This invention relates generally to machine tool assemblies, and more specifically, to a heated cutting tool for use in cutting fabric.
At least some known fabric cutting machines includes rotary blades that are used to cut sheets of fabric into desired shapes. The sheets are held in place on a cutting platform as a mechanical arm moves the rotating blade across the sheet of fabric to allow the rotary blade to cut the sheet of fabric to the desired shape. Over time, the edge of the rotary blade becomes worn, which causes an uneven cutting of the fabric, which results in frayed edges that require additional work to repair.
The present invention addresses one or more of the aforementioned challenges.
In different embodiments of the present invention, a heated tool assembly for use in a cutting press machine, are provided.
In one embodiment of the present invention, a cutting tool for use with a tool assembly is provided. The cutting tool includes a support body and a plurality of cutting blades extending outwardly from an outer surface of the support body. The plurality of cutting blades includes a primary cutting blade and a pair of secondary cutting blades extending obliquely from the primary cutting blade. At least one heating element chamber is defined within the support body and is configured to receive a heating cartridge therein to facilitate transferring thermal energy from the heating cartridge to the cutting tool for use in heating the plurality of cutting blades.
In another embodiment of the present invention, a tool assembly is provided. The tool assembly includes a cutting tool and a heating assembly. The cutting tool includes a support body and a plurality of cutting blades extending outwardly from an outer surface of the support body. The plurality of cutting blades includes a primary cutting blade and a pair of secondary cutting blades extending obliquely from the primary cutting blade. The heating assembly is coupled to the cutting tool for transferring thermal energy to the cutting tool for use in heating the plurality of cutting blades. The heating assembly includes at least one heating cartridge positioned within a corresponding heating element chamber defined within the support body.
Other advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Corresponding reference characters indicate corresponding parts throughout the drawings.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one having ordinary skill in the art that the specific detail need not be employed to practice the present invention. In other instances, well-known materials or methods have not been described in detail in order to avoid obscuring the present invention.
In general, the present invention describes a heated tool assembly for use with an automatic cutting machine. The heated tool assembly includes a heating cartridge that is inserted into a cutting tool to facilitate heating and maintaining a temperature of the blades of the cutting tool. The cutting tool is designed to function as a highly-efficient heated knife blade made to cut fabric material. The blade cuts a proprietary shape and a straight cut simultaneously. The more heat provided to the blade, the more perfectly repeatable the cuts will be. The tip of the blade loses small amounts of heat during each cut when energy from the blade is drawn away by the material being cut. The heating cartridge helps minimize that effect by providing heat to bring the blade back up to ideal operating temperature quickly and provides an optimal balance between energy consumption and repeatable cut performance. As a roll of fabric is passed under the heated tool assembly, the cutting machine presses the cutting tool into the fabric to cut the fabric into desired shapes. By using the heated cutting tool, the cutting machine produces a more consistent cut in the fabric than other known fabric cutting machines.
Referring to
In the illustrated embodiment, the heated tool assembly 12 includes a cutting tool 20 and a heating assembly 22 that is coupled to the cutting tool 20 for transferring thermal energy to the cutting tool 20. The heating assembly 22 includes at least one heating cartridge 24 (shown in
Referring to
The support body 30 includes a substantially rectangular cross-sectional shape including a plurality of sidewalls 34 extending between a first endwall 36 and an opposite second endwall 38 along a first axis 40 (e.g., an X-axis). The plurality of sidewalls 34 includes a top sidewall 42, a bottom sidewall 44, a front sidewall 46, and a rear sidewall 48. The bottom sidewall 44 is spaced a distance from the top sidewall 42 along a second axis 50 (e.g., a Z-axis) that is perpendicular to the first axis 40. The rear sidewall 48 is spaced a distance from the front sidewall 46 along a third axis 52 (a Y-axis) that is perpendicular to the first axis 40 and the second axis 50. At least one heating element chamber 54 is defined within the support body 30 and is sized and shaped to receive a heating cartridge 24 therein to facilitate transferring thermal energy from the heating cartridge 24 to the cutting tool 20 for use in heating the plurality of cutting blades 32.
Referring to
The support body 30 also includes a pair of set screw openings 62, 64 that are defined along the rear sidewall 48. Each set screw opening 62, 64 is sized and shaped to receive a corresponding set screw 66 (shown in
In some embodiments, the support body 30 includes a first heating element chamber 68 that is sized and shaped to receive a first heating cartridge 24 therein and a second heating element chamber 70 that is sized and shaped to receive a second heating cartridge 24 therein. The second heating element chamber 70 is orientated between the first heating element chamber 68 and the top sidewall 42. In the illustrated embodiment, the second heating element chamber 70 includes a diameter 72 that is smaller than a diameter 74 of the first heating element chamber 68. In some embodiments, the diameter 72 of the second heating element chamber 70 may be greater than, or equal to, the diameter of the first heating element chamber 68. In the illustrated embodiment, the first and second heating element chambers 68, 70 are each spaced an equal distance between the front sidewall 46 and the rear sidewall 48. In other embodiments, the first heating element chamber x and/or the second heating element chamber 70 may be positioned closer to the front sidewall 46 or closer to the rear sidewall 48. The first and second heating element chambers 68, 70 may be aligned along the second axis 50, as shown in
In the illustrated embodiment, the support body 30 includes a plurality of mounting chambers 76 spaced along the first axis 40. Each mounting chamber 76 is sized and shaped to receive a mounting fastener 78 (shown in
At least one thermocouple opening 86 is defined along an outer surface of the rear sidewall 48. The thermocouple opening 86 includes a threaded inner surface that is sized and shaped to receive the thermocouple 28 therein to facilitate mounting the thermocouple 28 to the support body 30. In the illustrated embodiment, the thermocouple opening 86 is orientated closer to the second endwall 38 than the first endwall 36 and extends between the first heating element chamber 68 and the second heating element chamber 70.
Referring to
Each cutting blade 32 includes a blade body 94 including a substantially triangular cross-sectional shape including a base 96 positioned adjacent to an outer surface of the bottom sidewall 44 and an apex 98 spaced from the base 96 along the second axis 50. The height 100 of the cutting blade 32 is defined between the base and the apex. In the illustrated embodiment, each cutting blade 32 includes the same height 100. In other embodiments, one or more cutting blades has a different height 100.
Each secondary cutting blade 90, 92 extends obliquely from the primary cutting blade 88 towards the rear sidewall 48 and includes a first end 102 positioned adjacent the primary cutting blade 88 and a second end 104 spaced a distance from the primary cutting blade 88 defined along the third axis 52. In the illustrated embodiment, each secondary cutting blade 90, 92 extends between the first end 102 positioned adjacent the primary cutting blade 88 and the second end 104 positioned adjacent the rear sidewall 48. In other embodiments, the second end 104 of one or more secondary blades is spaced a distance from the rear sidewall 48.
The cutting tool 20 includes a first secondary cutting blade 90 extending a first oblique angle 106 from the primary cutting blade 88, and a second secondary cutting blade 92 extending a second oblique angle 108 from the primary cutting blade 88. In the illustrated embodiment, the first oblique angle 106 is opposite the second oblique angle 108 such that the first and second secondary cutting blades 90, 92 extend from the primary cutting blade 88 in a mirrored relationship. In other embodiments, the first oblique angle 106 may be equal to or different from the second oblique angle 108, or the first and second secondary cutting blades 90, 92 may be orientated substantially parallel.
In the illustrated embodiment, the first and second secondary cutting blades 90, 92 are spaced along the first axis 40 such that a first gap 110 is formed having a first distance 112 defined between the first ends 102 of the first and second secondary cutting blades 90, 92 along the first axis 40, and a second gap 114 is formed having a second distance 116 defined between the second ends 104 of the first and second secondary cutting blades 90, 92 along the first axis, with the second gap 114 being larger than the first gap 110. In other embodiments, the first and second secondary cutting blades 90, 92 may be orientated such that the second gap 114 is smaller than the first gap 110. In some embodiments, the primary cutting blade 88 has a length 118 defined along the first axis 40 that is longer than the second gap 114 defined between the second ends 104 of the pair of secondary cutting blades 90, 92.
Referring to
In various embodiments, the cutting tool 20 is designed to function as a highly-efficient heated knife blade made to cut 2″ wide material. The blade cuts a proprietary shape and a straight cut simultaneously. The three evenly-spaced mounting holes which run through the Y plane of the part allow it to be mounted to an automatic cutting machine. The upper and lower holes running through the X plane of the part are designed to accept 12 mm and 14 mm heating rods respectively. The four threaded holes found at the corners of the front face of the part are to accommodate set screws used to hold the heating rods in place. The threaded hole found centered height-wise in the leftmost third of the front face is designed to accommodate a thermocouple used to regulate temperature. The heating rods (also referred to as cartridge or insertion heating elements) are a generic product produced by several different manufacturers. The primary material used in the heating rods is Incoloy 800. The cutting tool 20 is made from 4140 Steel, however there are many different types of metals which would be well-suited for the application.
The more heat provided to the blade, the more perfectly repeatable the cuts will be. The tip of the blade loses small amounts of heat during each cut when energy from the blade is drawn away by the material being cut, so the larger diameter heating rod helps minimize that effect by providing heat to bring the blade back up to temp quickly. The diameter of the heating rods isn't critical, and the rods don't have to be different sizes, but the combination of heating rods with the previously mentioned diameters creates an optimal balance between energy consumption and repeatable cut performance. Two heating rods are not required, however, any more or less would change the performance of the part. The combination used in the illustrated embodiment provides acceptable results.
In some embodiments, the support body 30 may include a width measured along the third axis 52 of about 1.181 inches and a length measure along the first axis 40 of about 4.734 inches. The length of the primary cutting blade 88 may be about 2.335 inches and the length of each secondary cutting blade 90, 92 measure between the first and second ends 102, 104 may be about 1.181 inches. The first and second oblique angles 106, 108 may each be about 63.4° , with the first gap 110 having a length of about 1 inch and the second gap 114 having a length of 2.056 inches. The above described measurements are for illustrative purposes only, and one skilled in the art would understand that other suitable length and angle measurements are contemplated and would fall within the scope of the present invention.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. The invention may be practiced otherwise than as specifically described within the scope of the appended claims.
Although specific features of various embodiments of the disclosure may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the disclosure, any feature of a drawing or other embodiment may be referenced and/or claimed in combination with any feature of any other drawing or embodiment.
This written description uses examples to describe embodiments of the disclosure and also to enable any person skilled in the art to practice the embodiments, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.