holsten et al. Oct 2012 B2
8292147 Viola Oct 2012 B2
8292148 Viola Oct 2012 B2
8292149 Ivanko Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292153 Jankowski Oct 2012 B2
8292154 Marczyk Oct 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8292156 Kostrzewski Oct 2012 B2
8292158 Sapienza Oct 2012 B2
8308040 Huang et al. Nov 2012 B2
8308041 Kostrzewski Nov 2012 B2
8308042 Aranyi Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8308044 Viola Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8308757 Hillstead et al. Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8317071 Knodel Nov 2012 B1
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328065 Shah Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8336751 Scirica Dec 2012 B2
8336753 Olson et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8342380 Viola Jan 2013 B2
8348123 Scirica et al. Jan 2013 B2
8348124 Scirica Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348126 Olson et al. Jan 2013 B2
8348127 Marczyk Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8356740 Knodel Jan 2013 B1
8357174 Roth et al. Jan 2013 B2
8360294 Scirica Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360298 Farascioni et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8365971 Knodel Feb 2013 B1
8365972 Aranyi et al. Feb 2013 B2
8365973 White et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8381828 Whitman et al. Feb 2013 B2
8381961 Holsten et al. Feb 2013 B2
8387848 Johnson et al. Mar 2013 B2
8387849 Buesseler et al. Mar 2013 B2
8387850 Hathaway et al. Mar 2013 B2
8388652 Viola Mar 2013 B2
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393516 Kostrzewski Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8397972 Kostrzewski Mar 2013 B2
8403195 Beardsley et al. Mar 2013 B2
8403196 Beardsley et al. Mar 2013 B2
8403197 Vidal et al. Mar 2013 B2
8403198 Sorrentino et al. Mar 2013 B2
8403956 Thompson et al. Mar 2013 B1
8408439 Huang et al. Apr 2013 B2
8408440 Olson et al. Apr 2013 B2
8408442 Racenet et al. Apr 2013 B2
8413868 Cappola Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418907 Johnson et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8419768 Marczyk Apr 2013 B2
8424735 Viola et al. Apr 2013 B2
8424736 Scirica et al. Apr 2013 B2
8424737 Scirica Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8439244 Holcomb et al. May 2013 B2
8439245 Knodel et al. May 2013 B2
8439246 Knodel May 2013 B1
8444036 Shelton, IV May 2013 B2
8444037 Nicholas et al. May 2013 B2
8444038 Farascioni et al. May 2013 B2
8448832 Viola et al. May 2013 B2
8453652 Stopek Jun 2013 B2
8453905 Holcomb et al. Jun 2013 B2
8453906 Huang et al. Jun 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453909 Olson et al. Jun 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453913 Milliman Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8454628 Smith et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459521 Zemlok et al. Jun 2013 B2
8459522 Marczyk Jun 2013 B2
8459523 Whitman Jun 2013 B2
8459524 Pribanic et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8469252 Holcomb et al. Jun 2013 B2
8469254 Czemik et al. Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479967 Marczyk Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8479969 Shelton, IV Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8490852 Viola Jul 2013 B2
8496152 Viola Jul 2013 B2
8496154 Marczyk et al. Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8505799 Viola et al. Aug 2013 B2
8505802 Viola et al. Aug 2013 B2
8511575 Cok Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8517240 Mata et al. Aug 2013 B1
8517241 Nicholas et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8523041 Ishitsuki et al. Sep 2013 B2
8523042 Masiakos et al. Sep 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8534528 Shelton, IV Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540733 Whitman et al. Sep 2013 B2
8544711 Ma et al. Oct 2013 B2
8550325 Cohen et al. Oct 2013 B2
8556151 Viola Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573463 Scirica et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579177 Beetel Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8596515 Okoniewski Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8608047 Holsten et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8613384 Pastorelli et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8616430 Stopek et al. Dec 2013 B2
8627994 Zemlok et al. Jan 2014 B2
8628544 Farascioni Jan 2014 B2
8631988 Viola Jan 2014 B2
8631989 Aranyi et al. Jan 2014 B2
8631991 Cropper et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636190 Zemlok et al. Jan 2014 B2
8636192 Farascioni et al. Jan 2014 B2
8636762 Whitman et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8662371 Viola Mar 2014 B2
8668129 Olson Mar 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8672209 Crainich Mar 2014 B2
8678263 Viola Mar 2014 B2
8678990 Wazer et al. Mar 2014 B2
8679155 Knodel et al. Mar 2014 B2
8684247 Scirica et al. Apr 2014 B2
8684249 Racenet et al. Apr 2014 B2
8684253 Giordano et al. Apr 2014 B2
8690039 Beardsley et al. Apr 2014 B2
8695865 Smith et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8701959 Shah Apr 2014 B2
8701961 Ivanko Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8714429 Demmy May 2014 B2
8715277 Weizman May 2014 B2
8720766 Hess et al. May 2014 B2
8721630 Ortiz et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727200 Roy May 2014 B2
8733612 Ma May 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740039 Farascioni Jun 2014 B2
8746529 Shelton, IV et al. Jun 2014 B2
8746530 Giordano et al. Jun 2014 B2
8746535 Shelton, IV et al. Jun 2014 B2
8752748 Whitman et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8763877 Schall et al. Jul 2014 B2
8763879 Shelton, IV et al. Jul 2014 B2
8770458 Scirica Jul 2014 B2
8777082 Scirica Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8783542 Riestenberg et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8789738 Knodel et al. Jul 2014 B2
8789739 Swensgard Jul 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8814024 Woodard, Jr. et al. Aug 2014 B2
8814025 Miller et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820605 Shelton, IV Sep 2014 B2
8820607 Marczyk Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8827134 Viola et al. Sep 2014 B2
8833631 Munro, III et al. Sep 2014 B2
8833632 Swensgard Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8840603 Shelton, IV et al. Sep 2014 B2
8844788 Knodel Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8857693 Schuckmann et al. Oct 2014 B2
8864007 Widenhouse et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8893949 Shelton, IV et al. Nov 2014 B2
8893950 Marczyk Nov 2014 B2
8899461 Farascioni Dec 2014 B2
8899463 Schall et al. Dec 2014 B2
8899464 Hueil et al. Dec 2014 B2
8900616 Belcheva et al. Dec 2014 B2
8920435 Smith et al. Dec 2014 B2
8925782 Shelton, IV Jan 2015 B2
8926598 Mollere et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8931693 Kumar et al. Jan 2015 B1
8955732 Zemlok et al. Feb 2015 B2
8958429 Shukla et al. Feb 2015 B2
8960517 Lee Feb 2015 B2
8967443 McCuen Mar 2015 B2
8967446 Beardsley et al. Mar 2015 B2
8973803 Hall et al. Mar 2015 B2
8978954 Shelton, IV et al. Mar 2015 B2
8978956 Schall et al. Mar 2015 B2
8998060 Bruewer et al. Apr 2015 B2
9005230 Yates et al. Apr 2015 B2
9010607 Kostrzewski Apr 2015 B2
9016539 Kostrzewski et al. Apr 2015 B2
9016541 Viola et al. Apr 2015 B2
9016542 Shelton, IV et al. Apr 2015 B2
9016546 Demmy et al. Apr 2015 B2
9022271 Scirica May 2015 B2
9027817 Milliman et al. May 2015 B2
9033203 Woodard, Jr. et al. May 2015 B2
9044228 Woodard, Jr. et al. Jun 2015 B2
9044229 Scheib et al. Jun 2015 B2
9050084 Schmid et al. Jun 2015 B2
9055941 Schmid et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9089326 Krumanaker et al. Jul 2015 B2
9101359 Smith et al. Aug 2015 B2
9107663 Swensgard Aug 2015 B2
9107664 Marczyk Aug 2015 B2
9113862 Morgan et al. Aug 2015 B2
9113864 Morgan et al. Aug 2015 B2
9113870 Viola Aug 2015 B2
9113872 Viola Aug 2015 B2
9113880 Zemlok et al. Aug 2015 B2
9125649 Bruewer et al. Sep 2015 B2
9138225 Huang et al. Sep 2015 B2
9155537 Katre et al. Oct 2015 B2
9179912 Fates et al. Nov 2015 B2
9192378 Aranyi et al. Nov 2015 B2
9192379 Aranyi et al. Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9198644 Balek et al. Dec 2015 B2
9198661 Swensgard Dec 2015 B2
9204876 Cappola et al. Dec 2015 B2
9216019 Schmid et al. Dec 2015 B2
9216020 Zhang et al. Dec 2015 B2
9220500 Swayze et al. Dec 2015 B2
9220501 Baxter, III et al. Dec 2015 B2
9220502 Zemlok et al. Dec 2015 B2
9232941 Mandakolathur Vasudevan et al. Jan 2016 B2
9232944 Cappola et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9254180 Huitema et al. Feb 2016 B2
9265585 Wingardner et al. Feb 2016 B2
9271728 Gupta et al. Mar 2016 B2
9277919 Timmer et al. Mar 2016 B2
9282962 Schmid et al. Mar 2016 B2
9283054 Morgan et al. Mar 2016 B2
9289209 Gurumurthy et al. Mar 2016 B2
9289210 Baxter, III et al. Mar 2016 B2
9289225 Shelton, IV et al. Mar 2016 B2
9295464 Shelton, IV et al. Mar 2016 B2
9295465 Farascioni Mar 2016 B2
9301752 Mandakolathur Vasudevan et al. Apr 2016 B2
9301753 Aldridge et al. Apr 2016 B2
9301757 Williams Apr 2016 B2
9307965 Ming et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9307989 Shelton, IV et al. Apr 2016 B2
9314246 Shelton, IV et al. Apr 2016 B2
9320518 Henderson et al. Apr 2016 B2
9320521 Shelton, IV et al. Apr 2016 B2
9326767 Koch, Jr. et al. May 2016 B2
9332987 Leimbach et al. May 2016 B2
9345477 Anim et al. May 2016 B2
9345478 Knodel May 2016 B2
9345481 Hall et al. May 2016 B2
9345780 Manoharan et al. May 2016 B2
9351727 Leimbach et al. May 2016 B2
9351732 Hodgkinson May 2016 B2
9358003 Hall et al. Jun 2016 B2
9364217 Kostrzewski et al. Jun 2016 B2
9364218 Scirica Jun 2016 B2
9364219 Olson et al. Jun 2016 B2
9364220 Williams Jun 2016 B2
9364233 Alexander, III et al. Jun 2016 B2
9370358 Shelton, IV et al. Jun 2016 B2
9370362 Petty et al. Jun 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9386984 Aronhalt et al. Jul 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9393018 Wang et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
9402604 Williams et al. Aug 2016 B2
9421014 Ingmanson et al. Aug 2016 B2
9433419 Gonzalez et al. Sep 2016 B2
9433420 Hodgkinson Sep 2016 B2
9445810 Cappola Sep 2016 B2
9445813 Shelton, IV et al. Sep 2016 B2
9451959 Patankar et al. Sep 2016 B2
9468438 Baber et al. Oct 2016 B2
9468439 Cappola et al. Oct 2016 B2
9480476 Aldridge et al. Nov 2016 B2
9480492 Aranyi et al. Nov 2016 B2
9492171 Patenaude Nov 2016 B2
9498212 Racenet et al. Nov 2016 B2
9510827 Kostrzewski Dec 2016 B2
9517065 Simms et al. Dec 2016 B2
9517066 Racenet et al. Dec 2016 B2
9539007 Dhakad et al. Jan 2017 B2
9549735 Shelton, IV et al. Jan 2017 B2
20040108357 Milliman et al. Jun 2004 A1
20040199180 Knodel et al. Oct 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050006429 Wales et al. Jan 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20060049229 Milliman et al. Mar 2006 A1
20060180634 Shelton et al. Aug 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070073341 Smith et al. Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070106317 Shelton et al. May 2007 A1
20070119901 Ehrenfels et al. May 2007 A1
20070145096 Viola et al. Jun 2007 A1
20070170225 Shelton et al. Jul 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080110961 Voegele et al. May 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080287987 Boyden et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090090766 Knodel Apr 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20100012703 Calabrese et al. Jan 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100127041 Morgan et al. May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100155453 Bombard et al. Jun 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100249802 May et al. Sep 2010 A1
20100252611 Ezzat et al. Oct 2010 A1
20110006101 Hall et al. Jan 2011 A1
20110024477 Hall Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110036891 Zemlok et al. Feb 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110101069 Bombard et al. May 2011 A1
20110114702 Farascioni May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110155787 Baxter, III et al. Jun 2011 A1
20110163146 Ortiz et al. Jul 2011 A1
20110163149 Viola Jul 2011 A1
20110186614 Kasvikis Aug 2011 A1
20110192881 Balbierz et al. Aug 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110192883 Whitman et al. Aug 2011 A1
20110204119 McCuen Aug 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20120016362 Heinrich et al. Jan 2012 A1
20120053406 Conlon et al. Mar 2012 A1
20120061446 Knodel et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080495 Holcomb et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120091183 Manoux et al. Apr 2012 A1
20120138659 Marczyk et al. Jun 2012 A1
20120150176 Weizman Jun 2012 A1
20120175399 Shelton et al. Jul 2012 A1
20120181322 Whitman et al. Jul 2012 A1
20120187179 Gleiman Jul 2012 A1
20120193394 Holcomb et al. Aug 2012 A1
20120193399 Holcomb et al. Aug 2012 A1
20120199632 Spivey et al. Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120241492 Shelton, IV et al. Sep 2012 A1
20120241493 Baxter, III et al. Sep 2012 A1
20120241504 Soltz et al. Sep 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120286021 Kostrzewski Nov 2012 A1
20120286022 Olson et al. Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20130008937 Viola Jan 2013 A1
20130012983 Kleyman Jan 2013 A1
20130015231 Kostrzewski Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130032626 Smith et al. Feb 2013 A1
20130037595 Gupta et al. Feb 2013 A1
20130041406 Bear et al. Feb 2013 A1
20130068815 Bruewer et al. Mar 2013 A1
20130068816 Mandakolathur Vasudevan et al. Mar 2013 A1
20130068818 Kasvikis Mar 2013 A1
20130075447 Weisenburgh, II et al. Mar 2013 A1
20130092717 Marczyk et al. Apr 2013 A1
20130098964 Smith et al. Apr 2013 A1
20130098966 Kostrzewski et al. Apr 2013 A1
20130098970 Racenet et al. Apr 2013 A1
20130105545 Burbank May 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105552 Weir et al. May 2013 A1
20130105553 Racenet et al. May 2013 A1
20130112730 Whitman et al. May 2013 A1
20130119109 Farascioni et al. May 2013 A1
20130146641 Shelton, IV et al. Jun 2013 A1
20130146642 Shelton, IV et al. Jun 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130161374 Swayze et al. Jun 2013 A1
20130175316 Thompson et al. Jul 2013 A1
20130193188 Shelton, IV et al. Aug 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130334280 Krehel et al. Dec 2013 A1
20140014704 Onukuri et al. Jan 2014 A1
20140014707 Onukuri et al. Jan 2014 A1
20140021242 Hodgkinson et al. Jan 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140061280 Ingmanson et al. Mar 2014 A1
20140076955 Lorenz Mar 2014 A1
20140131419 Bettuchi May 2014 A1
20140138423 Whitfield et al. May 2014 A1
20140151431 Hodgkinson et al. Jun 2014 A1
20140166720 Chowaniec et al. Jun 2014 A1
20140166721 Stevenson et al. Jun 2014 A1
20140166724 Schellin et al. Jun 2014 A1
20140166725 Schellin et al. Jun 2014 A1
20140166726 Schellin et al. Jun 2014 A1
20140175146 Knodel Jun 2014 A1
20140175150 Shelton, IV et al. Jun 2014 A1
20140203062 Viola Jul 2014 A1
20140239036 Zerkle et al. Aug 2014 A1
20140239037 Boudreaux et al. Aug 2014 A1
20140239038 Leimbach et al. Aug 2014 A1
20140239040 Fanelli et al. Aug 2014 A1
20140239041 Zerkle et al. Aug 2014 A1
20140239043 Simms et al. Aug 2014 A1
20140239044 Hoffman Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20140246471 Jaworek et al. Sep 2014 A1
20140246472 Kimsey et al. Sep 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140246478 Baber et al. Sep 2014 A1
20140252062 Mozdzierz Sep 2014 A1
20140252064 Mozdzierz et al. Sep 2014 A1
20140252065 Hessler et al. Sep 2014 A1
20140263539 Leimbach et al. Sep 2014 A1
20140263540 Covach et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263542 Leimbach et al. Sep 2014 A1
20140263544 Ranucci et al. Sep 2014 A1
20140263546 Aranyi Sep 2014 A1
20140263550 Aranyi et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140263553 Leimbach et al. Sep 2014 A1
20140263554 Leimbach et al. Sep 2014 A1
20140263555 Hufnagel et al. Sep 2014 A1
20140263557 Schaller Sep 2014 A1
20140263558 Hausen et al. Sep 2014 A1
20140263562 Patel et al. Sep 2014 A1
20140263564 Leimbach et al. Sep 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140263566 Williams et al. Sep 2014 A1
20140263570 Hopkins et al. Sep 2014 A1
20140284371 Morgan et al. Sep 2014 A1
20140291379 Schellin et al. Oct 2014 A1
20140291380 Meaner et al. Oct 2014 A1
20140291383 Spivey et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140309665 Parihar et al. Oct 2014 A1
20140332578 Fernandez et al. Nov 2014 A1
20140339286 Motooka et al. Nov 2014 A1
20140353358 Shelton, IV et al. Dec 2014 A1
20140367445 Ingmanson et al. Dec 2014 A1
20140367446 Ingmanson et al. Dec 2014 A1
20150048143 Scheib et al. Feb 2015 A1
20150053740 Shelton, IV Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053744 Swayze et al. Feb 2015 A1
20150060517 Williams Mar 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150076211 Irka et al. Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150133996 Shelton, IV et al. May 2015 A1
20150134076 Shelton, IV et al. May 2015 A1
20150150556 McCuen Jun 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150173744 Shelton, IV et al. Jun 2015 A1
20150173745 Baxter, III et al. Jun 2015 A1
20150173746 Baxter, III et al. Jun 2015 A1
20150173747 Baxter, III et al. Jun 2015 A1
20150173748 Marczyk et al. Jun 2015 A1
20150173749 Shelton, IV et al. Jun 2015 A1
20150173750 Shelton, IV et al. Jun 2015 A1
20150173755 Baxter, III et al. Jun 2015 A1
20150173756 Baxter, III et al. Jun 2015 A1
20150173760 Shelton, IV et al. Jun 2015 A1
20150173761 Shelton, IV et al. Jun 2015 A1
20150182220 Yates et al. Jul 2015 A1
20150209040 Whitman et al. Jul 2015 A1
20150250474 Abbott et al. Sep 2015 A1
20150297225 Huitema et al. Oct 2015 A1
20150316431 Collins et al. Nov 2015 A1
20150351765 Valentine et al. Dec 2015 A1
20150359534 Gibbons, Jr. Dec 2015 A1
20150366560 Chen et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374376 Shelton, IV Dec 2015 A1
20160030040 Calderoni et al. Feb 2016 A1
20160051259 Hopkins et al. Feb 2016 A1
20160058443 Yates et al. Mar 2016 A1
20160066907 Cheney et al. Mar 2016 A1
20160067074 Thompson et al. Mar 2016 A1
20160089137 Hess et al. Mar 2016 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160100835 Linder et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113647 Hodgkinson Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
20160120542 Westling et al. May 2016 A1
20160166249 Knodel Jun 2016 A1
20160166253 Knodel Jun 2016 A1
20160199064 Shelton, IV et al. Jul 2016 A1
20160199084 Takei Jul 2016 A1
20160206315 Olson Jul 2016 A1
20160206336 Frushour Jul 2016 A1
20160235494 Shelton, IV et al. Aug 2016 A1
20160242773 Sadowski et al. Aug 2016 A1
20160242774 Ebner Aug 2016 A1
20160242779 Aranyi et al. Aug 2016 A1
20160249915 Beckman et al. Sep 2016 A1
20160249916 Shelton, IV et al. Sep 2016 A1
20160249918 Shelton, IV et al. Sep 2016 A1
20160249927 Beckman et al. Sep 2016 A1
20160249929 Cappola et al. Sep 2016 A1
20160249945 Shelton, IV et al. Sep 2016 A1
20160256071 Shelton, IV et al. Sep 2016 A1
20160256152 Kostrzewski Sep 2016 A1
20160256154 Shelton, IV et al. Sep 2016 A1
20160256160 Shelton, IV et al. Sep 2016 A1
20160256161 Overmyer et al. Sep 2016 A1
20160256162 Shelton, IV et al. Sep 2016 A1
20160256163 Shelton, IV et al. Sep 2016 A1
20160256184 Shelton, IV et al. Sep 2016 A1
20160256185 Shelton, IV et al. Sep 2016 A1
20160256187 Shelton, IV et al. Sep 2016 A1
20160262750 Hausen et al. Sep 2016 A1
20160270783 Yigit et al. Sep 2016 A1
20160270788 Czernik Sep 2016 A1
20160278764 Shelton, IV et al. Sep 2016 A1
20160278765 Shelton, IV et al. Sep 2016 A1
20160278771 Shelton, IV et al. Sep 2016 A1
20160278774 Shelton, IV et al. Sep 2016 A1
20160278775 Shelton, IV et al. Sep 2016 A1
20160278777 Shelton, IV et al. Sep 2016 A1
20160278848 Boudreaux et al. Sep 2016 A1
20160287250 Shelton, IV et al. Oct 2016 A1
20160287251 Shelton, IV et al. Oct 2016 A1
20160296216 Nicholas et al. Oct 2016 A1
20160296226 Kostrzewski Oct 2016 A1
20160302791 Schmitt Oct 2016 A1
20160310134 Contini et al. Oct 2016 A1
20160324514 Srinivas et al. Nov 2016 A1
20160324518 Nicholas et al. Nov 2016 A1
20160338703 Scirica et al. Nov 2016 A1
20160345971 Bucciaglia et al. Dec 2016 A1
20160345973 Marczyk et al. Dec 2016 A1
20160354176 Schmitt Dec 2016 A1
20160374678 Becerra et al. Dec 2016 A1
20170000483 Motai et al. Jan 2017 A1
20170020525 Shah Jan 2017 A1
20180235609 Harris Aug 2018 A1
Foreign Referenced Citations (82)
Number Date Country
198654765 Sep 1986 AU
2773414 Nov 2012 CA
2884962 Nov 2015 CA
2744824 Apr 1978 DE
2903159 Jul 1980 DE
3114135 Oct 1982 DE
4213426 Oct 1992 DE
4300307 Jul 1994 DE
0041022 Dec 1981 EP
0136950 Apr 1985 EP
0140552 May 1985 EP
0156774 Oct 1985 EP
0213817 Mar 1987 EP
0216532 Apr 1987 EP
0220029 Apr 1987 EP
0273468 Jul 1988 EP
0324166 Jul 1989 EP
0324635 Jul 1989 EP
0324637 Jul 1989 EP
0324638 Jul 1989 EP
0365153 Apr 1990 EP
0369324 May 1990 EP
0373762 Jun 1990 EP
0380025 Aug 1990 EP
0399701 Nov 1990 EP
0449394 Oct 1991 EP
0484677 May 1992 EP
0489436 Jun 1992 EP
0503662 Sep 1992 EP
0514139 Nov 1992 EP
0536903 Apr 1993 EP
0537572 Apr 1993 EP
0539762 May 1993 EP
0545029 Jun 1993 EP
0552050 Jul 1993 EP
0552423 Jul 1993 EP
0579038 Jan 1994 EP
0589306 Mar 1994 EP
0591946 Apr 1994 EP
0592243 Apr 1994 EP
0593920 Apr 1994 EP
0598202 May 1994 EP
0598579 May 1994 EP
0600182 Jun 1994 EP
0621006 Oct 1994 EP
0621009 Oct 1994 EP
0656188 Jun 1995 EP
0666057 Aug 1995 EP
0705571 Apr 1996 EP
0760230 Mar 1997 EP
1952769 Aug 2008 EP
2090253 Aug 2009 EP
2090254 Aug 2009 EP
2583630 Apr 2013 EP
2586382 May 2013 EP
2907456 Aug 2015 EP
3064143 Sep 2016 EP
391239 Oct 1908 FR
2542188 Sep 1984 FR
2660851 Oct 1991 FR
2681775 Apr 1993 FR
1352554 May 1974 GB
1452185 Oct 1976 GB
1555455 Nov 1979 GB
2048685 Dec 1980 GB
2070499 Sep 1981 GB
2141066 Dec 1984 GB
2165559 Apr 1986 GB
51149985 Dec 1976 JP
2001087272 Apr 2001 JP
659146 Apr 1979 SU
728848 Apr 1980 SU
980703 Dec 1982 SU
990220 Jan 1983 SU
2008302247 Jul 1983 WO
8910094 Nov 1989 WO
9210976 Jul 1992 WO
9308754 May 1993 WO
9314706 Aug 1993 WO
2004032760 Apr 2004 WO
2009071070 Jun 2009 WO
20150191887 Dec 2015 WO
Non-Patent Literature Citations (1)
Entry
Extended European Search Report for Application No. 20162613.2 dated Aug. 5, 2020.
Related Publications (1)
Number Date Country
20200289115 A1 Sep 2020 US
Provisional Applications (1)
Number Date Country
62817807 Mar 2019 US