The present disclosure relates to surgical stapling devices and, more specifically, to structures and methods for aligning an anvil assembly with a cartridge assembly of a circular stapling device.
Circular stapling devices are employed by surgeons to apply one or more surgical fasteners, e.g., staples or two-part fasteners, to body tissue for the purpose of joining segments of body tissue together and/or for the creation of anastomoses. Circular stapling devices generally include an annular fastener cartridge assembly that supports a plurality of annular rows of fasteners, an annular anvil assembly operatively associated with the fastener cartridge assembly which provides a surface against which the fasteners are formed upon firing of the circular stapling device, and an annular blade for cutting tissue.
During a typical stapling procedure, the anvil assembly is separated from the stapling device to be positioned within one of the segments of body tissue. The anvil assembly is then attached to the stapling device and the stapling device is actuated to approximate the anvil assembly in relation to the cartridge assembly, to form the fasteners, and/or to severe tissue with the annular blade. It is important to align the anvil assembly with the cartridge assembly to ensure the fasteners are properly aligned with staple pockets of the anvil assembly to facilitate proper formation of the fasteners upon actuation or firing of the stapling device.
A continuing need exists for structures and methods for aligning the anvil assembly with the cartridge assembly to promote proper formation of fasteners.
In an aspect of the present disclosure, a tool assembly includes a cartridge assembly, a shell, and an anvil assembly. The shell houses the cartridge assembly and defines a passage. The anvil assembly includes an anvil and a center rod extending from the anvil. The center rod defines a longitudinal rod axis and includes an alignment portion that is sized to pass through the passage. The alignment portion includes first and second splines that each extend in a direction parallel to the rod axis. The first spline has a first leading portion and the second spline has a second leading portion. The first leading portion is positioned along the rod axis proximal of the second leading portion.
In aspects, the shell includes alignment splines that extend along an inner wall of the shell defining the passage. The first leading portion may be configured to engage the alignment splines to clock the anvil assembly relative to the cartridge assembly as the center rod passes through the passage of the shell. Each alignment spline may define a channel with adjacent alignment splines. Each channel may be sized to receive the first and second splines to rotatably fix the anvil assembly relative to the shell.
In some aspects, the first leading portion includes first and second facets that form a wedge. The first leading portion may be configured to engage a respective one of the alignment splines to clock the anvil assembly relative to the shell. Each of the alignment splines may include a leading portion having first and second alignment facets forming a wedge. The leading portion of the alignment splines may be configured to be engaged by one of the first or second facets of the first leading portion to guide the first spline into a channel adjacent the alignment spline. Alternatively, the first leading portion may be bullet nose shaped and configured to engage the alignment splines to guide the first spline into a channel adjacent the alignment spline.
In certain aspects, the first spline includes a first trailing end and the second spline includes a second trailing end. The first and second trailing ends may axially aligned along the rod axis. The first spline may include a spline body that extends from the first leading portion along the rod axis to define a first length and the second spline may include a second spline body that extends from the second leading portion along the rod axis to define a second length that is less than the first length.
In particular aspects, the alignment portion has a plurality of faces that define a polygonal cross-section transverse to the rod axis. The plurality of faces may include nine faces. The first spline may be disposed on a first face of the plurality of faces that has a first width that is less than a width of adjacent faces. The second spline may be disposed on a second face of the plurality of faces having a second width that is less than a width of adjacent faces.
In some aspects, the center rod includes a plurality of second splines. The leading portion of each of the second splines may be positioned along the rod axis distal to the leading portion of the first spline. The leading portions of each of the second splines may be axially aligned with one another along the rod axis.
In particular aspects, the anvil is tiltable relative to the center rod.
In another aspect of the present disclosure, the tool assembly includes a cartridge assembly, a shell, and an anvil assembly. The shell houses the cartridge assembly and defines a passage. The shell includes alignment splines that are disposed along an inner wall of the shell defining the passage. The anvil assembly includes an anvil and a center rod that extends from the anvil. The center rod defines a longitudinal rod axis and includes an alignment portion that is sized to pass through the passage. The alignment portion includes a first spline and a second spline that each extend in a direction parallel to the rod axis. The first spline has a first leading portion and the second spline has a second leading portion. The first leading portion is configured to engage the alignment splines to clock the anvil assembly relative to the cartridge assembly as the center rod passes through the passage of the shell. The second leading portion is configured to be received adjacent one of the alignment splines after the first leading portion clocks the anvil assembly relative to the cartridge assembly.
In another aspect of the present disclosure, a circular stapling device includes a handle, an elongate body, and a tool assembly. The elongate body extends from the handle. The tool assembly is supported by the elongate body and includes a cartridge assembly, a shell, and an anvil assembly. The shell is secured to a distal portion of the elongate body and houses the cartridge assembly. The shell assembly includes an inner wall that defines a passage. The anvil assembly includes an anvil and a center rod extending from the anvil. The center rod defines a longitudinal rod axis and includes an alignment portion that is sized to pass through the passage. The alignment portion includes a first spline and a second spline that each extend in a direction parallel to the rod axis. The first spline has a first leading portion and the second spline has a second leading portion. The first leading portion is positioned along the rod axis proximal of the second leading portion.
In aspects, the elongate body includes an anvil retainer and the center rod includes fingers that extend from the alignment portion away from the anvil. The fingers may be configured to releasably receive the anvil retainer. The anvil retainer may be configured to draw the center rod through the passage of the shell to approximate the anvil with the cartridge assembly. The finger may be sized to pass through and rotate within the passage.
In another aspect of the present disclosure, a method of aligning an anvil assembly with a cartridge assembly of a circular stapling device includes drawing a center rod of the anvil assembly through a passage of a shell until a first spline disposed on the center rod engages an alignment portion of the shell, clocking the anvil assembly with the shell, and approximating the anvil assembly relative to the cartridge assembly. The shell houses the cartridge assembly. Clocking the anvil assembly with the shell includes continuing to draw the center rod through the passage such that the first spline cooperates with the alignment portion to rotate the anvil assembly about a longitudinal rod axis that is defined by the center rod. Approximating the anvil assembly relative to the cartridge assembly includes continuing to draw the center rod through the passage such that a second spline of the center rod that is disposed distal to the first spline cooperates with the alignment portion to rotatably secure the anvil assembly relative to the shell.
In aspects, clocking the anvil assembly with the shell includes engaging a first alignment spline of the alignment portion with the first spline such that the first alignment spline guides the first spline into a passage defined between the first alignment spline and a second alignment spline of the alignment portion. Guiding the first spline into the passage may include a leading portion of the first spline engaging a leading portion of the first alignment spline. The leading portion of the first spline may include first and second facets that form a wedge.
In another aspect of the present disclosure, a tool assembly includes a shell and an insert. The shell defines a longitudinal axis and includes an inner portion formed from a first material. The inner portion of the shell defines a lumen. The insert is secured within the lumen and has an inner surface that defines a passage. The inner surface includes a plurality of alignment splines. At least a portion of the insert is formed of a second material that is different from the first material.
In aspects, the insert has a proximal end and a distal end with each of the alignment splines extending a length of the insert between the proximal and distal ends. The alignment splines may extend distally from a distal end of the insert. Each of the alignment splines may extend in a direction parallel to the longitudinal axis.
In some embodiments, the second material has a hardness that is greater than a hardness of the first material. The second material may have a modulus of elasticity that is less than a modulus of elasticity of the first material. The second material may be a metal. The second material may be a thermoset plastic, surgical steel, stainless steel, or titanium. The first material may be a plastic. For example, the first material may be an injection molded plastic.
In certain embodiments, the tool assembly includes an anvil assembly and a cartridge assembly. The cartridge assembly may be housed within the shell. The anvil assembly may include an anvil and a center rod that extends from the anvil. The center rod may define a rod axis that is coincident with the longitudinal axis. The center rod may include an alignment portion that is dimensioned to pass through the passage. The alignment portion may include a spline that extends in a direction parallel to the rod axis. The spline may have a leading portion that is configured to engage the insert to clock the anvil assembly relative to the shell.
In particular aspects, the insert includes alignment splines that extend into the passage. The leading portion may be configured to engage the alignment splines to clock the anvil assembly relative to the cartridge assembly as the center rod passes through the passage of the insert. The leading portion may have a bullet nose shaped and be configured to engage a respective one of the alignment splines to clock the anvil assembly relative to the shell.
In another aspect of the present disclosure, a circular stapling device includes a handle, an elongate body, and a tool assembly. The elongate body extends from the handle and the tool assembly is supported by the elongate body. The tool assembly includes a shell and an insert. The shell defines a lumen about a longitudinal axis of the shell and is formed of a first material. The insert is secured within the lumen of the shell and has an inner surface that defines a passage about the longitudinal axis. The insert includes a plurality of alignment splines that protrude from the inner surface. At least a portion of the insert is formed of a second material that is different from the first material.
In another aspect of the present disclosure, a method of aligning an anvil assembly with a cartridge assembly of a circular stapling device includes drawing a center rod of the anvil assembly through a passage of a shell until a first spline disposed on the center rod engages an alignment mechanism of an insert received with the shell and clocking the anvil assembly with the shell by continuing to draw the center rod through the passage such that the first spline cooperates with the alignment mechanism to rotate the anvil assembly about a longitudinal rod axis defined by the center rod. The shell housing the cartridge assembly. The shell is formed of a first material and the insert is formed of a second material different from the first material.
In aspects, clocking the anvil assembly with the shell includes engaging a first alignment spline of the alignment mechanism with the first spline such that the first spline such that the first alignment spline guides the first spline into a passage defined between the first alignment spline and a second alignment spline of the alignment mechanism. Guiding the first spline into the passage may include a leading portion of the first spline engaging a leading portion of the first alignment spline.
Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.
Various aspects of the present disclosure are described hereinbelow with reference to the drawings, which are incorporated in and constitute a part of this specification, wherein:
This disclosure relates generally to a tool assembly having alignment features to promote proper formation of fasteners. The tool assembly includes a shell, a cartridge assembly, and anvil assembly. The cartridge assembly is releasably housed within the shell and the anvil assembly is separable from the shell. The anvil assembly includes a center rod having a dominant spline and one or more secondary splines. The shell defines a passage for receiving the center rod of the anvil assembly and includes alignment splines that are disposed within the passage. The dominant spline is positioned to engage the alignment splines of the shell to clock the anvil assembly relative to the shell such that the anvil assembly is aligned with the cartridge assembly to properly form fasteners upon actuation of the tool assembly. The secondary splines engage the alignment splines subsequent to the dominant spline engaging the alignment splines to rotatably fix the anvil assembly in relation to the shell. Receipt of the secondary splines between adjacent alignment splines may also finely clock the anvil assembly relative to the shell.
Embodiments of the present disclosure are now described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel. Throughout this description, the term “proximal” refers to the portion of the device or component thereof that is closest to the clinician and the term “distal” refers to the portion of the device or component thereof that is farthest from the clinician. In addition, as used in this description, the term “clock” refers to rotationally aligning or orientating two components with one another.
Referring initially to
The circular stapling device 10 includes a handle assembly 20, an elongate body 30, and a tool assembly 40. The tool assembly 40 can be provided as a removable and replaceable assembly that is secured to a distal portion of the elongate body 30. The handle assembly 20 includes a rotatable advancing member 22 and a pivotable trigger member 24 that are operatively coupled to drivers supported within the elongate body 30 to effectuate approximation of the tool assembly 40 and firing of the surgical stapling device 10. The elongate body 30 extends distally from a distal portion of the handle assembly 20 to a proximal portion of the tool assembly 40 so that the elongate body 30 is disposed between the handle assembly 20 and the tool assembly 40. In some embodiments, the elongate body 30 has a linear shape along the length of the elongate body 30, and in certain embodiments, the elongate body 30 has a curved shape along the length of the elongate body 30.
With reference to
For a detailed discussion of the construction and operation of exemplary circular stapling devices reference may be made to U.S. Pat. Nos. 5,915,616; 8,789,737; and 8,806,973; the entire contents of which are incorporated herein by reference.
The shell 100 houses the cartridge assembly 200 and receives a portion of the anvil assembly 300. The cartridge assembly 200 includes a tissue contacting surface 210 that defines a plurality of fastener retention slots 214. Each slot 214 defines an opening 214a. The openings 214a are arranged in coaxial annular rings positioned about the tissue contacting surface 210. As shown, the tissue contacting surface 210 defines three annular rings of openings 214a; however, it is contemplated that the tissue contacting surface 200 may include 1 or more annular rings of openings 214a, e.g., 2, 4, 5, etc. The cartridge assembly 200 further includes a fastener or a first part of a fastener (not shown) disposed within each of the retention slots 214.
The anvil assembly 300 includes an anvil 310 and a center rod 330. The anvil 310 includes a tissue contacting surface 312 that defines a plurality of pockets (not shown) that align with the openings 214a of the cartridge assembly 200 to form fasteners upon actuation of the trigger 24 (
The center rod 330 defines a longitudinal axis A-A (
Referring to
The dominant spline 360 has a leading portion 362 including a pair of leading facets 364 forming a wedge and a body 366 extending distally from the leading facets 364 to a trailing end 368 of the body 366 in a direction parallel to the longitudinal axis A-A. The dominant spline 360 has a length L1 defined along the longitudinal axis A-A from the leading facets 364 to the trailing end 368.
Each of the secondary splines 370 has a leading portion 372 including a pair of leading facets 374 forming a wedge and a body 376 extending distally from the leading facets 374 to a trailing end 378 of the body 376 in a direction parallel to the longitudinal axis A-A. The secondary splines 370 each have a length L2 defined along the longitudinal axis A-A from the leading facets 374 to the trailing end 378 that is less than the length L1. The leading facets 374 of the secondary splines 370 are positioned distal to the leading facets 364 of the dominant spline 360. The trailing ends 378 of the secondary splines 370 can be positioned along the longitudinal axis A-A at a position proximal, distal, or equal to the trailing end 368 of the dominant spline 360.
With reference to
The channels 124 are sized and dimensioned to receive the body 366 of the dominant spline 360 and the bodies 376 of the secondary splines 370 to initially clock, i.e., align, the pockets of the anvil assembly 310 with the fastener retention slots 214 of the cartridge assembly 200 and, thereafter to fix the orientation the anvil assembly 300 relative to the shell 100 and the cartridge assembly 200. When the dominant and secondary splines 360, 370 are received within channels 124 of the shell 100, the fastener retention slots 214 (
Referring to
With particular reference to
Referring to
The dominant spline 1360 includes a leading portion 1362 and a trailing end 1368 with a body 1366 defined therebetween. The leading portion 1362 of the dominant spline 1360 has a bullet nose shape. The bullet nose shape of the leading portion 1362 is positioned on the alignment portion 350 to engage the alignment surfaces 122 of the alignment splines 120 of the shell 100 (
Each of the secondary splines 1370 includes a leading portion 1372 and a trailing end 1378 with a body 1376 defined therebetween. The leading portions 1372 of the secondary splines 1370 have a bullet nose shape. The bullet nose shape of the leading portions 1372 may engage the alignment surfaces 122 of the alignment splines 120 of the shell 100 (
The bullet nose shape of the leading portions 1362, 1372 is configured to reduce or minimize damage to the alignment splines 120 of the shell 100 caused by engagement of the dominant and secondary splines 1360, 1370 with the alignment splines 120 of the shell 100. In addition, the bullet nose shape of the leading portions 1362, 1372 may increase the detectability to a clinician of the “crashing” of splines by reducing an engagement force during clocking of the anvil assembly 300 and the shell 100 such that “crashing” of splines represents a distinct crashing force compared to an engagement force experienced during clocking. Further, the reduced engagement force during clocking may reduce particulate matter during a stapling procedure.
In some embodiments, the center rod 330 and the alignment splines 120 may be constructed of different materials. The bullet nose shape of the leading portions 1362, 1372 is configured to reduce or minimize damage in these embodiments. For example, a difference between the materials of the center rod 330 and the alignment splines 120 may allow edges of a leading portion of a dominant or secondary spline 360, 370 (e.g., an edge formed between leading facets 364 of dominant spline 360 (
Referring to
The shell 1100 defines a lumen 1102 that receives an insert 1050 and a longitudinal axis. The insert 1050 is substantially cylindrical in shape and has an inner surface 1060, an outer surface 1070, a proximal portion 1080, and a distal portion 1090. The inner surface 1060 defines a passage 1110 that extends along the longitudinal axis of the shell 1100. The insert 1050 includes alignment splines 1120 that protrude from the inner surface 1060 and in some embodiments extend in a direction parallel to the longitudinal axis along the entire length of the inner surface 1060 between the a proximal end 1082 and a distal end 1092 of the insert 1050 and may extend distally from the distal end 1092 of the insert 1050. The alignment splines 1120 are spaced about the inner surface 1060 to define channels 1124 between adjacent alignment splines 1120.
The outer surface 1070 of the insert 1050 includes retaining feature 1072 that secures the insert 1050 within the lumen 1102. As shown the retaining feature 1072 is in the form of a helical rib 1074 that is disposed about the outer surface 1070 of the insert 1050 such that the insert 1050 can be rotated into the lumen 1102 with the rib 1074 engaging a surface defining the lumen 1102 to secure the insert 1050 within the lumen 1102. The outer surface 1070 of the insert 1050 may include a stop 1076 in the proximal portion 1080 that abuts a portion of the shell 1100 when the insert 1050 is fully disposed within the lumen 1102. In some embodiments, the stop 1076 includes flats 1078 that can be engaged by a tool (not shown) to rotate the insert 1050 into the lumen 1102. In certain embodiments, the surface defining the lumen 1102 also defines a helical groove 1104 that receives the rib 1074 as the insert 1050 is rotated into the lumen 1102.
Additionally or alternatively, the rib 1074 may be formed of a first material and the shell 1100 may be formed of a second material different from the first material such that the rib 1074 bites into the surface defining the lumen 1102 as the insert 1050 is rotated into the lumen 1102. The first material may have a hardness greater than the second material and/or the first material may have a modulus of elasticity lower than the second material. For example, the first material may be a metal and the second material may be plastic.
It is contemplated that the alignment splines 1120 of the insert 1050 may also be formed from the first material. Forming the alignment splines 1120 of the first material may reduce or eliminate damage to the alignment splines 1120 experienced during clocking of the anvil assembly 300. Further, an insert 1050 formed of the first material may allow for higher clamping forces of tissue disposed between the anvil assembly 300 and the cartridge assembly 200 without experiencing deformation and/or damage to the shell 1100 when compared to the shell 100 detailed above.
It is contemplated that the entire shell 1100 may be formed of the second material, e.g., a plastic such as an injection molded plastic, and the rib 1074, the alignment splines 1120, and/or the entire insert 1050 may be formed of the first material, e.g., a thermoset plastic or a metal such as surgical steel, stainless steel, or titanium.
As described herein, the circular stapling device is a manually actuated stapling device; however it is contemplated that the shells 100, 1100 and/or the anvil assembly 300 can be used with a powered stapling device, such as an instrument with a motor, or being attachable to some power source. For a detailed description of an exemplary powered stapling device reference can be made to U.S. Pat. Nos. 8,806,973 and 9,055,943, the entire contents of which are hereby incorporated by reference.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Any combination of the above embodiments is also envisioned and is within the scope of the appended claims. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope of the claims appended hereto.
This application is a divisional of U.S. patent application Ser. No. 15/441,994, filed Feb. 24, 2017, the disclosure of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 15441994 | Feb 2017 | US |
Child | 16738698 | US |